1
|
Ma L, Li Z, Shi Y, Xie Y, Jiang M, Yu X, Xu L. Two Birds With One Stone: A Novel Nanocomposite Combining Silicon Nanoparticles and Carbon-Doped Titania as the Fluorescence Probe and Visible Light Photocatalyst for Simultaneous Detection and Removal of Oxytetracycline. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410306. [PMID: 39651852 PMCID: PMC11791936 DOI: 10.1002/advs.202410306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/15/2024] [Indexed: 02/05/2025]
Abstract
The monitoring and removal of environmental pollutants are vital for the sustainable development of society. Herein, a novel nanocomposite combining silicon nanoparticles and carbon-doped titania, C-TiO2/SiNPs, is designed as a fluorescence probe and visible-light photocatalyst to simultaneously monitor and degrade oxytetracycline (OTC). C-TiO2/SiNPs emit blue fluorescence, which can be quenched by OTC through inner filter effect. Meanwhile, green fluorescence is turned on upon OTC addition by aggregation-induced emission. Thus, C-TiO2/SiNPs successfully act as a fluorescence colorimetric probe for quantitation and semi-quantitation of OTC. Additionally, C-TiO2/SiNPs show adorable visible-light photocatalytic activity toward OTC, achieving a removal rate of 93.3% in 30 min. This process is driven by the superoxide radicals, holes and hydroxyl radicals produced by C-TiO2/SiNPs under visible light irradiation. The total toxicities obviously reduce after OTC is degraded by C-TiO2/SiNPs. The concentration during the OTC degradation can be estimated by naked eyes through the change of fluorescence color, but also precisely quantified by a fluorometer. This study innovatively develops a one-stone-two-birds strategy to achieve simultaneous degradation and in situ real-time detection of OTC, paving a promising paradigm for the highly efficient monitoring and removal of residual drugs.
Collapse
Affiliation(s)
- Liyun Ma
- Department of PharmacyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Zhi Li
- Tongji School of PharmacyHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Yiyi Shi
- Tongji School of PharmacyHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Yuchen Xie
- Tongji School of PharmacyHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Ming Jiang
- Tongji School of PharmacyHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Xu Yu
- Tongji School of PharmacyHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Li Xu
- Tongji School of PharmacyHuazhong University of Science and TechnologyWuhan430030P. R. China
| |
Collapse
|
2
|
Ma L, Li Z, Cai Y, Yang L, Xie Y, Jiang M, Yu X, Xu L. Highly efficient degradation of sulindac under visible light irradiation by a novel titanium based photocatalyst. J Colloid Interface Sci 2024; 680:191-201. [PMID: 39561645 DOI: 10.1016/j.jcis.2024.11.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Titanium dioxide (TiO2) is a kind of generally used photocatalyst with the assistance of UV light. To utilize the visible light and save the energy, herein, a titanium (Ti)-based nanocomposite, i.e. PPDs/C-hTiO2, was designed and prepared based on carbon (C)-doping and photosensitive polymer dots (PPDs) nano-hybridization. This design synergistically narrowed the band gap energy (Eg) and strengthened absorption of the visible light. As a result, PPDs/C-hTiO2 exerted remarkably high catalytic ability under visible light, surpassing that of commercial TiO2 (i.e. P25) under UV light. PPDs/C-hTiO2 succeeded in assisting the degradation of sulindac with a degradation efficiency of 96.7%±1.25% within 10 min under visible light. The degradation process was driven by the generation of hydroxyl radical, superoxide radical and holes, and the total biotoxicity of degradation products was decreased compared to the parent compound. This study creatively combined the C-doping and PPDs nano-hybridization to construct a visible light Ti-based photocatalyst, proposing a potential technique for addressing current aquatic environmental issues.
Collapse
Affiliation(s)
- Liyun Ma
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Zhi Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yuying Cai
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Linjiao Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yuchen Xie
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
3
|
Medina JC, Warren E, Morgan D, Gow IE, Edwards J. Influence of Pd, Pt and Au nanoparticles in the photocatalytic performance of N-TiO 2 support under visible light. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230271. [PMID: 39307167 PMCID: PMC11449022 DOI: 10.1098/rsta.2023.0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 10/06/2024]
Abstract
In this article, we report the modification and photocatalytic evaluation of commercial TiO2-P25 under visible light for methyl orange (MO) dye degradation under visible light. The activity of materials doped with N, Pd, Pt and Au on to the TiO2-P25 was evaluated, with optimal photocatalytic performance achieved using Au nanoparticles doped on an N-functionalized titania surface. X-ray diffraction (XRD), physical nitrogen adsorption/desorption isotherm curves, transmission electron microscopy (TEM), diffuse reflectance spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to study the structural and textural properties of the samples. The chemical species present in the bulk and surface of the catalysts were identified using X-ray photoelectron spectroscopy (XPS) and microwave plasma-atomic emission spectroscopy. The results show that Au/N-TiO2 photocatalyst presents a remarkable enhanced activity for MO dye degradation, under visible light illumination, reaching 100% after 4 h. The enhanced photocatalytic activity using this composite is attributable to the well-dispersed and small size of Au nanoparticles, large surface area, reduction of band-gap energy and the interaction between nitrogen and Au which promoted a synergistic effect. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.
Collapse
Affiliation(s)
- J C Medina
- Cardiff Catalysis Institute, Cardiff University School of Chemistry, Translational Research Hub, Cardiff University, Maindy Road , Cardiff CF24 4HQ, UK
| | - Eleanor Warren
- Cardiff Catalysis Institute, Cardiff University School of Chemistry, Translational Research Hub, Cardiff University, Maindy Road , Cardiff CF24 4HQ, UK
| | - David Morgan
- Cardiff Catalysis Institute, Cardiff University School of Chemistry, Translational Research Hub, Cardiff University, Maindy Road , Cardiff CF24 4HQ, UK
| | - Isla E Gow
- Cardiff Catalysis Institute, Cardiff University School of Chemistry, Translational Research Hub, Cardiff University, Maindy Road , Cardiff CF24 4HQ, UK
| | - Jennifer Edwards
- Cardiff Catalysis Institute, Cardiff University School of Chemistry, Translational Research Hub, Cardiff University, Maindy Road , Cardiff CF24 4HQ, UK
| |
Collapse
|
4
|
Lin Z, Jiang X, Xu W, Li F, Chen X, Wang H, Liu S, Lu X. The effects of water, substrate, and intermediate adsorption on the photocatalytic decomposition of air pollutants over nano-TiO 2 photocatalysts. Phys Chem Chem Phys 2024; 26:662-678. [PMID: 38112019 DOI: 10.1039/d3cp04350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The photocatalytic performance of nano-TiO2 photocatalysts in air pollutant degradation greatly depends on the adsorption of water, substrates, and intermediates. Especially under excessive humidity, substrate concentration, and intermediate concentration, the competitive adsorption of water, substrates, and intermediates can seriously inhibit the photocatalytic performance. In the past few years, extensive studies have been performed to investigate the influence of humidity, substrate concentration, and intermediates on the photocatalytic performance of TiO2, and significant advances have been made in the area. However, to the best of our knowledge, there is no review focusing on the effects of water, substrate, and intermediate adsorption to date. A comprehensive understanding of their mechanisms is key to overcoming the limited application of nano-TiO2 photocatalysts in the photocatalytic decomposition of air pollutants. In this review, the progress in experimental and theoretical fields, including a recent combination of photocatalytic experiments and adsorption and photocatalytic simulations by density functional theory (DFT), to explore the impact of adsorption of various reaction components on nano-TiO2 photocatalysts is comprehensively summarized. Additionally, the mechanism and broad perspective of the impact of their adsorption on the photocatalytic activity of TiO2 in air treatment are also critically discussed. Finally, several solutions are proposed to resolve the current problems related to environmental factors. In general, this review contributes a comprehensive perspective of water, substrate, and intermediate adsorption toward boosting the photocatalytic application of TiO2 nanomaterials.
Collapse
Affiliation(s)
- Zhifeng Lin
- School of Environmental and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Weicheng Xu
- School of Environmental and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Fuhua Li
- School of Environmental and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Xin Chen
- School of Environmental and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, China
| | - Si Liu
- School of Environmental and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Rios C, Bazán-Díaz L, Celaya CA, Salcedo R, Thangarasu P. Synthesis and Characterization of a Photocatalytic Material Based on Raspberry-like SiO 2@TiO 2 Nanoparticles Supported on Graphene Oxide. Molecules 2023; 28:7331. [PMID: 37959751 PMCID: PMC10647393 DOI: 10.3390/molecules28217331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
A raspberry-like SiO2@TiO2 new material supported on functionalized graphene oxide was prepared to reduce titania's band gap value. The material was characterized through different analytical methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HR-TEM). The band gap value was studied via UV-Vis absorption spectra and determined through the Kubelka-Munk equation. A theoretical study was also carried out to analyze the interaction between the species.
