1
|
Wang H, Zhao X, Wang X, Gong Y, Li S, Gu Y, He B, Wang J. Investigation of the role and mechanism of dapagliflozin in mitigating renal injury in rats afflicted with diabetic kidney disease. Biochem Pharmacol 2025; 233:116795. [PMID: 39922316 DOI: 10.1016/j.bcp.2025.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/10/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
The etiology of diabetic kidney disease (DKD) is multifaceted, with hyperglycemia, inflammation, oxidative stress, and fibrosis recognized as key contributors to renal damage in individuals with DKD. Clinical evidence suggests that dapagliflozin not only reduces blood glucose levels but also demonstrates superior efficacy in ameliorating pancreatic islet cell injury while preserving cardiac and renal function. However, the precise underlying mechanism has been poorly elucidated in the current literature. In this study, a DKD rat model was established by administering a single intraperitoneal injection of streptozotocin (STZ) to investigate the renoprotective properties of dapagliflozin and its underlying mechanisms. The findings of this study indicate that dapagliflozin enhanced pancreatic islet cell function, lowered blood glucose levels, and significantly reduced biochemical markers and renal pathological damage in DKD rats. Dapagliflozin also exerted anti-inflammatory, antioxidant, and antifibrotic effects by inhibiting the activation of the p38 MAPK/NF-κB pathway, enhancing the activity of the SIRT1/Akt/GSK-3β/Nrf2/HO-1 signaling pathway, and inhibiting the over-activation of the TGF-β1/Smad2/3 signaling pathway. These effects led to a reduction in renal injury and improved renal function in DKD rats.
Collapse
Affiliation(s)
- Hao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenhe District, Shenyang 110016, China
| | - Xiuli Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenhe District, Shenyang 110016, China
| | - Xiao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenhe District, Shenyang 110016, China
| | - Yi Gong
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenhe District, Shenyang 110016, China
| | - Songping Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenhe District, Shenyang 110016, China
| | - Yanting Gu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenhe District, Shenyang 110016, China
| | - Bosai He
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenhe District, Shenyang 110016, China
| | - Jiahong Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
2
|
Korkmaz Y, Dik B. The comparison of the antidiabetic effects of exenatide, empagliflozin, quercetin, and combination of the drugs in type 2 diabetic rats. Fundam Clin Pharmacol 2024; 38:511-522. [PMID: 38149676 DOI: 10.1111/fcp.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Type 2 diabetes, a metabolic disease that involves extended treatment, is rapidly increasing in humans and animals worldwide. OBJECTIVES This study aimed to compare monotherapy and combined therapy of exenatide, empagliflozin, and quercetin in 67 Wistar Albino male rats. METHODS The animals were divided into the following seven groups: healthy control, diabetes control, diabetes + sham, diabetes + exenatide (10 μg/kg), diabetes + empagliflozin (50 mg/kg), diabetes + quercetin (50 mg/kg), and diabetes + combination treatment. The treatments were continued for 8 weeks. RESULTS At the end of the experiment, glucose and HbA1c levels decreased with all monotherapy treatments and the combination treatments, while insulin levels increased with exenatide and combined treatments. Adiponectin levels increased with empagliflozin, quercetin, and combined treatments, while leptin levels decreased only with combined treatments. All monotherapies caused an increase in total antioxidant levels. Exenatide and quercetin treatments reduced low-density lipoprotein (LDL) levels; therewithal, exenatide and combined treatments increased high-density lipoprotein (HDL) levels. Triglyceride levels decreased in all treatment groups. The homeostatic model assessment for insulin resistance (HOMA-IR) level decreased with the combined treatment; on the contrary, the homeostatic model assessment for β-cell activity (HOMA-β) level increased with empagliflozin, exenatide, and combined treatments. CONCLUSION In conclusion, the antidiabetic effects of exenatide were more pronounced than empagliflozin and quercetin, however, the combined treatment had better antidiabetic and antihyperlipidemic effects than monotherapies. Quercetin could be a supportive or food supplement antidiabetic agent. The exenatide treatment can be recommended for monotherapy in type 2 patients, and the combination of empagliflozin, exenatide, and quercetin may be effective in diabetic patients who need combined therapy.
Collapse
Affiliation(s)
- Yasemin Korkmaz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Burak Dik
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
3
|
Morioka F, Nakatani S, Uedono H, Tsuda A, Mori K, Emoto M. Short-Term Dapagliflozin Administration in Autosomal Dominant Polycystic Kidney Disease-A Retrospective Single-Arm Case Series Study. J Clin Med 2023; 12:6341. [PMID: 37834985 PMCID: PMC10573882 DOI: 10.3390/jcm12196341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/01/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Treatment with sodium-glucose cotransporter-2 (SGLT2) inhibitors may have pleiotropic and beneficial effects in terms of ameliorating of risk factors for the progression of autosomal dominant polycystic kidney disease (ADPKD). However, there is insufficient evidence regarding the use of these drugs in patients with ADPKD, as they were excluded from several clinical trials conducted to explore kidney protection provided by SGLT2 inhibitors. This retrospective single-arm case series study was performed to investigate the effects of dapagliflozin, a selective SGLT2 inhibitor administered at 10 mg/day, on changes in height-adjusted kidney volume (htTKV) and estimated glomerular filtration rate (eGFR) in ADPKD patients. During a period of 102 ± 20 days (range 70-156 days), eGFR was decreased from 47.9 (39.7-56.9) to 40.8 (33.7-44.5) mL/min/1.73 m2 (p < 0.001), while htTKV was increased from 599 (423-707) to 617 (446-827) mL/m (p = 0.002) (n = 20). The annual increase in htTKV rate was significantly promoted, and urinary phosphate change was found to be correlated with the change in htTKV (rs = 0.575, p = 0.020). In the examined patients, eGFR was decreased and htTKV increased during short-term administration of dapagliflozin. To confirm the possibility of the effects of dapagliflozin on ADPKD, additional interventional studies are required.
Collapse
Affiliation(s)
- Fumiyuki Morioka
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Hideki Uedono
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Akihiro Tsuda
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Katsuhito Mori
- Department of Nephrology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan;
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
- Department of Nephrology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan;
| |
Collapse
|
4
|
Matthews J, Herat L, Schlaich MP, Matthews V. The Impact of SGLT2 Inhibitors in the Heart and Kidneys Regardless of Diabetes Status. Int J Mol Sci 2023; 24:14243. [PMID: 37762542 PMCID: PMC10532235 DOI: 10.3390/ijms241814243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic Kidney Disease (CKD) and Cardiovascular Disease (CVD) are two devastating diseases that may occur in nondiabetics or individuals with diabetes and, when combined, it is referred to as cardiorenal disease. The impact of cardiorenal disease on society, the economy and the healthcare system is enormous. Although there are numerous therapies for cardiorenal disease, one therapy showing a great deal of promise is sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors. The SGLT family member, SGLT2, is often implicated in the pathogenesis of a range of diseases, and the dysregulation of the activity of SGLT2 markedly effects the transport of glucose and sodium across the luminal membrane of renal cells. Inhibitors of SGLT2 were developed based on the antidiabetic action initiated by inhibiting renal glucose reabsorption, thereby increasing glucosuria. Of great medical significance, large-scale clinical trials utilizing a range of SGLT2 inhibitors have demonstrated both metabolic and biochemical benefits via numerous novel mechanisms, such as sympathoinhibition, which will be discussed in this review. In summary, SGLT2 inhibitors clearly exert cardio-renal protection in people with and without diabetes in both preclinical and clinical settings. This exciting class of inhibitors improve hyperglycemia, high blood pressure, hyperlipidemia and diabetic retinopathy via multiple mechanisms, of which many are yet to be elucidated.
