1
|
Shi J, Qiao S, Shan X, Li Z, Li Z, Wang C, Tao Y, Zhao X, Lin Y, Wang Z. Photopic Adaptation Mimicked by Y 2O 3-Based Optoelectronic Memristor for Neuromorphic Visual System. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:579. [PMID: 40278444 PMCID: PMC12029702 DOI: 10.3390/nano15080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
Visual adaptation is one of the most significant features that helps organisms process complicated image information in time-varying environments. Emulating this function is highly desirable for energy-efficient image perception. In this work, we demonstrate an yttrium oxide (Y2O3)-based optoelectronic memristor and emulate photopic adaptation behavior in a single device. Decay amplitude and photosensitivity are indexed to describe the time-dependent characteristics of photopic adaptation. An intensity-dependent characteristic, namely Weber's law, is also investigated in this work. Photopic adaptation originates from the trapping of photogenerated carriers in oxygen vacancies. Based on photopic adaptation behavior, a neuromorphic vision system capable of adapting to environmental brightness is constructed using the proposed optoelectronic memristor array. Memristor arrays can emulate sensing and adaptation functions in order to enhance images against bright backgrounds. Our work provides a feasible pathway toward self-adaptive neuromorphic vision systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunliang Wang
- Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, 5268 Renmin Street, Changchun 130024, China; (J.S.); (S.Q.); (X.S.); (Z.L.); (Z.L.); (Y.T.); (X.Z.); (Z.W.)
| | | | | | - Ya Lin
- Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, 5268 Renmin Street, Changchun 130024, China; (J.S.); (S.Q.); (X.S.); (Z.L.); (Z.L.); (Y.T.); (X.Z.); (Z.W.)
| | | |
Collapse
|
2
|
Ghiloufi M, Schnabel T, Mehling S, Kouass S. Investigation of the Effect of Oxide Additives on the Band Gap and Photocatalytic Efficiency of TiO 2 as a Fixed Film. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4671. [PMID: 39336413 PMCID: PMC11434197 DOI: 10.3390/ma17184671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The effects of various additives (Y2O3, Ga2O3, and WO3) on photocatalytic degradation efficiency under UV light-emitting diodes (LEDs) and the optical properties of TiO2 Degussa P25 were investigated using ketoprofen and diclofenac, two non-steroidal anti-inflammatory drugs commonly detected in German rivers. Experimental results demonstrated that thin films containing these additives exhibited similar photocatalytic degradation efficiencies as pure TiO2, achieving a 30% degradation of ketoprofen over 150 min. In contrast, the Y2O3/TiO2 thin film showed significantly improved performance, achieving a 46% degradation of ketoprofen in 180 min. Notably, the Y2O3/TiO2 system was three times more effective in degrading diclofenac compared to pure TiO2. Additionally, the Y2O3/TiO2 photocatalyst retained its activity over three successive cycles with only a slight decrease in efficiency. The photocatalytic degradation of both organic pollutants followed first-order kinetics with all photocatalysts. The investigation included SEM imaging to assess the surface homogeneity of the thin films and UV-vis solid-state spectroscopy to evaluate the impact of the additives on the energy band gap of TiO2.
Collapse
Affiliation(s)
- Mabrouka Ghiloufi
- Laboratory of Materials: Treatment and Analysis, National Institute of Research and Physico-Chemical Analysis, Faculty of Sciences of Bizerte, Carthage University, Ariana 2020, Tunisia; (M.G.); (S.K.)
| | - Tobias Schnabel
- Research Group “Photonics and Water”, Institute for Sustainable Water Systems, Hof University of Applied Sciences, 95028 Hof, Germany;
| | - Simon Mehling
- Research Group “Photonics and Water”, Institute for Sustainable Water Systems, Hof University of Applied Sciences, 95028 Hof, Germany;
| | - Salah Kouass
- Laboratory of Materials: Treatment and Analysis, National Institute of Research and Physico-Chemical Analysis, Faculty of Sciences of Bizerte, Carthage University, Ariana 2020, Tunisia; (M.G.); (S.K.)
