1
|
Ricci A, Stefanuto L, Gasperi T, Bruni F, Tofani D. Lipid Nanovesicles for Antioxidant Delivery in Skin: Liposomes, Ufasomes, Ethosomes, and Niosomes. Antioxidants (Basel) 2024; 13:1516. [PMID: 39765844 PMCID: PMC11727561 DOI: 10.3390/antiox13121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
The skin, being the largest organ of the human body, serves as the primary barrier against external insults, including UV radiation, pollutants, and microbial pathogens. However, prolonged exposure to these environmental stressors can lead to the generation of reactive oxygen species (ROS), causing oxidative stress, inflammation, and ultimately, skin aging and diseases. Antioxidants play a crucial role in neutralizing ROS and preserving skin health by preventing oxidative damage. In recent years, nanotechnology has emerged as a powerful tool for enhancing the delivery of antioxidants onto the skin. In particular, liposomal formulations have offered unique advantages such as improved stability, controlled release, and enhanced penetration through the skin barrier. This has led to a surge in research focused on developing liposomal-based antioxidant delivery systems tailored for skin health applications. Through a comprehensive analysis of the literature from the 2019-2024 period, this review provides an overview of emerging trends in the use of liposomal delivery systems developed for antioxidants aimed at improving skin health. It explores the latest advancements in liposomal formulation strategies, vesicle characterization, and their applications in delivering antioxidants to combat oxidative stress-induced skin damage and other associated skin pathologies. A comparison of various delivery systems is conducted for the most common antioxidants. Finally, a brief analysis of lipid nanovesicles used in the cosmeceutical industry is provided.
Collapse
Affiliation(s)
- Agnese Ricci
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 79, 00146 Rome, Italy; (A.R.); (L.S.); (T.G.)
| | - Luca Stefanuto
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 79, 00146 Rome, Italy; (A.R.); (L.S.); (T.G.)
| | - Tecla Gasperi
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 79, 00146 Rome, Italy; (A.R.); (L.S.); (T.G.)
| | - Fabio Bruni
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 84, 00146 Rome, Italy;
| | - Daniela Tofani
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 79, 00146 Rome, Italy; (A.R.); (L.S.); (T.G.)
| |
Collapse
|
2
|
Sachdeva V, Mehra A, Singh G, Kumar A, Kumar P, Singh G, Bedi N. Self-microemulsifying drug delivery system-based gastroretentive in situ raft of pazopanib with enhanced solubility and bioavailability. Arch Pharm (Weinheim) 2024:e2400179. [PMID: 39449226 DOI: 10.1002/ardp.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Pazopanib hydrochloride (PZH) is a Biopharmaceutics Classification System class II drug that faces challenges at the formulation forefront including low aqueous solubility (0.043 mg/mL) and poor oral bioavailability (14-39%). The present investigation aimed to develop a self-microemulsifying drug delivery system (SMEDDS) of PZH using a blend of Capryol® 90, Labrasol®, and propylene glycol to improve its solubility. Furthermore, a sustained-release SMEDDS-based gastroretentive floating system was developed and optimized using the Central Composite Design approach of DoE. The optimized SMEDDS-based in situ gelling raft, R-SM-PZH, exhibited minimal floating lag time (3.09 ± 0.8 s), optimal viscosity (1229.4 ± 20.9 cP) and density (0.327 ± 0.15 g/mL) as compared to other formulations under study. Additionally, R-SM-PZH was evaluated for its in vitro dissolution in FaSSGF and FeSSGF, pharmacokinetic profile, and MTT assay (against NCI-H460 lung cancer cells) compared to pure PZH. A 12 h sustained release, three-fold augmentation in dissolution rate and bioavailability, and 15-fold enhancement in cytotoxicity were observed in comparison to pure PZH. Thus, the SMEDDS-based in situ gelling raft presents a promising approach to advancing the developability potential of PZH.
Collapse
Affiliation(s)
- Vridhi Sachdeva
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Anshula Mehra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Akshay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Gurpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
3
|
Ortega-Pérez LG, Hernández-Soto JA, Padilla-Avalos O, Ayala-Ruiz LA, Magaña-Rodríguez OR, Piñón-Simental JS, Aguilera-Méndez A, Godínez-Hernández D, Rios-Chavez P. Role of Callistemon citrinus Leaf Phytosomes Against Oxidative Stress and Inflammation in Rats Fed with a High-Fat-Fructose Diet. Antioxidants (Basel) 2024; 13:1263. [PMID: 39456515 PMCID: PMC11504497 DOI: 10.3390/antiox13101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Phytosomes are used as vehicles that carry plant extracts. They exhibit biological activities and possess better bioavailability, bioabsorption, and lower toxicity than drugs. Obesity is an inflammatory state in which oxidative stress is present, which triggers severe effects on the body's organs. This study aimed to evaluate the impact of the extract and phytosomes of Callistemon citrinus on oxidative stress and inflammation in the liver and heart of Wistar rats fed with a high-fat-fructose diet. Phytosomes containing the extract of leaves of C. citrinus were prepared. The antioxidant, pro-inflammatory enzymes, and biomarkers of oxidative stress were evaluated. Among the groups, only the high-fat-fructose group presented an increase in the COX-2, 5-LOX, and MPO inflammatory enzymes, while the XO enzyme exhibited decreased activity. The groups were fed a hypercaloric diet for 15 weeks while orlistat, C. citrinus extract, and phytosomes were administered at three different concentrations, exhibiting enzyme activities similar to those of the control group. It was also observed that the lowest concentration of phytosomes had a comparable effect to the other concentrations. Callistemon citrinus extract can modulate the activities of enzymes involved in the inflammation process. Furthermore, small doses of phytosomes can serve as anti-inflammatory agents.
Collapse
Affiliation(s)
- Luis Gerardo Ortega-Pérez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (J.A.H.-S.); (O.P.-A.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58000, Michoacán, Mexico; (A.A.-M.); (D.G.-H.)
| | - José Armando Hernández-Soto
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (J.A.H.-S.); (O.P.-A.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Osvaldo Padilla-Avalos
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (J.A.H.-S.); (O.P.-A.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Luis Alberto Ayala-Ruiz
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (J.A.H.-S.); (O.P.-A.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Oliver Rafid Magaña-Rodríguez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (J.A.H.-S.); (O.P.-A.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Jonathan Saúl Piñón-Simental
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (J.A.H.-S.); (O.P.-A.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Asdrúbal Aguilera-Méndez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58000, Michoacán, Mexico; (A.A.-M.); (D.G.-H.)
| | - Daniel Godínez-Hernández
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58000, Michoacán, Mexico; (A.A.-M.); (D.G.-H.)
| | - Patricia Rios-Chavez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (J.A.H.-S.); (O.P.-A.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| |
Collapse
|
4
|
Dewi MK, Muhaimin M, Joni IM, Hermanto F, Chaerunisaa AY. Fabrication of Phytosome with Enhanced Activity of Sonneratia alba: Formulation Modeling and in vivo Antimalarial Study. Int J Nanomedicine 2024; 19:9411-9435. [PMID: 39282578 PMCID: PMC11402348 DOI: 10.2147/ijn.s467811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Sonneratia alba extract exhibits antimalarial activity, mainly due to its secondary metabolites-naphthoquinones, flavonoids, tannins, and saponins-where naphthoquinone is the primary active component. However, its low bioavailability limits its effectiveness. To improve this, a phytosome-based vesicular system was proposed. This study focused on formulating a phytosome with S. alba and developing a predictive model to enhance its antimalarial activity. Methods Phytosomes were produced using antisolvent precipitation and optimized with 3-factor, 3-level Box-behnken model. Particle size, zeta potential, and entrapment efficiency were assessed. The optimized phytosomes were characterized by their physical properties and release profiles. Their antimalarial activity was tested in white BALB/c mice infected with Plasmodium berghei using Peter's 4-day suppressive test. Results The optimal phytosome formulation used a phospholipid-to-extract ratio of 1:3, reflux temperature of 50°C, and a duration of 2.62 hours. The phytosomes had a particle size of 471.8 nm, a zeta potential of -54.1 mV, and an entrapment efficiency (EE) of 82.4%. In contrast, the phytosome-fraction showed a particle size of 233.4 nm, a zeta potential of -61.5 mV, and an EE of 87.08%. TEM analysis confirmed both had a spherical shape. In vitro release rates at 24 hours were 86.2 for the phytosome-extract and 95.9% for the phytosome-fraction, compared to 46.9% and 37.7% for the extract and fraction alone. Overall, the phytosome formulation demonstrated good stability. The actual experimental values closely matched the predicted values from the Box-Behnken model, indicating a high degree of accuracy in the model. Additionally, the phytosomes exhibited significantly greater antimalarial activity than the S. alba extract and fraction alone. Conclusion The findings indicated that the vesicular formulation in phytosomes can enhance the antimalarial activity of S. alba extract and fraction.