Collapse
Affiliation(s)
- Jennifer Matthews
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| | - Lakshini Herat
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| | - Markus P. Schlaich
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Medicine, University of Western Australia, Crawley, WA 6009, Australia;
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Vance Matthews
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| |
Collapse
|
5
|
Le Y, Yang J, Li F, Jiang Y, Wei T, Wang D, Wang K, Cui X, Lin X, Yang K, Hong T, Wei R. Dapagliflozin improves pancreatic islet function by attenuating microvascular endothelial dysfunction in type 2 diabetes. Diabetes Metab Res Rev 2023; 39:e3607. [PMID: 36565185 DOI: 10.1002/dmrr.3607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 12/25/2022]
Abstract
AIMS Sodium-glucose co-transporter 2 inhibitors, including dapagliflozin, improve ß cell function in type 2 diabetic individuals. Whether dapagliflozin can protect islet microvascular endothelial cells (IMECs) and thus contribute to the improvement of ß cell function remains unknown. MATERIALS AND METHODS The db/db mice were treated with dapagliflozin or vehicle for 6 weeks. ß cell function, islet capillaries and the levels of inflammatory chemokines in IMECs were detected. The mouse IMEC cell line MS-1 cells were incubated with palmitate and/or dapagliflozin for 24 h. Angiogenesis and inflammatory chemokine levels were evaluated, and the involved signalling pathways were analysed. The mouse ß cell line MIN6 cells, in the presence or absence of co-culture with MS-1 cells, were treated with palmitate and/or dapagliflozin for 24 h. The expression of ß cell specific markers and insulin secretion in MIN6 cells were determined. RESULTS Dapagliflozin significantly improved ß cell function, increased islet capillaries and decreased the levels of inflammatory chemokines of IMECs in db/db mice. In the palmitate-treated MS-1 cells, angiogenesis was enhanced and the levels of inflammatory chemokines were downregulated by dapagliflozin. Either a PI3K inhibitor or mTOR inhibitor eliminated the dapagliflozin-mediated effects. Importantly, dapagliflozin attenuated the palmitate-induced downregulation of ß cell function-related gene expression and insulin secretion in MIN6 cells co-cultured with MS-1 cells but not in those on mono-culture. CONCLUSIONS Dapagliflozin restores islet vascularisation and attenuates the inflammation of IMECs in type 2 diabetic mice. The dapagliflozin-induced improvement of ß cell function is at least partially accounted for by its beneficial effects on IMECs in a PI3K/Akt-mTOR-dependent manner.
Collapse
Affiliation(s)
- Yunyi Le
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Fei Li
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Yafei Jiang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Dandan Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Kangli Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Xiafang Lin
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Bahena-Lopez JP, Rojas-Vega L, Chávez-Canales M, Bazua-Valenti S, Bautista-Pérez R, Lee JH, Madero M, Vazquez-Manjarrez N, Alquisiras-Burgos I, Hernandez-Cruz A, Castañeda-Bueno M, Ellison DH, Gamba G. Glucose/Fructose Delivery to the Distal Nephron Activates the Sodium-Chloride Cotransporter via the Calcium-Sensing Receptor. J Am Soc Nephrol 2023; 34:55-72. [PMID: 36288902 PMCID: PMC10101570 DOI: 10.1681/asn.2021121544] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/07/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The calcium-sensing receptor (CaSR) in the distal convoluted tubule (DCT) activates the NaCl cotransporter (NCC). Glucose acts as a positive allosteric modulator of the CaSR. Under physiologic conditions, no glucose is delivered to the DCT, and fructose delivery depends on consumption. We hypothesized that glucose/fructose delivery to the DCT modulates the CaSR in a positive allosteric way, activating the WNK4-SPAK-NCC pathway and thus increasing salt retention. METHODS We evaluated the effect of glucose/fructose arrival to the distal nephron on the CaSR-WNK4-SPAK-NCC pathway using HEK-293 cells, C57BL/6 and WNK4-knockout mice, ex vivo perfused kidneys, and healthy humans. RESULTS HEK-293 cells exposed to glucose/fructose increased SPAK phosphorylation in a WNK4- and CaSR-dependent manner. C57BL/6 mice exposed to fructose or a single dose of dapagliflozin to induce transient glycosuria showed increased activity of the WNK4-SPAK-NCC pathway. The calcilytic NPS2143 ameliorated this effect, which was not observed in WNK4-KO mice. C57BL/6 mice treated with fructose or dapagliflozin showed markedly increased natriuresis after thiazide challenge. Ex vivo rat kidney perfused with glucose above the physiologic threshold levels for proximal reabsorption showed increased NCC and SPAK phosphorylation. NPS2143 prevented this effect. In healthy volunteers, cinacalcet administration, fructose intake, or a single dose of dapagliflozin increased SPAK and NCC phosphorylation in urinary extracellular vesicles. CONCLUSIONS Glycosuria or fructosuria was associated with increased NCC, SPAK, and WNK4 phosphorylation in a CaSR-dependent manner.
Collapse
Affiliation(s)
- Jessica Paola Bahena-Lopez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- MD/PhD (PECEM) program, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lorena Rojas-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Intellectual Property Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INCICH, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Silvana Bazua-Valenti
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rocío Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Ju-Hye Lee
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Magdalena Madero
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Natalia Vazquez-Manjarrez
- Nutrition Division, Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ivan Alquisiras-Burgos
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Hernandez-Cruz
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - David H. Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- MD/PhD (PECEM) program, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
7
|
Pharmacokinetics and Tissue Distribution of Enavogliflozin in Mice and Rats. Pharmaceutics 2022; 14:pharmaceutics14061210. [PMID: 35745783 PMCID: PMC9230590 DOI: 10.3390/pharmaceutics14061210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
This study investigated the pharmacokinetics and tissue distribution of enavogliflozin, a novel sodium-glucose cotransporter 2 inhibitor that is currently in phase three clinical trials. Enavogliflozin showed dose-proportional pharmacokinetics following intravenous and oral administration (doses of 0.3, 1, and 3 mg/kg) in both mice and rats. Oral bioavailability was 84.5–97.2% for mice and 56.3–62.1% for rats. Recovery of enavogliflozin as parent form from feces and urine was 39.3 ± 3.5% and 6.6 ± 0.7%, respectively, 72 h after its intravenous injection (1 mg/kg), suggesting higher biliary than urinary excretion in mice. Major biliary excretion was also suggested for rats, with 15.9 ± 5.9% in fecal recovery and 0.7 ± 0.2% in urinary recovery for 72 h, following intravenous injection (1 mg/kg). Enavogliflozin was highly distributed to the kidney, which was evidenced by the AUC ratio of kidney to plasma (i.e., 41.9 ± 7.7 in mice following its oral administration of 1 mg/kg) and showed slow elimination from the kidney (i.e., T1/2 of 29 h). It was also substantially distributed to the liver, stomach, and small and large intestine. In addition, the tissue distribution of enavogliflozin after single oral administration was not significantly altered by repeated oral administration for 7 days or 14 days. Overall, enavogliflozin displayed linear pharmacokinetics following intravenous and oral administration, significant kidney distribution, and favorable biliary excretion, but it was not accumulated in the plasma and major distributed tissues, following repeated oral administration for 2 weeks. These features may be beneficial for drug efficacy. However, species differences between rats and mice in metabolism and oral bioavailability should be considered as drug development continues.
