1
|
Shmarev A, Vereshagin M, Pashkovskiy P, Kreslavski V, Allakhverdiev S. Influence of additional far-red light on the photosynthetic and growth parameters of lettuce plants and the resistance of the photosynthetic apparatus to high irradiance. PHOTOSYNTHETICA 2024; 62:180-186. [PMID: 39651408 PMCID: PMC11613827 DOI: 10.32615/ps.2024.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 12/11/2024]
Abstract
The effects of additional far-red light (FRL) on the photosynthetic and growth parameters of Lactuca sativa plants grown for 30 d and on the photosynthetic activity of the plants under high irradiance [4 h; 1,500 μmol(photon) m-2 s-1] were studied. The plants were grown under coloured light-emitting diodes at a ratio of red light (RL): blue light (BL): green light (GL): far-red light (FRL) = 0.7:1:0.3:0.4 or RL:BL:GL:FRL = 0.7:1:0.3:0.8 (test, T). Additional FRL led to an increase in plant biomass, height, and leaf area but to a decrease in photosynthesis and respiration rates. However, PSII activity was greater in plants with additional FRL. It is suggested that the increase in biomass occurred mainly due to an increase in leaf area but not in photosynthesis. In addition, PSII in the experiment was less resistant to high irradiance. The possible direct and indirect influences of the FRL on growth and photosynthesis were considered.
Collapse
Affiliation(s)
- A. Shmarev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - M. Vereshagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - P. Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - V.D. Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - S.I. Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Turkey
| |
Collapse
|
2
|
Khudyakova A, Kreslavski V, Kosobryukhov A, Vereshagin M, Allakhverdiev S. Effect of cryptochrome 1 deficiency and spectral composition of light on photosynthetic processes in A. thaliana under high-intensity light exposure. PHOTOSYNTHETICA 2024; 62:71-78. [PMID: 39650628 PMCID: PMC11609765 DOI: 10.32615/ps.2024.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/24/2024] [Indexed: 12/11/2024]
Abstract
The role of cryptochrome 1 in photosynthetic processes and pro-/antioxidant balance in the Arabidopsis thaliana plants was studied. Wild type (WT) and hy4 mutant deficient in cryptochrome 1 grown for 20 d under red (RL, 660 nm) and blue (BL, 460 nm) light at an RL:BL = 4:1 ratio were kept for 3 d in different lights: RL:BL = 4:1, RL:BL:GL = 4:1:0.3 (GL - green light, 550 nm), and BL, then were exposed to high irradiance (4 h). Activity of PSII and the rate of photosynthesis in WT and hy4 decreased under the high irradiance in all spectral variants but under BL stronger decrease in the activity was found in the hy4 mutant than in WT. We assumed that lowered resistance of photosynthetic apparatus in the hy4 mutant may be associated with the low activity of the main antioxidant enzymes and reduced content of low-molecular-mass antioxidants in the mutant compared to the WT.
Collapse
Affiliation(s)
- A. Khudyakova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, 142290 Moscow Region, Russia
| | - V. Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, 142290 Moscow Region, Russia
| | - A. Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, 142290 Moscow Region, Russia
| | - M. Vereshagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - S.I. Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, 142290 Moscow Region, Russia
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Turkey
| |
Collapse
|
3
|
Trivellini A, Toscano S, Romano D, Ferrante A. The Role of Blue and Red Light in the Orchestration of Secondary Metabolites, Nutrient Transport and Plant Quality. PLANTS (BASEL, SWITZERLAND) 2023; 12:2026. [PMID: 37653943 PMCID: PMC10223693 DOI: 10.3390/plants12102026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 07/30/2023]
Abstract
Light is a fundamental environmental parameter for plant growth and development because it provides an energy source for carbon fixation during photosynthesis and regulates many other physiological processes through its signaling. In indoor horticultural cultivation systems, sole-source light-emitting diodes (LEDs) have shown great potential for optimizing growth and producing high-quality products. Light is also a regulator of flowering, acting on phytochromes and inducing or inhibiting photoperiodic plants. Plants respond to light quality through several light receptors that can absorb light at different wavelengths. This review summarizes recent progress in our understanding of the role of blue and red light in the modulation of important plant quality traits, nutrient absorption and assimilation, as well as secondary metabolites, and includes the dynamic signaling networks that are orchestrated by blue and red wavelengths with a focus on transcriptional and metabolic reprogramming, plant productivity, and the nutritional quality of products. Moreover, it highlights future lines of research that should increase our knowledge to develop tailored light recipes to shape the plant characteristics and the nutritional and nutraceutical value of horticultural products.
