1
|
Gu H, Sun X, Bao H, Feng X, Chen Y. Optically pH-Sensing in smart wound dressings towards real-time monitoring of wound states: A review. Anal Chim Acta 2025; 1350:343808. [PMID: 40155158 DOI: 10.1016/j.aca.2025.343808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Over the recent years, the investigations on wound dressings have been undergoing significant evolution, and now smart dressings with the function of the real-time monitoring of the wound states have been recognized as one of the most advanced treatment modalities. Among a variety of wound-related biomarkers, pH represents a promising candidate for in situ supervising the wound healing status. In this regard, a variety of optically pH sensing agents have been widely incorporated into different types of wound dressings. RESULTS Herein, we first presented an overview of the advanced wound dressings, especially those commonly used in wound pH sensing. Then, a comprehensive summary of the optical pH sensing agents that could be incorporated into the wound dressings for detecting the pH alteration on the wound bed was described in detail. These materials were classified into colorimetric dyes (i.e., synthetic and plant-based dyes) and fluorescent probes (i.e., small-molecular fluorescein and fluorescent nanomaterials). Each type of pH sensing agent was fully discussed with advantages and limitations for monitoring the wound pH alteration, as well as typical examples of practical applications. To well interpret messages produced by the color-coding dressings, the approaches for defining and communicating color were also summarized, and a proof-of-concept, the smartphone-based remote supervision was particularly highlighted. SIGNIFICANCE This review provides a comprehensive overview of the utilization of optically pH sensing in advanced wound dressings for the real-time monitoring of the wound states. It was expected to be an informative source for the exploitation of novel diagnostic dressings for wound management, and also a reference the for application of these materials in the biosensing of other physiological or pathological fluids.
Collapse
Affiliation(s)
- Hongchun Gu
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Hongyang Bao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, Shenyang, 110034, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Zhu D, Brückner D, Sosniok M, Skiba M, Feliu N, Gallego M, Liu Y, Schulz F, Falkenberg G, Parak WJ, Sanchez-Cano C. Size-dependent penetration depth of colloidal nanoparticles into cell spheroids. Adv Drug Deliv Rev 2025; 222:115593. [PMID: 40339992 DOI: 10.1016/j.addr.2025.115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
The penetration of nanoparticle (NP)-based drugs into tissue is essential for their use as nanomedicines. Systematic studies about how different NP properties, such as size, influence NP penetration are helpful for the development of NP-based drugs. An overview of how NPs of different sizes may penetrate three-dimensional cell spheroids is given. In particular different techniques for experimental analysis are compared, including mass spectrometry, flow cytometry, optical fluorescence microscopy, X-ray fluorescence microscopy, and transmission electron microscopy. An experimental data set is supplemented exclusively made for this review, in which the results of different techniques are visualized. Limitations of the analysis techniques for different types of NPs, including carbon-based materials, are discussed.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany; Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121 Zhejiang, China
| | - Dennis Brückner
- Deutsches Elektronen-Synchrotron DESY, Photon Science, 22607 Hamburg, Germany
| | - Martin Sosniok
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany; Zentrum für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Marvin Skiba
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany
| | - Neus Feliu
- Zentrum für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Marta Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Yang Liu
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany
| | - Florian Schulz
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Photon Science, 22607 Hamburg, Germany.
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany.
| | - Carlos Sanchez-Cano
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, 20018 Donostia-San Sebastian, Spain.
| |
Collapse
|
3
|
Suarez GD, Tang YYK, Bayer S, Cheung PPH, Nagl S. Multiplexed detection of respiratory virus RNA using optical pH sensors and injection-molded centrifugal microfluidics. Mikrochim Acta 2025; 192:151. [PMID: 39937251 PMCID: PMC11821746 DOI: 10.1007/s00604-025-06996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025]
Abstract
The application is demonstrated of injection-molded centrifugal microfluidic chips with integrated optical pH sensors for multiplexed detection of respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A, and influenza B RNA. The optical pH sensors generated sensitive fluorescent readouts from diagnostic reverse transcription loop-mediated isothermal amplification (RT-LAMP) reactions; limits of detection for influenzas A and B, and SARS-CoV-2 of 89, 245, and 38 RNA copies per reaction, respectively, were attained. Results were obtainable within 44 min for SARS-CoV-2 and influenza A, and 48 min for influenza B. We implemented a data processing strategy based on numerical derivatives of the fluorescence curves that allowed for reliable, quantitative thresholds for deciding reaction outcomes and enabled 100% specificity. This work demonstrates the utility of optical pH sensors and injection-molded centrifugal microfluidics for multiplexed infectious disease diagnostics with point-of-care applications.
Collapse
Affiliation(s)
| | | | - Steevanson Bayer
- Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Peter Pak-Hang Cheung
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Stefan Nagl
- Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| |
Collapse
|
4
|
Watson AER, Boyle PD, Ragogna PJ, Gilroy JB. Ligand protonation leads to highly fluorescent boronium cations. Chem Sci 2025; 16:2258-2264. [PMID: 39776660 PMCID: PMC11701515 DOI: 10.1039/d4sc06392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Fluorophores that respond to external stimuli, such as changes in pH, have utility in bio-imaging and sensing applications. Almost all pH-responsive fluorophores rely on complex syntheses and the use of pH-responsive functional groups that are peripheral to the fluorophore framework. In this work, pH-responsive boron-containing heterocycles based on tridentate acyl pyridylhydrazone ligands were prepared. These non-emissive heterocycles were synthesized in three steps from inexpensive, commercially available reagents without the use of chromatography or air-sensitive reagents. Treatment with acid resulted in protonation of the boron-bound methylamine donor and efficient blue photoluminescence. Experimental and computational analysis revealed that protonation changed the geometric structure of the heterocycles and prevented photoluminescence quenching associated with photoinduced electron transfer. This work demonstrates a new approach for the design of fluorophores with potential applications in biological imaging.
Collapse
Affiliation(s)
- Alexander E R Watson
- Department of Chemistry, The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Paul D Boyle
- Department of Chemistry, The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Paul J Ragogna
- Department of Chemistry, The University of Western Ontario London Ontario N6A 5B7 Canada
- Surface Science Western London Ontario N6G 0J3 Canada
| | - Joe B Gilroy
- Department of Chemistry, The University of Western Ontario London Ontario N6A 5B7 Canada
| |
Collapse
|
5
|
Sun X, Li H, Mokarizadeh AH, Xu X, Liu T, Luo J, Yang Y, Zhang S, Liu F, Tsige M, Cheng SZD, Liu T. Sensing the Small Change of Intermolecular Distance in Supramolecular Assembly by Using the Tunable Emission Wavelength of AIE-Active Luminogens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406511. [PMID: 39449218 PMCID: PMC11707564 DOI: 10.1002/smll.202406511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The distinct molecular states - single molecule, assembly, and aggregate - of two ionic macromolecules, TPPE-APOSS and TPE-APOSS, are easily distinguishable through their tunable fluorescence emission wavelengths, which reflect variations in intermolecular distances. Both ionic macromolecules contain aggregation-induced emission (AIE) active moieties whose emission wavelengths are directly correlated to their mutual distances in solution: far away from each other as individual molecules, maintaining a tunable and relatively long distance in electrostatic interactions-controlled blackberry-type assemblies (microphase separation), or approaching van der Waals close distance in aggregates (macrophase separation). Furthermore, within the blackberry assemblies, the emission wavelength decreases monotonically with increasing assembly size, indicative of shorter intermolecular distances at nanoscale. The emission changes of TPPE-APOSS blackberry assemblies can even be visually distinguishable by eyes when their sizes and intermolecular distances are tuned. Molecular dynamics simulations further revealed that macromolecules are confined in various conformations by controllable intermolecular distances within the blackberry structure, thereby resulting in fluorescence emission with tunable wavelength.
Collapse
Affiliation(s)
- Xinyu Sun
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Hui Li
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | | | - Xiaohan Xu
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Tong Liu
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Jiancheng Luo
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Yuqing Yang
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Shuailin Zhang
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Fangbei Liu
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Mesfin Tsige
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Stephen Z. D. Cheng
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| | - Tianbo Liu
- School of Polymer Science and Polymer EngineeringThe University of AkronAkronOH44325USA
| |
Collapse
|
6
|
Li S, Hu Z, Shao Y, Zhang G, Wang Z, Guo Y, Wang Y, Cui W, Wang Y, Ren L. Influence of Drugs and Toxins on Decomposition Dynamics: Forensic Implications. Molecules 2024; 29:5221. [PMID: 39598612 PMCID: PMC11596977 DOI: 10.3390/molecules29225221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Drug and toxin-related deaths are common worldwide, making it essential to detect the postmortem concentration of various toxic substances at different stages of decomposition in a corpse. Indeed, determining the postmortem interval (PMI) and cause of death in an advanced stage of decomposed corpses has been a significant challenge in forensic investigations. Notably, the presence of drugs or toxins can have a significant impact on the microbial profile, potentially altering the succession of microbial communities and subsequent production of volatile organic compounds (VOCs), which, in turn, affect insect colonization patterns. This review aims to highlight the importance of investigating the interactions between drugs or toxins, microbial succession, VOC profiles, and insect behavior, which can provide valuable insights into forensic investigations as well as the ecological consequences of toxins occurring in decomposition. Overall, the detection of drugs and other toxins at different stages of decomposition can yield more precise forensic evidence, thereby enhancing the accuracy of PMI estimation and determination of the cause of death in decomposed remains.