Collapse
|
8
|
Matthews JR, Schlaich MP, Rakoczy EP, Matthews VB, Herat LY. The Effect of SGLT2 Inhibition on Diabetic Kidney Disease in a Model of Diabetic Retinopathy. Biomedicines 2022; 10:biomedicines10030522. [PMID: 35327323 PMCID: PMC8944990 DOI: 10.3390/biomedicines10030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetic kidney disease (DKD) is a chronic disorder characterized by elevated urine albumin excretion, reduced glomerular filtration rate, or both. At present, angiotensin-converting enzyme inhibitors or angiotensin receptor blockers are the standard care for the treatment of DKD, resulting in improved outcomes. However, alternative treatments may be required because although the standard treatments have been found to slow the progression of DKD, they have not been found to halt the disease. In the past decade, sodium glucose co-transporter 2 (SGLT2) inhibitors have been widely researched in the area of cardiovascular disease and diabetes and have been shown to improve cardiovascular outcomes. SGLT2 inhibitors including canagliflozin and dapagliflozin have been shown to slow the progression of kidney disease. There is currently an omission of literature where three SGLT2 inhibitors have been simultaneously compared in a rodent diabetic model. After diabetic Akimba mice were treated with SGLT2 inhibitors for 8 weeks, there was not only a beneficial impact on the pancreas, signified by an increase in the islet mass and increased plasma insulin levels, but also on the kidneys, signified by a reduction in average kidney to body weight ratio and improvement in renal histology. These findings suggest that SGLT2 inhibition promotes improvement in both pancreatic and kidney health.
Collapse
Affiliation(s)
- Jennifer Rose Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, Crawley, WA 6009, Australia; (J.R.M.); (V.B.M.)
| | - Markus P. Schlaich
- Dobney Hypertension Centre, Medical School—Royal Perth Hospital Unit, University of Western Australia, Crawley, WA 6009, Australia;
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Elizabeth Piroska Rakoczy
- Department of Molecular Ophthalmology, University of Western Australia, Crawley, WA 6009, Australia;
| | - Vance Bruce Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, Crawley, WA 6009, Australia; (J.R.M.); (V.B.M.)
| | - Lakshini Yasaswi Herat
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, Crawley, WA 6009, Australia; (J.R.M.); (V.B.M.)
- Correspondence: ; Tel.: +61-8-9224-0239
| |
Collapse
|
9
|
Gronda E, Lopaschuk GD, Arduini A, Santoro A, Benincasa G, Palazzuoli A, Gabrielli D, Napoli C. Mechanisms of action of SGLT2 inhibitors and their beneficial effects on the cardiorenal axis. Can J Physiol Pharmacol 2022; 100:93-106. [PMID: 35112597 DOI: 10.1139/cjpp-2021-0399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Large clinical studies conducted with sodium-glucose co-transporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes and heart failure with reduced ejection fraction have demonstrated their ability to achieve both cardiac and kidney benefits. Although there is huge evidence on SGLT2i-mediated clinical benefits both in diabetic and non-diabetic patients, the pathophysiological mechanisms underlying their efficacy are still poorly understood. Some favorable mechanisms are likely due to the prompt glycosuric action which is associated with natriuretic effects leading to hemodynamic benefits as well as a reduction in glomerular hyperfiltration and renin-angiotensin-aldosterone system activation. In addition to the renal mechanisms, SGLT2i may play a relevant role in cardiorenal axis protection by improving the cardiomyocyte metabolism, by exerting anti-fibrotic and anti-inflammatory actions, and by increasing cardioprotective adipokine expression. New studies will be needed to better understand the specific molecular mechanisms that mediate the SGLT2i favorable effects in patients suffering diabetes. Our aim is to first discuss about the molecular mechanisms underlying the cardiovascular benefits of SGLT2i in each of the main organs involved in the cardiorenal axis. Furthermore, we update on the most recent clinical trials evaluating the beneficial effects of SGLT2i in treatment of both diabetic and non-diabetic patients suffering heart failure.
Collapse
Affiliation(s)
- Edoardo Gronda
- Dipartimento di Medicina e Specialità Mediche, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico di Milano UOC di Nefrologia, Dialisi e Trapianto Renale dell'adulto, Milan, Italy
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, AB T6G 2S2, Canada
| | - Arduino Arduini
- Department of Research and Development, CoreQuest Sagl, Tecnopolo, 6934 Bioggio, Switzerland
| | - Antonio Santoro
- Nephrology Unit, S. Orsola-Malpighi Hospital, University of Bologna, Italy
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistic Units, Azienda Ospedaliera Universitaria and Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Alberto Palazzuoli
- Cardiovascular Diseases Unit, Department of Medical Sciences, Le Scotte Hospital University of Siena, Italy
| | - Domenico Gabrielli
- Division of Cardiology, San Camillo Hospital, Rome, Italy and Associazione Nazionale Medici Cardiologi Ospedalieri (ANMCO)
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistic Units, Azienda Ospedaliera Universitaria and Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
10
|
Jung HN, Jung CH. The Role of Anti-Inflammatory Adipokines in Cardiometabolic Disorders: Moving beyond Adiponectin. Int J Mol Sci 2021; 22:ijms222413529. [PMID: 34948320 PMCID: PMC8707770 DOI: 10.3390/ijms222413529] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of obesity has multiplied owing to its rapidly growing prevalence and obesity-related morbidity and mortality. In addition to the classic role of depositing extra energy, adipose tissue actively interferes with the metabolic balance by means of secreting bioactive compounds called adipokines. While most adipokines give rise to inflammatory conditions, the others with anti-inflammatory properties have been the novel focus of attention for the amelioration of cardiometabolic complications. This review compiles the current evidence on the roles of anti-inflammatory adipokines, namely, adiponectin, vaspin, the C1q/TNF-related protein (CTRP) family, secreted frizzled-related protein 5 (SFRP5), and omentin-1 on cardiometabolic health. Further investigations on the mechanism of action and prospective human trials may pave the way to their clinical application as innovative biomarkers and therapeutic targets for cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Han Na Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
| | - Chang Hee Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
- Correspondence:
| |
Collapse
|
11
|
Tahara A. SGLT2 inhibitor ipragliflozin exerts antihyperglycemic effects via the blood glucose-dependent increase in urinary glucose excretion in type 2 diabetic mice. Eur J Pharmacol 2021; 910:174486. [PMID: 34487707 DOI: 10.1016/j.ejphar.2021.174486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022]
Abstract
This study investigated the antihyperglycemic effects of the sodium-glucose cotransporter 2 (SGLT2) inhibitor ipragliflozin via the blood glucose-dependent increase in urinary glucose excretion in KK/Ay type 2 diabetic mice. In oral glucose tolerance tests (glucose load: 1, 2, or 4 g/kg) in 24-h-fasted mice, blood glucose levels increased in a glucose-loading dose-dependent manner. Oral administration of ipragliflozin (1 mg/kg) significantly inhibited the increase in blood glucose concomitant with urinary glucose excretion. To investigate the effects of ipragliflozin under low blood glucose conditions, blood glucose level and urinary glucose excretion were examined under fasting conditions in diabetic mice that had prefasted for 0, 6, 12, 18, or 24 h. Ipragliflozin significantly lowered blood glucose levels in mice that had prefasted for 0, 6, or 12 h, but not 18 h or more. Blood glucose level was well correlated with ipragliflozin-induced antihyperglycemic and urinary glucose excretion effects, suggesting that these effects occur in a blood glucose-dependent manner. Thus, in a hyperglycemic state, ipragliflozin exerts a potent antihyperglycemic effect and marked increases in urinary glucose excretion; however, in a non-hyperglycemic or hypoglycemic state, the hypoglycemic effect is weak. Ipragliflozin may therefore be a useful antidiabetic agent for normalizing daily blood glucose fluctuations in type 2 diabetes.