Collapse
Affiliation(s)
- Alice Trivellini
- Department of Agriculture, Food and Environment, Università degli Studi di Catania, 95131 Catania, Italy;
| | - Stefania Toscano
- Department of Science Veterinary, Università degli Studi di Messina, 98168 Messina, Italy;
| | - Daniela Romano
- Department of Agriculture, Food and Environment, Università degli Studi di Catania, 95131 Catania, Italy;
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
4
|
Kreslavski V, Khudyakova A, Kosobryukhov A, Pashkovskiy P, Vereshchagin M, Balakhnina T, Alharby H, Allakhverdiev S. Impact of additional green light and deficit in cryptochrome 1 on photosynthetic activity and pro-/antioxidant balance in Arabidopsis thaliana. PHOTOSYNTHETICA 2023; 61:215-224. [PMID: 39650680 PMCID: PMC11515821 DOI: 10.32615/ps.2023.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/14/2023] [Indexed: 12/11/2024]
Abstract
The light spectral composition acting through a set of photoreceptors, such as cryptochromes and phytochromes, plays an important role in maintaining sustainable photosynthesis. An impact of cryptochrome 1 deficiency and additions of green light (GL) against the background of red (RL) and blue (BL) (different ratios of RL:BL:GL) on the activity of the photosynthetic apparatus, the content of photosynthetic pigments, pro-/antioxidant balance, and expression of some genes in the leaves of 23-d-old Arabidopsis thaliana hy4 mutant plants was studied. The deficiency of cryptochrome 1 at RL/BL ratio of 4:1 led to a decrease in the rate of photosynthesis, photosystem II activity, and activity of ascorbate peroxidase and total peroxidase but to an increase in the content of products reacting with thiobarbituric acid. However, in the presence of additional GL, this difference for photosynthetic parameters either decreased or was absent, likely due to a GL-induced decrease in the content of active cryptochrome.
Collapse
Affiliation(s)
- V. Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Moscow Region, Russia
| | - A. Khudyakova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Moscow Region, Russia
| | - A. Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Moscow Region, Russia
| | - P. Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - M. Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - T. Balakhnina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Moscow Region, Russia
| | - H.F. Alharby
- Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - S.I. Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Moscow Region, Russia
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
5
|
Tarakanov IG, Tovstyko DA, Lomakin MP, Shmakov AS, Sleptsov NN, Shmarev AN, Litvinskiy VA, Ivlev AA. Effects of Light Spectral Quality on Photosynthetic Activity, Biomass Production, and Carbon Isotope Fractionation in Lettuce, Lactuca sativa L., Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:441. [PMID: 35161422 PMCID: PMC8840441 DOI: 10.3390/plants11030441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
The optimization of plant-specific LED lighting protocols for indoor plant growing systems needs both basic and applied research. Experiments with lettuce, Lactuca sativa L., plants using artificial lighting based on narrow-band LEDs were carried out in a controlled environment. We investigated plant responses to the exclusion of certain spectral ranges of light in the region of photosynthetically active radiation (PAR); in comparison, the responses to quasimonochromatic radiation in the red and blue regions were studied separately. The data on plant phenotyping, photosynthetic activity determination, and PAM fluorometry, indicating plant functional activity and stress responses to anomalous light environments, are presented. The study on carbon isotopic composition of photoassimilates in the diel cycle made it possible to characterize the balance of carboxylation and photorespiration processes in the leaves, using a previously developed oscillatory model of photosynthesis. Thus, the share of plant photorespiration (related to plant biomass enrichment with 13C) increased in response to red-light action, while blue light accelerated carboxylation (related to 12C enrichment). Blue light also reduced water use efficiency. These data are supported by the observations from the light environments missing distinct PAR spectrum regions. The fact that light of different wavelengths affects the isotopic composition of total carbon allowed us to elucidate the nature of its action on the organization of plant metabolism.