Collapse
Affiliation(s)
- Mayang Kusuma Dewi
- Doctoral Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muhaimin Muhaimin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Faizal Hermanto
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Cimahi, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
5
|
Fitri AMN, Mahfufah U, Aziz SBA, Sultan NAF, Mahfud MAS, Saputra MD, Elim D, Bakri NF, Arjuna A, Sari YW, Domínguez-Robles J, Pamornpathomkul B, Mir M, Permana AD. Enhancement of skin localization of β-carotene from red fruit (Pandanus conoideus Lam.) using solid dispersion-thermoresponsive gel delivered via polymeric solid microneedles. Int J Pharm 2024; 660:124307. [PMID: 38852748 DOI: 10.1016/j.ijpharm.2024.124307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Red fruit (Pandanus conoideus Lam.) boasts high β-carotene (BC) content, often consumed orally. However, absorption issues and low bioavailability due to food matrix interaction have led to transdermal delivery exploration. Nevertheless, BC has a short skin retention time. To address these limitations, this study formulates a β-carotene solid dispersion (SD-BC) loaded thermoresponsive gel combined with polymeric solid microneedles (PSM) to enhance in vivo skin bioavailability. Characterization of SD-BC includes saturation solubility, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and in vitro release. Characterization of SD-BC thermoresponsive gel includes gelation temperature, viscosity, rheological behaviour, pH, bio-adhesiveness, spreadability, and extrudability. PSM's mechanical properties and insertion capability were assessed. Ex vivo and in vivo dermato-pharmacokinetic studies, drug content, hemolysis, and skin irritation assessments were conducted to evaluate overall performance. Results confirm amorphous SD-BC formation, enhancing solubility. Both SD-BC thermoresponsive gel and PSM exhibit favourable characteristics, including rheological properties and mechanical strength. In vitro release studies showed a seven-fold increase in BC release compared to plain hydrogel. SD-BC thermoresponsive gel combined with PSM achieves superior ex vivo permeation (Cmax = 305.43 ± 32.07 µg.mL-1) and enhances in vivo dermato-pharmacokinetic parameters by 200-400 %. Drug content, hemolysis, and skin irritation studies confirmed its safety and non-toxicity.
Collapse
Affiliation(s)
| | - Ulfah Mahfufah
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | | | | | - Diany Elim
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Nur Fadillah Bakri
- Department of Pharmacy, Cendrawasih University, Jayapura 99224, Indonesia
| | - Andi Arjuna
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Yessie Widya Sari
- Faculty of Mathematics and Natural Science, IPB University, Bogor 16680, Indonesia
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville 41012, Spain
| | | | - Maria Mir
- Department of Pharmacy, Iqra University Islamabad Campus, Islamabad, Pakistan
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
6
|
Patil J, Pawde DM, Bhattacharya S, Srivastava S. Phospholipid Complex Formulation Technology for Improved Drug Delivery in Oncological Settings: a Comprehensive Review. AAPS PharmSciTech 2024; 25:91. [PMID: 38664316 DOI: 10.1208/s12249-024-02813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/16/2024] [Indexed: 06/15/2024] Open
Abstract
Addressing poor solubility and permeability issues associated with synthetic drugs and naturally occurring active compounds is crucial for improving bioavailability. This review explores the potential of phospholipid complex formulation technology to overcome these challenges. Phospholipids, as endogenous molecules, offer a viable solution, with drugs complexed with phospholipids demonstrating a similar absorption mechanism. The non-toxic and biodegradable nature of the phospholipid complex positions it as an ideal candidate for drug delivery. This article provides a comprehensive exploration of the mechanisms underlying phospholipid complexes. Special emphasis is placed on the solvent evaporation method, with meticulous scrutiny of formulation aspects such as the phospholipid ratio to the drug and solvent. Characterization techniques are employed to understand structural and functional attributes. Highlighting the adaptability of the phospholipid complex, the review discusses the loading of various nanoformulations and emulsion systems. These strategies aim to enhance drug delivery and efficacy in various malignancies, including breast, liver, lung, cervical, and pancreatic cancers. The broader application of the drug phospholipid complex is showcased, emphasizing its adaptability in diverse oncological settings. The review not only explores the mechanisms and formulation aspects of phospholipid complexes but also provides an overview of key clinical studies and patents. These insights contribute to the intellectual and translational advancements in drug phospholipid complexes.
Collapse
Affiliation(s)
- Jayesh Patil
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| | - Datta Maroti Pawde
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-Be University, Shirpur, Maharashtra, 425405, India.
| | - Sauarbh Srivastava
- Department of Pharmaceutics, School of Pharmacy, KPJ Healthcare University, 71800, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
7
|
Rezaee Y, Rezaee E, Karami L, Torshabi M, Haeri A. Crocin-Phospholipid Complex: Molecular Docking, Molecular Dynamics Simulation, Preparation, Characterization, and Antioxidant Activity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e144041. [PMID: 39005730 PMCID: PMC11246643 DOI: 10.5812/ijpr-144041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 02/17/2024] [Indexed: 07/16/2024]
Abstract
Background Crocin is a water-soluble carotenoid compound present in saffron (Crocus sativus L.), known for its wide range of pharmacological activities, including cardioprotective, hepatoprotective, anti-tumorigenic, anti-atherosclerosis, and anti-inflammatory effects. Objectives The instability of crocin, its low miscibility with oils, and poor bioavailability pose challenges for its pharmaceutical applications. This study aimed to design and prepare a crocin-phospholipid complex (CPC) and assess its physicochemical properties. Methods The study investigated the formation of the complex and its binding affinity through molecular docking. Molecular dynamics (MD) simulations were conducted to find the optimal molar ratio of crocin to phospholipid for the complex's preparation. The CPC was produced using the solvent evaporation method. Techniques such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FE-SEM), nuclear magnetic resonance (NMR), and solubility studies were utilized to characterize and confirm the formation of CPC. Additionally, the in vitro antioxidant activity of crocin and CPC was evaluated. Results Molecular dynamic simulations explored molar ratios of 1: 1, 1: 1.5, and 1: 2 for crocin to phospholipid. The ratio of 1: 2 was found to be the most stable, exhibiting the highest probability of hydrogen bond formation. Molecular docking, FTIR, and NMR studies indicated hydrogen bond interactions between crocin and phospholipid, confirming CPC's formation. XRD and FE-SEM analyses showed a decrease in crocin's crystallinity within the phospholipid complex. Furthermore, the solubility of crocin in n-octanol was enhanced post-complexation, indicating an increase in crocin's lipophilic nature. Conclusions Phospholipid complexation emerges as a promising technique for enhancing the physicochemical characteristics of crocin.
Collapse
Affiliation(s)
- Yasaman Rezaee
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Karami
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Palol VV, Saravanan SK, Vuree S, Chinnadurai RK, Subramanyam V. Nanophytosome formulation of β-1,3-glucan and Euglena gracilis extract for drug delivery applications. MethodsX 2023; 11:102480. [PMID: 38098771 PMCID: PMC10719576 DOI: 10.1016/j.mex.2023.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Euglena gracilis (EG) is a unicellular freshwater alga known for its high β-1,3-glucan (BG) content with well-known biological properties and immune response. The high molecular weight structure of BG traditionally poses a challenge in terms of its size and absorption. Therefore, the aim of this study was to develop a novel drug delivery mechanism of BG and EG to nanophytosomes (NPs) by converting the heavy molecular weight of BG and EG into lipid phosphatidylcholine (PC), which plays an important role in improving their bioavailability and entrapment in captivity. The BG and EG NPs were developed by the solvent evaporation method while varying time and temperature to optimize their drug delivery ability. The size of BG-PC and EG-PC obtained by the Dynamic Light Scattering (DLS) method was 134.62 and 158.38 nm, respectively. Chemical (Fourier Transform Infra-Red) and structural (X-Ray Diffraction) characterization of NPs improved the binding capacity and the amorphous nature of both NPs. The shape of the NPs by Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) revealed their spherical, vesicular nature. The encapsulation efficiency of BG-PC and EG-PC was 82 ± 1.62 % and 87 ± 3.22 %, respectively, which improves the bioavailability. The developed methodology has thus proven effective in synthesizing BG-PC and EG-PC, which may be useful as NP drug delivery carriers. Future research could demonstrate the safety and effectiveness of long-term storage conditions for medical and pharmaceutical applications.•Nanophytosomes are tailored in size, shape and composition to optimize the delivery of phytochemicals/phytocompounds through nanoscale size and surface modification for better physiological absorption.•Nanophytosomes increase the stability of phytochemicals/phytocompounds and protect them from degradation due to heat or chemical reactions, leading to longer shelf life and improved therapeutic efficacy.•In this method, optimal conditions were created for the formation of β-1,3-glucan and Euglena gracilis extract nanophytosomes for successful development of drug delivery system that can effectively deliver bioactive compounds.
Collapse
Affiliation(s)
- Varsha Virendra Palol
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Pillayarkuppam, Puducherry 607402, India
| | - Suresh Kumar Saravanan
- Mahatma Gandhi Medical Preclinical Research Centre (MGMPRC), Sri Balaji Vidyapeeth (Deemed to-be University), Pillayarkuppam, Puducherry 607402, India
| | - Sugunakar Vuree
- MNR Foundation for Research and Innovation, MNR Medical College and Hospital, MNR Nagar, Fasalwadi, Narsapur Road, Sangareddy 502294, India
| | - Raj Kumar Chinnadurai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Pillayarkuppam, Puducherry 607402, India
| | - Veni Subramanyam
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Pillayarkuppam, Puducherry 607402, India
| |
Collapse
|
9
|
Human C, Aucamp M, de Beer D, van der Rijst M, Joubert E. Food-grade phytosome vesicles for nanoencapsulation of labile C-glucosylated xanthones and dihydrochalcones present in a plant extract matrix-Effect of process conditions and stability assessment. Food Sci Nutr 2023; 11:8093-8111. [PMID: 38107118 PMCID: PMC10724603 DOI: 10.1002/fsn3.3730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
Phytosomes consist of a phytochemical bound to the hydrophilic choline head of a phospholipid. Their use in food products is gaining interest. However, literature on the use of food-grade solvents, crude plant extracts as opposed to pure compounds, and unrefined phospholipids to prepare phytosomes is limited. Furthermore, studies on compound stability are lacking. This study aimed to develop nano-phytosome vesicles prepared from inexpensive food-grade ingredients to improve the stability of polyphenolic compounds. Cyclopia subternata extract (CSE) was selected as a source of phenolic compounds. It contains substantial quantities of C-glucosyl xanthones, benzophenones, and dihydrochalcones, compounds largely neglected to date. The effect of process conditions on the complexation of CSE polyphenols with minimally refined food-grade fat-free soybean lecithin (PC) was studied. The PC:CSE ratio, sonication time, and reaction temperature were varied. This resulted in phytosomes ranging in vesicle size (113.7-312.7 nm), polydispersity index (0.31-0.48), and zeta potential (-55.0 to -38.9 mV). Variation was also observed in the yield (93.5%-96.0%), encapsulation efficiency (3.7%-79.0%), and loading capacity (LC, 1.3%-14.7%). Vesicle size and LC could be tailored by adjusting the sonication time and PC:CSE ratio, respectively. Chemical interaction between the lipid and the phenolic compounds was confirmed with nuclear magnetic resonance. Phytosomal formulation protected the compounds against degradation when freeze-dried samples were stored at 25 and 40°C for 6 months at low relative humidity. The study provided valuable information on the importance of specific process parameters in producing food-grade phytosomes with improved phenolic stability.