Collapse
Affiliation(s)
- Atsuo Tahara
- Candidate Discovery Science Laboratories, Astellas Pharma Inc., Ibaraki, Japan.
| |
Collapse
|
12
|
Wei R, Cui X, Feng J, Gu L, Lang S, Wei T, Yang J, Liu J, Le Y, Wang H, Yang K, Hong T. Dapagliflozin promotes beta cell regeneration by inducing pancreatic endocrine cell phenotype conversion in type 2 diabetic mice. Metabolism 2020; 111:154324. [PMID: 32712220 DOI: 10.1016/j.metabol.2020.154324] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/06/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Clinical trials and animal studies have shown that sodium-glucose co-transporter type 2 (SGLT2) inhibitors improve pancreatic beta cell function. Our study aimed to investigate the effect of dapagliflozin on islet morphology and cell phenotype, and explore the origin and possible reason of the regenerated beta cells. METHODS Two diabetic mouse models, db/db mice and pancreatic alpha cell lineage-tracing (glucagon-β-gal) mice whose diabetes was induced by high fat diet combined with streptozotocin, were used. Mice were treated by daily intragastric administration of dapagliflozin (1 mg/kg) or vehicle for 6 weeks. The plasma insulin, glucagon and glucagon-like peptide-1 (GLP-1) were determined by using ELISA. The evaluation of islet morphology and cell phenotype was performed with immunofluorescence. Primary rodent islets and αTC1.9, a mouse alpha cell line, were incubated with dapagliflozin (0.25-25 μmol/L) or vehicle in the presence or absence of GLP-1 receptor antagonist for 24 h in regular or high glucose medium. The expression of specific markers and hormone levels were determined. RESULTS Treatment with dapagliflozin significantly decreased blood glucose in the two diabetic models and upregulated plasma insulin and GLP-1 levels in db/db mice. The dapagliflozin treatment increased islet and beta cell numbers in the two diabetic mice. The beta cell proliferation as indicated by C-peptide and BrdU double-positive cells was boosted by dapagliflozin. The alpha to beta cell conversion, as evaluated by glucagon and insulin double-positive cells and confirmed by using alpha cell lineage-tracing, was facilitated by dapagliflozin. After the dapagliflozin treatment, some insulin-positive cells were located in the duct compartment or even co-localized with duct cell markers, suggestive of duct-derived beta cell neogenesis. In cultured primary rodent islets and αTC1.9 cells, dapagliflozin upregulated the expression of pancreatic endocrine progenitor and beta cell specific markers (including Pdx1) under high glucose condition. Moreover, dapagliflozin upregulated the expression of Pcsk1 (which encodes prohormone convertase 1/3, an important enzyme for processing proglucagon to GLP-1), and increased GLP-1 content and secretion in αTC1.9 cells. Importantly, the dapagliflozin-induced upregulation of Pdx1 expression was attenuated by GLP-1 receptor antagonist. CONCLUSIONS Except for glucose-lowering effect, dapagliflozin has extra protective effects on beta cells in type 2 diabetes. Dapagliflozin enhances beta cell self-replication, induces alpha to beta cell conversion, and promotes duct-derived beta cell neogenesis. The promoting effects of dapagliflozin on beta cell regeneration may be partially mediated via GLP-1 secreted from alpha cells.
Collapse
Affiliation(s)
- Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Jin Feng
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Liangbiao Gu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yunyi Le
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China.
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
13
|
In Vitro Metabolism of DWP16001, a Novel Sodium-Glucose Cotransporter 2 Inhibitor, in Human and Animal Hepatocytes. Pharmaceutics 2020; 12:pharmaceutics12090865. [PMID: 32932946 PMCID: PMC7558535 DOI: 10.3390/pharmaceutics12090865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 01/10/2023] Open
Abstract
DWP16001 is currently in a phase 2 clinical trial as a novel anti-diabetes drug for the treatment of type 2 diabetes by selective inhibition of sodium-glucose cotransporter 2. This in vitro study was performed to compare the metabolism of DWP16001 in human, dog, monkey, mouse, and rat hepatocytes, and the drug-metabolizing enzymes responsible for the metabolism of DWP16001 were characterized using recombinant human cytochrome 450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes expressed from cDNAs. The hepatic extraction ratio of DWP16001 in five species ranged from 0.15 to 0.56, suggesting that DWP16001 may be subject to species-dependent and weak-to-moderate hepatic metabolism. Five phase I metabolites (M1–M5) produced by oxidation as well as three DWP16001 glucuronides (U1–U3) and two hydroxy-DWP16001 (M1) glucuronides (U4, U5), were identified from hepatocytes incubated with DWP16001 by liquid chromatography-high resolution mass spectrometry. In human hepatocytes, M1, M2, M3, U1, and U2 were identified. Formation of M1 and M2 from DWP16001 was catalyzed by CYP3A4 and CYP2C19. M3 was produced by hydroxylation of M1, while M4 was produced by hydroxylation of M2; both hydroxylation reactions were catalyzed by CYP3A4. The formation of U1 was catalyzed by UGT2B7, but UGT1A4, UGT1A9, and UGT2B7 contributed to the formation of U2. In conclusion, DWP16001 is a substrate for CYP3A4, CYP2C19, UGT1A4, UGT1A9, and UGT2B7 enzymes. Overall, DWP16001 is weakly metabolized in human hepatocytes, but there is a potential for the pharmacokinetic modulation and drug–drug interactions, involved in the responsible metabolizing enzymes of DWP16001 in humans.