Collapse
Affiliation(s)
- Shuyue Li
- School of Forensic Medicine, Jining Medical University, Jining 272067, China; (S.L.); (Y.S.); (G.Z.); (W.C.)
- Department of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China
| | - Zhonghao Hu
- Center of Forensic Science Research, Jining Medical University, Jining 272067, China;
| | - Yuming Shao
- School of Forensic Medicine, Jining Medical University, Jining 272067, China; (S.L.); (Y.S.); (G.Z.); (W.C.)
| | - Guoan Zhang
- School of Forensic Medicine, Jining Medical University, Jining 272067, China; (S.L.); (Y.S.); (G.Z.); (W.C.)
| | - Zheng Wang
- School of Electrical and Information Engineering, Hunan University, Changsha 410082, China;
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| | - Yu Wang
- Department of Forensic Medicine, Soochow University, Suzhou 215006, China;
| | - Wen Cui
- School of Forensic Medicine, Jining Medical University, Jining 272067, China; (S.L.); (Y.S.); (G.Z.); (W.C.)
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Jining 272067, China
| | - Yequan Wang
- School of Forensic Medicine, Jining Medical University, Jining 272067, China; (S.L.); (Y.S.); (G.Z.); (W.C.)
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Jining 272067, China
| | - Lipin Ren
- School of Forensic Medicine, Jining Medical University, Jining 272067, China; (S.L.); (Y.S.); (G.Z.); (W.C.)
| |
Collapse
|
7
|
Krishnapriya TK, Deepti A, Chakrapani PSB, Asha AS, Jayaraj MK. Biocompatible, Europium-Doped Fluorapatite Nanoparticles as a Wide-Range pH Sensor. J Fluoresc 2024; 34:2543-2555. [PMID: 37831354 DOI: 10.1007/s10895-023-03461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
The development of a simple, biocompatible, pH sensor with a wide range of detection, using a single fluorescent probe is highly important in the medical field for the early detection of diseases related to the pH change of tissues and body fluids. For this purpose, europium-doped fluorapatite (FAP: Eu) nanoparticles were synthesized using the coprecipitation method. Doping with the rare earth element europium (Eu) makes the non-luminescent phosphate mineral fluorapatite, luminescent. The luminous response of the sample upon dissolution in hydrochloric acid (HCl), in highly acidic to weakly basic media, makes it a potential pH sensor. A linear variation was observed with an increase in pH, in both the total intensity of emission and the R-value or the asymmetry ratio. The ratiometric pH sensing enabled by the variation in R-value makes the sensor independent of external factors. The structural, optical, and photoluminescent (PL) lifetime analysis suggests a particle size-dependent pH sensing mechanism with the changes in the coordinated water molecules around the Eu3+ ion in the nanoparticle. Given its exceptional biocompatibility and pH-dependent fluorescence intensity for a wide range of pH from 0.83 to 8.97, the probe can be used as a potential candidate for pH sensing of biological fluid.
Collapse
Affiliation(s)
- T K Krishnapriya
- Nanomaterials for Emerging Solid-state Technology (NEST) Research Laboratory, Department of Physics, CUSAT, Kochi, 682022, India
| | - Ayswaria Deepti
- Centre for Neuroscience, Department of Biotechnology, CUSAT, Kochi, 682022, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Department of Biotechnology, CUSAT, Kochi, 682022, India
- Centre of Excellence in Advanced Materials, CUSAT, Kochi, 682022, India
| | - A S Asha
- Nanomaterials for Emerging Solid-state Technology (NEST) Research Laboratory, Department of Physics, CUSAT, Kochi, 682022, India.
- Centre of Excellence in Advanced Materials, CUSAT, Kochi, 682022, India.
- Inter-University Centre for Nanomaterials and Devices, CUSAT, Kochi, 682022, India.
| | - M K Jayaraj
- University of Calicut, Malappuram, 673635, India
| |
Collapse
|
8
|
Hasani R, Ehsani A, Hassanzadazar H, Aminzare M, Khezerlou A. Copper metal-organic framework for selective detection of florfenicol based on fluorescence sensing in chicken meat. Food Chem X 2024; 23:101598. [PMID: 39071929 PMCID: PMC11283086 DOI: 10.1016/j.fochx.2024.101598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Using a hydrothermal technique, a highly sensitive metal-organic Cu-MOFs sensor has been created to detect florfenicol (FFC) fluorescent in chicken meat. The sensor has demonstrated the ability to respond to the presence of FFC in an aqueous solution with accuracy and selectivity, as evidenced by an increase in fluorescence intensity. The interactions and adsorption mechanism based on hydrogen bonding, π- π, and n-π interactions demonstrate the high sensitivity and specificity of Cu-MOFs towards. FFC was detected quantitatively with a recovery of 96.48-98.79% in chicken meat samples. Within a broad linear range of 1-50 μM, the Cu-MOFs nanosensor exhibits a fast response time of 1 min, a low limit of detection (LOD) of 2.93 μM, and a limit of quantification (LOQ) of 8.80 μM. The potential applicability of the Cu-MOFs nanosensor for the detection of FFC in food matrices is confirmed by the results obtained with high-performance liquid chromatography (HPLC). Chemical compounds Copper (II) nitrate (PubChem CID: 18616); Terephthalic acid (PubChem CID: 7489); Polyvinyl pyrrolidone (PubChem CID: 486422059); N, N-dimethylformamide (PubChem CID: 6228); Ethyl alcohol (PubChem CID: 702); Hydrochloric acid (PubChem CID: 313); Sodium hydroxide (PubChem CID: 14798); Acetic acid (PubChem CID: 176); Trichloroacetic acid (PubChem CID: 6421); Florfenicol (PubChem CID: 114811).
Collapse
Affiliation(s)
- Roshanak Hasani
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Majid Aminzare
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Khezerlou
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Gui R, Jin H. Organic fluorophores-based molecular probes with dual-fluorescence ratiometric responses to in-vitro/in-vivo pH for biosensing, bioimaging and biotherapeutics applications. Talanta 2024; 275:126171. [PMID: 38703479 DOI: 10.1016/j.talanta.2024.126171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
In recent years, organic fluorophores-based molecular probes with dual-fluorescence ratiometric responses to in-vitro/in-vivo pH (DFR-MPs-pH) have been attracting much interest in fundamental application research fields. More and more scientific publications have reported the exploration of various DFR-MPs-pH systems that have unique dual-fluorescence ratiometry as the signal output, in-built and signal self-calibration functions to improve precise detection of targets. DFR-MPs-pH systems possess high-performance applications in biosensing, bioimaging and biomedicine fields. This review has comprehensively summarized recent advances of DFR-MPs-pH for the first time. First of all, the compositions and types of DFR-MPs-pH are introduced by summarizing different organic fluorophores-based molecule systems. Then, construction strategies are analyzed based on specific components, structures, properties and functions of DFR-MPs-pH. Afterward, biosensing and bioimaging applications are discussed in detail, primarily referring to pH sensing and imaging detection at the levels of living cells and small animals. Finally, biomedicine applications are fully summarized, majorly involving bio-toxicity evaluation, bio-distribution, biomedical diagnosis and therapeutics. Meanwhile, the current status, challenges and perspectives are rationally commented after detailed discussions of representative and state-of-the-art studies. Overall, this present review is comprehensive, in-time and in-depth, and can facilitate the following further exploration of new and versatile DFR-MPs-pH systems toward rational design, facile preparation, superior properties, adjustable functions and highly efficient applications in promising fields.