Collapse
Affiliation(s)
- Chantelle Human
- Plant Bioactives Group, Post‐Harvest and Agro‐Processing TechnologiesAgricultural Research Council (Infruitec‐Nietvoorbij)StellenboschSouth Africa
| | - Marique Aucamp
- School of PharmacyUniversity of the Western CapeBellvilleSouth Africa
| | - Dalene de Beer
- Plant Bioactives Group, Post‐Harvest and Agro‐Processing TechnologiesAgricultural Research Council (Infruitec‐Nietvoorbij)StellenboschSouth Africa
- Department of Food ScienceStellenbosch UniversityMatieland (Stellenbosch)South Africa
| | | | - Elizabeth Joubert
- Plant Bioactives Group, Post‐Harvest and Agro‐Processing TechnologiesAgricultural Research Council (Infruitec‐Nietvoorbij)StellenboschSouth Africa
- Department of Food ScienceStellenbosch UniversityMatieland (Stellenbosch)South Africa
| |
Collapse
|
10
|
Ortega-Pérez LG, Ayala-Ruiz LA, Magaña-Rodríguez OR, Piñón-Simental JS, Aguilera-Méndez A, Godínez-Hernández D, Rios-Chavez P. Development and Evaluation of Phytosomes Containing Callistemon citrinus Leaf Extract: A Preclinical Approach for the Treatment of Obesity in a Rodent Model. Pharmaceutics 2023; 15:2178. [PMID: 37765149 PMCID: PMC10535757 DOI: 10.3390/pharmaceutics15092178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Callistemon citrinus has several biological effects; it is anti-inflammatory, anti-obesogenic, antioxidant, hepatoprotection, and chemoprotective. Its bioactive compounds include terpenoids, phenolic acids, and flavonoids which have low oral bioavailability and absorption. This study aimed at developing phytosomes of C. citrinus to improve oral bioavailability and absorption. Phytosomes were formulated with soybean phosphatidylcholine and C. citrinus leaf extract using the thin layer sonication method. Phytosomes were evaluated by scanning electron microscopy (SEM), entrapment efficiency, solubility, and particle size determination. Antioxidant capacity and total phenolic, flavonoid, and terpenoid contents were also measured. The in vivo anti-obesogenic activity was evaluated. Phytosomes loaded with C. citrinus (P C.c) extract had small spherical shapes. The average particle size was 129.98 ± 18.30 nm, encapsulation efficiency 80.49 ± 0.07%, and solubility 90.00%; the stability study presented no significant changes in the average particle size at 20 °C. P C.c presented high antioxidant capacity. For the first time, ellagic acid is reported in this plant. The in vivo obesity study showed a strong anti-obesogenic activity of phytosomes with C. citrinus to reduce 40% body weight as well as morphometric and biochemical parameters.
Collapse
Affiliation(s)
- Luis Gerardo Ortega-Pérez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Luis Alberto Ayala-Ruiz
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Oliver Rafid Magaña-Rodríguez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Jonathan Saúl Piñón-Simental
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Asdrubal Aguilera-Méndez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (A.A.-M.); (D.G.-H.)
| | - Daniel Godínez-Hernández
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (A.A.-M.); (D.G.-H.)
| | - Patricia Rios-Chavez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| |
Collapse
|
11
|
Nainu F, Frediansyah A, Mamada SS, Permana AD, Salampe M, Chandran D, Emran TB, Simal-Gandara J. Natural products targeting inflammation-related metabolic disorders: A comprehensive review. Heliyon 2023; 9:e16919. [PMID: 37346355 PMCID: PMC10279840 DOI: 10.1016/j.heliyon.2023.e16919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Currently, the incidence of metabolic disorders is increasing, setting a challenge to global health. With major advancement in the diagnostic tools and clinical procedures, much has been known in the etiology of metabolic disorders and their corresponding pathophysiologies. In addition, the use of in vitro and in vivo experimental models prior to clinical studies has promoted numerous biomedical breakthroughs, including in the discovery and development of drug candidates to treat metabolic disorders. Indeed, chemicals isolated from natural products have been extensively studied as prospective drug candidates to manage diabetes, obesity, heart-related diseases, and cancer, partly due to their antioxidant and anti-inflammatory properties. Continuous efforts have been made in parallel to improve their bioactivity and bioavailability using selected drug delivery approaches. Here, we provide insights on recent progress in the role of inflammatory-mediated responses on the initiation of metabolic disorders, with particular reference to diabetes mellitus, obesity, heart-related diseases, and cancer. In addition, we discussed the prospective role of natural products in the management of diabetes, obesity, heart-related diseases, and cancers and provide lists of potential biological targets for high throughput screening in drug discovery and development. Lastly, we discussed findings observed in the preclinical and clinical studies prior to identifying suitable approaches on the phytochemical drug delivery systems that are potential to be used in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | | | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
12
|
Mahmoud K, Teaima M, Attia Y, El-Nabarawi M, Swidan S. Size-optimized simvastatin-loaded TPGS modified lipid nanocapsules for targeting epithelial-to-mesenchymal transition in hepatocellular carcinoma: Role of PTEN/AKT signaling. Expert Opin Drug Deliv 2023; 20:703-719. [PMID: 37208857 DOI: 10.1080/17425247.2023.2216451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
OBJECTIVES Novel D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) modified lipid nanocapsules (LNC) were prepared with the aim of improving the effectiveness of simvastatin (SIM) in hepatocellular carcinoma (HCC). The present study, therefore, sought to investigate the effect of size-optimized SIM-loaded LNC on epithelial-to-mesenchymal transition (EMT) in HCC, providing insights on the implication of phosphatase and tensin homolog (PTEN)/protein kinase B (AKT) axis. METHODS Two optimized SIM-loaded LNCs with particle sizes 25 nm (SIM-LNC25) and 50 nm (SIM-LNC50) were prepared and biodistribution studies were performed. The anticancer effect of the prepared LNC was evaluated both in vitro and in vivo. The anti-migratory potential and EMT suppression through PTEN/AKT axis modulation were also explored. RESULTS SIM-LNC50 was superior to SIM-LNC25 in both in vitro and in vivo experiments, as evidenced by cytotoxicity assays, tumor histopathology, and enhanced apoptosis. SIM-LNC50 also alleviated the migratory potential of HCC cells. Moreover, EMT markers implied a transition of tumor cells toward the epithelial rather than the mesenchymal phenotype both in vitro and in vivo. PTEN/AKT axis modulation was also evident with SIM-LNC50. CONCLUSION The present study, therefore, suggests the efficacy of the 50 nm particles in SIM-loaded LNC in HCC by targeting EMT via modulating the PTEN/AKT signaling axis.
Collapse
Affiliation(s)
- Khaled Mahmoud
- a Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yasmeen Attia
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Shady Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| |
Collapse
|
13
|
Hendawy OM, Al-Sanea MM, Elbargisy RM, Rahman HU, Gomaa HAM, Mohamed AAB, Ibrahim MF, Kassem AM, Elmowafy M. Development of Olive Oil Containing Phytosomal Nanocomplex for Improving Skin Delivery of Quercetin: Formulation Design Optimization, In Vitro and Ex Vivo Appraisals. Pharmaceutics 2023; 15:1124. [PMID: 37111610 PMCID: PMC10145320 DOI: 10.3390/pharmaceutics15041124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
The objective of the current work was to fabricate, optimize and assess olive oil/phytosomal nanocarriers to improve quercetin skin delivery. Olive oil/phytosomal nanocarriers, prepared by a solvent evaporation/anti-solvent precipitation technique, were optimized using a Box-Behnken design, and the optimized formulation was appraised for in vitro physicochemical characteristics and stability. The optimized formulation was assessed for skin permeation and histological alterations. The optimized formulation (with an olive oil/PC ratio of 0.166, a QC/PC ratio of 1.95 and a surfactant concentration of 1.6%), and with a particle diameter of 206.7 nm, a zeta potential of -26.3 and an encapsulation efficiency of 85.3%, was selected using a Box-Behnken design. The optimized formulation showed better stability at ambient temperature when compared to refrigerating temperature (4 °C). The optimized formulation showed significantly higher skin permeation of quercetin when compared to an olive-oil/surfactant-free formulation and the control (~1.3-fold and 1.9-fold, respectively). It also showed alteration to skin barriers without remarkable toxicity aspects. Conclusively, this study demonstrated the use of olive oil/phytosomal nanocarriers as potential carriers for quercetin-a natural bioactive agent-to improve its skin delivery.