Collapse
Affiliation(s)
- Citlalli Rios
- Facultad de Química, Circuito Escolar s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico;
| | - L. Bazán-Díaz
- Instituto de Investigaciones en Materiales, Circuito Exterior s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico; (L.B.-D.); (R.S.)
| | - Christian A. Celaya
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 CarreteraTijuana-Ensenada, Ensenada 22800, Mexico;
| | - Roberto Salcedo
- Instituto de Investigaciones en Materiales, Circuito Exterior s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico; (L.B.-D.); (R.S.)
| | - Pandiyan Thangarasu
- Facultad de Química, Circuito Escolar s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico;
| |
Collapse
|
6
|
Akbar N, Javed M, Arif Khan A, Masood A, Ahmed N, Mehmood RY, Khisro SN, Abdul MAS, Mohammad Haniff MAS, Shah A. Zircon-Type CaCrO 4 Chromite Nanoparticles: Synthesis, Characterization, and Photocatalytic Application for Sunlight-Induced Degradation of Rhodamine B. ACS OMEGA 2023; 8:30095-30108. [PMID: 37636959 PMCID: PMC10448669 DOI: 10.1021/acsomega.3c02457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023]
Abstract
The degradation of organic dye pollutants is a critical environmental issue that has garnered significant attention in recent years. To address this problem, we investigated the potential of CaCrO4 chromite (CCO) as a photocatalyst for the degradation of cationic and anionic dye solutions under sunlight irradiation. CaCrO4 was synthesized via a sol-gel auto-combustion route and sintered at 900 °C. The Rietveld refined XRD profile confirmed the zircon-type structure of CaCrO4 crystallized in the tetragonal unit cell with I41/amd space group symmetry. The surface morphology of the sample was investigated by field emission scanning electron microscopy (FESEM), which revealed the polyhedral texture of the grains. Energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) studies were carried out to analyze the elemental composition and chemical states of the ions present in the compound. Fourier transform infrared (FT-IR) spectroscopy analysis revealed the vibrational modes corresponding to the tetrahedral and dodecahedral metal oxide bonds. The optical band gap was approximated to be in the range of 1.928 eV by using the Tauc relation. The CaCrO4 catalyst with different contents (5, 20, 35, and 50 mg) was investigated for its photocatalytic performance for the degradation of RhB dye solution under sunlight irradiation using a UV-Vis spectrometer over the experimental wavelength range of 450-600 nm. The degradation efficacy increased from 70.630 to 93.550% for 5-35 mg and then decreased to 68.720% for 50 mg in 140 min under visible light illumination. The comparative study demonstrates that a higher degradation rate was achieved for cationic than anionic dyes in the order RhB > MB > MO. The highest deterioration (93.80%) was achieved for the RhB dye in 140 min. Equilibrium and kinetic studies showed that the adsorption process followed the Langmuir isotherm and pseudo-second-order models, respectively. The maximum adsorption capacity of 21.125 mg/g was observed for the catalyst concentration of 35 mg. From the cyclic test, it has been observed that the synthesized photocatalyst is structurally and morphologically stable and reusable. The radical trapping experiment demonstrated that superoxide and hydroxyl radicals were the primary species engaged in the photodegradation process. A possible mechanism for the degradation of RhB has been proposed. Hence, we conclude that CaCrO4 can be used as an efficient photocatalyst for the remediation of organic dye pollutants from the environment.
Collapse
Affiliation(s)
- Naeem Akbar
- Department
of Physics, University of Kotli Azad Jammu
and Kashmir, Kotli 11100, Pakistan
| | - Muhammad Javed
- Department
of Physics, University of Kotli Azad Jammu
and Kashmir, Kotli 11100, Pakistan
| | - Ayaz Arif Khan
- Department
of Physics, University of Azad Jammu and
Kashmir, Muzaffarabad 13100, Pakistan
| | - Asad Masood
- Institute
of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Naeem Ahmed
- Institute
of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Raja Yasir Mehmood
- National
Institute of Lasers and Optronics College, Pakistan Institute of Engineering
and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| | - Said Nasir Khisro
- Department
of Physics, University of Kotli Azad Jammu
and Kashmir, Kotli 11100, Pakistan
| | | | | | - Attaullah Shah
- National
Institute of Lasers and Optronics College, Pakistan Institute of Engineering
and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| |
Collapse
|
7
|
Lyulyukin M, Kovalevskiy N, Bukhtiyarov A, Kozlov D, Selishchev D. Kinetic Aspects of Benzene Degradation over TiO2-N and Composite Fe/Bi2WO6/TiO2-N Photocatalysts under Irradiation with Visible Light. Int J Mol Sci 2023; 24:ijms24065693. [PMID: 36982767 PMCID: PMC10051460 DOI: 10.3390/ijms24065693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
In this study, composite materials based on nanocrystalline anatase TiO2 doped with nitrogen and bismuth tungstate are synthesized using a hydrothermal method. All samples are tested in the oxidation of volatile organic compounds under visible light to find the correlations between their physicochemical characteristics and photocatalytic activity. The kinetic aspects are studied both in batch and continuous-flow reactors, using ethanol and benzene as test compounds. The Bi2WO6/TiO2-N heterostructure enhanced with Fe species efficiently utilizes visible light in the blue region and exhibits much higher activity in the degradation of ethanol vapor than pristine TiO2-N. However, an increased activity of Fe/Bi2WO6/TiO2-N can have an adverse effect in the degradation of benzene vapor. A temporary deactivation of the photocatalyst can occur at a high concentration of benzene due to the fast accumulation of non-volatile intermediates on its surface. The formed intermediates suppress the adsorption of the initial benzene and substantially increase the time required for its complete removal from the gas phase. An increase in temperature up to 140 °C makes it possible to increase the rate of the overall oxidation process, and the use of the Fe/Bi2WO6/TiO2-N composite improves the selectivity of oxidation compared to pristine TiO2-N.
Collapse
Affiliation(s)
- Mikhail Lyulyukin
- Boreskov Institute of Catalysis, Novosibirsk 630090, Russia; (M.L.); (N.K.); (A.B.); (D.K.)
- Ecology and Nature Management Department, Aircraft Engineering Faculty, Novosibirsk State Technical University, Novosibirsk 630073, Russia
| | - Nikita Kovalevskiy
- Boreskov Institute of Catalysis, Novosibirsk 630090, Russia; (M.L.); (N.K.); (A.B.); (D.K.)
| | - Andrey Bukhtiyarov
- Boreskov Institute of Catalysis, Novosibirsk 630090, Russia; (M.L.); (N.K.); (A.B.); (D.K.)
| | - Denis Kozlov
- Boreskov Institute of Catalysis, Novosibirsk 630090, Russia; (M.L.); (N.K.); (A.B.); (D.K.)
| | - Dmitry Selishchev
- Boreskov Institute of Catalysis, Novosibirsk 630090, Russia; (M.L.); (N.K.); (A.B.); (D.K.)
- Correspondence: ; Tel.: +7-383-326-9429
| |
Collapse
|
8
|
Adassooriya NM, Ozgit D, Shivareddy SG, Hiralal P, Dahanayake D, Oliver RA, Amaratunga GAJ. Dielectric behaviour of plasma hydrogenated TiO 2/cyanoethylated cellulose nanocomposites. NANOSCALE 2023; 15:1824-1834. [PMID: 36602164 DOI: 10.1039/d2nr04680f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The interface between the polymer and nanoparticle has a vital role in determining the overall dielectric properties of a dielectric polymer nanocomposite. In this study, a novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO2 nanoparticles surface modified by hydrogen plasma treatments was successfully prepared with different weight percentages (10%, 20% and 30%) of hydrogenated TiO2. Internal structure of H plasma treated TiO2 nanoparticles (H-TiO2) and the intermolecular interactions and morphology within the polymer nanocomposites were analysed. H-TiO2/CRS thin films on SiO2/Si wafers were used to form metal-insulator-metal (MIM) type capacitors. Capacitances and loss factors in the frequency range of 1 kHz to 1 MHz were measured. At 1 kHz H-TiO2/CRS nanocomposites exhibited ultra-high dielectric constants of 80, 118 and 131 for nanocomposites with 10%, 20% and 30% weight of hydrogenated TiO2 respectively, significantly higher than values of pure CRS (21) and TiO2 (41). Furthermore, all three H-TiO2 /CRS nanocomposites show a loss factor <0.3 at 1 kHz and low leakage current densities (10-6 A cm-2-10-7 A cm-2). Leakage was studied using conductive atomic force microscopy (C-AFM) and it was observed that the leakage is associated with H-TiO2 nanoparticles embedded in the CRS polymer matrix. Although, modified interface slightly reduces energy densities compared to pristine TiO2/CRS system, the capacitance values for H-TiO2/CRS-in the voltage range of -2 V to 2 V are very stable. Whilst H-TiO2/CRS possesses ultra-high dielectric constants (>100), this study reveals that the polymer nanoparticle interface has a potential influence on dielectric behaviour of the composite.
Collapse
Affiliation(s)
- Nadeesh M Adassooriya
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
| | - Dilek Ozgit
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
| | - Sai G Shivareddy
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
| | - Pritesh Hiralal
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
| | - Damayanthi Dahanayake
- Sri Lanka Institute of Nanotechnology (SLINTEC), Mahenawatta, Pitipana, Homagama, CO 10206, Sri Lanka
| | - Rachel A Oliver
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Gehan A J Amaratunga
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
| |
Collapse
|
9
|
C-TiO2+Ni and ZnO+Ni Magnetic Photocatalyst Powder Synthesis by Reactive Magnetron Sputtering Technique and Their Application for Bacteria Inactivation. INORGANICS 2023. [DOI: 10.3390/inorganics11020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the current study, a bi-layered magnetic photocatalyst powder consisting of a Ni layer on one side and carbon-doped TiO2 or ZnO photocatalyst layers on the other side was synthesized by magnetron sputtering technique. SEM, XRD, and XPS analysis of powders revealed that the photocatalytic TiO2 layer had a mixed anatase-rutile structure, was doped by carbon to approximately 3 at. % and had a fraction of Ti(III) oxide. Meanwhile, the ZnO layer was crystalized in a wurtzite structure and had a considerable number of intrinsic defects, which are useful for visible light photocatalysis. The activity of magnetic photocatalyst powder was tested by photocatalytic bleaching of dyes, as well as performing photocatalytic inactivation of Salmonella bacteria under UV and visible light irradiation. It was observed, that C-TiO2+Ni magnetic photocatalyst had relatively high and stable activity under both light sources (for five consecutive cycles dye degradation reached approximately 95%), but ZnO+Ni was generally lacking in activity and stability (over five cycles under UV and visible light, dye degradation fell from approximately 60% to 55% and from 90% to 70%, respectively). Photocatalytic treatment of bacteria also provided mixed results. On one hand, in all tests bacteria were not inactivated completely. However, on the other hand, their susceptibility to antibiotics increased significantly.