| |
Collapse
|
3
|
Brunelli A, Cazzagon V, Faraggiana E, Bettiol C, Picone M, Marcomini A, Badetti E. An overview on dispersion procedures and testing methods for the ecotoxicity testing of nanomaterials in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171132. [PMID: 38395161 DOI: 10.1016/j.scitotenv.2024.171132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Considerable efforts have been devoted to develop or adapt existing guidelines and protocols, to obtain robust and reproducible results from (eco)toxicological assays on engineered nanomaterials (NMs). However, while many studies investigated adverse effects of NMs on freshwater species, less attention was posed to the marine environment, a major sink for these contaminants. This review discusses the procedures used to assess the ecotoxicity of NMs in the marine environment, focusing on the use of protocols and methods for preparing NMs dispersions and on the NMs physicochemical characterization in exposure media. To this purpose, a critical analysis of the literature since 2010 was carried out, based on the publication of the first NMs dispersion protocols. Among the 89 selected studies, only <5 % followed a standardized dispersion protocol combined with NMs characterization in ecotoxicological media, while more than half used a non-standardized dispersion method but performed NMs characterization. In the remaining studies, only partial or no information on dispersion procedures or on physicochemical characterization was provided. This literature review also highlighted that metal oxides NMs were the most studied (42 %), but with an increasing interest in last years towards nanoplastics (14 %) and multicomponent nanomaterials (MCNMs, 7 %), in line with the growing attention on these emerging contaminants. For all these NMs, primary producers as algae and bacteria were the most studied groups of marine species, in addition to mollusca, while organisms at higher trophic levels were less represented, likely due to challenges in evaluating adverse effects on more complex organisms. Thus, despite the wide use of NMs in different applications, standard dispersion protocols are not often used for ecotoxicity testing with marine species. However, the efforts to characterize NMs in ecotoxicological media recognize the importance of following conditions that are as standardized as possible to support the ecological hazard assessment of NMs.
Collapse
Affiliation(s)
- Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy.
| | - Virginia Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Eleonora Faraggiana
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Cinzia Bettiol
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Marco Picone
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy.
| |
Collapse
|
4
|
Rajasekar M, Mary J, Sivakumar M, Selvam M. Recent developments in sunscreens based on chromophore compounds and nanoparticles. RSC Adv 2024; 14:2529-2563. [PMID: 38226149 PMCID: PMC10788710 DOI: 10.1039/d3ra08178h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
Sunscreen formulations have undergone significant advancements in recent years, with a focus on improving UV radiation protection, photostability, and environmental sustainability. Chromophore compounds and nanoparticles have emerged as key components in these developments. This review highlights the latest research and innovations in chromophore compounds and nanoparticle-based sunscreens. It discusses the role of nanoparticles, such as zinc oxide and titanium dioxide, in scattering and absorbing UV radiation while remaining cosmetically acceptable. Chromophore compounds, encapsulated in nanoparticles, are explored for their potential to enhance UV protection by absorbing specific wavelengths of light. Additionally, advances in photo-stability, broad-spectrum protection, antioxidant inclusion, and biodegradability are discussed. The evolving landscape of sunscreen technology aims to provide more effective and environment-friendly solutions for safeguarding skin from the sun's harmful effects.
Collapse
Affiliation(s)
- Mani Rajasekar
- Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University) Chennai - 600 119 Tamil Nadu India +91-9710230530
| | - Jennita Mary
- School of Bio and Chemical Engineering, Department of Biotechnology, Sathyabama Institute of Science and Technology (Deemed to be University) Chennai 600119 Tamil Nadu India
| | - Meenambigai Sivakumar
- School of Bio and Chemical Engineering, Department of Biotechnology, Sathyabama Institute of Science and Technology (Deemed to be University) Chennai 600119 Tamil Nadu India
| | - Masilamani Selvam
- School of Bio and Chemical Engineering, Department of Biotechnology, Sathyabama Institute of Science and Technology (Deemed to be University) Chennai 600119 Tamil Nadu India
| |
Collapse
|
5
|
Lin CH, Lin MH, Chung YK, Alalaiwe A, Hung CF, Fang JY. Exploring the potential of the nano-based sunscreens and antioxidants for preventing and treating skin photoaging. CHEMOSPHERE 2024; 347:140702. [PMID: 37979799 DOI: 10.1016/j.chemosphere.2023.140702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Excessive exposure to sunlight, especially UV irradiation, causes skin photodamage. Sunscreens, such as TiO2 and ZnO, can potentially prevent UV via scattering, reflection, and absorption. Topical antioxidants are another means of skin photoprotection. Developing nanoparticles for sunscreens and antioxidants is recommended for photoaging prevention and treatment as it can improve uncomfortable skin appearance, stability, penetration, and safety. This study reviewed the effects of nano-sized sunscreens and antioxidants on skin photoprevention by examining published studies and articles from PubMed, Scopus, and Google Scholar, which explore the topics of skin photoaging, skin