Collapse
Affiliation(s)
- Ivan G. Tarakanov
- Department of Plant Physiology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia; (D.A.T.); (M.P.L.); (A.S.S.); (N.N.S.); (A.A.I.)
| | - Daria A. Tovstyko
- Department of Plant Physiology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia; (D.A.T.); (M.P.L.); (A.S.S.); (N.N.S.); (A.A.I.)
| | - Maxim P. Lomakin
- Department of Plant Physiology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia; (D.A.T.); (M.P.L.); (A.S.S.); (N.N.S.); (A.A.I.)
| | - Alexander S. Shmakov
- Department of Plant Physiology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia; (D.A.T.); (M.P.L.); (A.S.S.); (N.N.S.); (A.A.I.)
| | - Nikolay N. Sleptsov
- Department of Plant Physiology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia; (D.A.T.); (M.P.L.); (A.S.S.); (N.N.S.); (A.A.I.)
| | - Alexander N. Shmarev
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
| | - Vladimir A. Litvinskiy
- Borissiak Paleontological Institute, Russian Academy of Sciences, 123, Profsoyuznaya Str., 117647 Moscow, Russia;
| | - Alexander A. Ivlev
- Department of Plant Physiology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia; (D.A.T.); (M.P.L.); (A.S.S.); (N.N.S.); (A.A.I.)
| |
Collapse
|
6
|
Pashkovskiy P, Ryazansky S, Kartashov A, Voloshin R, Khudyakova A, Kosobryukhov AA, Kreslavski VD, Kuznetsov VV, Allakhverdiev SI. Effect of red light on photosynthetic acclimation and the gene expression of certain light signalling components involved in the microRNA biogenesis in the extremophile Eutrema salsugineum. J Biotechnol 2020; 325:35-42. [PMID: 33301852 DOI: 10.1016/j.jbiotec.2020.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 11/26/2022]
Abstract
The photosynthetic acclimation of extremophile Eutrema salsugineum plants to red light (RL) (14 days, 150 μmol photons m-2 s-1, 660 nm) and the expression of the key photoreceptor apoprotein genes, transcription factors (TFs) and associated with phytochrome system MIR (microRNA) genes were studied. RL exposure induced an increase in the content of anthocyanin and total phenolic compounds and the level of Chls was decreased. The photosystem 2 electron transport rate and the number of open reaction centres (qL) were not changed in RL plants, however, the levels of non-photochemical quenching (NPQ) and the regulated quantum yield of non-photochemical quenching Y(NPQ) were significantly higher in the RL plants. The rate of CO2 uptake was decreased by almost 1.4-fold but the respiration and transpiration rates, as well as the stomatal conductance were not changed in the RL plants. An increase in the expression of the photoreceptor apoprotein genes PHYA, PHYB and PHYC, the TF genes PIF4, PIF5 and miR395, miR408, miR165 and decreases in the levels of the transcripts of the TF gene HY5 and miR171, miR157, and miR827 were detected. The acclimation effect of photosynthetic apparatus to RL was accompanied by an increase of pigment content such as total phenolic compounds and carotenoids and it is due to the changes in the expression of the apoprotein phytochrome genes PHYA, PHYB, PHYC and phytochrome signalling TFs (PIF4, PIF5 and HY5) as well as MIR genes associated with phytochrome system.