Collapse
|
10
|
Sayegh S, Abid M, Tanos F, Cretin M, Lesage G, Zaviska F, Petit E, Navarra B, Iatsunskyi I, Coy E, Viter R, Fedorenko V, Ramanavicius A, Razzouk A, Stephan J, Bechelany M. N-doped TiO2 nanotubes synthesized by atomic layer deposition for acetaminophen degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Kocsis G, Szabó-Bárdos E, Fónagy O, Farsang E, Juzsakova T, Jakab M, Pekker P, Kovács M, Horváth O. Characterization of Various Titanium-Dioxide-Based Catalysts Regarding Photocatalytic Mineralization of Carbamazepine also Combined with Ozonation. Molecules 2022; 27:molecules27228041. [PMID: 36432141 PMCID: PMC9697621 DOI: 10.3390/molecules27228041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Titanium-dioxide-based semiconductors proved to be appropriate for photocatalytic application to efficiently degrade emerging organic pollutants such as various herbicides, pesticides, and pharmaceuticals in waters of environmental importance. The characterization of various TiO2 catalysts, both bare and modified (Ag- and/or N-doped), by mechanochemical treatment was carried out in this work, regarding their structure, morphology, and photocatalytic activity. For the latter investigations, carbamazepine, an antidepressant, proved to be applicable and versatile. The photocatalytic behavior of the catalysts was studied under both UV and visible light. Besides the decomposition efficiency, monitoring the intermediates provided information on the degradation mechanisms. Mechanochemical treatment significantly increased the particle size (from 30 nm to 10 μm), causing a considerable (0.14 eV) decrease in the band gap. Depending on the irradiation wavelength and the catalyst, the activity orders differed, indicating that, in the mineralization processes of carbamazepine, the importance of the different oxidizing radicals considerably deviated, e.g., Ag-TiO2 < DP25-TiO2 < ground-DP25-TiO2 < N-TiO2 ≈ N-Ag-TiO2 for O2•− and N-TiO2 ≈ Ag-TiO2 < N-Ag-TiO2 < ground-DP25-TiO2 ≈ DP25-TiO2 for HO• generation under UV irradiation. Toxicity studies have shown that the resulting intermediates are more toxic than the starting drug molecule, so full mineralization is required. This could be realized by a synergistic combination of heterogeneous photocatalysis and ozonation.
Collapse
Affiliation(s)
- Gábor Kocsis
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Erzsébet Szabó-Bárdos
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Orsolya Fónagy
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Evelin Farsang
- Analytical Chemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Tatjána Juzsakova
- Sustainability Solutions Research Lab, Research Center for Biochemical, Environmental and Chemical Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Miklós Jakab
- Department of Materials Engineering, Research Center for Engineering Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Péter Pekker
- Environmental Mineralogy Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Margit Kovács
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Ottó Horváth
- Environmental and Inorganic Photochemistry Research Group, Center for Natural Sciences, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
- Correspondence: ; Tel.: +36-88-624-000 (ext. 6049)
| |
Collapse
|
12
|
Nitrogen-Doped Titanium Dioxide as a Hole Transport Layer for High-Efficiency Formamidinium Perovskite Solar Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227927. [PMID: 36432027 PMCID: PMC9694249 DOI: 10.3390/molecules27227927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Perovskite solar cells (PSCs) offer advantages over widely deployed silicon solar cells in terms of ease of fabrication; however, the device is still under rigorous materials optimization for cell performance, stability, and cost. In this work, we explore a version of a PSC by replacing the polymeric hole transport layer (HTL) such as Spiro-OMeTAD, P3HT, and PEDOT: PSS with a more air-stable metal oxide, viz., nitrogen-doped titanium dioxide (TiO2:N). Numerical simulations on formamidinium (FA)-based PSCs in the FTO/TiO2/FAPbI3/Ag configuration have been carried out to depict the behaviour of the HTL as well as the effect of absorber layer thickness (∆t) on photovoltaic parameters. The results show that the cell output increases when the HTL bandgap increases from 2.5 to 3.0 eV. By optimizing the absorber layer thickness and the gradient in defect density (Nt), the device structure considered here can deliver a maximum power conversion efficiency of ~21.38% for a lower HTL bandgap (~2.5 eV) and ~26.99% for a higher HTL bandgap of ~3.0 eV. The results are validated by reproducing the performance of PSCs employing commonly used polymeric HTLs, viz. Spiro-OMeTAD, P3HT, and PEDOT: PSS as well as high power conversion efficiency in the highly crystalline perovskite layer. Therefore, the present study provides high-performing, cost-effective PSCs using TiO2:N.
Collapse
|
13
|
Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Jawahar MJ, Neshaanthini JP, Saravanan R. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. CHEMOSPHERE 2022; 307:135713. [PMID: 35843436 DOI: 10.1016/j.chemosphere.2022.135713] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Freshwater has been incessantly polluted by various activities such as rapid industrialization, fast growth of population and agricultural activities. Water pollution is considered as one the major threatens to human health and aquatic bodies which causes various severe harmful diseases including gastrointestinal disorders, asthma, cancer, etc. The polluted wastewater could be treated by different conventional and advanced methodologies. Amongst them, adsorption is the most utilized low cost, efficient technique to treat and remove the harmful pollutants from the wastewater. The efficiency of adsorption mainly depends on the surface properties such as functional group availability and surface area of the adsorbents used. Since various waste-based carbon derivatives are utilized as adsorbents for harmful pollutants removal; nanomaterials are employed as effective adsorbents in recent times due to its excellent surface properties. This review presents an overview of the different types of nanomaterials such as nano-particles, nanotubes, nano-sheets, nano-rods, nano-spheres, quantum dots, etc. which have been synthesized by different chemical and green synthesis methodologies using plants, microorganisms, biomolecules and carbon derivatives, metals and metal oxides and polymers. By concentrating on potential research difficulties, this study offers a new viewpoint on fundamental field of nanotechnology for wastewater treatment applications. This review paper critically reviewed the synthesis of nanomaterials more importantly green synthesis and their applications in wastewater treatment to remove the harmful pollutants such as heavy metals, dyes, pesticides, polycyclic aromatic hydrocarbons, etc.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, 603110, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - Marie Jyotsna Jawahar
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - J P Neshaanthini
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
14
|
Hu ZT, Chen Y, Fei YF, Loo SL, Chen G, Hu M, Song Y, Zhao J, Zhang Y, Wang J. An overview of nanomaterial-based novel disinfection technologies for harmful microorganisms: Mechanism, synthesis, devices and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155720. [PMID: 35525366 DOI: 10.1016/j.scitotenv.2022.155720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Harmful microorganism (e.g., new coronavirus) based infection is the most important security concern in life sciences and healthcare. This article aims to provide a state-of-the-art review on the development of advanced technology based on nanomaterial disinfection/sterilization techniques (NDST) for the first time including the nanomaterial types, disinfection techniques, bactericidal devices, sterilization products, and application scenarios (i.e., water, air, medical healthcare), with particular brief account of bactericidal behaviors referring to varied systems. In this emerging research area spanning the years from 1998 to 2021, total of ~200 publications selected for the type of review paper and research articles were reviewed. Four typical functional materials (namely type of metal/metal oxides, S-based, C-based, and N-based) with their development progresses in disinfection/sterilization are summarized with a list of synthesis and design. Among them, the widely used silver nanoparticles (AgNPs) are considered as the most effective bacterial agents in the type of nanomaterials at present and has been reported for inactivation of viruses, fungi, protozoa. Some methodologies against (1) disinfection by-products (DBPs) in traditional sterilization, (2) noble metal nanoparticles (NPs) agglomeration and release, (3) toxic metal leaching, (4) solar spectral response broadening, and (5) photogenerated e-/h+ pairs recombination are reviewed and discussed in this field, namely (1) alternative techniques and nanomaterials, (2) supporter anchoring effect, (3) nonmetal functional nanomaterials, (4) element doping, and (5) heterojunction constructing. The feasible strategies in the perspective of NDST are proposed to involve (1) non-noble metal disinfectors, (2) multi-functional nanomaterials, (3) multi-component nanocomposite innovation, and (4) hybrid techniques for disinfection/sterilization system. It is promising to achieve 100% bactericidal efficiency for 108 CFU/mL within a short time of less than 30 min.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yue Chen
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yan-Fei Fei
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Siew-Leng Loo
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yujie Song
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China.
| |
Collapse
|
15
|
Magnone E, Hwang JY, Shin MC, Zhuang X, Lee JI, Park JH. Al2O3-Based Hollow Fiber Membranes Functionalized by Nitrogen-Doped Titanium Dioxide for Photocatalytic Degradation of Ammonia Gas. MEMBRANES 2022; 12:membranes12070693. [PMID: 35877896 PMCID: PMC9320378 DOI: 10.3390/membranes12070693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
In recent years, reactive ammonia (NH3) has emerged as a major source of indoor air pollution. In this study, Al2O3-based hollow fiber membranes functionalized with nitrogen-doped titanium dioxide were produced and successfully applied for efficient heterogeneous photocatalytic NH3 gas degradation. Al2O3 hollow fiber membranes were prepared using the phase inversion process. A dip-coating technique was used to deposit titanium dioxide (TiO2) and nitrogen-doped titanium dioxide (N-TiO2) thin films on well-cleaned Al2O3-based hollow fiber membranes. All heterogeneous photocatalytic degradation tests of NH3 gas were performed with both UV and visible light irradiation at room temperature. The nitrogen doping effects on the NH3 heterogeneous photocatalytic degradation capacity of TiO2 were investigated, and the effect of the number of membranes (30, 36, 42, and 48 membranes) of the prototype lab-scale photocatalytic membrane reactor, with a modular design, on the performances in different light conditions was also elucidated. Moreover, under ultraviolet and visible light, the initial concentration of gaseous NH3 was reduced to zero after only fifteen minutes in a prototype lab-scale stage with a photocatalytic membrane reactor based on an N-TiO2 photocatalyst. The number of Al2O3-based hollow fiber membranes functionalized with N-TiO2 photocatalysts increases the capacity for NH3 heterogeneous photocatalytic degradation.