Collapse
|
14
|
Tahara A, Takasu T. SGLT2 inhibitor ipragliflozin alone and combined with pioglitazone prevents progression of nonalcoholic steatohepatitis in a type 2 diabetes rodent model. Physiol Rep 2020; 7:e14286. [PMID: 31782258 PMCID: PMC6883099 DOI: 10.14814/phy2.14286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) has become the most common cause of chronic liver disease worldwide in recent years. The pathogenesis of NASH is closely linked to metabolic diseases such as insulin resistance, obesity, dyslipidemia, and type 2 diabetes. However, there is currently no pharmacological agent for preventing the progression of NASH. Sodium-glucose cotransporter (SGLT) 2 inhibitors increase urinary glucose excretion by inhibiting renal glucose reabsorption, and improve various pathological conditions of type 2 diabetes, including insulin resistance. In the present study, we examined the effects of ipragliflozin, a SGLT2-selective inhibitor, alone and in combination with pioglitazone on NASH in high-fat diet-fed KK/Ay type 2 diabetic mice. Type 2 diabetic mice with NASH exhibited steatosis, inflammation, and fibrosis in the liver as well as hyperglycemia, insulin resistance, and obesity, features that are observed in human NASH. Four-week repeated administration of ipragliflozin (0.1-3 mg/kg) led to significant improvements in hyperglycemia, insulin resistance, and obesity in addition to hyperlipidemia and liver injury including hepatic steatosis and fibrosis. Moreover, ipragliflozin reduced inflammation and oxidative stress in the liver. Repeated administration of pioglitazone (3-30 mg/kg) also significantly improved various parameters of diabetes and NASH, excluding obesity. Furthermore, combined treatment comprising ipragliflozin (1 mg/kg) and pioglitazone (10 mg/kg) additively improved these parameters. These findings indicate that the SGLT2-selective inhibitor ipragliflozin improves hyperglycemia as well as NASH in type 2 diabetic mice. Therefore, treatment with ipragliflozin monotherapy or coadministered with pioglitazone is expected to be a potential therapeutic option for the treatment of type 2 diabetes with NASH.
Collapse
Affiliation(s)
- Atsuo Tahara
- Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | | |
Collapse
|
15
|
Choi MK, Nam SJ, Ji HY, Park MJ, Choi JS, Song IS. Comparative Pharmacokinetics and Pharmacodynamics of a Novel Sodium-Glucose Cotransporter 2 Inhibitor, DWP16001, with Dapagliflozin and Ipragliflozin. Pharmaceutics 2020; 12:pharmaceutics12030268. [PMID: 32183468 PMCID: PMC7151106 DOI: 10.3390/pharmaceutics12030268] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Since sodium-glucose cotransporter 2 (SGLT2) inhibitors reduced blood glucose level by inhibiting renal tubular glucose reabsorption mediated by SGLT2, we aimed to investigate the pharmacokinetics and kidney distribution of DWP16001, a novel SGLT2 inhibitor, and to compare these properties with those of dapagliflozin and ipragliflozin, representative SGLT2 inhibitors. The plasma exposure of DWP16001 was comparable with that of ipragliflozin but higher than that of dapagliflozin. DWP16001 showed the highest kidney distribution among three SGLT2 inhibitors when expressed as an area under curve (AUC) ratio of kidney to plasma (85.0 ± 16.1 for DWP16001, 64.6 ± 31.8 for dapagliflozin and 38.4 ± 5.3 for ipragliflozin). The organic anion transporter-mediated kidney uptake of DWP16001 could be partly attributed to the highest kidney uptake. Additionally, DWP16001 had the lowest half-maximal inhibitory concentration (IC50) to SGLT2, a target transporter (0.8 ± 0.3 nM for DWP16001, 1.6 ± 0.3 nM for dapagliflozin, and 8.9 ± 1.7 nM for ipragliflozin). The inhibition mode of DWP16001 on SGLT2 was reversible and competitive, but the recovery of the SGLT2 inhibition after the removal of SGLT2 inhibitors in CHO cells overexpressing SGLT2 was retained with DWP16001, which is not the case with dapagliflozin and ipragliflozin. In conclusion, selective and competitive SGLT2 inhibition of DWP16001 could potentiate the efficacy of DWP16001 in coordination with the higher kidney distribution and retained SGLT2 inhibition of DWP16001 relative to dapagliflozin and ipragliflozin.
Collapse
Affiliation(s)
- Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea;
| | - So Jeong Nam
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Hye-Young Ji
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido 17028, Korea; (H.-Y.J.); (M.J.P.); (J.-S.C.)
| | - Mi Jie Park
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido 17028, Korea; (H.-Y.J.); (M.J.P.); (J.-S.C.)
| | - Ji-Soo Choi
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido 17028, Korea; (H.-Y.J.); (M.J.P.); (J.-S.C.)
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: ; Tel.: +82-53-950-8575
| |
Collapse
|
16
|
Gamil NM, Abd El Fattah MA, Ahmed MAE, Maklad YA, Gamal El Din AA, Eid NI. Lansoprazole enhances the antidiabetic effect of dapagliflozin in fortified diet-fed streptozotocin-treated diabetic rats. J Biochem Mol Toxicol 2020; 34:e22451. [PMID: 31975531 DOI: 10.1002/jbt.22451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/29/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
Dapagliflozin (DAPA) is used for treating type 2 diabetes, whereas lansoprazole (LPZ) is used as a traditional antiulcer drug. The present study investigated the possible antidiabetic effects of LPZ on fortified diet-fed streptozotocin (FDF/STZ)-induced insulin-resistant diabetic rats. On the basis of the current results, it can be concluded that LPZ could be used as an add-on drug along with the conventional treatment for T2D as it showed beneficial effects in the current experimental model of insulin resistance.
Collapse
Affiliation(s)
- Noha M Gamil
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Mai A Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Yousreya A Maklad
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology Group), Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Amina A Gamal El Din
- Medical Research Division, Pathology Department, National Research Centre, Giza, Egypt
| | - Nihad I Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Yang Y, Zhao C, Ye Y, Yu M, Qu X. Prospect of Sodium-Glucose Co-transporter 2 Inhibitors Combined With Insulin for the Treatment of Type 2 Diabetes. Front Endocrinol (Lausanne) 2020; 11:190. [PMID: 32351447 PMCID: PMC7174744 DOI: 10.3389/fendo.2020.00190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new family of antidiabetic drugs that reduce blood glucose independent of insulin. In this review, we present the advantages and adverse effects of SGLT2 inhibitors plus insulin therapy as a treatment regimen for patients with type 2 diabetes (T2D). Compared with placebo, SGLT2 inhibitors plus insulin therapy could significantly decrease fasting blood glucose and HbA1c, thereby reducing the daily required dose of insulin. A reduction in body weight and improvements in insulin resistance and β-cell function have also been widely reported with this therapy, and other potential advantages, including the reduction in blood pressure, adverse cardiovascular outcomes, and visceral adipose tissue volume, have been revealed. SGLT2 inhibitors cause a greater reduction than dipeptidyl peptidase-4 (DPP-4) inhibitors in body weight and the risk of cardiovascular disease. Furthermore, compared with glucagon-like peptide-1 (GLP-1) agonists, SGLT2 inhibitors reduce blood pressure, and heart failure. As this therapy is an oral preparation, an improvement in patient compliance is also achieved. Despite these advantages, however, combination therapy with SGLT2 inhibitors and insulin has several risks. Although no difference has been found in the incidence of hypoglycemic events and urinary tract infection between the administration of this combination and that of placebo, the risk of genital tract infections was reported to increase with the combination therapy. Additionally, bone adverse effects, euglycemic diabetic ketoacidosis, and volume depletion-and osmotic diuresis-related adverse effects have been observed. Altogether, we could conclude that SGLT2 inhibitors plus insulin therapy is an efficient treatment option for patients with T2D, especially those requiring high daily insulin doses and those with insulin resistance, obesity, and a high risk of cardiovascular events. However, careful monitoring of the adverse effects of this combination is also warranted.