Collapse
Affiliation(s)
- P Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - S Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - A Kartashov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - R Voloshin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - A Khudyakova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Moscow Region, Pushchino, Russia
| | - A A Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Moscow Region, Pushchino, Russia
| | - V D Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Moscow Region, Pushchino, Russia
| | - Vl V Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - S I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
7
|
Paponov M, Kechasov D, Lacek J, Verheul MJ, Paponov IA. Supplemental Light-Emitting Diode Inter-Lighting Increases Tomato Fruit Growth Through Enhanced Photosynthetic Light Use Efficiency and Modulated Root Activity. FRONTIERS IN PLANT SCIENCE 2020; 10:1656. [PMID: 31998343 PMCID: PMC6965351 DOI: 10.3389/fpls.2019.01656] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/25/2019] [Indexed: 05/25/2023]
Abstract
We investigated the effect of supplemental LED inter-lighting (80% red, 20% blue; 70 W m-2; light period 04:00-22:00) on the productivity and physiological traits of tomato plants (Flavance F1) grown in an industrial greenhouse with high pressure sodium (HPS) lamps (235 W m-2, 420 µmol m-2 s-1 at canopy). Physiological trait measurements included diurnal photosynthesis and fruit relative growth rates, fruit weight at specific positions in the truss, root pressure, xylem sap hormone and ion compositions, and fruit quality. In the control treatment with HPS lamps alone, the ratio of far-red to red light (FR:R) was 1.2 at the top of the canopy and increased to 5.4 at the bottom. The supplemental LED inter-lighting decreased the FR:R ratio at the middle and low positions in the canopy and was associated with greener leaves and higher photosynthetic light use efficiency (PLUE) in the leaves in the lower canopy. The use of LED inter-lighting increased the biomass and yield by increasing the fruit weight and enhancing plant growth. The PLUE of plants receiving supplemental LED light decreased at the end of the light period, indicating that photosynthesis of the supplemented plants at the end of the day might be limited by sink capacity. The supplemental LED lighting increased the size of fruits in the middle and distal positions of the truss, resulting in a more even size for each fruit in the truss. Diurnal analysis of fruit growth showed that fruits grew more quickly during the night on the plants receiving LED light than on unsupplemented control plants. This faster fruit growth during the night was related to an increased root pressure. The LED treatment also increased the xylem levels of the phytohormone jasmonate. Supplemental LED inter-lighting increased tomato fruit weight without affecting the total soluble solid contents in fruits by increasing the total assimilates available for fruit growth and by enhancing root activity through an increase in root pressure and water supply to support fruit growth during the night.
Collapse
Affiliation(s)
- Martina Paponov
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Dmitry Kechasov
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Jozef Lacek
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Michel J. Verheul
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Ivan A. Paponov
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
8
|
Moysset L, Llambrich E, Simón E. Calcium changes in Robinia pseudoacacia pulvinar motor cells during nyctinastic closure mediated by phytochromes. PROTOPLASMA 2019; 256:615-629. [PMID: 30382423 DOI: 10.1007/s00709-018-1323-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Potassium pyroantimonate precipitation, transmission electron microscopy, and X-ray microanalysis were used to investigate the subcellular localization of loosely bound calcium in Robinia pseudoacacia pulvinar motor cells during phytochrome-mediated nyctinastic closure. Calcium localization was carried out in pulvini collected in white light 2 h after the beginning of the photoperiod, immediately after a red light or a far-red light pulse applied 2 h after the beginning of the photoperiod and after 15 or 25 min of darkness respectively. Calcium antimonate precipitates were found in all the pulvinar tissues from the epidermis to the vascular bundle, independent of the light treatment. At subcellular level, precipitates were found mainly in the intercellular spaces, the inner surface of the plasma membrane, cytoplasm, colloidal vacuoles, and nuclei. Red light enhanced the nyctinastic closure of leaflets and caused an asymmetric distribution of cytosolic calcium precipitates between the extensor and flexor motor cells. Both the number and area of the cytosolic calcium precipitates drastically increased in the extensor cells compared to the flexor motor cells. Red light had a rapid and transient effect on the distribution of cytosolic calcium precipitates, which occurred during or at the end of the irradiation, before leaflet closure. By contrast, the distribution of cytosolic loosely bound calcium was similar between the extensor and flexor motor cells after irradiation with far-red light. Our results demonstrate that red light causes specific calcium mobilization in pulvinar motor cells and suggest the involvement of cytoplasmic Ca2+ as a second messenger for phytochrome during nyctinastic closure.