senescence, UV radiation, keratinocyte, dermal fibroblast, sunscreen, antioxidant, and nanoparticle. The researchers of this study also summarized the nano-based UV filters and therapeutics for mitigating skin photoaging. The skin photodamage mechanisms are presented, followed by the introduction of current skin photoaging treatment. The different nanoparticle types used for topical delivery were also explored in this study. This is followed by the mechanisms of how nanoparticles improve the UV filters and antioxidant performance. Lastly, recent investigations were reviewed on nanoparticulate sunscreens and antioxidants in skin photoaging management. Sunscreens and antioxidants for topical application have different concepts. Topical antioxidants are ideal for permeating into the skin to exhibit free radical scavenging activity, while UV filters are prescribed to remain on the skin surface without absorption to exert the UV-blocking effect without causing toxicity. The nanoparticle design strategy for meeting the different needs of sunscreens and antioxidants is also explored in this study. Although the benefits of using nanoparticles for alleviating photodamage are well-established, more animal-based and clinical studies are necessary.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Ming-Hsien Lin
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Kuo Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Rabani I, Jang HN, Park YJ, Tahir MS, Lee YB, Moon EY, Song JW, Seo YS. Titanium dioxide incorporated in cellulose nanofibers with enhanced UV blocking performance by eliminating ROS generation. RSC Adv 2022; 12:33653-33665. [PMID: 36505717 PMCID: PMC9682890 DOI: 10.1039/d2ra06444h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
The preparation of sunblocks with dispersion stability, ultraviolet blocking, and photocompatibility remains a considerable challenge. Plant-derived natural polymers, such as cellulose nanofibers (CNF), show versatile traits, including long aspect ratio, hydrophilic nature, resource abundance, and low material cost. In the present study, a facile and cost-effective strategy is reported for the fabrication of nanostructured inorganic materials by incorporating natural polymers as interspersed, systematically nanosized titanium dioxide (TiO2) particles onto CNF. Among all experiments, the optimized TiO2@CNF3 showed higher ultraviolet blocking performance and less whitening effect. The outstanding performance is attributed to the engineering of equally dispersed nano-sized TiO2 particles on the CNF surface and stable dispersion. Significantly, TiO2@CNF3 exhibited excellent compatibility with avobenzone (80%), an oil-soluble ingredient used in sunblock products, illustrating the photoprotection enhancement under ultraviolet A (UVA) and ultraviolet B (UVB). Moreover, only 14.8% rhodamine B (Rho-B) dye degraded through photocatalytic oxidation process with the TiO2@CNF3, which is negligible photocatalytic activity compared to that of TiO2 (95% dye degraded). Furthermore, commercial inorganic and organic sunblock products with SPF lifetimes of 35+ and 50+ were modified using CNF, significantly enhancing the transmittance performance compared to that of the pure sunblock. However, it was also observed that hydrophilic CNF tended to demulsify the creams due to electrostatic disequilibrium. This CNF-based modified TiO2 system is a new window to replace effective sunblock products in high-value-added applications, such as cosmetics.
Collapse
Affiliation(s)
- Iqra Rabani
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Korea
| | - Ha-Na Jang
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Korea
| | - Ye-Jee Park
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Korea
| | - Muhammad Shoaib Tahir
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Korea
| | - Yun-Bi Lee
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University Seoul 05006 Korea
| | - Jin Won Song
- Fine Lab Co., Ltd. 97 Sinilseo-ro 126 beon-gil Daedeok-gu Daejeon Korea
| | - Young-Soo Seo
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Korea
| |
Collapse
|
7
|
Cooray NP, Li E, Konstantinov K, Lerch M, Barker PJ. The dynamic behaviour of sunscreens under in-service conditions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 230:112435. [PMID: 35398656 DOI: 10.1016/j.jphotobiol.2022.112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/08/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Discussion continues over various aspects of sunscreen science: regulation, test methods, sun protection factor (SPF), labelling claims, potentially harmful components, among others. In this paper the UV transmission properties of a number of commercial sunscreens have been determined at constant sunscreen film thickness under different local UV Index conditions. The data demonstrate difficulties facing the public and the sunscreen industry as a whole, even though SPF values and other data stated on the sunscreen packaging are assumed to be correct according to standard testing methods. This work has shown that at realistic application rates the critical factors are the intensity of the incident solar radiation and the accumulated erythema UV dose transmitted over time. In one example, on 'Extreme' UV Index days, an SPF 30 sunscreen under test transmitted one minimal erythema dose (MED) of UV in only 35 min. In another example, although it should not, in theory, transmit one MED until several hours of exposure, this level was reached in 1 h by an SPF 50 sunscreen under these typical Australian summer conditions (UV Index 12) in Wollongong, NSW (34.4°S). Such properties could have severe consequnces if these sunscreens were used by individuals with Fitzpatrick Skin Type 1, organ transplant recipients or other immuno-compromised individuals.