Collapse
Affiliation(s)
- Omnia M. Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Hidayat Ur Rahman
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Ahmed A. B. Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed F. Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11651, Egypt
| | - Abdulsalam M. Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11651, Egypt
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| |
Collapse
|
14
|
Permana AD, Sam A, Marzaman ANF, Rahim A, Nainu F, Bahar MA, Asri RM, Chabib L. Solid lipid nanoparticles cyclodextrin-decorated incorporated into gellan gum-based dry floating in situ delivery systems for controlled release of bioactive compounds of safflower (Carthamus tinctorius. L): A proof of concept study in biorelevant media. Int J Biol Macromol 2023; 237:124084. [PMID: 36940768 DOI: 10.1016/j.ijbiomac.2023.124084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023]
Abstract
Safflower (Carthamus tinctorius L.) has been explored as a source of natural antioxidant. However, quercetin 7-O-beta-D-glucopyranoside and luteolin 7-O-beta-D-glucopyranoside, as its bioactive compounds, possessed poor aqueous solubility, limiting its efficacy. Here, we developed solid lipid nanoparticles (SLNs) decorated with hydroxypropyl beta-cyclodextrin (HPβCD) incorporated into dry floating gel in situ systems to control the release of both compounds. Using Geleol® as a lipid matrix, SLNs were <200 nm in size with >80 % of encapsulation efficiency. Importantly, following the decoration using HPβCD, the stability of SLNs in gastric environment was significantly improved. Furthermore, the solubility of both compounds was also enhanced. The incorporation of SLNs into gellan gum-based floating gel in situ provided desired flow and floating properties, with <30 s gelation time. The floating gel in situ system could control the release of bioactive compounds in FaSSGF (Fasted-State Simulated Gastric Fluid). Furthermore, to assess the effect of food intake on release behavior, we found that the formulation could show a sustained release pattern in FeSSGF (Fed-State Simulated Gastric Fluid) for 24 h after being released in FaSGGF for 2 h. This indicated that this combination approach could be a promising oral delivery for bioactive compounds in safflower.
Collapse
Affiliation(s)
- Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| | - Anwar Sam
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Abdul Rahim
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Muh Akbar Bahar
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Lutfi Chabib
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
| |
Collapse
|
15
|
Enhancement of solubility, thermal stability and bioaccessibility of vitexin using phosphatidylcholine-based phytosome. NFS JOURNAL 2023. [DOI: 10.1016/j.nfs.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
16
|
Enggi CK, Satria MT, Nirmayanti N, Usman JT, Nur JF, Asri RM, Djide NJN, Permana AD. Improved transdermal delivery of valsartan using combinatorial approach of polymeric transdermal hydrogels and solid microneedles: an ex vivo proof of concept investigation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:334-350. [PMID: 36063003 DOI: 10.1080/09205063.2022.2121590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Valsartan (VAL) is used as a first-line agent to treat hypertension. However, VAL exhibits poor absorption and low bioavailability when administrated orally. To overcome these issues, VAL transdermal gel was developed in this study, where Carbopol was used as the gel matrices. Additionally, solid microneedles (Dermaroller®) with various needle lengths were combined with transdermal gel to improve its permeation across the stratum corneum as a skin barrier. Developed formulations were further evaluated for various parameters, including pH, viscosity, spreadability, extrudability, gel strength, drug content, ex vivo permeation, in vitro release, occlusivity, and hemolysis. The results showed that all formulations exhibited desired physical characteristics without any potential to cause toxicity. Moreover, this approach showed that using microneedles could significantly enhance the permeation of VAL up to 3 folds compared to untreated skin. The use of microneedles 1.5 mm was found to be the optimum combination to improve VA permeation without affecting skin integrity. As much as 1.69 ± 0.004 mg of VAL permeated after 8 h. Finally, it could be concluded that this work had successfully developed a new approach for VALS drug delivery and could potentially show a significant impact on the treatment of hypertension. Further in vivo work should be considered.
Collapse
Affiliation(s)
| | - Mega Tri Satria
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | | | | | | | | | | | | |
Collapse
|
17
|
Novalia Rahmawati Sianipar R, Suryanegara L, Fatriasari W, Tangke Arung E, Wijaya Kusuma I, Setiati Achmadi S, Izyan Wan Azelee N, Ain Abdul Hamid Z. The Role of Selected Flavonoids from Bajakah Tampala (Spatholobus littoralis Hassk.) Stem on Cosmetic Properties: A Review. Saudi Pharm J 2023; 31:382-400. [PMID: 37026052 PMCID: PMC10071331 DOI: 10.1016/j.jsps.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Cosmetics made from natural ingredients are increasingly popular because they contain bioactive compounds which can provide many health benefits, more environmentally friendly and sustainable. The health benefits obtained from natural-based ingredients include anti-aging, photoprotective, antioxidant, and anti-inflammatory. This article reviewed the potential of selected flavonoids from bajakah tampala (Spatholobus littoralis Hassk.) as the native plant in Indonesia. We present in silico, in vitro, in vivo, and clinical research data on the use of selected flavonoids that have been reported in other extracts.
Collapse
|
18
|
Salama A, Elgohary R, Kassem AA, Asfour MH. Chrysin-phospholipid complex-based solid dispersion for improved anti-aging and neuroprotective effects in mice. Pharm Dev Technol 2023; 28:109-123. [PMID: 36593750 DOI: 10.1080/10837450.2023.2165102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The present study aimed to improve the neuroprotective effect of chrysin (CHR) by combining two formulation techniques, phospholipid (PL) complexation and solid dispersion (SD). CHR-phospholipid complex (CHR-PLC) was prepared through solvent evaporation. The molar ratio CHR/PL (1:3), which exhibited the highest complexation efficiency, was selected for the preparation of CHR-PLC loaded SD (CHR-PLC-SD) with 2-hydroxypropyl β cyclodextrin (2-HPβCD) and polyvinylpyrrolidone 8000. CHR-PLC/2-HPβCD (1:2, w/w) displayed the highest aqueous solubility of CHR (5.86 times more than that of plain CHR). CHR-SD was also prepared using 2-HPβCD for comparison. The in vitro dissolution of CHR-PLC-SD4 revealed an enhancement in the dissolution rate over CHR-PLC (1:3), CHR-SD, and plain CHR by six times. The optimum formulations and plain CHR were evaluated for their neuroprotective effect on brain aging induced by D-galactose in mice. The results demonstrated a behavioral activity elevation, an increase of AMPK, LKB1, and PGC1α brain contents as well as a reduction of AGEs, GFAP, NT-3, TNF-α, and NF-κβ brain contents when compared with those of the D-galactose control group. Thus, the developed formulations stimulated neurogenesis and mitochondrial biogenesis as well as suppressed neuroinflammation and neurodegeneration. The order of activity was as follows: CHR-PLC-SD4 > CHR-PLC (1:3) > CHR-SD > plain CHR.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
19
|
Roska TP, Mudjahid M, Marzaman ANF, Datu NNP, Permana AD. Development of chloramphenicol wound dressing protein-based microparticles in chitosan hydrogel system for improved effectiveness of dermal wound therapy. BIOMATERIALS ADVANCES 2022; 143:213175. [PMID: 36368057 DOI: 10.1016/j.bioadv.2022.213175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Skin wounds have been reported to increase the number of microbial colonies susceptible to infection. Treatments using oral antibiotics have been limited due to their toxicity and hydrophobic characteristics. In this study, we developed a formulation of chloramphenicol microparticles (CPL MPs), which was modified into chitosan hydrogel to increase treatment efficiency in targeting infections and creating an optimal environment to support the healing process. CPL MPs were prepared by a cross-linker stabilized method using whey protein (WPI) biopolymer, and the CPL MPs hydrogel was designed using chitosan biopolymer. Based on the result, CPL-loaded MPs showed desired physical and encapsulation characteristics. In the in vitro study, drug release of CPL MPs in simulated wound fluid represented approximately 99.40 ± 7.01 % of the system after 24 h. The antibacterial activity of CPL-loaded MPs formulation (MIC value 12.5 μg/mL, MBC 25 μg/mL) was effective as MIC concentration increased. Furthermore, the formulation of CPL MPs into hydrogel showed a better dermatokinetic profile compared to hydrogel with pure CPL. Interestingly, the antibacterial activity of the ex vivo infection model showed that Staphylococcus aureus activity decreased by up to 99.98 % after 24 h administration of CPL MPs hydrogel when compared to pure-CPL hydrogel and blank hydrogel. These studies have confirmed that incorporating CPL MPs into hydrogel can provide a promising approach to skin infection treatment.