Collapse
Affiliation(s)
- Luisa Moysset
- Departament of Evolutive Biology, Ecology and Environmental Sciences, Section of Plant Physiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Margalef Building, Floor 5, 08028, Barcelona, Spain.
| | - Esther Llambrich
- Departament of Evolutive Biology, Ecology and Environmental Sciences, Section of Plant Physiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Margalef Building, Floor 5, 08028, Barcelona, Spain
| | - Esther Simón
- Departament of Evolutive Biology, Ecology and Environmental Sciences, Section of Plant Physiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Margalef Building, Floor 5, 08028, Barcelona, Spain
| |
Collapse
|
9
|
Kreslavski VD, Los DA, Schmitt FJ, Zharmukhamedov SK, Kuznetsov VV, Allakhverdiev SI. The impact of the phytochromes on photosynthetic processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:400-408. [DOI: 10.1016/j.bbabio.2018.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/04/2018] [Accepted: 03/09/2018] [Indexed: 10/17/2022]
|
10
|
Sukhova E, Mudrilov M, Vodeneev V, Sukhov V. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea. PHOTOSYNTHESIS RESEARCH 2018; 136:215-228. [PMID: 29086893 DOI: 10.1007/s11120-017-0460-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/23/2017] [Indexed: 05/17/2023]
Abstract
Local damage (mainly burning, heating, and mechanical wounding) induces propagation of electrical signals, namely, variation potentials, which are important signals during the life of plants that regulate different physiological processes, including photosynthesis. It is known that the variation potential decreases the rate of CO2 assimilation by the Calvin-Benson cycle; however, its influence on light reactions has been poorly investigated. The aim of our work was to investigate the influence of the variation potential on the light energy flow that is absorbed, trapped and dissipated per active reaction centre in photosystem II and on the flow of electrons through the chloroplast electron transport chain. We analysed chlorophyll fluorescence in pea leaves using JIP-test and PAM-fluorometry; we also investigated delayed fluorescence. The electrical signals were registered using extracellular electrodes. We showed that the burning-induced variation potential stimulated a nonphotochemical loss of energy in photosystem II under dark conditions. It was also shown that the variation potential gradually increased the flow of light energy absorbed, trapped and dissipated by photosystem II. These changes were likely caused by an increase in the fraction of absorbed light distributed to photosystem II. In addition, the variation potential induced a transient increase in electron flow through the photosynthetic electron transport chain. Some probable mechanisms for the influence of the variation potential on the light reactions of photosynthesis (including the potential role of intracellular pH decrease) are discussed in the work.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Maxim Mudrilov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950.
| |
Collapse
|
11
|
Pashkovskiy PP, Soshinkova TN, Korolkova DV, Kartashov AV, Zlobin IE, Lyubimov VY, Kreslavski VD, Kuznetsov VV. The effect of light quality on the pro-/antioxidant balance, activity of photosystem II, and expression of light-dependent genes in Eutrema salsugineum callus cells. PHOTOSYNTHESIS RESEARCH 2018; 136:199-214. [PMID: 29071562 DOI: 10.1007/s11120-017-0459-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
The antioxidant balance, photochemical activity of photosystem II (PSII), and photosynthetic pigment content, as well as the expression of genes involved in the light signalling of callus lines of Eutrema salsugineum plants (earlier Thellungiella salsuginea) under different spectral light compositions were studied. Growth of callus in red light (RL, maximum 660 nm), in contrast to blue light (BL, maximum 450 nm), resulted in a lower H2O2 content and thiobarbituric acid reactive substances (TBARS). The BL increased the activities of key antioxidant enzymes in comparison with the white light (WL) and RL and demonstrated the minimum level of PSII photochemical activity. The activities of catalase (CAT) and peroxidase (POD) had the highest values in BL, which, along with the increased H2O2 and TBARS content, indicate a higher level of oxidative stress in the cells. The expression levels of the main chloroplast protein genes of PSII (PSBA and PSBD), the NADPH-dependent oxidase gene of the plasma membrane (RbohD), the protochlorophyllide oxidoreductase genes (POR B, C) involved in the biosynthesis of chlorophyll, and the key photoreceptor signalling genes (CIB1, CRY2, PhyB, PhyA, and PIF3) were determined. Possible mechanisms of light quality effects on the physiological parameters of callus cells are discussed.