Collapse
Affiliation(s)
- Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, PR China.
| | - Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, PR China
| |
Collapse
|
10
|
Udhayakumari D, Ramasundaram S, Jerome P, Oh TH. A Review on Small Molecule Based Fluorescence Chemosensors for Bioimaging Applications. J Fluoresc 2024:10.1007/s10895-024-03826-2. [PMID: 38990455 DOI: 10.1007/s10895-024-03826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
This review provides a thorough examination of small molecule-based fluorescence chemosensors tailored for bioimaging applications, showcasing their unique ability to visualize biological processes with exceptional sensitivity and selectivity. It explores recent advancements, methodologies, and applications in this domain, focusing on various designs rooted in anthracene, benzothiazole, naphthalene, quinoline, and Schiff base. Structural modifications and molecular engineering strategies are emphasized for enhancing sensor performance, including heightened sensitivity, selectivity, and biocompatibility. Additionally, the review offers valuable insights into the ongoing development and utilization of these chemosensors, addressing current challenges and charting future directions in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | - Peter Jerome
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
11
|
Lin Z, Zhang Y, Ding L, Wang XD. Ultraphotostable Phosphorescent Nanosensors for Sensing the Lysosomal pH at the Single-Cell Level over Long Durations. Anal Chem 2024; 96:8622-8629. [PMID: 38717175 DOI: 10.1021/acs.analchem.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Ultraphotostable phosphorescent nanosensors have been designed for continuously sensing the lysosome pH over a long duration. The nanosensors exhibited excellent photostability, high accuracy, and capability to measure pH values during cell proliferation for up to 7 days. By arranging a metal-ligand complex of long phosphorescence lifetime and pH indicator in silica nanoparticles, we discover efficient Förster resonance energy transfer, which converts the pH-responsive UV-vis absorption signal of the pH indicator into a phosphorescent signal. Both the phosphorescent intensity and lifetime change at different pH values, and intracellular pH values can be accurately measured by our custom-built rapid phosphorescent lifetime imaging microscopy. The excellent photostability, high accuracy, and good biocompatibility prove that these nanosensors are a useful tool for tracing the fluctuation of pH values during endocytosis. The methodology can be easily adapted to design new nanosensors with different pKa or for different kinds of intracellular ions, as there are hundreds of pH and ion indicators readily available.
Collapse
Affiliation(s)
- Zhenzhen Lin
- Department of Chemistry and Human Phenome Institute, Fudan University, Shanghai 200438, P. R. China
| | - Yinglu Zhang
- Department of Chemistry and Human Phenome Institute, Fudan University, Shanghai 200438, P. R. China
| | - Longjiang Ding
- Department of Chemistry and Human Phenome Institute, Fudan University, Shanghai 200438, P. R. China
| | - Xu-Dong Wang
- Department of Chemistry and Human Phenome Institute, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
12
|
Zhang Z, Chasteen JL, Smith BD. Cy5 Dye Cassettes Exhibit Through-Bond Energy Transfer and Enable Ratiometric Fluorescence Sensing. J Org Chem 2024; 89:3309-3318. [PMID: 38362875 PMCID: PMC10985492 DOI: 10.1021/acs.joc.3c02767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The chemosensor literature contains many reports of fluorescence sensing using polyaromatic hydrocarbon fluorophores such as pyrene, tetraphenylethylene, or polyaryl(ethynylene), where the fluorophore is excited with ultraviolet light (<400 nm) and emits in the visible region of 400-500 nm. There is a need for general methods that convert these "turn-on" hydrocarbon fluorescent sensors into ratiometric sensing paradigms. One simple strategy is to mix the responsive hydrocarbon sensor with a second non-responsive dye that is excited by ultraviolet light but emits at a distinctly longer wavelength and thus acts as a reference signal. Five new cyanine dye cassettes were created by covalently attaching a pyrene, tetraphenylethylene, or biphenyl(ethynylene) component as the ultraviolet-absorbing energy donor directly to the pentamethine chain of a deep-red cyanine (Cy5) energy acceptor. Fluorescence emission studies showed that these Cy5-cassettes exhibited large pseudo-Stokes shifts and high through-bond energy transfer efficiencies upon excitation with ultraviolet light. Practical potential was demonstrated with two examples of ratiometric fluorescence sensing using a single ultraviolet excitation wavelength. One example mixed a Cy5-cassette with a pyrene-based fluorescent indicator that responded to changes in Cu2+ concentration, and the other example mixed a Cy5-cassette with the fluorescent pH sensing dye, pyranine.
Collapse
Affiliation(s)
- Zhumin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jordan L. Chasteen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
13
|
Shinoda H, Higano R, Oizumi T, Nakamura AJ, Kamijo T, Takahashi M, Nagaoka M, Sato Y, Yamaguchi A. Albumin Hydrogel-Coated Mesoporous Silica Nanoparticle as a Carrier of Cationic Porphyrin and Ratiometric Fluorescence pH Sensor. ACS APPLIED BIO MATERIALS 2024; 7:1204-1213. [PMID: 38211352 DOI: 10.1021/acsabm.3c01103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Here, we report that a mesoporous silica nanoparticle (MSN) coated with a fluoresceine-labeled bovine serum albumin (F-BSA) hydrogel layer works as a temperature-responsive nanocarrier for tetrakis-N-methylpyridyl porphyrin (TMPyP) and as a fluorescence ratiometric pH probe. F-BSA hydrogel-coated MSN containing TMPyP (F-BSA/MSN/TMPyP) was synthesized by thermal gelation of denatured F-BSA on the external surface of MSN. The F-BSA hydrogel layer was composed of an inner hard corona layer and an outer soft layer and was stable under physiological conditions. F-BSA/MSN/TMPyP exhibited temperature-dependent exponential release of TMPyP. In this release profile, the MSN was found to be a suitable host for stable encapsulation of tetracationic TMPyP by electrostatic interactions, and the F-BSA hydrogel layer mediated the diffusion of TMPyP from the MSN pore interior into the solution phase. Increasing temperature promoted partitioning of TMPyP from the pore interior to the F-BSA hydrogel layer, from where it was spontaneously released into the bulk solution phase by cation exchange. F-BSA/MSN/TMPyP also gave a linear ratiometric fluorescence response (1.3 per pH unit) in the pH range from 6.1 to 8.9.
Collapse
Affiliation(s)
- Hidetoshi Shinoda
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunky, Mito, Ibaraki 310-8512, Japan
| | - Raiha Higano
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunky, Mito, Ibaraki 310-8512, Japan
| | - Takashi Oizumi
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunky, Mito, Ibaraki 310-8512, Japan
| | - Asako J Nakamura
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunky, Mito, Ibaraki 310-8512, Japan
| | - Toshio Kamijo
- Department of Creative Engineering, National Institute of Technology, Tsuruoka College, 104 Sawada, Inooka, Tsuruoka, Yamagata 997-8511, Japan
| | - Mio Takahashi
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunky, Mito, Ibaraki 310-8512, Japan
| | - Masaaki Nagaoka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Akira Yamaguchi
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunky, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
14
|
Wang T, Liao C, Jiang Z, Wang J, Ma Y, Lin H, Zhang Y, Lv H, Zhang X, Hu Y, Yang Y, Zhou G. Ratiometric fluorescent sensor with large pseudo-Stokes shifts for precise sensing and imaging of pH without interferential background fluorescence. Talanta 2024; 266:125041. [PMID: 37556950 DOI: 10.1016/j.talanta.2023.125041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Endowing fluorescent pH sensors with large Stokes shifts promises to resolve interferential background fluorescence in practice, and yet few such method has been reported, owing to lack of luminescent materials with large Stokes shifts used in fluorescent sensors. Herein, we elaborately designed NaGdF4:Ce@NaGdF4:Nd@NaYF4:Eu core-double shells (CDS) lanthanide-doped fluoride nanoparticles (LFNPs), employing Gd3+-mediated energy migration and interfacial energy transfer to realize intense red and NIR emissions under 254 nm irradiation, and pseudo-Stokes shifts of which reached up to striking 361 nm and 610 nm, respectively. The CDS LFNPs collaborated with absorption-based pH indicator bromocresol green to from a novel fluorescent sensor film, and employing low-cost dual chip RGB-NIR camera to precisely record luminescence signals. On the basis of inner-filter effects, this senor system enabled accurate ratiometric read-out of pH value ranging from 5 to 6 (pKa ± 0.5), according to intensity ratios of pH-sensitive red emissions and referenced NIR emissions, avoiding common errors (e.g., fluctuant light sources). Notably, the large pseudo-Stokes shifts allowed red and NIR emissions far from the interfering background fluorescence possessing relatively small Stokes shifts, ensuring elevated signal-to-noise ratio and accurate pH determination. Therefore, the devised pH sensor system based on the CDS LFNPs exhibited sufficient accuracy in autofluorescent real samples (e.g., algae, serum), revealing a novel way of employing large pseudo-Stokes shifts to realize the background-free pH measurement and 2D imaging.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Chuan Liao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Zike Jiang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China.
| | - Jing Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Yanyan Ma
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China.