Collapse
Affiliation(s)
- Tri Puspita Roska
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Mukarram Mudjahid
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
20
|
Azis SBA, Syafika N, Qonita HA, Mahmud TRA, Abizart A, Permana AD. Application of validated spectrophotometric method to quantify metformin in the development of glucose-responsive microparticles loaded dissolving microneedles. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Enhanced skin localization of metronidazole using solid lipid microparticles incorporated into polymeric hydrogels for potential improved of rosacea treatment: An ex vivo proof of concept investigation. Int J Pharm 2022; 628:122327. [DOI: 10.1016/j.ijpharm.2022.122327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022]
|
22
|
Development of chloramphenicol whey protein-based microparticles incorporated into thermoresponsive in situ hydrogels for improved wound healing treatment. Int J Pharm 2022; 628:122323. [DOI: 10.1016/j.ijpharm.2022.122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022]
|
23
|
Fiqri M, Alhidayah, Nirmayanti, Athiyyah U, Layadi P, Angeleve Fadjar TG, Permana AD. Enhanced localization of cefazoline sodium in the ocular tissue using thermosensitive-mucoadhesive hydrogels: Formulation development, hemocompatibility and in vivo irritation studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Enggi CK, Mahardika F, Devara DM, Saputra MD, Wafiah N, Raihan M, Permana AD. HPLC-UV method validation for quantification of β-carotene in the development of sustained release supplement formulation containing solid dispersion-floating gel in situ. J Pharm Biomed Anal 2022; 221:115041. [PMID: 36152490 DOI: 10.1016/j.jpba.2022.115041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
Abstract
Despite the health benefits of β-carotene, its activity has been hampered by poor aqueous solubility and low oral bioavailability. Therefore, it is crucial to develop a new approach to overcome these problems. In this study, we developed a dry powder supplement comprising a combination approach of solid dispersion and floating gel in situ of β-carotene to enhance the solubility and achieve sustained release behavior. Here, we validated an HPLC method to quantify β-carotene as per the guidelines from ICH. The analytical method was validated in methanol and Fasted-State Simulated Gastric Fluid (FaSSGF) to determine β-carotene in recovery and in vitro release studies, respectively. A simple HPLC method using Xselect CSH™ C18 column (Waters, 3.0 × 150 mm) with the particle size of 3.5 µm was validated with 100% acetonitrile as the mobile phase. The calibration curves were found to be linear with LLOQ values < 3 ng/mL. Importantly, the method was accurate and precise without a carry over effect and successfully applied to determine the β-carotene concentration in the content analysis of the compound and in vitro drug release from floating gel in situ laden with solid dispersion formulations. The sensitivity of the method obtained here offers a wide potential use in various applications in drug delivery systems.
Collapse
Affiliation(s)
| | - Fitrah Mahardika
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Nurfadilla Wafiah
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Muhammad Raihan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
25
|
Zamani M, Aghajanzadeh M, Sharafi A, Danafar H. In vivo study of miktoarm star copolymers as a promising nanocarrier to transfer hydrophobic chemotherapeutic agents to breast cancer tumor. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Flavonoids: Food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res Int 2022; 157:111442. [PMID: 35761682 DOI: 10.1016/j.foodres.2022.111442] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/09/2023]
Abstract
Flavonoids possess an impressive therapeutic potential, thereby imparting them a nutraceutical character. As it becomes increasingly common to consume foods associated with healing properties, it is imperative to understand the associations of different foods with different classes of nutraceutic compounds, and their mechanisms of therapeutic action. At the same time, it is important to address the limitations thereof so that plausible future directions may be drawn. This review summarizes the food associations of flavonoids, and discusses the mechanisms responsible for imparting them their nutraceutic properties, detailing the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway, inhibition of inflammatory signaling pathways such as toll-like receptor (TLR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), cyclooxygenase 2 (COX-2) and lipoxygenase-2 (LOX-2) mediators. Further on, the review explains the mechanism of flavonoids metabolism, reasons for low bioavailability and thereafter recapitulates the role of technological interventions to overcome the limitations, with a particular focus on nanoformulations that utilize the synergy between flavonoids and biocompatible materials used as nanocarriers, as reported in works spanning over a decade. It is the Generally Recognized as Safe (GRAS) classified carriers that will become the basis for developing functional formulations. It is promisingly noteworthy that some flavonoid formulations have been commercialized and mentioned therein. Such commercially viable and safe for consumption technological applications pave way for bringing science to the table, and add value to the innate properties of flavonoids.
Collapse
|
27
|
Javed S, Mangla B, Ahsan W. From propolis to nanopropolis: An exemplary journey and a paradigm shift of a resinous substance produced by bees. Phytother Res 2022; 36:2016-2041. [PMID: 35259776 DOI: 10.1002/ptr.7435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Propolis, a natural resinous mixture produced by honey bees is poised with diverse biological activities. Owing to the presence of flavonoids, phenolic acids, terpenes, and sesquiterpenes, propolis has garnered versatile applications in pharmaceutical industry. The biopharmaceutical issues associated with propolis often beset its use as being too hydrophobic in nature; it is not absorbed in the body well. To combat the problem, various nanotechnological approaches for the development of novel drug delivery systems are generally applied to improve its bioavailability. This paradigm shift and transition of conventional propolis to nanopropolis are evident from the literature wherein a multitude of studies are available on nanopropolis with improved bioavailability profile. These approaches include preparation of gold nanoparticles, silver nanoparticles, magnetic nanoparticles, liposomes, liquid crystalline formulations, solid lipid nanoparticles, mesoporous silica nanoparticles, etc. Nanopropolis has further been explored to assess the potential benefits of propolis for the development of futuristic useful products such as sunscreens, creams, mouthwashes, toothpastes, and nutritional supplements with improved solubility, bioavailability, and penetration profiles. However, more high-quality clinical studies assessing the effects of propolis either alone or in combination with synthetic drugs as well as natural products are warranted and its safety needs to be firmly established.
Collapse
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
28
|
Enggi CK, Isa HT, Wijaya S, Ardika KAR, Asri RM, Donnelly RF, Permana AD. Validation of spectrophotometric method to quantify cabotegravir in simulated vaginal fluid and porcine vaginal tissue in ex vivo permeation and retention studies from thermosensitive and mucoadhesive gels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120600. [PMID: 34802927 DOI: 10.1016/j.saa.2021.120600] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/20/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Cabotegravir (CAB) is an antiretroviral therapy (ARV) used for Human Immunodeficiency Virus (HIV) treatment. CAB has low solubility, which affects its bioavailability in oral therapy. Moreover, the injection form of CAB has difficulty in the administration process. Therefore, it is essential to develop a new drug delivery system for CAB. Vaginal drug delivery system offers many advantages such as a large surface area, increased drug bioavailability, and improved drug delivery. CAB was developed in thermosensitive and mucoadhesive vaginal gel preparations that provided optimal distribution in the vaginal mucosa. To support the process of formulation development, in this study, UV-visible spectrophotometry method was validated in methanol, simulated vaginal fluid (SVF) and vaginal tissue to quantify the amount of CAB in the gel preparations, in vitro, and ex vivo studies, respectively. The developed analytical method was subsequently validated according to ICH guidelines. The calibration curves in these matrices were found to be linear with correlation coefficient values (R2) ≥ 0.998. The LLOQ values in methanol, SVF and vaginal tissue were 2.15 µg/mL, 2.22 µg/mL, and 5.13 µg/mL, respectively. The developed method was found to be accurate and precise without being affected by dilution integrity. These methods were successfully applied to quantify the amount of CAB in gel preparations, in vitro, and ex vivo studies, showing uniformity of drug content and controlled release manner in the permeation profile for 24 h for both thermosensitive and mucoadhesive vaginal gels. Further analytical method is required to be developed for the quantification of CAB in in vivo studies.
Collapse
Affiliation(s)
| | | | - Stevens Wijaya
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
29
|
Antioxidant Activity, Sun Protection Activity, and Phytochemical Profile of Ethanolic Extracts of Daemonorops acehensis Resin and Its Phytosomes. Sci Pharm 2022. [DOI: 10.3390/scipharm90010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Daemonorops (Indonesian: jernang) resin is one of Indonesia’s leading non-timber forest products and can be developed as a source of natural antioxidants and sun protection. This study aimed to select promising solvents for extracting a Daemonorops acehensis resin and phytosome formulation with high antioxidant capacities and sun protection factor (SPF) values. Jernang resin was extracted using a water–ethanol mixture in five different ratios. The promising extract was then mixed with soy lecithin in three different formulations. A promising extract and phytosome were then selected based on their antioxidant capacities and sun protection factor (SPF) values. A liquid chromatography mass spectrometry/mass spectrometry (LC–MS/MS) analysis was also performed on five extracts to identify the components in the extracts that might be responsible for the biological activity. The results showed that the ethanol solvent variation and phytosome formulation influenced the antioxidant capacity and SPF value. A hundred-percent ethanolic extract and F1 phytosome exhibited the highest antioxidant capacities and SPF values. A qualitative analysis revealed the various classes of compounds in the extract and phytosome. A flavylium chromophore, dracorhodin, dominated the resin extract and was presumed to be the marker compound responsible for their antioxidant capabilities and SPF values. These findings are important for manufacturing sunscreens containing active compounds of bioactive natural resins.
Collapse
|
30
|
Characterization and In vitro investigation of antiscabietic effect of phytosomes assimilating quercetin and naringenin rich fraction of Pistacia integerrima galls extract against Sarcoptes scabiei. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Fabrication and evaluation of mannose decorated curcumin loaded nanostructured lipid carriers for hepatocyte targeting: In vivo hepatoprotective activity in Wistar rats. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100083. [PMID: 35118372 PMCID: PMC8792424 DOI: 10.1016/j.crphar.2022.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
Curcumin is a well-recognized antioxidant phytoactive isolated from the rhizomes of Curcuma longa. Numerous landmark investigations have proved the antioxidant and hepatoprotective potential of curcumin. The aim of present study was to target curcumin loaded nanocarriers to hepatocytes using asialoglycoprotein receptors targeting strategy. Mannose, a water-soluble carbohydrate, was hydrophobized by anchoring stearylamine with an objective to conjugate mannose on the surface of curcumin loaded nanostructured lipid carriers for targeting asialoglycoprotein receptors on hepatocytes. Mannose conjugated stearylamine was synthesized and characterized using various analytical techniques. The synthesized targeting ligand was incorporated curcumin loaded nanostructured lipid carriers and characterized by photon correlation spectroscopy. Zeta potential measurement was used to confirm the conjugation of the synthesized ligand to the surface of drug-loaded nanostructured lipid carriers. CCl4 induced hepatotoxicity in male Wistar rats was used as an experimental animal model to evaluate the hepatoprotective potential of formulated drug encapsulated nanostructured lipid carriers. The hepatoprotective potential was assessed by measuring serum liver injury markers and oxidative stress parameters in the liver post–mitochondrial supernatant. Mannose conjugated nanostructured lipid carriers showed acceptable particle size which revealed its suitability for hepatocyte targeting. In addition to this, mannose conjugated nanocarriers revealed significantly better (p < 0.05) reduction of serum liver injury markers and proinflammatory cytokines compared to the unconjugated one which confirmed hepatocytes targeting potential of the synthesized ligand. Asialoglycoprotein receptors targeting could be a landmark strategy for hepatocyte targeting. Thus, the synthesized mannose anchored stearylamine could be a promising novel targeting ligand having hepatocyte targeting potential. The asialoglycoprotein receptors can be utilized for hepatocyte targeting. NLCs are major lipid based carrier used for phytoactive delivery. NLCs are promising lipid carrier for hepatocyte targeting. Curcumin is most prominent antioxidant phytoactive with hepatoprotective potential.