Collapse
Affiliation(s)
| | | | | | | | | | - Jung Hoon Park
- Correspondence: ; Tel.: +82-2-2260-8598; Fax: +82-2-2260-8729
| |
Collapse
|
16
|
Shimasaki Y, Matsuno T, Guo Q, Shimojima A, Wada H, Mori T, Kuroda K. Preparation of mesoporous nitrogen-doped titania comprising large crystallites with low thermal conductivity. NANOSCALE ADVANCES 2022; 4:2509-2520. [PMID: 36134133 PMCID: PMC9417602 DOI: 10.1039/d2na00083k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/08/2022] [Indexed: 06/16/2023]
Abstract
Reducing the thermal conductivity (κ) of mesoporous N-doped titania (TiO2) is crucial for the development of TiO2-based materials that exhibit excellent electronic, photochemical, and thermoelectric properties. Mesopores can contribute to the reduction of κ via phonon scattering, and the scattering effect due to the randomness of crystal interfaces should be significantly reduced to clarify the role of mesopores in reducing thermal conductivity. Highly ordered mesoporous N-doped TiO2 comprising large crystallites was prepared with silica colloidal crystals as a template into which a Ti source was introduced, followed by calcination with urea. N-doped samples comprising large crystallites exhibiting random mesopores were also prepared and used for the investigation of the effects of the shape and arrangement of the mesopore on phonon scattering. The mesostructures of the two separately prepared N-doped TiO2 samples were retained after sintering at 873 K and 80 MPa to fabricate pellets. Furthermore, the effective suppression of the long mean-free-path phonon conduction by the thin pore walls at a nanometer scale thickness significantly reduced the thermal conductivities of both samples. The presence of ordered mesopores further contributed to the reduction of κ, which was probably due to the enhanced contribution of the backscattering of phonons caused by ordered pore wall surfaces.
Collapse
Affiliation(s)
- Yuta Shimasaki
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Takamichi Matsuno
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Quansheng Guo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Atsushi Shimojima
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University 2-8-26 Nishiwaseda, Shinjuku-ku Tokyo 169-0051 Japan
| | - Hiroaki Wada
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University 2-8-26 Nishiwaseda, Shinjuku-ku Tokyo 169-0051 Japan
| | - Takao Mori
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Kazuyuki Kuroda
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University 2-8-26 Nishiwaseda, Shinjuku-ku Tokyo 169-0051 Japan
| |
Collapse
|
17
|
Kovalevskiy N, Cherepanova S, Gerasimov E, Lyulyukin M, Solovyeva M, Prosvirin I, Kozlov D, Selishchev D. Enhanced Photocatalytic Activity and Stability of Bi 2WO 6 - TiO 2-N Nanocomposites in the Oxidation of Volatile Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:359. [PMID: 35159704 PMCID: PMC8838994 DOI: 10.3390/nano12030359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
The development of active and stable photocatalysts for the degradation of volatile organic compounds under visible light is important for efficient light utilization and environmental protection. Titanium dioxide doped with nitrogen is known to have a high activity but it exhibits a relatively low stability due to a gradual degradation of nitrogen species under highly powerful radiation. In this paper, we show that the combination of N-doped TiO2 with bismuth tungstate prevents its degradation during the photocatalytic process and results in a very stable composite photocatalyst. The synthesis of Bi2WO6-TiO2-N composites is preformed through the hydrothermal treatment of an aqueous medium containing nanocrystalline N-doped TiO2, as well as bismuth (III) nitrate and sodium tungstate followed by drying in air. The effect of the molar ratio between the components on their characteristics and photocatalytic activity is discussed. In addition to an enhanced stability, the composite photocatalysts with a low content of Bi2WO6 also exhibit an enhanced activity that is substantially higher than the activity of individual TiO2-N and Bi2WO6 materials. Thus, the Bi2WO6-TiO2-N composite has the potential as an active and stable photocatalyst for efficient purification of air.
Collapse
Affiliation(s)
- Nikita Kovalevskiy
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
- Research and Educational Center “Institute of Chemical Technologies”, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana Cherepanova
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Evgeny Gerasimov
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Mikhail Lyulyukin
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Maria Solovyeva
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Igor Prosvirin
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Denis Kozlov
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Dmitry Selishchev
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
- Research and Educational Center “Institute of Chemical Technologies”, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
18
|
Wołowicz A, Wawrzkiewicz M, Hubicki Z, Siwińska-Ciesielczyk K, Kubiak A, Jesionowski T. Enhanced removal of vanadium(V) from acidic streams using binary oxide systems of TiO2-ZrO2 and TiO2-ZnO type. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Ma Y, Yue W, Ye Z, Zhang J. Synthesis of nitrogen and terbium co-doped TiO 2 nanocrystals with enhanced photocatalytic activity for AO7 degradation under visible-light radiation. NEW J CHEM 2022. [DOI: 10.1039/d2nj00817c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TiO2 nanocrystals co-doped with nitrogen and terbium exhibited extended light absorption, improved charge separation efficiency, and enhanced AO7 adsorption efficiency, giving rise to enhanced AO7 degradation activity which was 2× better than undoped TiO2 nanocrystals.
Collapse
Affiliation(s)
- Yunfei Ma
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Shanghai 200237, China
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wenhui Yue
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Shanghai 200237, China
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ziwei Ye
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Shanghai 200237, China
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Jinglong Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Shanghai 200237, China
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
20
|
Kharmawlong GK, Nongrum R, Kumar JE, Chhetri B, Yadav AK, Nongkhlaw R. A new approach for the synthesis of biologically active chromene compounds using a photo catalyst TiO2-Ag. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.2016836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- George Kupar Kharmawlong
- Centre for Advance Studies in Chemistry, Organic Synthesis Laboratory, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Ridaphun Nongrum
- Department of Chemistry, Sankardev College, Shillong, Meghalaya, India
| | - John Elisa Kumar
- Centre for Advance Studies in Chemistry, Photo Reaction Laboratory, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Bhusan Chhetri
- Department of Zoology, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Arun Kumar Yadav
- Department of Zoology, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Rishanlang Nongkhlaw
- Centre for Advance Studies in Chemistry, Organic Synthesis Laboratory, North-Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
21
|
Floating Carbon-Doped TiO2 Photocatalyst with Metallic Underlayers Investigation for Polluted Water Treatment under Visible-Light Irradiation. Catalysts 2021. [DOI: 10.3390/catal11121454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the current study, we analysed the influence of metallic underlayers on carbon-doped TiO2 films for RhB decomposition and Salmonella typhimurium inactivation under visible-light irradiation. All the experiments were divided into two parts. First, layered M/C-doped-TiO2 film structures (M = Ni, Nb, Cu) were prepared by magnetron sputtering technique on borosilicate glass substrates in the two-step deposition process. The influence of metal underlayer on the formation of the carbon-doped TiO2 films was characterised by X-ray diffractometer, scanning electron microscope, and atomic force microscope. The comparison between the visible-light assisted photocatalytic activity of M/C-doped TiO2 structures was performed by the photocatalytic bleaching tests of Rhodamine B dye aqueous solution. The best photocatalytic performance was observed for Ni/C-doped-TiO2 film combination. During the second part of the study, the Ni/C-doped-TiO2 film combination was deposited on high-density polyethylene beads which were selected as a floating substrate. The morphology and surface chemical analyses of the floating photocatalyst were performed. The viability and membrane permeability of Salmonella typhimurium were tested in cycling experiments under UV-B and visible-light irradiation. Three consecutive photocatalytic treatments of fresh bacteria suspensions with the same set of floating photocatalyst showed promising results, as after the third 1 h-long treatment bacteria viability was still reduced by 90% and 50% for UV-B and visible-light irradiation, respectively. The membrane permeability and ethidium fluorescence results suggest that Ni underlayer might have direct and indirect effect on the bacteria inactivation process. Additionally, relatively low loss of the photocatalyst efficiency suggests that floating C-doped TiO2 photocatalyst with the Ni underlayer might be seen as the possible solution for the used photocatalyst recovery issue.