Collapse
Affiliation(s)
- P P Pashkovskiy
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia.
| | - T N Soshinkova
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - D V Korolkova
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - A V Kartashov
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - I E Zlobin
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - V Yu Lyubimov
- Institute of Basic Biological Problems Russian Academy of Sciences, Pushchino, Russia
| | - V D Kreslavski
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
- Institute of Basic Biological Problems Russian Academy of Sciences, Pushchino, Russia
| | - Vl V Kuznetsov
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Wang G, Bi A, Amombo E, Li H, Zhang L, Cheng C, Hu T, Fu J. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue. FRONTIERS IN PLANT SCIENCE 2017; 8:2032. [PMID: 29250091 PMCID: PMC5715236 DOI: 10.3389/fpls.2017.02032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue (Festuca arundinacea Schreber) treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype "TF133" were subjected to the control (CK), salinity (S), salinity + calcium nitrate (SC), and salinity + ethylene glycol tetraacetic acid (SE). Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size), N (number of [Formula: see text] redox turnovers until Fm is reached), ψE0, or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from QA to QB or PSI acceptors), ABS/RC (Absorbed photon flux per RC). All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond [Formula: see text]) and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca2+, and K+ in the SC regime than S regime. Interrelated analysis indicated that ψE0, δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca2+ and K+ content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role of exogenous calcium in tall fescue under salt stress.
Collapse
Affiliation(s)
- Guangyang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aoyue Bi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Liang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jinmin Fu
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
13
|
Eprintsev AT, Fedorin DN, Sazonova OV, Igamberdiev AU. Light inhibition of fumarase in Arabidopsis leaves is phytochrome A-dependent and mediated by calcium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:161-6. [PMID: 26949024 DOI: 10.1016/j.plaphy.2016.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 05/19/2023]
Abstract
Inhibition of fumarase activity in the light has been studied in Arabidopsis in relation to the involvement of phytochrome. Using knockout phytochrome mutants, we observed that the main regulator of FUM1 gene transcription, encoding the mitochondrial form of fumarase, is phytochrome A. The active form of phytochrome A suppressed FUM1 expression, while the expression of the FUM2 gene encoding the cytosolic form of fumarase was unaffected both in darkness and in light. The nuclear concentration of Ca(2+) was modulated by red and far-red light. We suggest that the signal transduction mechanism operates via Ca(2+) activation of expression of the gene encoding the transcription factor PIF3, which binds to promoters of phytochrome-regulated genes and inhibits FUM1 expression.
Collapse
Affiliation(s)
- Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394006 Voronezh, Russia
| | - Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394006 Voronezh, Russia
| | - Oksana V Sazonova
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394006 Voronezh, Russia
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
14
|
Mironov KS, Sidorov RA, Kreslavski VD, Bedbenov VS, Tsydendambaev VD, Los DA. Cold-induced gene expression and ω3 fatty acid unsaturation is controlled by red light in Synechocystis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:84-8. [DOI: 10.1016/j.jphotobiol.2014.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/01/2014] [Accepted: 03/05/2014] [Indexed: 01/15/2023]
|
15
|
Effect of preillumination with red light on photosynthetic parameters and oxidant-/antioxidant balance in Arabidopsis thaliana in response to UV-A. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:229-36. [PMID: 24080425 DOI: 10.1016/j.jphotobiol.2013.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/10/2013] [Accepted: 08/19/2013] [Indexed: 01/17/2023]
Abstract
The effect of preillumination with low intensity (10μmol quanta m(-2)s(-1), 10min) light of different wavelengths in the spectral range of 550-730nm on photosynthesis and activity of PSII, the content of photosynthetic pigments and H2O2, as well as the peroxidase activity in the leaves of 26-d-old Arabidopsis thaliana wild-type (WT) plants in response to UV-A radiation was studied. UV-A decreased the activity of the PSII, the content of Chl a, Chl b and carotenoids, as well as increased the peroxidase activity and H2O2 level in the WT leaves. Preillumination of the leaves with red light (RL, λmax=664nm) reduced the inhibitory effect of UV radiation on photosynthesis and activity of the PSII, indicated by delayed light emission as well as the H2O2 level, but increased the peroxidase activity in the leaves compared to illumination by UV radiation only. Illumination with RL alone and the subsequent exposure of plants to darkness increased the peroxidase activity and the transcription activity of genes of the transcription factors APX1 and HYH. Preillumination of leaves with RL, then far red light (FRL, λmax=727nm) partially compensated the effect of the RL for all studied parameters, suggesting that the active form of phytochrome (PFR) is involved in these processes. Preillumination with the wavelengths of 550, 594 and 727nm only did not have a marked effect on photosynthesis. The hy2 mutant of Arabidopsis with reduced synthesis of the phytochrome B chromophore showed decreased resistance of PSII to UV-A compared with the WT of Arabidopsis. UV radiation reduced Chl a fluorescence much faster in the hy2 mutant compared to the WT. Preillumination of the hy2 mutant with RL did not affect the PSII activity and H2O2 level in UV-irradiated leaves. It is assumed that the formation of the increased resistance of the photosynthetic apparatus of Arabidopsis to UV-A radiation involves PFR and the antioxidant system of plants, partly by inducing transcriptional activity of some antioxidant and transcription factors genes.