Collapse
Affiliation(s)
- Yinqiu Yang
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenhe Zhao
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangli Ye
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingxiang Yu
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Mingxiang Yu
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Xinhua Qu
| |
Collapse
|
18
|
Santos-Ferreira D, Gonçalves-Teixeira P, Fontes-Carvalho R. SGLT-2 Inhibitors in Heart Failure and Type-2 Diabetes: Hitting Two Birds with One Stone? Cardiology 2019; 145:311-320. [DOI: 10.1159/000504694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/11/2019] [Indexed: 11/19/2022]
Abstract
Type 2 diabetes mellitus (T2DM) and heart failure (HF) have a tremendous impact worldwide, markedly reducing life-expectancy and quality of life. It is now known that each disease represents a risk factor for the other. Moreover, when they are combined, the prognosis is significantly worse. Until recently, these pathologies have been managed independently. However, their treatment paradigm is rapidly changing, with recent cardiovascular outcome trials showing that sodium-glucose cotransporter-2 inhibitors (SGLT-2i) are effective in the management of both diseases. This article explores the interactions between T2DM and HF and the concept of diabetic cardiomyopathy and summarizes recent data regarding the effects of SGLT-2i on HF hospitalization and the proposed pathophysiological mechanisms involved.
Collapse
|
19
|
Mori Y, Terasaki M, Hiromura M, Saito T, Kushima H, Koshibu M, Osaka N, Ohara M, Fukui T, Ohtaki H, Tsutomu H, Yamagishi SI. Luseogliflozin attenuates neointimal hyperplasia after wire injury in high-fat diet-fed mice via inhibition of perivascular adipose tissue remodeling. Cardiovasc Diabetol 2019; 18:143. [PMID: 31672147 PMCID: PMC6823953 DOI: 10.1186/s12933-019-0947-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/18/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Excess fat deposition could induce phenotypic changes of perivascular adipose tissue (PVAT remodeling), which may promote the progression of atherosclerosis via modulation of adipocytokine secretion. However, it remains unclear whether and how suppression of PVAT remodeling could attenuate vascular injury. In this study, we examined the effect of sodium-glucose cotransporter 2 (SGLT2) inhibitor, luseogliflozin on PVAT remodeling and neointima formation after wire injury in mice. METHODS Wilt-type mice fed with low-fat diet (LFD) or high-fat diet (HFD) received oral administration of luseogliflozin (18 mg/kg/day) or vehicle. Mice underwent bilateral femoral artery wire injury followed by unilateral removal of surrounding PVAT. After 25 days, injured femoral arteries and surrounding PVAT were analyzed. RESULTS In LFD-fed lean mice, neither luseogliflozin treatment or PVAT removal attenuated the intima-to-media (I/M) ratio of injured arteries. However, in HFD-fed mice, luseogliflozin or PVAT removal reduced the I/M ratio, whereas their combination showed no additive reduction. In PVAT surrounding injured femoral arteries of HFD-fed mice, luseogliflozin treatment decreased the adipocyte sizes. Furthermore, luseogliflozin reduced accumulation of macrophages expressing platelet-derived growth factor-B (PDGF-B) and increased adiponectin gene expression. Gene expression levels of Pdgf-b in PVAT were correlated with the I/M ratio. CONCLUSIONS Our present study suggests that luseogliflozin could attenuate neointimal hyperplasia after wire injury in HFD-fed mice partly via suppression of macrophage PDGF-B expression in PVAT. Inhibition of PVAT remodeling by luseogliflozin may be a novel therapeutic target for vascular remodeling after angioplasty.
Collapse
Affiliation(s)
- Yusaku Mori
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Michishige Terasaki
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Munenori Hiromura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Tomomi Saito
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Hideki Kushima
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Masakazu Koshibu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Naoya Osaka
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Makoto Ohara
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Tomoyasu Fukui
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Hirokazu Ohtaki
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Hirano Tsutomu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan.,Diabetes Center, Ebina General Hospital, Kanagawa, 243-0433, Japan
| | - Sho-Ichi Yamagishi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| |
Collapse
|
20
|
Papakitsou I, Vougiouklakis G, Elisaf MS, Filippatos TD. Differential pharmacology and clinical utility of dapagliflozin in type 2 diabetes. Clin Pharmacol 2019; 11:133-143. [PMID: 31572020 PMCID: PMC6756826 DOI: 10.2147/cpaa.s172353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
Dapagliflozin belongs in the family of sodium-glucose cotransporter 2 (SGLT2) inhibitors and acts by reducing glucose reabsorption in the proximal tubule. The aim of this review is to present the differential pharmacology and clinical utility of dapagliflozin. Dapagliflozin is orally administered, has a long half-life of 12.9 hours and (similar to empagliflozin) is a much weaker SGLT1 inhibitor compared with canagliflozin. Dapagliflozin significantly decreases glycated hemoglobin and fasting glucose levels in patients with type 2 diabetes mellitus (T2DM). The drug improves body weight, blood pressure, uric acid, triglycerides and high-density lipoprotein cholesterol. In the DECLARE-TIMI 58 trial, a large trial of 17,160 T2DM patients with established cardiovascular disease (CVD) or without established CVD but with multiple risk factors, dapagliflozin compared with placebo resulted in a significantly lower rate of the composite outcome of CVD death or hospitalization for heart failure (HHF); this effect was mainly due to a lower rate of HHF in the dapagliflozin group (HR: 0.73; 95%CI: 0.61–0.88), whereas no difference was observed in the rate of CVD death (HR: 0.98; 95%CI: 0.82–1.17). Moreover, dapagliflozin was noninferior to placebo with respect to major adverse CVD events. Dapagliflozin exerts beneficial effects on albuminuria. Additionally, in the DECLARE-TIMI 58 trial it significantly reduced the composite renal endpoint (40% decrease in glomerular filtration rate, end stage renal disease, or renal death) in both patients with established CVD and patients with multiple risk factors (overall HR: 0.53; 95%CI: 0.43–0.66). However dapagliflozin, like the other SGLT2 inhibitors, is associated with an increased risk of genital and urinary tract infections (usually mild mycotic infections) and acute kidney injury in cases of reduced extracellular volume. Dapagliflozin is a useful antidiabetic treatment which also exerts beneficial effects in the management of heart failure and diabetic kidney disease.