Collapse
|
22
|
Harun AM, Awang H, Noor NFM, Makhatar NM, Yusoff ME, Affandi NDN, Alam MK. The Photocatalytic Effects of Modified Hydrothermal Nanotitania Extraction on the Skin and Behavior of Sprague-Dawley Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6173143. [PMID: 34859102 PMCID: PMC8632390 DOI: 10.1155/2021/6173143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/27/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Potential antibacterial substances, such as titanium dioxide (TiO2), are being extensively studied throughout the research world. A modified hydrothermal nanotitania extraction was shown to inhibit Staphylococcus aureus growth in the laboratory. However, the toxicity effect of the extract on rats is unknown. In this study, we observed the effects of a modified hydrothermal nanotitania extraction on the skin and behavior of Sprague-Dawley rats. METHODS Sprague-Dawley (Rattus norvegicus) rats were used as the experimental animals. The skin around the dorsum of the tested animals was shaved and pasted with 0.1 mg and 0.5 mg of the nanotitania extraction. The color and condition of the pasted area and the behavior of the animals were observed. RESULTS 0.1 mg nanotitania extraction application on the dorsum of the rat produced no skin color changes at day 1, day 3, day 5, or day 7 postapplication. There were no changes in their behavior up to day 7 with no skin rashes or skin scratches seen or fur changes. However, 0.5 mg of nanotitania extraction resulted in redness and less fur regrowth at day 7. CONCLUSIONS A 0.1 mg modified nanotitania extraction was observed to have no effect on the skin of Sprague-Dawley rats.
Collapse
Affiliation(s)
- Ahmad Mukifza Harun
- Engineering Faculty, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Huzaika Awang
- Pusat Persediaan Sains dan Teknologi, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Nor Farid Mohd Noor
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Medical Campus, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Nur Mohamad Makhatar
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohamad Ezany Yusoff
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Nor Dalila Nor Affandi
- Textile Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Mohammad Khursheed Alam
- College of Dentistry, Jouf University, Sakaka 72721, Saudi Arabia
- Department of Dental Research Cell, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
23
|
Samiolo L, Amadelli R, Maldotti A, Molinari A. Comparative visible-light driven selective oxidation to aldehydes of phenylmethanol (benzyl alcohol) and 4-pyridinylmethanol (4-pyridinecarbinol) on N-TiO 2 and some commercial TiO 2 samples. Photochem Photobiol Sci 2021; 20:1635-1644. [PMID: 34802142 DOI: 10.1007/s43630-021-00137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Visible light (λ > 420 nm) selective photooxidation of phenylmethanol and 4-pyridinylmethanol in CH3CN to the corresponding aldehydes on N-TiO2 is compared with homemade undoped TiO2 (U-TiO2) and commercial undoped anatase specimens (such as PC105, PC500). Significant differences observed between N-TiO2 and undoped TiO2 are neither directly related to the surface area nor to the adsorbed amount of alcohol in the dark by surface area unit. FTIR and EPR spectroscopies are used to study the surface of TiO2 samples and to deeply understand the phenomena intervening in the visible-light photocatalytic activation of the doped vs the undoped oxides. In particular, it is shown that on N-TiO2 (and also on undoped PC105) strong Lewis acid sites (LAS) exist. The favorable role of LAS on the photocatalytic activity is illustrated by the higher photooxidation of 4-pyridinylmethanol vs phenylmethanol over N-TiO2 and PC105 in contrast to the other undoped samples, whose visible light sensitivity originates from a charge transfer between the alcohol and the solid. EPR spectra of N-TiO2 point out the presence of paramagnetic centers related to nitrogen that disappear when the photocatalyst is irradiated with visible light in the presence of alcohol, which starts its oxidative process. On the basis of presented results, we propose that doping with N introduces new intraband gap states that not only contribute to LAS and adsorption of alcohol but also are directly involved in the photochemical process occurring under visible light irradiation.
Collapse
Affiliation(s)
- Luca Samiolo
- c/o Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, ISOF CNR, UoS di Ferrara, Università di Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Rossano Amadelli
- c/o Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, ISOF CNR, UoS di Ferrara, Università di Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Andrea Maldotti
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Università di Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Alessandra Molinari
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Università di Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
24
|
The TiO 2-ZnO Systems with Multifunctional Applications in Photoactive Processes-Efficient Photocatalyst under UV-LED Light and Electrode Materials in DSSCs. MATERIALS 2021; 14:ma14206063. [PMID: 34683655 PMCID: PMC8538394 DOI: 10.3390/ma14206063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
The main goal of the study was the hydrothermal-assisted synthesis of TiO2-ZnO systems and their subsequent use in photoactive processes. Additionally, an important objective was to propose a method for synthesizing TiO2-ZnO systems enabling the control of crystallinity and morphology through epitaxial growth of ZnO nanowires. Based on the results of X-ray diffraction analysis, in the case of materials containing a small addition of ZnO (≥5 wt.%), no crystalline phase of wurtzite was observed, proving that a high amount of modified titanium dioxide can inhibit the crystallization of ZnO. The transmission electron microscopy (TEM) results confirmed the formation of ZnO nanowires for systems containing ≥ 5% ZnO. Moreover, for the synthesized systems, there were no significant changes in the band gap energy. One of the primary purposes of this study was to test the TiO2-ZnO system in the photodegradation process of 4-chlorophenol using low-power UV-LED lamps. The results of photo-oxidation studies showed that the obtained binary systems exhibit good photodegradation and mineralization efficiency. Additionally, it was also pointed out that the dye-sensitized solar cells can be a second application for the synthesized TiO2-ZnO binary systems.
Collapse
|
25
|
Photocatalytic Inactivation of Salmonella typhimurium by Floating Carbon-Doped TiO 2 Photocatalyst. MATERIALS 2021; 14:ma14195681. [PMID: 34640080 PMCID: PMC8510230 DOI: 10.3390/ma14195681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 01/12/2023]
Abstract
Photocatalysis application is considered as one of the most highly promising techniques for the reduction in wastewater pollution. However, the majority of highly efficient photocatalyst materials are obtained as fine powders, and this causes a lot of photocatalyst handling and reusability issues. The concept of the floating catalyst proposes the immobilization of a photocatalytic (nano)material on relatively large floating substrates and is considered as an encouraging way to overcome some of the most challenging photocatalysis issues. The purpose of this study is to examine floating photocatalyst application for Salmonella typhimurium bacteria inactivation in polluted water. More specifically, high-density polyethylene (HDPE) beads were used as a photocatalyst support for the immobilization of carbon-doped TiO2 films forming floating photocatalyst structures. Carbon-doped TiO2 films in both amorphous and anatase forms were deposited on HDPE beads using the low-temperature magnetron sputtering technique. Bacteria inactivation, together with cycling experiments, revealed promising results by decomposing more than 95% of Salmonella typhimurium bacteria in five consecutive treatment cycles. Additionally, a thorough analysis of the deposited carbon-doped TiO2 film was performed including morphology, elemental composition and mapping, structure, and depth profiling. The results demonstrate that the proposed method is a suitable technique for the formation of high-quality photocatalytic active films on thermal-sensitive substrates.
Collapse
|
26
|
Preparation of High-Transparency, Superhydrophilic Visible Photo-Induced Photocatalytic Film via a Rapid Plasma-Modification Process. COATINGS 2021. [DOI: 10.3390/coatings11070784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, different amounts of SiO2 nanoparticles (7 nm) were added to simultaneously reach high transmittance, high hardness, and high adhesion for TiO2 film prepared by the sol–gel method and coated on glass through a dip-coating technique. For the film to achieve self-cleaning, anti-fogging, superhydrophilicity, and visible photo-induced photocatalysis, TiO2-SiO2 film was modified via a rapid microwave plasma-nitridation process for efficient N-doping by various N2-containing gases (N2, N2/Ar/O2, N2/Ar). Through nitrogen plasma, the content of N atom reached 1.3% with the ratio of O/Ti atom being 2.04. The surface of the thin films was smooth, homogeneous, and did not crack, demonstrated by the root mean square (RMS) roughness of film surface being 3.29–3.94 nm. In addition, the films were composed of nanoparticles smaller than 10 nm, with a thickness of about 100 nm, as well as the crystal phase of the thin film being anatase. After the plasma-nitridation process, the visible-light transmittance of N-doped TiO2-SiO2 films was 89.7% (clean glass = 90.1%). Moreover, the anti-fogging ability was excellent (contact angle < 5°) even without light irradiation. The degradation of methylene blue showed that the photocatalytic performance of N-doped TiO2-SiO2 films was apparently superior to that of unmodified films under visible-light irradiation. Moreover, the pencil hardness and adhesion rating test of the thin films were 7H and 5B, respectively, indicating that the obtained coatings had great mechanical stability.