Collapse
|
16
|
Kreslavski VD, Lyubimov VY, Shirshikova GN, Shmarev AN, Kosobryukhov AA, Schmitt FJ, Friedrich T, Allakhverdiev SI. Preillumination of lettuce seedlings with red light enhances the resistance of photosynthetic apparatus to UV-A. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2013; 122:1-6. [PMID: 23548435 DOI: 10.1016/j.jphotobiol.2013.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 01/03/2023]
Abstract
Seedlings of 10-day-old lettuce (Lactuca sativa L., cultivar Berlin) were preilluminated by low intensity red light (λmax=660 nm, 10 min, 5 μmol quanta m(-2) s(-1)) and far-red light (λmax=730 nm, 10 min, 5 μmol quanta m(-2) s(-1)) to study the effect of pre-treatment on photosynthesis, photochemical activity of photosystem II (PSII), the contents of photosynthetic and UV-A-absorbing pigments (UAPs) and H2O2, as well as total and ascorbate peroxidase activities in cotyledonary leaves of seedlings exposed to UV-A. UV radiation reduced the photosynthetic rate (Pn), the activity of PSII, and the contents of Chl a and b, carotenoids and UAPs in the leaves, but increased the content of H2O2 and the total peroxidase activity. Preillumination with red light removed these effects of UV. In turn, the illumination with red light, then far-red light removed the effect of the red light. Illumination with red light alone increased the content of UAPs, as well as peroxidase activity. It is suggested that higher resistance of the lettuce photosynthetic apparatus to UV-A radiation is associated with involvement of the active form of phytochrome B, thereby increasing peroxidase activities as well as UAPs and saving preservation of photosynthetic pigment contents due to pre-illumination with red light.
Collapse
Affiliation(s)
- Vladimir D Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kreslavski VD, Fomina IR, Los DA, Carpentier R, Kuznetsov VV, Allakhverdiev SI. Red and near infra-red signaling: Hypothesis and perspectives. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2012. [DOI: 10.1016/j.jphotochemrev.2012.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Goltsev V, Zaharieva I, Chernev P, Kouzmanova M, Kalaji HM, Yordanov I, Krasteva V, Alexandrov V, Stefanov D, Allakhverdiev SI, Strasser RJ. Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1490-8. [PMID: 22609146 DOI: 10.1016/j.bbabio.2012.04.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/25/2012] [Accepted: 04/28/2012] [Indexed: 11/25/2022]
Abstract
Water deficit is one of the most important environmental factors limiting sustainable crop yields and it requires a reliable tool for fast and precise quantification. In this work we use simultaneously recorded signals of photoinduced prompt fluorescence (PF) and delayed fluorescence (DF) as well as modulated reflection (MR) of light at 820nm for analysis of the changes in the photosynthetic activity in detached bean leaves during drying. Depending on the severity of the water deficit we identify different changes in the primary photosynthetic processes. When the relative water content (RWC) is decreased to 60% there is a parallel decrease in the ratio between the rate of excitation trapping in the Photosystem (PS) II reaction center and the rate of reoxidation of reduced PSII acceptors. A further decrease of RWC to 20% suppresses the electron transfer from the reduced plastoquinone pool to the PSI reaction center. At RWC below values 15%, the reoxidation of the photoreduced primary quinone acceptor of PSII, Q(A)(-), is inhibited and at less than 5%, the primary photochemical reactions in PSI and II are inactivated. Using the collected sets of PF, DF and MR signals, we construct and train an artificial neural network, capable of recognizing the RWC in a series of "unknown" samples with a correlation between calculated and gravimetrically determined RWC values of about R(2)≈0.98. Our results demonstrate that this is a reliable method for determination of RWC in detached leaves and after further development it could be used for quantifying of drought stress of crop plants in situ. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Vasilij Goltsev