Collapse
Affiliation(s)
- Ioanna Papakitsou
- Department of Internal Medicine, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - George Vougiouklakis
- Department of Internal Medicine, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Moses S Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Theodosios D Filippatos
- Department of Internal Medicine, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Crete, Greece
| |
Collapse
|
21
|
Ortega R, Collado A, Selles F, Gonzalez-Navarro H, Sanz MJ, Real JT, Piqueras L. SGLT-2 (Sodium-Glucose Cotransporter 2) Inhibition Reduces Ang II (Angiotensin II)-Induced Dissecting Abdominal Aortic Aneurysm in ApoE (Apolipoprotein E) Knockout Mice. Arterioscler Thromb Vasc Biol 2019; 39:1614-1628. [PMID: 31294626 DOI: 10.1161/atvbaha.119.312659] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a pathological condition of permanent vessel dilatation that predisposes to the potentially fatal consequence of aortic rupture. SGLT-2 (sodium-glucose cotransporter 2) inhibitors have emerged as powerful pharmacological tools for type 2 diabetes mellitus treatment. Beyond their glucose-lowering effects, recent studies have shown that SGLT-2 inhibitors reduce cardiovascular events and have beneficial effects on several vascular diseases such as atherosclerosis; however, the potential effects of SGLT-2 inhibition on AAA remain unknown. This study evaluates the effect of oral chronic treatment with empagliflozin-an SGLT-2 inhibitor-on dissecting AAA induced by Ang II (angiotensin II) infusion in apoE (apolipoprotein E)-/- mice. Approach and Results: Empagliflozin treatment significantly reduced the Ang II-induced increase in maximal suprarenal aortic diameter in apoE-/- mice independently of blood pressure effects. Immunohistochemistry analysis revealed that empagliflozin diminished Ang II-induced elastin degradation, neovessel formation, and macrophage infiltration at the AAA lesion. Furthermore, Ang II infusion resulted in a marked increase in the expression of chemokines (CCL-2 [chemokine (C-C motif) ligand 2] and CCL-5 [chemokine (C-C motif) ligand 5]), VEGF (vascular endothelial growth factor), and MMP (matrix metalloproteinase)-2 and MMP-9 in suprarenal aortic walls of apoE-/- mice, and all were reduced by empagliflozin cotreatment. Western blot analysis revealed that p38 MAPK (p38 mitogen-activated protein kinase) and NF-κB (nuclear factor-κB) activation was also reduced in the suprarenal aortas of apoE-/- mice cotreated with empagliflozin. Finally, in vitro studies in human aortic endothelial cells and macrophages showed that empagliflozin inhibited leukocyte-endothelial cell interactions and release of proinflammatory chemokines. CONCLUSIONS Pharmacological inhibition of SGLT-2 by empagliflozin inhibits AAA formation. SGLT-2 inhibition might represent a novel promising therapeutic strategy to prevent AAA progression.
Collapse
Affiliation(s)
- Rebeca Ortega
- From the Institute of Health Research-INCLIVA, Valencia, Spain (R.O., A.C., F.S., H.G.-N., M.J.S., J.T.R., L.P.)
| | - Aida Collado
- From the Institute of Health Research-INCLIVA, Valencia, Spain (R.O., A.C., F.S., H.G.-N., M.J.S., J.T.R., L.P.)
| | - Francisca Selles
- From the Institute of Health Research-INCLIVA, Valencia, Spain (R.O., A.C., F.S., H.G.-N., M.J.S., J.T.R., L.P.)
| | - Herminia Gonzalez-Navarro
- From the Institute of Health Research-INCLIVA, Valencia, Spain (R.O., A.C., F.S., H.G.-N., M.J.S., J.T.R., L.P.).,CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research-ISCIII, Madrid, Spain (H.G.-N., M.J.S., J.T.R., L.P.)
| | - Maria-Jesus Sanz
- From the Institute of Health Research-INCLIVA, Valencia, Spain (R.O., A.C., F.S., H.G.-N., M.J.S., J.T.R., L.P.).,Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain (M.J.S., L.P.).,CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research-ISCIII, Madrid, Spain (H.G.-N., M.J.S., J.T.R., L.P.)
| | - José T Real
- From the Institute of Health Research-INCLIVA, Valencia, Spain (R.O., A.C., F.S., H.G.-N., M.J.S., J.T.R., L.P.).,Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Spain (J.T.R.).,CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research-ISCIII, Madrid, Spain (H.G.-N., M.J.S., J.T.R., L.P.)
| | - Laura Piqueras
- From the Institute of Health Research-INCLIVA, Valencia, Spain (R.O., A.C., F.S., H.G.-N., M.J.S., J.T.R., L.P.).,Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain (M.J.S., L.P.).,CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research-ISCIII, Madrid, Spain (H.G.-N., M.J.S., J.T.R., L.P.)
| |
Collapse
|
22
|
Ansary TM, Nakano D, Nishiyama A. Diuretic Effects of Sodium Glucose Cotransporter 2 Inhibitors and Their Influence on the Renin-Angiotensin System. Int J Mol Sci 2019; 20:E629. [PMID: 30717173 PMCID: PMC6387046 DOI: 10.3390/ijms20030629] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
The renin-angiotensin system (RAS) plays an important role in regulating body fluids and blood pressure. However, inappropriate activation of the RAS contributes to the pathogenesis of cardiovascular and renal diseases. Recently, sodium glucose cotransporter 2 (SGLT2) inhibitors have been used as anti-diabetic agents. SGLT2 inhibitors induce glycosuria and improve hyperglycemia by inhibiting urinary reabsorption of glucose. However, in the early stages of treatment, these inhibitors frequently cause polyuria and natriuresis, which potentially activate the RAS. Nevertheless, the effects of SGLT2 inhibitors on RAS activity are not straightforward. Available data indicate that treatment with SGLT2 inhibitors transiently activates the systemic RAS in type 2 diabetic patients, but not the intrarenal RAS. In this review article, we summarize current evidence of the diuretic effects of SGLT2 inhibitors and their influence on RAS activity.
Collapse
Affiliation(s)
- Tuba M Ansary
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| |
Collapse
|
23
|
Perry RJ, Rabin-Court A, Song JD, Cardone RL, Wang Y, Kibbey RG, Shulman GI. Dehydration and insulinopenia are necessary and sufficient for euglycemic ketoacidosis in SGLT2 inhibitor-treated rats. Nat Commun 2019; 10:548. [PMID: 30710078 PMCID: PMC6358621 DOI: 10.1038/s41467-019-08466-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Sodium-glucose transport protein 2 (SGLT2) inhibitors are a class of anti-diabetic agents; however, concerns have been raised about their potential to induce euglycemic ketoacidosis and to increase both glucose production and glucagon secretion. The mechanisms behind these alterations are unknown. Here we show that the SGLT2 inhibitor (SGLT2i) dapagliflozin promotes ketoacidosis in both healthy and type 2 diabetic rats in the setting of insulinopenia through increased plasma catecholamine and corticosterone concentrations secondary to volume depletion. These derangements increase white adipose tissue (WAT) lipolysis and hepatic acetyl-CoA content, rates of hepatic glucose production, and hepatic ketogenesis. Treatment with a loop diuretic, furosemide, under insulinopenic conditions replicates the effect of dapagliflozin and causes ketoacidosis. Furthermore, the effects of SGLT2 inhibition to promote ketoacidosis are independent from hyperglucagonemia. Taken together these data in rats identify the combination of insulinopenia and dehydration as a potential target to prevent euglycemic ketoacidosis associated with SGLT2i. The use of sodium-glucose transport protein 2 (SGLT2) inhibitors for the treatment of diabetes has been associated with euglycemic ketoacidosis and increased glucose production and glucagon secretion. Here Perry et al. show that these effects rely on both insulinopenia and dehydration, and thus suggest ways to manage the side effects associated with the use of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Rachel J Perry
- Departments of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, TAC S269, New Haven, CT, 06519, USA.,Departments of Cellular and Molecular Physiology, Yale University School of Medicine, P.O. Box 208020, TAC S269, New Haven, CT, 06519, USA
| | - Aviva Rabin-Court
- Departments of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, TAC S269, New Haven, CT, 06519, USA
| | - Joongyu D Song
- Departments of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, TAC S269, New Haven, CT, 06519, USA
| | - Rebecca L Cardone
- Departments of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, TAC S269, New Haven, CT, 06519, USA
| | - Yongliang Wang
- Departments of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, TAC S269, New Haven, CT, 06519, USA
| | - Richard G Kibbey
- Departments of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, TAC S269, New Haven, CT, 06519, USA.,Departments of Cellular and Molecular Physiology, Yale University School of Medicine, P.O. Box 208020, TAC S269, New Haven, CT, 06519, USA
| | - Gerald I Shulman
- Departments of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, TAC S269, New Haven, CT, 06519, USA. .,Departments of Cellular and Molecular Physiology, Yale University School of Medicine, P.O. Box 208020, TAC S269, New Haven, CT, 06519, USA.