Collapse
|
27
|
Angulo-Ibáñez A, Goitandia AM, Albo J, Aranzabe E, Beobide G, Castillo O, Pérez-Yáñez S. Porous TiO 2 thin film-based photocatalytic windows for an enhanced operation of optofluidic microreactors in CO 2 conversion. iScience 2021; 24:102654. [PMID: 34151239 PMCID: PMC8193139 DOI: 10.1016/j.isci.2021.102654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
Using a photocatalytic window can simplify the design of an optofluidic microreactor, providing also a more straightforward operation. Therefore, the development of TiO2 coatings on glass substrates seems appealing, although a priori they would imply a reduced accessible area compared with supported nanoparticle systems. Considering this potential drawback, we have developed an endurable photocatalytic window consisting on an inner protective SiO2 layer and an outer mesoporous anatase layer with enhanced surface area and nanoscopic crystallite size (9–16 nm) supported on a glass substrate. The designed photocatalytic windows are active in the CO2-to-methanol photocatalytic transformation, with maximum methanol yield (0.52 μmol·h−1·cm−2) for greatest porosity values and minimum crystallite size. Compared with benchmark supported nanoparticle systems, the nanoscopic thickness of the coatings allowed to save photoactive material using only 11–22 μg·cm−2, while its robustness prevented the leaching of active material, thus avoiding the decay of performance at long working periods. Photocatalytic windows provide enhanced operation of optofluidic microreactors Use of TiO2 nanometric coatings reduces the required photocatalyst amount The robustness of the coating implies stability upon long-working periods CO2-to-CH3OH conversion performance is related to the porosity and crystallite size
Collapse
Affiliation(s)
- Adrián Angulo-Ibáñez
- Surface Chemistry & Nanotechnologies Unit, Fdn Tekniker, Inaki Goenaga 5, Eibar 20600, Spain
| | - Amaia M Goitandia
- Surface Chemistry & Nanotechnologies Unit, Fdn Tekniker, Inaki Goenaga 5, Eibar 20600, Spain
| | - Jonathan Albo
- Department of Chemical & Biomolecular Engineering, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Estibaliz Aranzabe
- Surface Chemistry & Nanotechnologies Unit, Fdn Tekniker, Inaki Goenaga 5, Eibar 20600, Spain
| | - Garikoitz Beobide
- Departament of Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain.,Basque Ctr Mat Applicat & Nanostruct, BCMat, UPV EHU Sci Pk, Leioa 48940, Spain
| | - Oscar Castillo
- Departament of Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain.,Basque Ctr Mat Applicat & Nanostruct, BCMat, UPV EHU Sci Pk, Leioa 48940, Spain
| | - Sonia Pérez-Yáñez
- Departament of Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain.,Basque Ctr Mat Applicat & Nanostruct, BCMat, UPV EHU Sci Pk, Leioa 48940, Spain
| |
Collapse
|
28
|
Jayasree A, Ivanovski S, Gulati K. ON or OFF: Triggered therapies from anodized nano-engineered titanium implants. J Control Release 2021; 333:521-535. [DOI: 10.1016/j.jconrel.2021.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
|
29
|
Photocatalytic Conversion of Organic Pollutants in Air: Quantum Yields Using a Silver/Nitrogen/TiO2 Mesoporous Semiconductor under Visible Light. Catalysts 2021. [DOI: 10.3390/catal11050529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This research studies the photocatalytic conversion of methanol (25–90 µmol/L range) as a volatile organic compound (VOC) surrogate into CO2, using a N/Ag/TiO2 photocatalyst under visible light irradiation in a Photo-CREC Air unit. The N/Ag/TiO2 mesh supported photocatalyst is prepared via the solvothermal method. While the bare-TiO2 is inactive under visible light, the N/Ag/TiO2 2 wt.% loaded stainless-steel woven mesh displays 35% quantum yields, with 80% absorbed photons and 60% methanol conversion in a 110 min irradiation period. Results obtained are assigned to silver surface plasmon resonance, silver and nitrogen species synergistic impacts on band gap, and their influence on particle agglomerate size and semiconductor acidity. The determined quantum yields under visible light in a Photo-CREC Air unit, are the highest reported in the technical literature, that these authors are aware of, with this opening unique opportunity for the use of visible light for the purification of air from VOC contaminants.
Collapse
|
30
|
Low-Dimensional Nanostructured Photocatalysts for Efficient CO2 Conversion into Solar Fuels. Catalysts 2021. [DOI: 10.3390/catal11040418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The ongoing energy crisis and global warming caused by the massive usage of fossil fuels and emission of CO2 into atmosphere continue to motivate researchers to investigate possible solutions. The conversion of CO2 into value-added solar fuels by photocatalysts has been suggested as an intriguing solution to simultaneously mitigate global warming and provide a source of energy in an environmentally friendly manner. There has been considerable effort for nearly four decades investigating the performance of CO2 conversion by photocatalysts, much of which has focused on structure or materials modification. In particular, the application of low-dimensional structures for photocatalysts is a promising pathway. Depending on the materials and fabrication methods, low-dimensional nanomaterials can be formed in zero dimensional structures such as quantum dots, one-dimensional structures such as nanowires, nanotubes, nanobelts, and nanorods, and two-dimensional structures such as nanosheets and thin films. These nanostructures increase the effective surface area and possess unique electrical and optical properties, including the quantum confinement effect in semiconductors or the localized surface plasmon resonance effect in noble metals at the nanoscale. These unique properties can play a vital role in enhancing the performance of photocatalytic CO2 conversion into solar fuels by engineering the nanostructures. In this review, we provide an overview of photocatalytic CO2 conversion and especially focus on nanostructured photocatalysts. The fundamental mechanism of photocatalytic CO2 conversion is discussed and recent progresses of low-dimensional photocatalysts for efficient conversion of CO2 into solar fuels are presented.
Collapse
|
31
|
Fabrication of MOF-derived tubular In 2O 3@SnIn 4S 8 hybrid: Heterojunction formation and promoted photocatalytic reduction of Cr(VI) under visible light. J Colloid Interface Sci 2021; 596:278-287. [PMID: 33848743 DOI: 10.1016/j.jcis.2021.02.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/24/2022]
Abstract
Tubular In2O3@SnIn4S8 hierarchical hybrid photocatalyst was firstly fabricated by a two-step method. The morphology and composition were characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The XRD results show that the obtained In2O3 microtubes were highly crystallized, while the SnIn4S8 flakes prepared at low temperature were poorly crystallized. The SEM image of the hybrid shows that numerous SnIn4S8 nanoflakes were assembled over the surface of In2O3 microtubes. In2O3 served as dispersing-templates have reduced the agglomeration of SnIn4S8 flakes. Meanwhile, the heterojunctions formed at the interfaces between In2O3 and SnIn4S8 could facilitate the interfacial charge transfer, as well as promote the photocatalytic activity of the hybrid. In the treatment of Cr(VI)-containing wastewater, the In2O3@SnIn4S8 hybrid not only exhibited strong adsorption ability, but also showed remarkably enhanced photocatalytic activity compared with pure SnIn4S8. The photocatalytic reaction constant k for In2O3@SnIn4S8 was approximately 2.54 times higher than that of SnIn4S8. The efficient activity of this hybrid photocatalyst should be ascribed to the promoted separation efficiency of electron/hole pairs, which was proved by the following three-dimensional excitation-emission matrix fluorescence spectra (3D EEMs), photocurrent responds, and EIS characterizations.
Collapse
|
32
|
Wtulich M, Szkoda M, Gajowiec G, Gazda M, Jurak K, Sawczak M, Lisowska-Oleksiak A. Hydrothermal Cobalt Doping of Titanium Dioxide Nanotubes towards Photoanode Activity Enhancement. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1507. [PMID: 33808648 PMCID: PMC8003354 DOI: 10.3390/ma14061507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
Doping and modification of TiO2 nanotubes were carried out using the hydrothermal method. The introduction of small amounts of cobalt (0.1 at %) into the structure of anatase caused an increase in the absorption of light in the visible spectrum, changes in the position of the flat band potential, a decrease in the threshold potential of water oxidation in the dark, and a significant increase in the anode photocurrent. The material was characterized by the SEM, EDX, and XRD methods, Raman spectroscopy, XPS, and UV-Vis reflectance measurements. Electrochemical measurement was used along with a number of electrochemical methods: chronoamperometry, electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry in dark conditions and under solar light illumination. Improved photoelectrocatalytic activity of cobalt-doped TiO2 nanotubes is achieved mainly due to its regular nanostructure and real surface area increase, as well as improved visible light absorption for an appropriate dopant concentration.
Collapse
Affiliation(s)
- Mariusz Wtulich
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (M.W.); (M.S.)
| | - Mariusz Szkoda
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (M.W.); (M.S.)
| | - Grzegorz Gajowiec
- Faculty of Mechanical Engineering and Ship Technology, Institute of Machine Technology and Materials, Gdansk University of Technology, 80-233 Gdansk, Poland;
| | - Maria Gazda
- Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233 Gdansk, Poland;
| | - Kacper Jurak
- Department of Electrochemistry, Corrosion and Materials Engineering, Chemical Faculty, Gdansk University of Technology, 80-233 Gdańsk, Poland;
| | - Mirosław Sawczak
- The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Poland;
| | - Anna Lisowska-Oleksiak
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (M.W.); (M.S.)
| |
Collapse
|
33
|
Kassahun SK, Kiflie Z. Comparative study of immobilized N-doped TiO2 based novel multistage fixed-bed and conventional packed-bed photoreactors on the degradation of an emerging contaminant. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01935-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Abstract
This article presents an overview of the reports on the doping of TiO2 with carbon, nitrogen, and sulfur, including single, co-, and tri-doping. A comparison of the properties of the photocatalysts synthesized from various precursors of TiO2 and C, N, or S dopants is summarized. Selected methods of synthesis of the non-metal doped TiO2 are also described. Furthermore, the influence of the preparation conditions on the doping mode (interstitial or substitutional) with reference to various types of the modified TiO2 is summarized. The mechanisms of photocatalysis for the different modes of the non-metal doping are also discussed. Moreover, selected applications of the non-metal doped TiO2 photocatalysts are shown, including the removal of organic compounds from water/wastewater, air purification, production of hydrogen, lithium storage, inactivation of bacteria, or carbon dioxide reduction.