Collapse
|
32
|
Singh A. A Comprehensive Review of Therapeutic Approaches Available for the Treatment of Dermatitis. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:172-197. [PMID: 34365934 DOI: 10.2174/1872210515666210806143015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Dermatitis or eczema is a prevalent skin disorder worldwide and is also very common as a pediatric inflammatory skin disorder. Its succession gets worse with the multiple comorbidities which exhibit mechanisms that are poorly understood. Its management further becomes a challenge due to the limited effective treatment options available. However, the Novel Drug Delivery Systems (NDDS) along with new targeting strategies can easily bypass the issues associated with dermatitis management. If we compare the active constituents against phytoconstituents effective against dermatitis then phytoconstituents can be perceived to be more safe and gentle. OBJECTIVE Administration of NDDS of plant extract or actives displays improved absorption behavior, which helps them to permeate through lipid-rich biological membrane leading to increased bioavailability. The newer efficient discoveries related to eczema can face various exploitations. This can be intervened by the subjection of patent rights, which not only safeguard the novel works of individual(s) but also give them the opportunity to share details of their inventions with people globally. CONCLUSION The present review focuses on the available research about the use of nanoformulations in the topical delivery. It further elaborates the use of different animal models as the basis to characterize the different features of dermatitis. The review also highlights the recent nanoformulations which have the ability to amplify the delivery of active agents through their incorporation in transfersomes, ethosomes, niosomes or phytosomes, etc.
Collapse
Affiliation(s)
- Apoorva Singh
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
33
|
Intsia bijuga Heartwood Extract and Its Phytosome as Tyrosinase Inhibitor, Antioxidant, and Sun Protector. FORESTS 2021. [DOI: 10.3390/f12121792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Intsia bijuga (Colebr.) wood (Indonesian: Merbau) is commercial wood with high economic value and is most commonly found in Indonesia. Intsia wood extractives have biological activities related to their potential as natural active ingredients for antiaging cosmetics This study aimed to select the best extraction solvent and phytosome formulation of I. bijuga heartwood extract as an active ingredient for topical antiaging cosmetics. There were five and three variations on extraction solvent and phytosome formulation, respectively. Three main antiaging activity parameters, namely antioxidant, antityrosinase, and sun protection factor (SPF) values, were considered in selecting the best extract and phytosome formula. The results showed that 50% ethanol possessed good antioxidant and antityrosinase activity, but was lower in SPF value, which was significantly different than in other extracts. The phytochemical profile revealed robidanol and robinetin as the main constituent in five I. bijuga extracts. Phytosome F3 possessed high antioxidant, antityrosinase, and SPF values compared to other 50% ethanol phytosome extracts. It could be concluded that I. bijuga ethanol extracts and its phytosome are potent enough to be developed as an antiaging active ingredient in topical use cosmetics.
Collapse
|
34
|
Tassakka ACMAR, Sumule O, Massi MN, Sulfahri, Manggau M, Iskandar IW, Alam JF, Permana AD, Liao LM. Potential bioactive compounds as SARS-CoV-2 inhibitors from extracts of the marine red alga Halymenia durvillei (Rhodophyta) - A computational study. ARAB J CHEM 2021; 14:103393. [PMID: 34909061 PMCID: PMC8381616 DOI: 10.1016/j.arabjc.2021.103393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
The respiratory infection COVID-19 caused by the virus SARS CoV-2 has continued to be a major health problem worldwide and has caused more than a million mortalities. Even if the development of COVID-19 vaccines has shown much progress, efforts to find novel, natural anti-viral drugs should be pursued. Halymenia durvillei is a marine red alga widely distributed around Southeast Asia. This study aimed to develop new anti SARS CoV-2 compounds from ethanolic and ethyl acetate extracts of H. durvillei via a computational approach, focusing onthe inhibitory action against the main protease (3CL-Mpro). In this study, 37 compounds were extracted and identified by GC–MS analysis. The potentials of compounds 1–2 tetradecandiol and E,E,Z-1,3,12-nonadecatriene-5,14-diol were identified for therapeutic purposes based on our pharmacophore study, while cholest-5-En-3-Ol (3.Beta.)- had a high fitness score in molecular docking studies both in monomer and dimer state compared to the N3 inhibitor and remdesivir affinity scores. As these compounds show competitive affinity scores against the 3CL-Mpro, these natural compounds may be effective for the treatment of COVID-19 infection. The ADME and pharmacokinetic studies should also be employed to assess the ability of the natural compounds as oral drugs. These promising results have shown the potentials of H. durvillei as an alternative drug in addressing COVID-19 infection. Accordingly, further studies should explore the effectiveness of these active compounds.
Collapse
Affiliation(s)
- Asmi Citra Malina A R Tassakka
- Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar 90245, Indonesia.,Centre of Excellence for Development and Utilization of Seaweeds, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Ophirtus Sumule
- Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar 90245, Indonesia.,Centre of Excellence for Development and Utilization of Seaweeds, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Muhammad Nasrum Massi
- Faculty of Medicine, Universitas Hasanuddin, Makassar 90245, Indonesia.,Centre of Excellence for Development and Utilization of Seaweeds, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Sulfahri
- Faculty of Mathematics and Natural Sciences, Universitas Hasanuddin, Makassar 90245, Indonesia.,Centre of Excellence for Development and Utilization of Seaweeds, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Marianti Manggau
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia.,Centre of Excellence for Development and Utilization of Seaweeds, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Israini Wiyulanda Iskandar
- Centre of Excellence for Development and Utilization of Seaweeds, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Jamaluddin Fitrah Alam
- Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar 90245, Indonesia.,Centre of Excellence for Development and Utilization of Seaweeds, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Lawrence M Liao
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi Hiroshima 739-8528, Japan
| |
Collapse
|
35
|
Limongi T, Susa F, Marini M, Allione M, Torre B, Pisano R, di Fabrizio E. Lipid-Based Nanovesicular Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3391. [PMID: 34947740 PMCID: PMC8707227 DOI: 10.3390/nano11123391] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature since scientists and clinicians invested in the optimization of materials and methods capable of regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers, lipid nano vesicular ones successfully support clinical candidates approaching such problems as insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as the blood-brain one. In this review, the authors discussed the structure, the biochemical composition, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and extracellular vesicles.
Collapse
|
36
|
Zduńska-Pęciak K, Kołodziejczak A, Rotsztejn H. Two superior antioxidants: Ferulic acid and ascorbic acid in reducing signs of photoaging-A split-face comparative study. Dermatol Ther 2021; 35:e15254. [PMID: 34877760 DOI: 10.1111/dth.15254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022]
Abstract
The assessment of the signs of photoaging in mexametric (melanin and erythema index), corneometric (hydration level), and cutometric (elasticity) examination after the treatment with ascorbic acid and ferulic acid. This study was conducted in a group of 20 women aged 39-61 (mean age 54), with Fitzpatrick skin types II and III. The study included a series of eight treatments performed once a week. Two layers of peeling, based on 14% ferulic acid (left half of the face) and 12% l-ascorbic acid serum (right half of the face) were applied. To determine skin parameters: moisture, elasticity, melanin level, and erythema intensity, the Multi Probe Adapter Systems (Courage + Khazaka electronic GmbH, Köln, Germany) were used. Additionally, before and after the series of treatments, photographs were taken with the standardized photographic system Fotomedicus (Elfo®). The results of mexametric measurement for melanin level and erythema intensity were statistically significant (p < 0.0001) for both acids. Slightly greater lightening of the skin was demonstrated for ascorbic acid. The results of corneometric measurement of hydration level for ferulic acid and ascorbic acid were both statistically significant (p < 0.0001). First beneficial changes in improved elasticity could be observed as early as after 8 weeks but the increase in flexibility grew with time (after 12 weeks). These changes affected both acids and all measurement points. The changes in parameters were highly statistically significant (p < 0.0001). Based on the conducted research, it is not possible to state which of the tested acids is more effective in reducing the symptoms of photoaging. Both acids (ascorbic and ferulic), which have a high antioxidant potential, affect the measurable parameters of the skin: pigmentation (melanin index), erythema (erythema index), skin hydration, and elasticity.