| | - Haitao Lin
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Yimeng Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Hongmin Lv
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Xiaonan Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Yimeng Hu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Yingdong Yang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Guangjun Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
15
|
Ghosh S, Lai JY. Recent advances in the design of intracellular pH sensing nanoprobes based on organic and inorganic materials. ENVIRONMENTAL RESEARCH 2023; 237:117089. [PMID: 37683789 DOI: 10.1016/j.envres.2023.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
In the biological system, the intracellular pH (pHi) plays an important role in regulating diverse physiological activities, including enzymatic action, ion transport, cell proliferation, metabolism, and programmed cell death. The monitoring of pH inside living cells is also crucial for studying cellular events such as phagocytosis, endocytosis, and receptor-ligand internalization. Furthermore, some organelles, viz., endosomes and lysosomes, have intracompartmental pH, which is critical for maintaining the stability of protein structure and function. The dysfunction and abnormal pH regulation can result in terminal diseases such as cancer, Alzheimer, and so forth. Therefore, the accuracy of intracellular pH measurement is always the top priority and demands cutting-edge research and analysis. Such techniques, such as Raman spectroscopy and fluorescence imaging, preferably use nanotechnology due to their remarkable advantages, such as a non-invasive approach and providing accuracy, repeatability, and reproducibility. In the past decades, there have been numerous attempts to design and construct non-invasive organic and inorganic materials-based nanoprobes for pHi sensing. For Raman-based techniques, metal nanostructures such as Au/Ag/Cu nanoparticles are utilized to enhance the signal intensity. As for the fluorescence-based studies, the organic-based small molecules, such as dyes, show higher sensitivity toward pH. However, they possess several drawbacks, including high photobleaching rate, and autofluorescence background signals. To this end, there are alternative nanomaterials proposed, including semiconductor quantum dots (QDs), carbon QDs, upconversion nanoparticles, and so forth. Moreover, the fluorescence technique allows for ratiometric measurement of pHi, which as a result, offers a reliable calibration curve. This timely review will critically examine the current progression in the existing nanoprobes. In addition, based on our knowledge and available research findings, we provide a brief future outlook that may advance the state-of-the-art methodologies for pHi sensing.
Collapse
Affiliation(s)
- Sandip Ghosh
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| |
Collapse
|
16
|
Alwraikat A, Jaradat A, Marji SM, Bayan MF, Alomari E, Naser AY, Alyami MH. Development of a Novel, Ecologically Friendly Generation of pH-Responsive Alginate Nanosensors: Synthesis, Calibration, and Characterisation. SENSORS (BASEL, SWITZERLAND) 2023; 23:8453. [PMID: 37896546 PMCID: PMC10610811 DOI: 10.3390/s23208453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Measurement of the intracellular pH is particularly crucial for the detection of numerous diseases, such as carcinomas, that are characterised by a low intracellular pH. Therefore, pH-responsive nanosensors have been developed by many researchers due to their ability to non-invasively detect minor changes in the pH of many biological systems without causing significant biological damage. However, the existing pH-sensitive nanosensors, such as the polyacrylamide, silica, and quantum dots-based nanosensors, require large quantities of organic solvents that could cause detrimental damage to the ecosystem. As a result, this research is aimed at developing a new generation of pH-responsive nanosensors comprising alginate natural polymers and pH-sensitive fluorophores using an organic, solvent-free, and ecologically friendly method. Herein, we successfully synthesised different models of pH-responsive alginate nanoparticles by varying the method of fluorophore conjugation. The synthesised pH nanosensors demonstrated a low MHD with a relatively acceptable PDI when using the lowest concentration of the cross-linker Ca+2 (1.25 mM). All the pH nanosensors showed negative zeta potential values, attributed to the free carboxylate groups surrounding the nanoparticles' surfaces, which support the colloidal stability of the nanosensors. The synthesised models of pH nanosensors displayed a high pH-responsiveness with various correlations between the pH measurements and the nanosensors' fluorescence signal. In summation, pH-responsive alginate nanosensors produced using organic, solvent-free, green technology could be harnessed as potential diagnostics for the intracellular and extracellular pH measurements of various biological systems.
Collapse
Affiliation(s)
- Abdalaziz Alwraikat
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, P.O. Box 33, Amman 11622, Jordan; (A.A.); (A.J.); (E.A.); (A.Y.N.)
| | - Abdolelah Jaradat
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, P.O. Box 33, Amman 11622, Jordan; (A.A.); (A.J.); (E.A.); (A.Y.N.)
| | - Saeed M. Marji
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (S.M.M.); (M.F.B.)
| | - Mohammad F. Bayan
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (S.M.M.); (M.F.B.)
| | - Esra’a Alomari
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, P.O. Box 33, Amman 11622, Jordan; (A.A.); (A.J.); (E.A.); (A.Y.N.)
| | - Abdallah Y. Naser
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, P.O. Box 33, Amman 11622, Jordan; (A.A.); (A.J.); (E.A.); (A.Y.N.)
| | - Mohammad H. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
| |
Collapse
|
17
|
Suarez GD, Bayer S, Tang YYK, Suarez DA, Cheung PPH, Nagl S. Rapid microfluidics prototyping through variotherm desktop injection molding for multiplex diagnostics. LAB ON A CHIP 2023; 23:3850-3861. [PMID: 37534874 DOI: 10.1039/d3lc00391d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
In this work, we demonstrate an inexpensive method of prototyping microfluidics using a desktop injection molding machine. A centrifugal microfluidic device with a novel central filling mechanism was developed to demonstrate the technique. We overcame the limitations of desktop machines in replicating microfluidic features by variotherm heating and cooling the mold between 50 °C and 110 °C within two minutes. Variotherm heating enabled good replication of microfeatures, with a coefficient of variation averaging only 3.6% attained for the measured widths of 100 μm wide molded channels. Using this methodology, we produced functional polystyrene centrifugal microfluidic chips, capable of aliquoting fluids into 5.0 μL reaction chambers with 97.5% accuracy. We performed allele-specific loop-mediated isothermal amplification (AS-LAMP) reactions for genotyping CYP2C19 alleles on these chips. Readouts were generated using optical pH sensors integrated onto chips, by drop-casting sensor precursor solutions into reaction chambers before final chip assembly. Positive reactions could be discerned by decreases in pH sensor fluorescence, thresholded against negative control reactions lacking the primers for nucleic acid amplification and with time-to-results averaging 38 minutes. Variotherm desktop injection molding can enable researchers to prototype microfluidic devices more cost-effectively, in an iterative fashion, due to reduced costs of smaller, in-house molds. Designs prototyped this way can be directly translated to mass production, enhancing their commercialization potential and positive impacts.
Collapse
Affiliation(s)
- Gianmarco D Suarez
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Steevanson Bayer
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Yuki Yu Kiu Tang
- Quommni Technologies Limited, Tsuen Wan, New Territories, Hong Kong
| | | | - Peter Pak-Hang Cheung
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Stefan Nagl
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
18
|
Paul S, Nandi S, Das M, Bora A, Hossain MT, Ghosh S, Giri PK. Two-dimensional bismuth oxyselenide quantum dots as nanosensors for selective metal ion detection over a wide dynamic range: sensing mechanism and selectivity. NANOSCALE 2023; 15:12612-12625. [PMID: 37462457 DOI: 10.1039/d3nr02029k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Bismuth oxyselenide (Bi2O2Se) nanosheets, a new 2D non-van der Waals nanomaterial having unique semiconducting properties, could be favorable for various sensing applications. In the present report, a top-down chemical approach was adopted to synthesize ultrathin Bi2O2Se quantum dots (QDs) in an appropriate solution. The as-prepared 2D Bi2O2Se QDs with an average size of ∼3 nm, exhibiting strong visible fluorescence, were utilized for heavy-metal ion detection with high selectivity. The QDs show a high optical band gap and a reasonably high fluorescence quantum yield (∼4%) in the green region without any functionalization. A series of heavy metal ions were detected using these QDs. The as-prepared QDs exhibit selective detection of Fe3+ over a wide dynamic range with a high quenching ratio and a low detection limit (<0.5 μM). The mechanism of visible fluorescence and Fe3+ ion-induced quenching was investigated in detail based on a model involving adsorption and charge transfer. Density functional theory (DFT) first principles calculations show that fluorescence quenching occurred selectively due to the efficient trapping of electrons in the bandgap states created by the Fe atoms. This work presents a sustainable and scalable method to synthesize 2D Bi2O2Se QDs for heavy metal ion sensing over a wide dynamic range and these 2D QDs could find potential uses in gas sensors, biosensors and optoelectronics.