Collapse
|
35
|
Liu J, Su D, Liu L, Liu Z, Nie S, Zhang Y, Xia J, Deng H, Wang X. Boosting the charge transfer of Li 2TiSiO 5 using nitrogen-doped carbon nanofibers: towards high-rate, long-life lithium-ion batteries. NANOSCALE 2020; 12:19702-19710. [PMID: 32966509 DOI: 10.1039/d0nr04618c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Li2TiSiO5 (LTSO) has a theoretical specific capacity of up to 315 mA h g-1 with a suitable working potential (0.28 V vs. Li/Li+). However, the electronic structure of Li2TiSiO5 is firstly investigated by theoretical calculation based on the first-principles approach, and the results demonstrate that Li2TiSiO5 acts as the insulator for transferring electrons. Therefore, the framework with better conductivity is very essential for Li2TiSiO5 to enhance the charge transfer kinetics. Nitrogen-doped carbon encapsulated Li2TiSiO5 nanofibers (LTSO/NDC nanofibers) are obtained by using carbamide as a nitrogen source through an electrospinning technique. The nitrogen-doped carbon matrix with high electronic conductivity improves the electrochemical properties of LTSO significantly. The diffusion coefficient of lithium ions (DLi+) is greatly improved by manual calculation. The LTSO/NDC nanofiber electrode can deliver 371.7 mA h g-1 at 0.1 A g-1 and 361.1 mA h g-1 at 0.2 A g-1, and also shows a comparable cycle performance which could endure a long cycle over 800 cycles at 0.5 A g-1 almost without capacity decay. Hence, the LTSO/NDC nanofiber anode with a high rate and a long life provides a new direction for the realization of LTSO-based compounds in lithium ion batteries.
Collapse
Affiliation(s)
- Junfang Liu
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Die Su
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Li Liu
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Zhixiao Liu
- College of Materials Science and engineering, Hunan University, Changsha 410082, Peoples' Republic of China.
| | - Su Nie
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Yue Zhang
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Jing Xia
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Huiqiu Deng
- School of Physics and Electronics, Hunan University, Changsha 410082, Peoples' Republic of China
| | - Xianyou Wang
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
36
|
Khan MS, Shah JA, Arshad M, Halim SA, Khan A, Shaikh AJ, Riaz N, Khan AJ, Arfan M, Shahid M, Pervez A, Al-Harrasi A, Bilal M. Photocatalytic Decolorization and Biocidal Applications of Nonmetal Doped TiO 2: Isotherm, Kinetic Modeling and In Silico Molecular Docking Studies. Molecules 2020; 25:molecules25194468. [PMID: 33003312 PMCID: PMC7583793 DOI: 10.3390/molecules25194468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Textile dyes and microbial contamination of surface water bodies have been recognized as emerging quality concerns around the globe. The simultaneous resolve of such impurities can pave the route for an amicable technological solution. This study reports the photocatalytic performance and the biocidal potential of nitrogen-doped TiO2 against reactive black 5 (RB5), a double azo dye and E. coli. Molecular docking was performed to identify and quantify the interactions of the TiO2 with β-lactamase enzyme and to predict the biocidal mechanism. The sol-gel technique was employed for the synthesis of different mol% nitrogen-doped TiO2. The synthesized photocatalysts were characterized using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET) and diffuse reflectance spectroscopy (DRS). The effects of different synthesis and reaction parameters were studied. RB5 dye degradation was monitored by tracking shifts in the absorption spectrum and percent chemical oxygen demand (COD) removal. The best nanomaterial depicted 5.57 nm crystallite size, 49.54 m2 g−1 specific surface area, 11–40 nm particle size with spherical morphologies, and uniform distribution. The RB5 decolorization data fits well with the pseudo-first-order kinetic model, and the maximum monolayer coverage capacity for the Langmuir adsorption model was found to be 40 mg g−1 with Kads of 0.113 mg−1. The LH model yielded a higher coefficient KC (1.15 mg L−1 h−1) compared to the adsorption constant KLH (0.3084 L mg−1). 90% COD removal was achieved in 60 min of irradiation, confirmed by the disappearance of spectral peaks. The best-optimized photocatalysts showed a noticeable biocidal potential against human pathogenic strain E. coli in 150 min. The biocidal mechanism of best-optimized photocatalyst was predicted by molecular docking simulation against E. coli β-lactamase enzyme. The docking score (−7.6 kcal mol−1) and the binding interaction with the active site residues (Lys315, Thr316, and Glu272) of β-lactamase further confirmed that inhibition of β-lactamase could be a most probable mechanism of biocidal activity.
Collapse
Affiliation(s)
- Muhammad Saqib Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Jehanzeb Ali Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering (IESE), SCEE, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (S.A.H.); (A.K.)
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (S.A.H.); (A.K.)
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan;
| | - Nadia Riaz
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Asim Jahangir Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Muhammad Arfan
- Department of Chemistry, SNS, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan;
| | - Arshid Pervez
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (S.A.H.); (A.K.)
- Correspondence: (A.A.-H.); (M.B.); Tel.: +968-25446328 (A.A.-H.); +92-992-383591 (M.B.)
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
- Correspondence: (A.A.-H.); (M.B.); Tel.: +968-25446328 (A.A.-H.); +92-992-383591 (M.B.)
| |
Collapse
|
37
|
Cornil D, Rivolta N, Mercier V, Wiame H, Beljonne D, Cornil J. Enhanced Adhesion Energy at Oxide/Ag Interfaces for Low-Emissivity Glasses: Theoretical Insight into Doping and Vacancy Effects. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40838-40849. [PMID: 32804476 DOI: 10.1021/acsami.0c07579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Low-emissivity glasses rely on multistacked architectures with a thin silver layer sandwiched between oxide layers. The mechanical stability of the silver/oxide interfaces is a critical parameter that must be maximized. Here, we demonstrate by means of quantum-chemical calculations that a low work of adhesion at interfaces can be significantly increased via doping and by introducing vacancies in the oxide layer. For the sake of illustration, we focus on the ZrO2(111)/Ag(111) interface exhibiting a poor adhesion in the pristine state and quantify the impact of introducing n-type dopants or p-type dopants in ZrO2 and vacancies in oxygen atoms (nVO; with n = 1, 2, 4, 8, 10, 16), zirconium atoms (mVZr; with m = 1, 2, 4, 8), or both (nVO + mVZr; with m/n = 1:2, 1:4, 2:2, 2:4). In the case of doping, interfacial electron transfer promotes an increase in the work of adhesion, from initially 0.16 to ∼0.8 J m-2 (n-type) and ∼2.0 J m-2 (p-type) at 10% doping. A similar increase in the work of adhesion is obtained by introducing vacancies, e.g., VO [VZr] in the oxide layer yields a work of adhesion of ∼1.5-2.0 J m-2 at 10% vacancies. An increase is also observed when mixing VO and VZr vacancies in a nonstoichiometric ratio (nVO + mVZr; with 2n ≠ m), while a stoichiometric ratio of VO and VZr has no impact on the interfacial properties.
Collapse
Affiliation(s)
- David Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Nicolas Rivolta
- AGC Glass Europe Technovation Centre, rue Louis Blériot 12, 6041 Gosselies, Belgium
| | - Virginie Mercier
- AGC Glass Europe Technovation Centre, rue Louis Blériot 12, 6041 Gosselies, Belgium
| | - Hughes Wiame
- AGC Glass Europe Technovation Centre, rue Louis Blériot 12, 6041 Gosselies, Belgium
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
38
|
Barba-Nieto I, Caudillo-Flores U, Fernández-García M, Kubacka A. Sunlight-Operated TiO 2-Based Photocatalysts. Molecules 2020; 25:E4008. [PMID: 32887383 PMCID: PMC7504741 DOI: 10.3390/molecules25174008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022] Open
Abstract
Photo-catalysis is a research field with broad applications in terms of potential technological applications related to energy production and managing, environmental protection, and chemical synthesis fields. A global goal, common to all of these fields, is to generate photo-catalytic materials able to use a renewable energy source such as the sun. As most active photocatalysts such as titanium oxides are essentially UV absorbers, they need to be upgraded in order to achieve the fruitful use of the whole solar spectrum, from UV to infrared wavelengths. A lot of different strategies have been pursued to reach this goal. Here, we selected representative examples of the most successful ones. We mainly highlighted doping and composite systems as those with higher potential in this quest. For each of these two approaches, we highlight the different possibilities explored in the literature. For doping of the main photocatalysts, we consider the use of metal and non-metals oriented to modify the band gap energy as well as to create specific localized electronic states. We also described selected cases of using up-conversion doping cations. For composite systems, we described the use of binary and ternary systems. In addition to a main photo-catalyst, these systems contain low band gap, up-conversion or plasmonic semiconductors, plasmonic and non-plasmonic metals and polymers.
Collapse
Affiliation(s)
- Irene Barba-Nieto
- Instituto de Catálisis y Petroleoquímica (CSIC), C/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain; (I.B.-N.); (U.C.-F.)
| | - Uriel Caudillo-Flores
- Instituto de Catálisis y Petroleoquímica (CSIC), C/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain; (I.B.-N.); (U.C.-F.)