Collapse
Affiliation(s)
- Kamila Zduńska-Pęciak
- Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Łódź, Łódź, Poland
| | - Anna Kołodziejczak
- Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Łódź, Łódź, Poland
| | - Helena Rotsztejn
- Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
37
|
Ananda PWR, Elim D, Zaman HS, Muslimin W, Tunggeng MGR, Permana AD. Combination of transdermal patches and solid microneedles for improved transdermal delivery of primaquine. Int J Pharm 2021; 609:121204. [PMID: 34662646 DOI: 10.1016/j.ijpharm.2021.121204] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Malaria caused by various types of Plasmodium has become a global health problem. One of the drugs used as the first line of malaria therapy is primaquine (PMQ). PMQ is generally administered through the oral route. However, the use of PMQ orally could potentially cause some side effects and undergo the first-pass metabolism in the liver, reducing its effectiveness. Therefore, it is necessary to develop another drug administration route to avoid this effect. In this study, for the first time, PMQ was formulated into a transdermal patch for transdermal delivery, combined with solid microneedles, Dermaroller®. Following several optimizations, HPMC and glycerin were used as the main polymer and plasticizer, respectively. Specifically, the concentration of PEG 400 as a permeation enhancer was also optimized. The transdermal patches were evaluated for weight uniformity, thickness, surface pH, folding endurance, moisture content, moisture absorption ability, bioadhesive evaluation, and drug content recovery. PMQ release and permeation were also investigated through in vitro and ex vivo tests on rats' skin tissue. Importantly, the safety of the transdermal patch was also evaluated through in vitro hemolytic and in vivo irritation tests which were confirmed by histopathological examinations. The results showed that all formulations showed desired physical and bioadhesive properties with a folding endurance of >300 folds. The results exhibited that 31.31 ± 5.25% and 22.55 ± 4.35% of primaquine were released from transdermal patches following the in vitro and the ex vivo permeation studies. Combined with Dermaroller®, the ex vivo permeation study showed an improved permeation profile with 45.89 ± 5.00% of primaquine permeated after 24 h with a zero-order kinetic during the first 8 h. Hemolysis percentage was found to be <5%, indicating the non-toxic of this approach. Finally, the histopathology study showed that there was no severe tissue damage following the administration of our approach. Further in vivo evaluations should be performed.
Collapse
Affiliation(s)
| | - Diany Elim
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | | | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
38
|
Himawan A, Djide NJN, Mardikasari SA, Utami RN, Arjuna A, Donnelly RF, Permana AD. A novel in vitro approach to investigate the effect of food intake on release profile of valsartan in solid dispersion-floating gel in-situ delivery system. Eur J Pharm Sci 2021; 168:106057. [PMID: 34743031 DOI: 10.1016/j.ejps.2021.106057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/24/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022]
Abstract
Valsartan (VAL) is a BCS class II drug with low solubility and high permeability and, thus, its formulations often encounter low bioavailability problems. Its low bioavailability can be improved through enhanced formulation, such as incorporating it into a solid dispersion system (SD). The absorption can be further enhanced through gastroretentive systems. Herein, we developed a novel combination delivery approach consisting of floating in-situ gel and SD. VAL was incorporated with polymer carrier PVP and PEG 6000 and its solubility was then evaluated. The study found that VAL-SD containing PVP K-30 as the carrier with drug:PVP K-30 ratio of 1:3 shown highest solubility in different media. Moreover, DSC and XRD evaluations exhibited the change of VAL from crystal to amorphous following SD formulation. The SD was then formulated into floating in-situ gel preparations using sodium alginate as gel forming compound and HPMC as the controlled release matrix. The prepared VAL-SD floating in-situ gels were evaluated for their physical properties and drug release profile. The results showed that all physical evaluation of the floating in-situ gel formula possessed desirable physical properties and the use of HPMC in floating in-situ gel was able to sustain the in vitro release of VAL for 24 h in biorelevant media. Importantly, the effect of food intake on VAL release was also investigated, for the first time, showing that the VAL release could be controlled in FaSSGF (Fasted-State Simulated Gastric Fluid) in 2 h and FeSSGF (Fed-State Simulated Gastric Fluid) onwards. Thus, in can be hypothesized that the food intake did not affect the VAL release after 2 h in an empty gastric environment. Leading on from these results, in vivo studies in an animal model should be carried out to further assess the potency of this system.
Collapse
Affiliation(s)
- Achmad Himawan
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia; School of Pharmacy, Queen's University Belfast, Northern Ireland, United Kingdom
| | | | | | | | - Andi Arjuna
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Northern Ireland, United Kingdom
| | | |
Collapse
|
39
|
Gupta MK, Sansare V, Shrivastava B, Jadhav S, Gurav P. Comprehensive review on use of phospholipid based vesicles for phytoactive delivery. J Liposome Res 2021; 32:211-223. [PMID: 34727833 DOI: 10.1080/08982104.2021.1968430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Plant-derived phytoconstituents are well known for their therapeutic potential. It has been experimentally demonstrated that whole-plant extract or isolated phytoconstituents reveal various therapeutic potentials like hepatoprotective, antimicrobial, neuroprotective, antitumor, antioxidant, skin protectives, etc. Although these phytoconstituents have potential therapeutic benefits, their use is limited due to their poor bioavailability, stability in biological fluids, and authentication issues. These continue to be an open problem that affects the application of these valuable ancient herbal herbs in the effective treatment and management of various disease conditions. A potential solution to these difficult problems could be the loading of phytoactives in phospholipid-based vesicular systems. Phospholipid-based vesicles like liposomes, phytosomes, ethosomes as well as transfersomes were effectively utilized recently to solve drawbacks and for effective delivery of phytoactives. Several landmark studies observed better therapeutic efficacy of phytoactive loaded vesicles compared to conventional drug delivery. Thus phospholipid-based vesicles mediated phytoactive delivery is a recently developed promising and attractive strategy for better therapeutic control on disease conditions. The present short review highlights recent advances in herbal bioactive loaded phospholipid-based vesicles.
Collapse
Affiliation(s)
- Manish Kumar Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Vipul Sansare
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | | | - Santosh Jadhav
- Department of Pharmaceutical Chemistry, SVPM'S College of Pharmacy, Malegaon, India
| | - Prashant Gurav
- Department of Pharmaceutics, Indira Institute of Pharmacy, Sadavali, India
| |
Collapse
|
40
|
Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, Gangadharappa HV, Pardakhty A, Mehrbani M, Dell’Agli M, Nematollahi MH. Phytosomes as Innovative Delivery Systems for Phytochemicals: A Comprehensive Review of Literature. Int J Nanomedicine 2021; 16:6983-7022. [PMID: 34703224 PMCID: PMC8527653 DOI: 10.2147/ijn.s318416] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, medicinal herbs and their phytochemicals have emerged as a great therapeutic option for many disorders. However, poor bioavailability and selectivity might limit their clinical application. Therefore, bioavailability is considered a notable challenge to improve bio-efficacy in transporting dietary phytochemicals. Different methods have been proposed for generating effective carrier systems to enhance the bioavailability of phytochemicals. Among them, nano-vesicles have been introduced as promising candidates for the delivery of insoluble phytochemicals. Due to the easy preparation of the bilayer vesicles and their adaptability, they have been widely used and approved by the scientific literature. The first part of the review is focused on introducing phytosome technology as well as its applications, with emphasis on principles of formulations and characterization. The second part provides a wide overview of biological activities of commercial and non-commercial phytosomes, divided by systems and related pathologies. These results confirm the greater effectiveness of phytosomes, both in terms of biological activity or reduced dosage, highlighting curcumin and silymarin as the most formulated compounds. Finally, we describe the promising clinical and experimental findings regarding the applications of phytosomes. The conclusion of this study encourages the researchers to transfer their knowledge from laboratories to market, for a further development of these products.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 76169-13555, Iran
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Marco Angarano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Mehrnaz Mehrabani
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrzad Mehrbani
- Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
41
|
Viqhi AV, Manggau MA, Sartini S, Wahyudin E, Rahman L, Yulianti R, Permana AD, Awal SA. Development of Propolis (Apis trigona)-loaded Nanoemulgel for Improved Skin Penetration of Caffeic Acid: The Effect of Variation of Oleic Acid Concentration. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND: Propolis contains caffeic acid compounds, which are proven to have pharmacological effects as an anti-inflammatory. However, its effectiveness is hampered by the poor solubility of caffeic acid. Here, we report developing the nanoemulgel approach containing propolis extract as an active ingredient and oleic acid as a permeation enhancer for transdermal delivery of caffeic acid.
AIM: This study aims to determine the effect of oleic acid concentration on increasing caffeic acid permeation in the skin and obtain a nanoemulgel formula with desired physical characteristics and stability.
MATERIALS AND METHODS: Propolis was macerated with 70% ethanol; the total phenolic content was measured by ultraviolet–visible spectrophotometer, and the levels of caffeic acid in the extracts and nanoemulgel preparations were finally determined using ultra-fast liquid chromatography. Formulas were made using various concentrations of oleic acid, namely, 1.25%w/w (Formula F1); 2.5%w/w (Formula F2); 5%w/w (Formula F3), respectively; and 1.25%w/w without propolis extract (Formula F4) as a comparison.
RESULTS: The results obtained from analysis of variance statistical exhibited that the difference in oleic acid concentrations in four formulas significantly affected (p < 0.05) particle size, polydispersity index, spreadability, adhesion, freeze-thaw, permeation, and retention test. However, there was no significant difference (p > 0.05) on pH and viscosity before and after 4 weeks of storage and zeta potential test. The highest amount of permeation and retention was found in F3 and F2, respectively, and all formulas tended to follow zero-order drug release kinetics. Furthermore, the results showed that the number of percent’s permeated in a row was 3.74% (F1); 5.58% (F2); 11.67% (F3), and F2 was the formula with the most optimal retention amount with a percentage of 43.13% at 24 h.