- Department of Biophysics and Radiobiology, St. Kliment Ohridski University of Sofia, Sofia, Bulgaria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
TAN JIAOJIE, HAO CE, WEI NINGNING, ZHANG MINGXING, DAI XIYANG. TIME-DEPENDENT DENSITY FUNCTIONAL THEORY STUDY ON THE ELECTRONIC EXCITED-STATE HYDROGEN BONDING DYNAMICS OF METHYL ACETATE IN AQUEOUS SOLUTION. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633611006529] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The time-dependent density functional theory (TDDFT) method has been carried out to investigate the hydrogen-bonding dynamics of methyl acetate ( CH 3 CO 2 CH 3) in hydrogen-donating water solvent. The ground-state geometry optimizations, electronic transition energies and corresponding oscillation strengths of the low-lying electronically-excited states for the isolated CH 3 CO 2 CH 3 and H2O monomers, the hydrogen-bonded CH3CO2CH3-(H2O)1, 2 complexes have been calculated using DFT and TDDFT methods respectively. One intermolecular hydrogen bond C=O⋯H–O is formed between CH3CO2CH3 and one water molecule in CH3CO2CH3-H2O dimer. Meanwhile, in CH3CO2CH3-(H2O)2 trimer, two intermolecular hydrogen bonds C=O⋯H–O are formed between CH3CO2CH3 and two water molecules. By theoretically monitoring the excitation energy changes among the CH3CO2CH3 monomer, the CH3CO2CH3-H2O dimer, and the CH3CO2CH3-(H2O)2 trimer, we have demonstrated interestingly that in some electronically-excited states, the intermolecular hydrogen bonds are strengthened inducing electronic spectral redshifts, while in others weakened with electronic spectral blueshifts. The phenomenon that hydrogen bonds are strengthened in some electronic states while weakened in others can arouse further probe into CH3CO2CH3-(H2O)1, 2 complexes.
Collapse
Affiliation(s)
- JIAO-JIE TAN
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - CE HAO
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - NING-NING WEI
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - MING-XING ZHANG
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - XI-YANG DAI
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
20
|
Zhang J, Zhao G, Li R, Hou D. Time-Dependent Density Functional Theory Study on the Electronic Excited State of Hydrogen-Bonded Clusters Formed by 2-Hydroxybenzonitrile (o-Cyanophenol) and Carbon Monoxide. J CLUST SCI 2011. [DOI: 10.1007/s10876-011-0406-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Zhang DW, Xu F, Zhang ZW, Chen YE, Du JB, Jia SD, Yuan S, Lin HH. Effects of light on cyanide-resistant respiration and alternative oxidase function in Arabidopsis seedlings. PLANT, CELL & ENVIRONMENT 2010; 33:2121-31. [PMID: 20716069 DOI: 10.1111/j.1365-3040.2010.02211.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mitochondrial alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, catalyzes the energy wasteful cyanide (CN)-resistant respiration and plays a role in optimizing photosynthesis. Although it has been demonstrated that leaf AOX is upregulated after illumination, the in vivo mechanism of AOX upregulation by light and its physiological significance are still unknown. In this report, red light and blue light-induced AOX (especially AOX1a) expressions were characterized. Phytochromes, phototropins and cryptochromes, all these photoreceptors mediate the light-response of AOX1a gene. When aox1a mutant seedlings were grown under a high-light (HL) condition, photobleaching was more evident in the mutant than the wild-type plants. More reactive oxygen species (ROS) accumulation and inefficient dissipation of chloroplast reducing-equivalents in aox1a mutant may account for its worse adaptation to HL stress. When etiolated seedlings were exposed to illumination for 4 h, chlorophyll accumulation was largely delayed in aox1a plants. We first suggest that more reduction of the photosynthetic electron transport chain and more accumulation of reducing-equivalents in the mutant during de-etiolation might be the main reasons.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Mimuro M, Nishihara H, Carpentier R. Photosynthetic hydrogen production. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2010. [DOI: 10.1016/j.jphotochemrev.2010.07.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|