Collapse
Affiliation(s)
- Sumana Paul
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sanju Nandi
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Mandira Das
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Abhilasha Bora
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Md Tarik Hossain
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Subhradip Ghosh
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
19
|
Tan Z, Gao C, Wang Q, Wang X, Yang T, Ge J, Zhou X, Xiao H, You Y. A multifunctional fluorescence MOF material: Triple-channel pH detection for strong acid and strong base, recognition of moxifloxacin and tannic acid. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
20
|
Shamsipur M, Ghavidast A, Pashabadi A. Phototriggered structures: Latest advances in biomedical applications. Acta Pharm Sin B 2023; 13:2844-2876. [PMID: 37521863 PMCID: PMC10372844 DOI: 10.1016/j.apsb.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 04/11/2023] [Indexed: 08/01/2023] Open
Abstract
Non-invasive control of the drug molecules accessibility is a key issue in improving diagnostic and therapeutic procedures. Some studies have explored the spatiotemporal control by light as a peripheral stimulus. Phototriggered drug delivery systems (PTDDSs) have received interest in the past decade among biological researchers due to their capability the control drug release. To this end, a wide range of phototrigger molecular structures participated in the DDSs to serve additional efficiency and a high-conversion release of active fragments under light irradiation. Up to now, several categories of PTDDSs have been extended to upgrade the performance of controlled delivery of therapeutic agents based on well-known phototrigger molecular structures like o-nitrobenzyl, coumarinyl, anthracenyl, quinolinyl, o-hydroxycinnamate and hydroxyphenacyl, where either of one endows an exclusive feature and distinct mechanistic approach. This review conveys the design, photochemical properties and essential mechanism of the most important phototriggered structures for the release of single and dual (similar or different) active molecules that have the ability to quickly reason of the large variety of dynamic biological phenomena for biomedical applications like photo-regulated drug release, synergistic outcomes, real-time monitoring, and biocompatibility potential.
Collapse
|
21
|
Gril D, Donlagic D. A Microfluidic, Flow-Through, Liquid Reagent Fluorescence Sensor Applied to Oxygen Concentration Measurement. SENSORS (BASEL, SWITZERLAND) 2023; 23:4984. [PMID: 37430898 DOI: 10.3390/s23104984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 07/12/2023]
Abstract
A concept of a microfluidic fluorescent chemical sensing system is presented and demonstrated as a sensor for measurement of dissolved oxygen in water. The system utilizes on-line mixing of a fluorescent reagent with the analyzed sample, while it measures the fluorescence decay time of the mixture. The system is built entirely out of silica capillaries and optical fibers, and allows for very low consumption of the reagent (of the order of mL/month) and the analyzed sample (of the order of L/month). The proposed system can, thus, be applied to continuous on-line measurements, while utilizing a broad variety of different and proven fluorescent reagents or dyes. The proposed system allows for the use of relatively high-excitation light powers, as the flow-through concept of the system reduces the probability of the appearance of bleaching, heating, or other unwanted effects on the fluorescent dye/reagent caused significantly by the excitation light. The high amplitudes of fluorescent optical signals captured by an optical fiber allow for low-noise and high-bandwidth optical signal detection, and, consequently, the possibility for utilization of reagents with nanosecond fluorescent lifetimes.
Collapse
Affiliation(s)
- Dominik Gril
- Laboratory for Electro Optics and Sensor Systems, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska Cesta 46, 2000 Maribor, Slovenia
| | - Denis Donlagic
- Laboratory for Electro Optics and Sensor Systems, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska Cesta 46, 2000 Maribor, Slovenia
| |
Collapse
|
22
|
Wang S, Ding Y, Zhang L, Cheng Y, Deng Y, Jiang Q, Gao H, Gu J, Yang G, Zhu L, Yan T, Zhang Q, Ye J. Combination of colorimetry, inner filter effect-induced fluorometry and smartphone‑based digital image analysis: A versatile and reliable strategy for multi-mode visualization of food dyes. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130563. [PMID: 37055971 DOI: 10.1016/j.jhazmat.2022.130563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 06/19/2023]
Abstract
Herein, a multi-mode visualization platform was initiated for in-situ detection of food dyes (FDs) by combining colorimetry, fluorometry and smartphone‑based digital image analysis, in which water-dispersible quantum dots (QDs) were served as nanoprobes. Colorimetry was achieved by color comparison, while both fluorometry and fluorescence quantification were performed through inner filter effect (IFE)-induced fluorescence quenching, then color information (RGB & gray-scale values) of colorimetry and fluorometry was picked by a smartphone to reconstruct digitized alignments. Since IFE mechanism was concentration-dependent but did not rely on the interaction between fluorophore and quencher, the whole process of fluorescence response could be finished within 10 s, and both color gradients and fluorescence changes showed fine mappings to FDs concentrations in the range of 1.0 × 10-3∼0.035 mg/mL for brilliant blue, and 1.0 × 10-4∼0.1 mg/mL for Allura red and sunset yellow. As a proof-of-concept, the in-situ multi-mode visualization of these FDs in real beverages was experimentally proved to be highly feasible and reliable as compared with instrumental techniques like UV-vis/fluorescence spectrometry, along with HPLC. Finally, this strategy was extended to the multi-mode visualization of non-food dyes in three simulated wastewater samples with high credibility by contrast with the true additive amounts of model dyes.
Collapse
Affiliation(s)
- Shuangshou Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China.
| | - Yuwen Ding
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Lu Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Yingle Cheng
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Ying Deng
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Qin Jiang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Hongrui Gao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Jing Gu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Ganggang Yang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Tingxuan Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Qi Zhang
- Department of Process Analysis of Tobacco, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450007, China.
| | - Jin Ye
- Institute of grain and oil quality and safety, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
23
|
Schiff Bases: A Versatile Fluorescence Probe in Sensing Cations. J Fluoresc 2023; 33:859-893. [PMID: 36633727 DOI: 10.1007/s10895-022-03135-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023]
Abstract
Metal cations such as Zn2+, Al3+, Hg2+, Cd2+, Sn2+, Fe2+, Fe3+ and Cu2+ play important roles in biology, medicine, and the environment. However, when these are not maintained in proper concentration, they can be lethal to life. Therefore, selective sensing of metal cations is of great importance in understanding various metabolic processes, disease diagnosis, checking the purity of environmental samples, and detecting toxic analytes. Schiff base probes have been largely used in designing fluorescent sensors for sensing metal ions because of their easy processing, availability, fast response time, and low detection limit. Herein, an in-depth report on metal ions recognition by some Schiff base fluorescent sensors, their sensing mechanism, their practical applicability in cell imaging, building logic gates, and analysis of real-life samples has been presented. The metal ions having biological, industrial, and environmental significance are targeted. The compiled information is expected to prove beneficial in designing and synthesis of the related Schiff base fluorescent sensors.
Collapse
|
24
|
Gedda G, Balaji Gupta Tiruveedhi V, Ganesh G, Suribabu J. Recent advancements of carbon dots in analytical techniques. CARBON DOTS IN ANALYTICAL CHEMISTRY 2023:137-147. [DOI: 10.1016/b978-0-323-98350-1.00017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Behbahani SB, Kiridena SD, Wijayaratna UN, Taylor C, Anker JN, Tzeng TRJ. pH variation in medical implant biofilms: Causes, measurements, and its implications for antibiotic resistance. Front Microbiol 2022; 13:1028560. [PMID: 36386694 PMCID: PMC9659913 DOI: 10.3389/fmicb.2022.1028560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023] Open
Abstract
The advent of implanted medical devices has greatly improved the quality of life and increased longevity. However, infection remains a significant risk because bacteria can colonize device surfaces and form biofilms that are resistant to antibiotics and the host's immune system. Several factors contribute to this resistance, including heterogeneous biochemical and pH microenvironments that can affect bacterial growth and interfere with antibiotic biochemistry; dormant regions in the biofilm with low oxygen, pH, and metabolites; slow bacterial growth and division; and poor antibody penetration through the biofilm, which may also be regions with poor acid product clearance. Measuring pH in biofilms is thus key to understanding their biochemistry and offers potential routes to detect and treat latent infections. This review covers the causes of biofilm pH changes and simulations, general findings of metabolite-dependent pH gradients, methods for measuring pH in biofilms, effects of pH on biofilms, and pH-targeted antimicrobial-based approaches.