Collapse
Affiliation(s)
- Nuwangi P Cooray
- Centre for Medical Radiation Physics, School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Enbang Li
- Centre for Medical Radiation Physics, School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Philip J Barker
- School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
8
|
Nanocarriers as Active Ingredients Enhancers in the Cosmetic Industry-The European and North America Regulation Challenges. Molecules 2022; 27:molecules27051669. [PMID: 35268769 PMCID: PMC8911847 DOI: 10.3390/molecules27051669] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
“Flawless skin is the most universally desired human feature” is an iconic statement by Desmond Morris. Skin indicates one´s health and is so important that it affects a person’s emotional and psychological behavior, these facts having propelled the development of the cosmetics industry. It is estimated that in 2023, this industry will achieve more than 800 billion dollars. This boost is due to the development of new cosmetic formulations based on nanotechnology. Nanocarriers have been able to solve problems related to active ingredients regarding their solubility, poor stability, and release. Even though nanocarriers have evident benefits, they also present some problems related to the high cost, low shelf life, and toxicity. Regulation and legislation are two controversial topics regarding the use of nanotechnology in the field of cosmetics. In this area, the U.S. FDA has taken the lead and recommended several biosafety studies and post-market safety evaluations. The lack of a global definition that identifies nanomaterials as a cosmetic ingredient is a hindrance to the development of global legislation. In the EU, the legislation regarding the biosafety of nanomaterials in cosmetics is stricter. “The cost is not the only important issue, safety and the application of alternative testing methods for toxicity are of crucial importance as well”.
Collapse
|
9
|
Shahcheraghi N, Golchin H, Sadri Z, Tabari Y, Borhanifar F, Makani S. Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech 2022; 12:65. [PMID: 35186662 PMCID: PMC8828840 DOI: 10.1007/s13205-021-03108-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology is one of the most emerging fields of research within recent decades and is based upon the exploitation of nano-sized materials (e.g., nanoparticles, nanotubes, nanomembranes, nanowires, nanofibers and so on) in various operational fields. Nanomaterials have multiple advantages, including high stability, target selectivity, and plasticity. Diverse biotic (e.g., Capsid of viruses and algae) and abiotic (e.g., Carbon, silver, gold and etc.) materials can be utilized in the synthesis process of nanomaterials. "Nanobiotechnology" is the combination of nanotechnology and biotechnology disciplines. Nano-based approaches are developed to improve the traditional biotechnological methods and overcome their limitations, such as the side effects caused by conventional therapies. Several studies have reported that nanobiotechnology has remarkably enhanced the efficiency of various techniques, including drug delivery, water and soil remediation, and enzymatic processes. In this review, techniques that benefit the most from nano-biotechnological approaches, are categorized into four major fields: medical, industrial, agricultural, and environmental.
Collapse
Affiliation(s)
- Nikta Shahcheraghi
- Department of Engineering, University of Science and Culture, Tehran, Iran
| | - Hasti Golchin
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Zahra Sadri
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Yasaman Tabari
- Faculty of Sciences and Advanced Technologies, Science and Culture University, 1461968151 Tehran, Iran
| | - Forough Borhanifar
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| |
Collapse
|
10
|
Synthesis and characterization of Y2O3 partially coated ZnO for highly efficient photocatalytic degradation of sulfamethazine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
S. S. dos Santos P, M. M. M. de Almeida J, Pastoriza-Santos I, C. C. Coelho L. Advances in Plasmonic Sensing at the NIR-A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:2111. [PMID: 33802958 PMCID: PMC8002678 DOI: 10.3390/s21062111] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 11/21/2022]
Abstract
Surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) are among the most common and powerful label-free refractive index-based biosensing techniques available nowadays. Focusing on LSPR sensors, their performance is highly dependent on the size, shape, and nature of the nanomaterial employed. Indeed, the tailoring of those parameters allows the development of LSPR sensors with a tunable wavelength range between the ultra-violet (UV) and near infra-red (NIR). Furthermore, dealing with LSPR along optical fiber technology, with their low attenuation coefficients at NIR, allow for the possibility to create ultra-sensitive and long-range sensing networks to be deployed in a variety of both biological and chemical sensors. This work provides a detailed review of the key science underpinning such systems as well as recent progress in the development of several LSPR-based biosensors in the NIR wavelengths, including an overview of the LSPR phenomena along recent developments in the field of nanomaterials and nanostructure development towards NIR sensing. The review ends with a consideration of key advances in terms of nanostructure characteristics for LSPR sensing and prospects for future research and advances in this field.