CONCLUSION: This study shows a promising delivery system for increasing the effectiveness of natural lipophilic compounds to treat inflammation in the skin.
Collapse
|
42
|
Mendez-Pfeiffer P, Juarez J, Hernandez J, Taboada P, Virués C, Valencia D, Velazquez C. Nanocarriers as drug delivery systems for propolis: A therapeutic approach. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Permana AD, Paredes AJ, Zanutto FV, Amir MN, Ismail I, Bahar MA, Palma SD, Donnelly RF. Albendazole Nanocrystal-Based Dissolving Microneedles with Improved Pharmacokinetic Performance for Enhanced Treatment of Cystic Echinococcosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38745-38760. [PMID: 34353029 DOI: 10.1021/acsami.1c11179] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cystic echinococcosis (CE) is a zoonosis caused by Echinococcus spp., affecting both humans and animals' lives. Current treatment of CE by oral administration of albendazole (ABZ) is hampered by several limitations. The poor aqueous solubility and the rapid metabolism of ABZ in the liver are the main issues, leading to lack of efficacy of the treatment. In the present study, we developed a nanocrystalline (NC) formulation of ABZ to be delivered intradermally using dissolving microneedles (DMNs). The NC formulation was developed using milling in an ultrasmall-scale device. Following several screenings, Pluronic F127 was selected as a suitable stabilizer, producing NCs with around 400 nm in size with narrow particle distribution. The crystallinity of ABZ was maintained as observed by DSC and XRD analysis. The NC approach was able to improve the dissolution percentage of ABZ by approximately three-fold. Furthermore, the incorporation of NCs into DMNs using the combination of poly(vinylpyrrolidone) and poly(vinyl alcohol) formed sharp needles with sufficient mechanical strength and insertion properties. Dermatokinetic studies revealed that >25% of ABZ was localized in the dermis of excised neonatal porcine skin up to 48 h after DMN administration. In in vivo pharmacokinetic studies, the AUC and relative bioavailability values of ABZ delivered by NC-loaded DMNs were found to be significantly higher than those obtained after oral administration of coarse suspension of ABZ or ABZ-NCs, as well as DMNs delivering coarse ABZ as indicated by the relative bioavailability values of >100%. Therefore, the combination approach developed in this study could maintain the systemic circulation of ABZ, which could be possibly caused by avoiding the first-pass metabolism in the liver. This could be beneficial to improve the efficacy of ABZ in CE treatment.
Collapse
Affiliation(s)
- Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Fabiana Volpe Zanutto
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
- Faculty of Pharmaceutical Sciences, University of Campinas, R. Cândido Portinari, 200 - Cidade Universitária, Campinas, SP 13083-871, Brazil
| | - Muh Nur Amir
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Ismail Ismail
- Department of Phytochemistry, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Muh Akbar Bahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA, Córdoba, Argentina
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
44
|
Pandey R, Bhairam M, Shukla SS, Gidwani B. Colloidal and vesicular delivery system for herbal bioactive constituents. ACTA ACUST UNITED AC 2021; 29:415-438. [PMID: 34327650 DOI: 10.1007/s40199-021-00403-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The main objective of the present review is to explore and examine the effectiveness of currently developed novel techniques to resolve the issues which are associated with the herbal constituents/extract. METHODS A systematic thorough search and collection of reviewed information from Science direct, PubMed and Google Scholar databases based on various sets of key phrases have been performed. All the findings from these data have been studied and briefed based on their relevant and irrelevant information. RESULT Herbal drugs are gaining more popularity in the modern world due to their applications in curing various ailments with minimum toxic effects, side effect or adverse effect. However, various challenges exist with herbal extracts/plant actives such as poor solubility (water/lipid), poor permeation, lack of targeting specificity, instability in highly acidic pH, and liver metabolism, etc. Nowadays with the expansion in the technology, novel drug delivery system provides avenues and newer opportunity towards the delivery of herbal drugs with improved physical chemical properties, pharmacokinetic and pharmacodynamic. Developing nano-strategies like Polymeric nanoparticles, Liposomes, Niosomes, Microspheres, Phytosomes, Nanoemulsion and Self Nano Emulsifying Drug Delivery System, etc. imparts benefits for delivery of phyto formulation and herbal bioactives. Nano formulation of phytoconstituents/ herbal extract could lead to enhancement of aqueous solubility, dissolution, bioavailability, stability, reduce toxicity, permeation, sustained delivery, protection from enzymatic degradation, etc. CONCLUSION: Based on the above findings, the conclusion can be drawn that the nano sized novel drug delivery systems of herbal and herbal bioactives have a potential future for upgrading the pharmacological action and defeating or overcoming the issues related with these constituents. The aims of the present review was to summarize and critically analyze the recent development of nano sized strategies for promising phytochemicals delivery systems along with their therapeutic applications supported by experimental evidence and discussing the opportunities for further aspects.
Collapse
Affiliation(s)
- Ravindra Pandey
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India.
| | - Monika Bhairam
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India
| | | | - Bina Gidwani
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India
| |
Collapse
|
45
|
Rahman L, Lembang RS, Lallo S, Handayani SR, Usmanengsi, Permana AD. Bioadhesive dermal patch as promising approach for improved antibacterial activity of bioactive compound of Zingiber cassumunar Roxb in ex vivo Staphylococcus aureus skin infection model. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Propolis particles incorporated in aqueous formulations with enhanced antibacterial performance. FOOD HYDROCOLLOIDS FOR HEALTH 2021; 1:None. [PMID: 35028635 PMCID: PMC8721958 DOI: 10.1016/j.fhfh.2021.100040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 11/20/2022]
|
47
|
Permana AD, Paredes AJ, Volpe-Zanutto F, Anjani QK, Utomo E, Donnelly RF. Dissolving microneedle-mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis. Eur J Pharm Biopharm 2020; 154:50-61. [DOI: 10.1016/j.ejpb.2020.06.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
|
48
|
Ebada HMK, Nasra MMA, Elnaggar YSR, Abdallah OY. Novel rhein-phospholipid complex targeting skin diseases: development, in vitro, ex vivo, and in vivo studies. Drug Deliv Transl Res 2020; 11:1107-1118. [PMID: 32815084 DOI: 10.1007/s13346-020-00833-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rhein (RH), an anthraquinone derivative, has proven to be a promising molecule for treating several skin disorders thanks to its pleiotropic pharmacological activities like antimicrobial, antifungal, antioxidant, and anticancer. However, RH's low water and oil solubility and poor skin permeability halted its topical delivery. This is the first work to investigate the expediency of tailoring a rhein-phospholipid complex (RH-PLC) to improve RH challenging physicochemical and skin permeability properties. The phospholipid complex was prepared by employing different methods and different RH/PL molar ratios. RH-PLC was successfully developed at a stoichiometric ratio of 1:1 using a novel pH-dependent method where at a certain pH, it exhibits the highest complexation efficiency (95%). RH-PLC formation was confirmed using FTIR, DSC, and XRPD analysis. RH-PLC showed a significant increase in water and n-octanol solubility. RH-PLC was self-assembled upon dispersion into water forming nano-sized particles (196.6 ± 1.6 nm) with high negatively charged surface (- 29.7 ± 2.45 mV). RH-PLC exhibited a significant 3.3- and 2.46-fold increase in ex vivo and in vivo skin permeability when compared with RH suspension, respectively. Confocal microscopy study confirmed the ability of RH-PLC to penetrate deeply into rat skin. Besides, skin irritation test on healthy rats indicated compatibility and safety of RH-PLC. Conclusively, phospholipid complex might be a suitable approach to improve permeability of RH and other promising abandoned poor-permeable drugs. The proposed RH-PLC is expected to be a major progressive step toward the development of a topical RH formulation. Graphical abstract.
Collapse
Affiliation(s)
- Heba M K Ebada
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt.
| | - Maha M A Nasra
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| |
Collapse
|
49
|
Design and Characterization of Ethosomes for Transdermal Delivery of Caffeic Acid. Pharmaceutics 2020; 12:pharmaceutics12080740. [PMID: 32781717 PMCID: PMC7465088 DOI: 10.3390/pharmaceutics12080740] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
The present investigation describes a formulative study aimed at designing ethosomes for caffeic acid transdermal administration. Since caffeic acid is characterized by antioxidant potential but also high instability, its encapsulation appears to be an interesting strategy. Ethosomes were produced by adding water into a phosphatidylcholine ethanol solution under magnetic stirring. Size distribution and morphology of ethosome were investigated by photon correlation spectroscopy, small-angle X-ray spectroscopy, and cryogenic transmission electron microscopy, while the entrapment capacity of caffeic acid was evaluated by high-performance liquid chromatography. Caffeic acid stability in ethosome was compared to the stability of the molecule in water, determined by mass spectrometry. Ethosome dispersion was thickened by poloxamer 407, obtaining an ethosomal gel that was characterized for rheological behavior and deformability. Caffeic acid diffusion kinetics were determined by Franz cells, while its penetration through skin, as well as its antioxidant activity, were evaluated using a porcine skin membrane–covered biosensor based on oxygen electrode. Ethosome mean diameter was ≈200 nm and almost stable within three months. The entrapment of caffeic acid in ethosome dramatically prolonged drug stability with respect to the aqueous solution, being 77% w/w in ethosome after six months, while in water, an almost complete degradation occurred within one month. The addition of poloxamer slightly modified vesicle structure and size, while it decreased the vesicle deformability. Caffeic acid diffusion coefficients from ethosome and ethosome gel were, respectively, 137- and 33-fold lower with respect to the aqueous solution. At last, the caffeic acid permeation and antioxidant power of ethosome were more intense with respect to the simple solution.
Collapse
|