Collapse
Affiliation(s)
| | | | | | - Cedric Taylor
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Jeffrey N. Anker
- Department of Chemistry, Clemson University, Clemson, SC, United States
| | | |
Collapse
|
26
|
Bartusik-Aebisher D, Mielnik M, Cieślar G, Chodurek E, Kawczyk-Krupka A, Aebisher D. Photon Upconversion in Small Molecules. Molecules 2022; 27:molecules27185874. [PMID: 36144609 PMCID: PMC9502815 DOI: 10.3390/molecules27185874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Upconversion (UC) is a process that describes the emission of shorter-wavelength light compared to that of the excitation source. Thus, UC is also referred to as anti-Stokes emission because the excitation wavelength is longer than the emission wavelength. UC materials are used in many fields, from electronics to medicine. The objective of using UC in medical research is to synthesize upconversion nanoparticles (UCNPs) composed of a lanthanide core with a coating of adsorbed dye that will generate fluorescence after excitation with near-infrared light to illuminate deep tissue. Emission occurs in the visible and UV range, and excitation mainly in the near-infrared spectrum. UC is observed for lanthanide ions due to the arrangement of their energy levels resulting from f-f electronic transitions. Organic compounds and transition metal ions are also able to form the UC process. Biocompatible UCNPs are designed to absorb infrared light and emit visible light in the UC process. Fluorescent dyes are adsorbed to UCNPs and employed in PDT to achieve deeper tissue effects upon irradiation with infrared light. Fluorescent UCNPs afford selectivity as they may be activated only by illumination of an area of diseased tissue, such as a tumor, with infrared light and are by themselves atoxic in the absence of infrared light. UCNP constructs can be monitored as to their location in the body and uptake by cancer cells, aiding in evaluation of exact doses required to treat the targeted cancer. In this paper, we review current research in UC studies and UCNP development.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Mateusz Mielnik
- English Division Science Club, Medical College of The University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Ewa Chodurek
- Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
- Correspondence: (A.K.-K.); (D.A.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
- Correspondence: (A.K.-K.); (D.A.)
| |
Collapse
|
27
|
Xin H, Wang H, Zhang W, Chen Y, Ji Q, Zhang G, Liu H, Taylor AD, Qu J. In Operando
Visualization and Dynamic Manipulation of Electrochemical Processes at the Electrode–Solution Interface. Angew Chem Int Ed Engl 2022; 61:e202206236. [DOI: 10.1002/anie.202206236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Huaijia Xin
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - Hang Wang
- Department of Chemical and Biomolecular Engineering Tandon School of Engineering New York University New York 11201 USA
| | - Wei Zhang
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - Yu Chen
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - Qinghua Ji
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - Gong Zhang
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - Huijuan Liu
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - André D. Taylor
- Department of Chemical and Biomolecular Engineering Tandon School of Engineering New York University New York 11201 USA
| | - Jiuhui Qu
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
- Key Laboratory of Drinking Water Science and Technology Research Center for Eco-Environmental Sciences Chinese Academy of Sciences Beijing 100085 China
| |
Collapse
|
28
|
Xin H, Wang H, Zhang W, Chen Y, Ji Q, Zhang G, Liu H, Taylor AD, Qu J. In Operando Visualization and Dynamic Manipulation of Electrochemical Processes at the Electrode‐Solution Interface. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huaijia Xin
- Tsinghua University School of Environment CHINA
| | - Hang Wang
- New York University Department of Chemical and Biomolecular Engineering CHINA
| | - Wei Zhang
- Tsinghua University Center for Water and Ecology CHINA
| | - Yu Chen
- Tsinghua University School of Environment CHINA
| | - Qinghua Ji
- Tsinghua University School of environment 30 Shuangqing Road 100081 Beijing CHINA
| | - Gong Zhang
- Tsinghua University School of Environment CHINA
| | - Huijuan Liu
- Tsinghua University School of Environment CHINA
| | - André D. Taylor
- New York University Department of Chemical and Biomolecular Engineering UNITED STATES
| | - Jiuhui Qu
- Tsinghua University Center for Water and Ecology CHINA
| |
Collapse
|
29
|
Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022; 206:115-147. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, 98167-43463 Zahedan, Iran
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
30
|
Bahadoran A, Khoshnoudi Jabarabadi M, Hameed Mahmood Z, Bokov D, Jushi Janani B, Fakhri A. Quick and sensitive colorimetric detection of amino acid with functionalized-silver/copper nanoparticles in the presence of cross linker, and bacteria detection by using DNA-template nanoparticles as peroxidase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120636. [PMID: 34890872 DOI: 10.1016/j.saa.2021.120636] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
In this project, poly (citric acid) (PCA) functionalized on nano Ag/Cu was synthesized by chemical analysis method. The nano probe was applied to detection of cysteine by using the magnesium (II) ions as a cross linker. The characterization of Ag/Cu/PCA nano probe was studied by using the UV-visible, morphological microscopy, dynamic light scattering, and zeta potential analyzer. The zeta potential and size of Ag/Cu/PCA were -38.0 mV and 18.0 nm, respectively. The prepared nano probe shows rapid response for detection of cysteine. The detection limit of Ag/Cu/PCA nano probe was 0.07 nM. Additional, the Ag/Cu/PCA nanoparticles was applied to cysteine detection from real samples in the presence of amino acids compounds. Rapidly and sensitive determination of Streptococcus pneumoniae is substantial for food safety and human health. The DNA-Ag/Cu/PCA were prepared as a template in chemical method and experimented as a bio-receptor for the cell bacteria detection as peroxidase-like catalytic process. The DNA-Ag/Cu/PCA nano probe shows a linear dynamic concertation range of Streptococcus pneumoniae via detection limit about 65 CFU/mL. The project presents that the DNA-Ag/Cu/PCA could detect the biological and bacterial samples via high accuracy.
Collapse
Affiliation(s)
- Ashkan Bahadoran
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | | | - Ali Fakhri
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Nanotechnology Laboratory, Nano Smart Science Institute, Tehran, Iran
| |
Collapse
|
31
|
Adam T, Gopinath SC. Nanosensors: Recent Perspectives on Attainments and Future Promise of Downstream Applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Spectroscopic and Computational Study of the Protonation Equilibria of Amino-Substituted benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles as Novel pH-Sensing Materials. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We present the synthesis and analytical, spectroscopic and computational characterization of three amino-substituted benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles as novel pH probes with a potential application in pH-sensing materials. The designed systems differ in the number and position of the introduced isobutylamine groups on the pentacyclic aromatic core, which affects their photophysical and acid-base properties. The latter were investigated by UV-Vis absorption and fluorescence spectroscopies and interpreted by DFT calculations. An excellent agreement in experimentally measured and computationally determined pKa values and electronic excitations suggests that all systems are unionized at neutral pH, while their transition to monocationic forms occurs at pH values between 3 and 5, accompanied by substantial changes in spectroscopic responses that make them suitable for detecting acidic conditions in solutions. Computations identified imidazole imino nitrogen as the most favorable protonation site, further confirmed by analysis of perturbations in the chemical shifts of 1H and 13C NMR, and showed that the resulting basicity emerges as a compromise between the basicity-reducing effect of a nearby nitrile and a favorable contribution from the attached secondary amines. With this in mind, we designed a system with three amino substituents for which calculations predict pKa = 7.0 that we suggest as an excellent starting point for a potential pH sensor able to capture solution changes during the transition from neutral towards acidic media.
Collapse
|
33
|
Zhao L, Zhao C, Zhou J, Ji H, Qin Y, Li G, Wu L, Zhou X. Conjugated Polymers-based Luminescent Probes for Ratiometric Detection of Biomolecules. J Mater Chem B 2022; 10:7309-7327. [DOI: 10.1039/d2tb00937d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate monitoring of the biomolecular changes in biological and physiological environments is of great significance for pathogenesis, development, diagnosis and treatment of diseases. Compared with traditional luminescent probes on the...
Collapse
|
34
|
Jie M, Guo R, Zhang Y, Huang J, Xu G, Li M, Yue X, Ji B, Bai Y. A facile fluorescent sensor based on nitrogen-doped carbon dots derived from Listeria monocytogenes for highly selective and visual detection of iodide and pH. RSC Adv 2022; 12:7295-7305. [PMID: 35424687 PMCID: PMC8982288 DOI: 10.1039/d2ra00826b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Listeria monocytogenes-derived nitrogen-doped carbon dots served as a facile fluorescent sensor with excellent sensing performances for iodide with low detection limit of 20 nmol L−1 and wide pH range from 1.81 to 11.82.
Collapse
Affiliation(s)
- Mingsha Jie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan Province, 450001, P. R. China
| | - Ruipeng Guo
- School of Mechanical and Electrical Engineering, Henan Vocational College of Applied Technology, Zhengzhou, Henan Province, 450042, P. R. China
| | - Yanan Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
| | - Jianing Huang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
| | - Gaigai Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
| | - Min Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan Province, 450001, P. R. China
| | - Baocheng Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan Province, 450001, P. R. China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan Province, 450001, P. R. China
| |
Collapse
|
35
|
Kniec K, Marciniak L. A ratiometric luminescence pH sensor based on YAG:V 3+,V 5+ nanoparticles. NEW J CHEM 2022. [DOI: 10.1039/d2nj01595a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new type of ratiometric luminescence-based pH sensor is described.