Collapse
Affiliation(s)
- Paulo S. S. dos Santos
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, and Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José M. M. M. de Almeida
- Department of Physics, School of Science and Technology, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain;
- SERGAS-UVIGO, Galicia Sur Health Research Institute (IIS Galicia Sur), 36312 Vigo, Spain
| | - Luís C. C. Coelho
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, and Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
| |
Collapse
|
12
|
Finding Nano: Challenges Involved in Monitoring the Presence and Fate of Engineered Titanium Dioxide Nanoparticles in Aquatic Environments. WATER 2021. [DOI: 10.3390/w13050734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, titanium dioxide (TiO2) has increasingly been used as an inorganic ultraviolet (UV) filter for sun protection. However, nano-TiO2 may also pose risks to the health of humans and the environment. Thus, to adequately assess its potential adverse effects, a comprehensive understanding of the behaviour and fate of TiO2 in different environments is crucial. Advances in analytical and modelling methods continue to improve researchers’ ability to quantify and determine the state of nano-TiO2 in various environments. However, due to the complexity of environmental and nanoparticle factors and their interplay, this remains a challenging and poorly resolved feat. This paper aims to provide a focused summary of key particle and environmental characteristics that influence the behaviour and fate of sunscreen-derived TiO2 in swimming pool water and natural aquatic environments and to review the current state-of-the-art of single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) approaches to detect and characterise TiO2 nanoparticles in aqueous media. Furthermore, it critically analyses the capability of existing fate and transport models to predict environmental TiO2 levels. Four particle and environmental key factors that govern the fate and behaviour of TiO2 in aqueous environments are identified. A comparison of SP-ICP-MS studies reveals that it remains challenging to detect and characterise engineered TiO2 nanoparticles in various matrices and highlights the need for the development of new SP-ICP-MS pre-treatment and analysis approaches. This review shows that modelling studies are an essential addition to experimental studies, but they still lack in spatial and temporal resolution and mostly exclude surface transformation processes. Finally, this study identifies the use of Bayesian Network-based models as an underexplored but promising modelling tool to overcome data uncertainties and incorporates interconnected variables.
Collapse
|
13
|
Musial J, Krakowiak R, Mlynarczyk DT, Goslinski T, Stanisz BJ. Titanium Dioxide Nanoparticles in Food and Personal Care Products-What Do We Know about Their Safety? NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1110. [PMID: 32512703 PMCID: PMC7353154 DOI: 10.3390/nano10061110] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Titanium dioxide (TiO2) is a material of diverse applications commonly used as a food additive or cosmetic ingredient. Its prevalence in products of everyday use, especially in nanosize, raises concerns about safety. Current findings on the safety of titanium dioxide nanoparticles (TiO2 NPs) used as a food additive or a sunscreen compound are reviewed and systematized in this publication. Although some studies state that TiO2 NPs are not harmful to humans through ingestion or via dermal exposure, there is a considerable number of data that demonstrated their toxic effects in animal models. The final agreement on the safety of this nanomaterial has not yet been reached among researchers. There is also a lack of official, standardized guidelines for thorough characterization of TiO2 NPs in food and cosmetic products, provided by international authorities. Recent advances in the application of 'green-synthesized' TiO2 NPs, as well as comparative studies of the properties of 'biogenic' and 'traditional' nanoparticles, are presented. To conclude, perspectives and directions for further studies on the toxicity of TiO2 NPs are proposed.
Collapse
Affiliation(s)
- Joanna Musial
- Chair and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland;
| | - Rafal Krakowiak
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (R.K.); (T.G.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (R.K.); (T.G.)
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (R.K.); (T.G.)
| | - Beata J. Stanisz
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (R.K.); (T.G.)
| |
Collapse
|