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22800, Mexico
| | - Marcos Fernández-García
- Instituto de Catálisis y Petroleoquímica (CSIC), C/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain; (I.B.-N.); (U.C.-F.)
| | - Anna Kubacka
- Instituto de Catálisis y Petroleoquímica (CSIC), C/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain; (I.B.-N.); (U.C.-F.)
| |
Collapse
|
39
|
Zhang J, Cao Y, Zhao P, Xie T, Lin Y, Mu Z. Visible-light-driven pollutants degradation with carbon quantum dots/N-TiO2 under mild condition: Facile preparation, dramatic performance and deep mechanism insight. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Enhanced Photocatalytic and Antibacterial Activities of K2Ti6O13 Nanowires Induced by Copper Doping. CRYSTALS 2020. [DOI: 10.3390/cryst10050400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cu-doped K2Ti6O13 (Cu–KTO) nanowires were prepared using a combination of sol–gel and hydrothermal methods to improve the photocatalytic and antibacterial performance of K2Ti6O13 (KTO) nanowires. The Cu–KTO nanowires maintained the monoclinic structure of KTO. The Cu2+ ions could enter into the lattice of KTO by substituting for certain Ti4+ ions and cause the formation of defects and oxygen vacancies. The UV–Visible absorption spectra showed that after Cu doping, the absorption edge of KTO moved to the visible region, indicating that the band gap decreased and the ability to absorb visible light was acquired. The photocatalytic properties of the Cu–KTO nanowires with different doping amounts were assessed by simulating the photodegradation of rhodamine B (RhB) under simulated sunlight irradiation. The 1.0 mol% Cu–KTO nanowires showed the best photocatalytic performance, and 91% of RhB was decomposed by these nanowires (the catalyst dose was only 0.3 g/L) within 5 h. The performance of the Cu–KTO nanowires was much better than that of the KTO nanowires. The Cu–KTO nanowires also showed high antibacterial activity for Escherichia coli (ATCC 25922) of up to 99.9%, which was higher than that of the pure KTO samples. Results proved that Cu doping is an effective means to develop multifunctional KTO nanomaterials. It can be used to degrade organic pollutants and remove harmful bacteria simultaneously in water environments.
Collapse
|
41
|
Qian N, Zhang X, Wang M, Sun X, Sun X, Liu C, Rao R, Ma Y. Great enhancement in photocatalytic performance of (001)-TiO2 through N-doping via the vapor-thermal method. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
Nagay BE, Dini C, Cordeiro JM, Ricomini-Filho AP, de Avila ED, Rangel EC, da Cruz NC, Barão VAR. Visible-Light-Induced Photocatalytic and Antibacterial Activity of TiO 2 Codoped with Nitrogen and Bismuth: New Perspectives to Control Implant-Biofilm-Related Diseases. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18186-18202. [PMID: 31038914 DOI: 10.1021/acsami.9b03311] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biofilm-associated diseases are one of the main causes of implant failure. Currently, the development of implant surface treatment goes beyond the osseointegration process and focuses on the creation of surfaces with antimicrobial action and with the possibility to be re-activated (i.e., light source activation). Titanium dioxide (TiO2), an excellent photocatalyst used for photocatalytic antibacterial applications, could be a great alternative, but its efficiency is limited to the ultraviolet (UV) range of the electromagnetic spectrum. Since UV radiation has carcinogenic potential, we created a functional TiO2 coating codoped with nitrogen and bismuth via the plasma electrolytic oxidation (PEO) of titanium to achieve an antibacterial effect under visible light with re-activation potential. A complex surface topography was demonstrated by scanning electron microscopy and three-dimensional confocal laser scanning microscopy. Additionally, PEO-treated surfaces showed greater hydrophilicity and albumin adsorption compared to control, untreated titanium. Bismuth incorporation shifted the band gap of TiO2 to the visible region and facilitated higher degradation of methyl orange (MO) in the dark, with a greater reduction in the concentration of MO after visible-light irradiation even after 72 h of aging. These results were consistent with the in vitro antibacterial effect, where samples with nitrogen and bismuth in their composition showed the greatest bacterial reduction after 24 h of dual-species biofilm formation ( Streptococcus sanguinis and Actinomyces naeslundii) in darkness with a superior effect at 30 min of visible-light irradiation. In addition, such a coating presents reusable photocatalytic potential and good biocompatibility by presenting a noncytotoxicity effect on human gingival fibroblast cells. Therefore, nitrogen and bismuth incorporation into TiO2 via PEO can be considered a promising alternative for dental implant application with antibacterial properties in darkness, with a stronger effect after visible-light application.
Collapse
Affiliation(s)
| | | | | | | | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara , São Paulo State University (UNESP) , R. Humaitá, 1680 , Araraquara , São Paulo 14801-903 , Brazil
| | - Elidiane C Rangel
- Laboratory of Technological Plasmas, Institute of Science and Technology , São Paulo State University (UNESP) , Av. Três de Março, 511 , Sorocaba , São Paulo 18087-180 , Brazil
| | - Nilson C da Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology , São Paulo State University (UNESP) , Av. Três de Março, 511 , Sorocaba , São Paulo 18087-180 , Brazil
| | | |
Collapse
|
43
|
Rosales M, Zoltan T, Yadarola C, Mosquera E, Gracia F, García A. The influence of the morphology of 1D TiO2 nanostructures on photogeneration of reactive oxygen species and enhanced photocatalytic activity. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.070] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Petrović S, Rožić L, Grbić B, Radić N, Stefanov P, Stojadinović S, Jović V, Lamovec J. Effect of high energy ball milling on the physicochemical properties of TiO2–CeO2 mixed oxide and its photocatalytic behavior in the oxidation reaction. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01564-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Bayan EM, Lupeiko TG, Pustovaya LE. Synthesis and Photocatalytic Activity of Nanosized Powder of Zn-Doped Titanium Dioxide. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2018. [DOI: 10.1134/s1990793118050159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Crystallization of Zr0.1Ti0.9On mixed oxide by pressurized hot water and its effect on microstructural properties and photoactivity. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Wanag A, Rokicka P, Kusiak-Nejman E, Kapica-Kozar J, Wrobel RJ, Markowska-Szczupak A, Morawski AW. Antibacterial properties of TiO 2 modified with reduced graphene oxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:788-793. [PMID: 28946119 DOI: 10.1016/j.ecoenv.2017.09.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/09/2017] [Accepted: 09/14/2017] [Indexed: 05/19/2023]
Abstract
In this paper, the antibacterial activity of titanium dioxide modified with reduced graphene oxide (rGO) was presented. TiO2/rGO photocatalysts were prepared by the hydrothermal method under elevated pressure at 180°C and heated at 100°C in Ar flow. The obtained photocatalysts were characterized by means of XRD, FTIR/DRS, UV-vis/DR, Raman spectroscopy and scanning electron microscopy (SEM). The carbon content was also examined. FTIR/DRS and Raman analysis confirmed the presence of rGO in the TiO2 structure, suggesting a successful modification. The antimicrobial photoactivity of photocatalysts was conducted against E. coli under an artificial solar light. The results show that all TiO2/rGO photocatalysts exhibited an antibacterial activity higher than unmodified TiO2. The best result was found for sample with 1.5wt% additive of reduced graphene oxide. In this case, total inactivation of E. coli was noticed after 75min of irradiation. It was found that the presence of rGO in sample improves the antimicrobial activity.
Collapse
Affiliation(s)
- Agnieszka Wanag
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Inorganic Technology and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland.
| | - Paulina Rokicka
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Inorganic Technology and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
| | - Ewelina Kusiak-Nejman
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Inorganic Technology and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
| | - Joanna Kapica-Kozar
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Inorganic Technology and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
| | - Rafał J Wrobel
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Inorganic Technology and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
| | - Agata Markowska-Szczupak
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Inorganic Technology and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
| | - Antoni W Morawski
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Inorganic Technology and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
| |
Collapse
|
48
|
Khore SK, Tellabati NV, Apte SK, Naik SD, Ojha P, Kale BB, Sonawane RS. Green sol–gel route for selective growth of 1D rutile N–TiO2: a highly active photocatalyst for H2 generation and environmental remediation under natural sunlight. RSC Adv 2017. [DOI: 10.1039/c7ra01648d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report selective growth of N–TiO2 1D nanorods using a green aqueous sol–gel method followed by hydrothermal treatment.
Collapse
Affiliation(s)
- Supriya K. Khore
- Centre for Materials for Electronic Technology
- Government of India
- Pune 411008
- India
| | - Navya Vani Tellabati
- Centre for Materials for Electronic Technology
- Government of India
- Pune 411008
- India
| | - Sanjay K. Apte
- Centre for Materials for Electronic Technology
- Government of India
- Pune 411008
- India
| | - Sonali D. Naik
- Centre for Materials for Electronic Technology
- Government of India
- Pune 411008
- India
| | - Prashant Ojha
- Naval Materials Research Laboratory (NMRL)
- Ministry of Defence
- Ambernath 421506
- India
| | - Bharat B. Kale
- Centre for Materials for Electronic Technology
- Government of India
- Pune 411008
- India
| | - Ravindra S. Sonawane
- Centre for Materials for Electronic Technology
- Government of India
- Pune 411008
- India
| |
Collapse
|
49
|
Bakar SA, Ribeiro C. Prospective aspects of preferential {001} facets of N,S-co-doped TiO2 photocatalysts for visible-light-responsive photocatalytic activity. RSC Adv 2016. [DOI: 10.1039/c6ra16881g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this report, we describe the synthesis of nitrogen and sulfur co-doped TiO2 photocatalysts (NST) with preferential {001} facets by surfactant- and template-free OPM routes and crystallized through hydrothermal treatment.
Collapse
Affiliation(s)
- Shahzad Abu Bakar
- Department of Chemistry
- Federal University of São Carlos
- CEP: 13565-905 São Carlos
- Brazil
- Embrapa CNPDIA
| | | |
Collapse
|