Collapse
Affiliation(s)
- K. Kniec
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - L. Marciniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
36
|
Sabljo K, Napp J, Alves F, Feldmann C. pH-Dependent Fluorescence of [La(OH)2]+[ARS]– Hybrid Nanoparticles for Intracellular pH-Sensing. Chem Commun (Camb) 2022; 58:9417-9420. [DOI: 10.1039/d2cc01507b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Saline inorganic-organic hybrid nanoparticles (IOH-NPs) [La(OH)2]+[ARS]– (ARS: alizarin red S) are prepared in water as a new compound (particle size: 47±7 nm, ARS load: 65 wt-%). The IOH-NPs not only...
Collapse
|
37
|
De Marchi S, García-Lojo D, Bodelón G, Pérez-Juste J, Pastoriza-Santos I. Plasmonic Au@Ag@mSiO 2 Nanorattles for In Situ Imaging of Bacterial Metabolism by Surface-Enhanced Raman Scattering Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61587-61597. [PMID: 34927427 PMCID: PMC8719315 DOI: 10.1021/acsami.1c21812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It is well known that microbial populations and their interactions are largely influenced by their secreted metabolites. Noninvasive and spatiotemporal monitoring and imaging of such extracellular metabolic byproducts can be correlated with biological phenotypes of interest and provide new insights into the structure and development of microbial communities. Herein, we report a surface-enhanced Raman scattering (SERS) hybrid substrate consisting of plasmonic Au@Ag@mSiO2 nanorattles for optophysiological monitoring of extracellular metabolism in microbial populations. A key element of the SERS substrate is the mesoporous silica shell encapsulating single plasmonic nanoparticles, which furnishes colloidal stability and molecular sieving capabilities to the engineered nanostructures, thereby realizing robust, sensitive, and reliable measurements. The reported SERS-based approach may be used as a powerful tool for deciphering the role of extracellular metabolites and physicochemical factors in microbial community dynamics and interactions.
Collapse
Affiliation(s)
- Sarah De Marchi
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Daniel García-Lojo
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Gustavo Bodelón
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Jorge Pérez-Juste
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| |
Collapse
|
38
|
Chakraborty S, Mukherjee S. Effects of protecting groups on luminescent metal nanoclusters: spectroscopic signatures and applications. Chem Commun (Camb) 2021; 58:29-47. [PMID: 34877943 DOI: 10.1039/d1cc05396e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Luminescent metal nanoclusters (NCs) have been established as next-generation fluorophores. Their biocompatible and non-toxic nature, along with excellent chemical- and photo-stability, enables them to find applications in multi-disciplinary areas. However, preparing NCs which are stable is always challenging, primarily owing to their small size and propensity to self-aggregate. In this review, we highlight a holistic approach as to how ligands and templates can monitor the stability of NCs, tune their spectroscopic signatures, and alter their applications. The role of small molecules of a large ligand in the preparation of NCs and their associated limitations are also discussed. We have summarized how these NCs can be utilized in sensing several metal ions, pH, viscosity and temperature of many systems which have biological relevance. Additionally, these luminescent metal NCs find usage in cell-imaging, discriminating between cancerous and non-cancerous cell lines and also targeting specific organelles within the cellular environment.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India.
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
39
|
Assessing citric acid-derived luminescent probes for pH and ammonia sensing: A comprehensive experimental and theoretical study. Anal Chim Acta 2021; 1186:339125. [PMID: 34756267 DOI: 10.1016/j.aca.2021.339125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022]
Abstract
The present work reports on the assessment of luminescent probes derived from citric acid (CA) and β-aminothiols (namely, l-cysteine (Cys) and cysteamine) for instrumental and smartphone-based fluorimetric sensing purposes. Remarkably, the evaluated luminescent probes derived from natural compounds showed pH-dependent dual excitation/dual emission features. Both fluorophores hold promise for the ratiometric fluorimetric sensing of pH, being especially convenient for the smartphone-based sensing of pH via ratiometric analysis by proper selection of B and G color channels. Time dependent density functional theory (TDDFT) calculations allowed to substantiate the pH dependent structure-property relationship and to unveil the critical role of the CA derived carboxyl group, these findings contributing to the fundamental knowledge on these systems for the rational design of new fluorophores and in establishing fluorescence sensing mechanisms of CA-derived systems. Besides, paper-based devices modified with CA-Cys were implemented in a three-phase separation approach for sensitive and selective ammonia sensing, yielding a remarkable enrichment factor of 389 and a limit of detection of 37 μM under optimal conditions. The proposed approach was successfully applied to the determination of ammonia nitrogen and extractable ammonium in water samples and marine sediments, respectively.
Collapse
|
40
|
Zalmi GA, Bhosale SV. Aggregation induced emission (AIE) molecules for measurement of intracellular temperature, pH, and viscosity sensing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 184:11-60. [PMID: 34749971 DOI: 10.1016/bs.pmbts.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This book chapter presents insightful growth and progress in the field of sensing especially, temperature, pH, and viscosity sensing. We focus more on aggregation-induced emission (AIE)-active materials for measuring intracellular pH, viscosity, and temperature by means of fluorescence and absorption study. A special emphasis is given on AIE active fluorescent molecules, molecular rotors, polymeric nanomaterials which are considered as the important aspects of sense. It also gives the fundamental and brief understanding between these different AIE active material and its application in biological systems.
Collapse
Affiliation(s)
- Geeta A Zalmi
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, India
| | | |
Collapse
|
41
|
Porubský M, Vychodilová K, Milićević D, Buděšinský M, Stanková J, Džubák P, Hajdúch M, Hlaváč J. Cytotoxicity of Amino-BODIPY Modulated via Conjugation with 2-Phenyl-3-Hydroxy-4(1H)-Quinolinones. ChemistryOpen 2021; 10:1104-1110. [PMID: 34427046 PMCID: PMC8562313 DOI: 10.1002/open.202100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/11/2021] [Indexed: 11/12/2022] Open
Abstract
The combination of cytotoxic amino-BODIPY dye and 2-phenyl-3-hydroxy-4(1H)-quinolinone (3-HQ) derivatives into one molecule gave rise to selective activity against lymphoblastic or myeloid leukemia and the simultaneous disappearance of the cytotoxicity against normal cells. Both species' conjugation can be realized via a disulfide linker cleavable in the presence of glutathione characteristic for cancer cells. The cleavage liberating the free amino-BODIPY dye and 3-HQ derivative can be monitored by ratiometric fluorescence or by the OFF-ON effect of the amino-BODIPY dye. A similar cytotoxic activity is observed when the amino-BODIPY dye and 3-HQ derivative are connected through a non-cleavable maleimide linker. The work reports the synthesis of several conjugates, the study of their cleavage inside cells, and cytotoxic screening.
Collapse
Affiliation(s)
- Martin Porubský
- Department of Organic ChemistryFaculty of SciencePalacký UniversityTř. 17. Listopadu 12771 46OlomoucCzech Republic
| | - Kristýna Vychodilová
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacký UniversityHněvotínská 5779 00OlomoucCzech Republic
| | - David Milićević
- Department of Organic ChemistryFaculty of SciencePalacký UniversityTř. 17. Listopadu 12771 46OlomoucCzech Republic
| | - Miloš Buděšinský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 542/2160 00PragueCzech Republic
| | - Jarmila Stanková
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacký UniversityHněvotínská 5779 00OlomoucCzech Republic
| | - Petr Džubák
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacký UniversityHněvotínská 5779 00OlomoucCzech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacký UniversityHněvotínská 5779 00OlomoucCzech Republic
| | - Jan Hlaváč
- Department of Organic ChemistryFaculty of SciencePalacký UniversityTř. 17. Listopadu 12771 46OlomoucCzech Republic
| |
Collapse
|
42
|
A Novel Imidazole Bound Schiff Base as Highly Selective "Turn-on" Fluorescence Sensor for Zn 2+ and Colorimetric Kit for Co 2. J Fluoresc 2021; 32:189-202. [PMID: 34687395 DOI: 10.1007/s10895-021-02839-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022]
Abstract
An imidazole based Schiff base (2-[(1H-imidazole-2-ylmethylene)-amino]-4-methyl-phenol) (IMP), with an imine unit, has been designed and characterized by various standard methods. The evaluation of the probe as a fluorogenic sensor for Zn2+ and a chromogenic sensor for Co2+ has been rationalized in terms of the PET mechanism. In the presence of Zn2+, a light yellow colored solution of IMP with maximum absorption of 364 nm becomes bright yellow with maximum absorption of 410 nm and a measurable fluorescent signal at 612 nm with bathochromic enhancement. The sensitivity of the fluorescent based assay (6.78 × 10-9 M) for Zn2+ is far below the limit in the World Health Organization (WHO) guidelines for drinking water (7.6 × 10-5 M) and therefore it is capable of being a practical system for the monitoring of Zn2+ concentrations in aqueous samples. Moreover, IMP showed a highly selective colorimetric response to Co2+ by displayed an obvious pink color upon addition of metal solution immediately without any interference from other ions. These results provide a new approach for selectively recognizing the two most important trace elements in the human body simultaneously, for Zn2+ by emission spectra and Co2+ by the naked eye.
Collapse
|
43
|
An Active Surface Preservation Strategy for the Rational Development of Carbon Dots as pH-Responsive Fluorescent Nanosensors. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here we report the rational development of a carbon dot (CDs)-based fluorescent pH nanosensor by employing an active surface preservation strategy. More specifically, citric acid, urea and fluorescein were subjected to a one-pot hydrothermal treatment, which preserved fluorescein-like structures on the surface of the CDs. The obtained CDs showed pH-sensitive green emission, which can be used to determine pH variations from 3.7 to 12.1 by fluorescence enhancement. Moreover, the obtained nanoparticles showed excellent selectivity toward pH, fluorescence reversibility in different pH values, photostability, while being compatible with human cell lines (even at high concentrations). Furthermore, their performance as pH sensors was comparable with reference pH determination procedures. Thus, an active surface preservation strategy was successfully employed to develop fluorescence pH nanosensors in a rational manner and without post-synthesis functionalization strategies, which show potential for future use in pH determination.
Collapse
|
44
|
Feng Y, Su Y, Liu R, Lv Y. Engineering activatable nanoprobes based on time-resolved luminescence for chemo/biosensing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Galera-Laporta L, Comerci CJ, Garcia-Ojalvo J, Süel GM. IonoBiology: The functional dynamics of the intracellular metallome, with lessons from bacteria. Cell Syst 2021; 12:497-508. [PMID: 34139162 PMCID: PMC8570674 DOI: 10.1016/j.cels.2021.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022]
Abstract
Metal ions are essential for life and represent the second most abundant constituent (after water) of any living cell. While the biological importance of inorganic ions has been appreciated for over a century, we are far from a comprehensive understanding of the functional roles that ions play in cells and organisms. In particular, recent advances are challenging the traditional view that cells maintain constant levels of ion concentrations (ion homeostasis). In fact, the ionic composition (metallome) of cells appears to be purposefully dynamic. The scientific journey that started over 60 years ago with the seminal work by Hodgkin and Huxley on action potentials in neurons is far from reaching its end. New evidence is uncovering how changes in ionic composition regulate unexpected cellular functions and physiology, especially in bacteria, thereby hinting at the evolutionary origins of the dynamic metallome. It is an exciting time for this field of biology, which we discuss and refer to here as IonoBiology.
Collapse
Affiliation(s)
- Leticia Galera-Laporta
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Colin J Comerci
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Gürol M Süel
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; San Diego Center for Systems Biology, University of California, San Diego, La Jolla, CA 92093- 0380, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093-0380, USA.
| |
Collapse
|
46
|
Singh B, Bahadur R, Rangara M, Gandhi MN, Srivastava R. Influence of Surface States on the Optical and Cellular Property of Thermally Stable Red Emissive Graphitic Carbon Dots. ACS APPLIED BIO MATERIALS 2021; 4:4641-4651. [DOI: 10.1021/acsabm.1c00379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Rohan Bahadur
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Misah Rangara
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Maharashtra 400614, India
| | - Mayuri N. Gandhi
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
47
|
Visual pH Sensors: From a Chemical Perspective to New Bioengineered Materials. Molecules 2021; 26:molecules26102952. [PMID: 34065629 PMCID: PMC8156760 DOI: 10.3390/molecules26102952] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Many human activities and cellular functions depend upon precise pH values, and pH monitoring is considered a fundamental task. Colorimetric and fluorescence sensors for pH measurements are chemical and biochemical tools able to sense protons and produce a visible signal. These pH sensors are gaining widespread attention as non-destructive tools, visible to the human eye, that are capable of a real-time and in-situ response. Optical “visual” sensors are expanding researchers’ interests in many chemical contexts and are routinely used for biological, environmental, and medical applications. In this review we provide an overview of trending colorimetric, fluorescent, or dual-mode responsive visual pH sensors. These sensors include molecular synthetic organic sensors, metal organic frameworks (MOF), engineered sensing nanomaterials, and bioengineered sensors. We review different typological chemical entities of visual pH sensors, three-dimensional structures, and signaling mechanisms for pH sensing and applications; developed in the past five years. The progression of this review from simple organic molecules to biological macromolecules seeks to benefit beginners and scientists embarking on a project of pH sensing development, who needs background information and a quick update on advances in the field. Lessons learned from these tools will aid pH determination projects and provide new ways of thinking for cell bioimaging or other cutting-edge in vivo applications.
Collapse
|
48
|
Nakata E, Hirose H, Gerelbaatar K, Arafiles JVV, Zhang Z, Futaki S, Morii T. A facile combinatorial approach to construct a ratiometric fluorescent sensor: application for the real-time sensing of cellular pH changes. Chem Sci 2021; 12:8231-8240. [PMID: 34194714 PMCID: PMC8208317 DOI: 10.1039/d1sc01575c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 02/02/2023] Open
Abstract
Realtime monitoring of the cellular environment, such as the intracellular pH, in a defined cellular space provides a comprehensive understanding of the dynamics processes in a living cell. Considering the limitation of spatial resolution in conventional microscopy measurements, multiple types of fluorophores assembled within that space would behave as a single fluorescent probe molecule. Such a character of microscopic measurements enables a much more flexible combinatorial design strategy in developing fluorescent probes for given targets. Nanomaterials with sizes smaller than the microscopy spatial resolution provide a scaffold to assemble several types of fluorophores with a variety of optical characteristics, therefore providing a convenient strategy for designing fluorescent pH sensors. In this study, fluorescein (CF) and tetramethylrhodamine (CR) were assembled on a DNA nanostructure with controlling the number of each type of fluorophore. By taking advantage of the different responses of CF and CR emissions to the pH environment, an appropriate assembly of both CF and CR on DNA origami enabled a controlled intensity of fluorescence emission and ratiometric pH monitoring within the space defined by DNA origami. The CF and CR-assembled DNA origami was successfully applied for monitoring the intracellular pH changes.
Collapse
Affiliation(s)
- Eiji Nakata
- Institute of Advanced Energy, Kyoto University Kyoto Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University Kyoto Japan
| | | | | | | | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University Kyoto Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University Kyoto Japan
| |
Collapse
|
49
|
Jaworska A, Malek K, Kudelski A. Intracellular pH - Advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy - A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119410. [PMID: 33465573 DOI: 10.1016/j.saa.2020.119410] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 12/29/2020] [Indexed: 05/13/2023]
Abstract
The value of pH in various parts of protoplasm can affect nearly all aspects of cell functions. Therefore, the determination of intracellular acid-base features is required in many areas of biological and biochemical studies. Because of a significant scientific importance of in vivo intracellular pH measurements, various groups carried out such experiments. In this review article we describe intracellular pH measurements using two the most sensitive optical spectroscopies: surface-enhanced Raman scattering (SERS) and fluorescence. It is reasonable to present these two techniques in one review article because the experimental approach in Raman and fluorescence experiments is relatively similar. The basic theoretical background explaining the mechanism of operation of fluorescence and SERS sensors are discussed and the motivations to carry out intracellular pH measurements are briefly described. Future perspectives in this field are also discussed.
Collapse
Affiliation(s)
- Aleksandra Jaworska
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland.
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
50
|
Podyachev SN, Zairov RR, Mustafina AR. 1,3-Diketone Calix[4]arene Derivatives-A New Type of Versatile Ligands for Metal Complexes and Nanoparticles. Molecules 2021; 26:molecules26051214. [PMID: 33668373 PMCID: PMC7956255 DOI: 10.3390/molecules26051214] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022] Open
Abstract
The present review is aimed at highlighting outlooks for cyclophanic 1,3-diketones as a new type of versatile ligands and building blocks of the nanomaterial for sensing and bioimaging. Thus, the main synthetic routes for achieving the structural diversity of cyclophanic 1,3-diketones are discussed. The structural diversity is demonstrated by variation of both cyclophanic backbones (calix[4]arene, calix[4]resorcinarene and thiacalix[4]arene) and embedding of different substituents onto lower or upper macrocyclic rims. The structural features of the cyclophanic 1,3-diketones are correlated with their ability to form lanthanide complexes exhibiting both lanthanide-centered luminescence and magnetic relaxivity parameters convenient for contrast effect in magnetic resonance imaging (MRI). The revealed structure–property relationships and the applicability of facile one-pot transformation of the complexes to hydrophilic nanoparticles demonstrates the advantages of 1,3-diketone calix[4]arene ligands and their complexes in developing of nanomaterials for sensing and bioimaging.
Collapse
|