| |
Collapse
|
24
|
Liu Y, Vu V, Sweeney G. Examining the Potential of Developing and Implementing Use of Adiponectin-Targeted Therapeutics for Metabolic and Cardiovascular Diseases. Front Endocrinol (Lausanne) 2019; 10:842. [PMID: 31920962 PMCID: PMC6918867 DOI: 10.3389/fendo.2019.00842] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiometabolic diseases encompass those affecting the heart and vasculature as well as other metabolic problems, such as insulin resistance, diabetes, and non-alcoholic fatty liver disease. These diseases tend to have common risk factors, one of which is impaired adiponectin action. This may be due to reduced bioavailability of the hormone or resistance to its effects on target tissues. A strong negative correlation between adiponectin levels and cardiometabolic diseases has been well-documented and research shown that adiponectin has cardioprotective, insulin sensitizing and direct beneficial metabolic effects. Thus, therapeutic approaches to enhance adiponectin action are widely considered to be desirable. The complexity of adiponectin structure and function has so far made progress in this area less than ideal. In this article we will review the effects and mechanism of action of adiponectin on cardiometabolic tissues, identify scenarios where enhancing adiponectin action would be of clinical value and finally discuss approaches via which this can be achieved.
Collapse
Affiliation(s)
- Ying Liu
- Metabolic Disease Research Division, iCarbonX Co. Ltd., Shenzhen, China
- *Correspondence: Ying Liu
| | - Vivian Vu
- Department of Biology, York University, Toronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
- Gary Sweeney
| |
Collapse
|
25
|
Yamazaki Y, Harada S, Tokuyama S. [Potential of the Cerebral Sodium-Glucose Transporter as a Novel Therapeutic Target in Cerebral Ischemia]. YAKUGAKU ZASSHI 2018; 138:955-962. [PMID: 29962475 DOI: 10.1248/yakushi.17-00223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebral ischemic stress often induces a hyperglycemic condition. This postischemic hyperglycemia exacerbates the development of cerebral ischemic neuronal damage, although the mechanism of this exacerbation remains to be clarified. We previously discovered that the cerebral sodium-glucose transporter (SGLT) was closely involved in the development of cerebral ischemic neuronal damage. SGLT is a member of the glucose transporter family and moves glucose together with sodium ions. SGLT-1, -3, -4, and -6 are distributed in the brain. We conducted further experiments to elucidate the detailed mechanism of the exacerbation of cerebral ischemia by cerebral SGLT. The results clarified: 1) the relationship between cerebral SGLT and postischemic hyperglycemia; 2) the involvement of cerebral SGLT-1 (a cerebral SGLT isoform) in cerebral ischemic neuronal damage; and 3) the effects of sodium influx through cerebral SGLT on the development of cerebral ischemic neuronal damage. This paper presents our data on the involvement of cerebral SGLT in the exacerbation of cerebral ischemic neuronal damage.
Collapse
Affiliation(s)
- Yui Yamazaki
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Shinichi Harada
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
26
|
Tahara A, Kondo Y, Takasu T, Tomiyama H. Effects of the SGLT2 inhibitor ipragliflozin on food intake, appetite-regulating hormones, and arteriovenous differences in postprandial glucose levels in type 2 diabetic rats. Biomed Pharmacother 2018; 105:1033-1041. [PMID: 30021338 DOI: 10.1016/j.biopha.2018.06.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 01/14/2023] Open
Abstract
AIMS The sodium-glucose cotransporter (SGLT) 2 inhibitor, ipragliflozin, improves not only hyperglycemia but also obesity in type 2 diabetic animals and patients; however, there have been concerns that it may also cause an increase in compensatory food intake. Appetite is regulated by complex mechanisms involving the central nervous system, part of which involves appetite-related hormones and arteriovenous differences in postprandial glucose levels. We evaluated the effect of ipragliflozin in type 2 diabetic rats on food intake, appetite-related hormones and arteriovenous differences in postprandial glucose levels, and their correlation with food intake. MAIN METHODS Ipragliflozin and several antidiabetic drugs were administered to type 2 diabetic rats and various parameters concerning food intake were measured. KEY FINDINGS Ipragliflozin significantly increased urinary glucose excretion and reduced postprandial hyperglycemia. Compared to normal rats, diabetic rats exhibited hyperphagia and elevated plasma levels of the appetite-stimulating hormones neuropeptide Y and ghrelin. Ipragliflozin induced significant weight loss and reduced plasma levels of appetite-stimulating hormones without affecting food intake. Diabetic rats exhibited a significantly reduced arteriovenous difference in postprandial glucose levels due to insulin insufficiency; this was improved by ipragliflozin, which increased renal arteriovenous differences in glucose levels by increasing urinary glucose excretion. SIGNIFICANCE These results indicate that the SGLT2 inhibitor, ipragliflozin, exerts antihyperglycemic actions by increasing urinary glucose excretion, and induces weight loss without a compensatory increase in food intake in type 2 diabetic mice. The mechanisms underlying these effects can be attributed, in part, to an increased arteriovenous difference in postprandial glucose levels and improved regulation of appetite-related hormones in the diabetic animal model. While this study was conducted in rodents and the results may be distinct from those in humans, it is possible that some of the pharmacological mechanisms, including the regulation of appetite-related hormones, can be extrapolated to clinical settings and may be valuable for further studies including clinical investigations.
Collapse
Affiliation(s)
- Atsuo Tahara
- Candidate Discovery Science Laboratories, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan.
| | - Yoshinori Kondo
- Research and Development Department, Kotobuki Pharmaceutical Co., Ltd., Hanishina-gun, Nagano, Japan
| | - Toshiyuki Takasu
- Candidate Discovery Science Laboratories, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Hiroshi Tomiyama
- Research and Development Department, Kotobuki Pharmaceutical Co., Ltd., Hanishina-gun, Nagano, Japan
| |
Collapse
|
27
|
Sodium-glucose transporter as a novel therapeutic target in disease. Eur J Pharmacol 2018; 822:25-31. [PMID: 29329760 DOI: 10.1016/j.ejphar.2018.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/02/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
Glucose is the primary energy fuel of life. A glucose transporter, the sodium-glucose transporter (SGLT), is receiving attention as a novel therapeutic target in disease. This review summarizes the physiological role of SGLT in cerebral ischemia, cancer, cardiac disease, and intestinal ischemia, which has encouraged analysis of SGLT function. In cerebral ischemia and cardiomyopathy, SGLT-1 is involved in worsening of the injury. In addition, SGLT-1 promotes the development of cancer. On the other hand, SGLT-1 has a protective effect against cardiac and intestinal ischemia. Interestingly, SGLT-1 expression levels are increased in some diseased tissue, such as in cerebral ischemia and cancer. This suggests that SGLT-1 may have an important role in many diseases. This review discusses the potential of SGLT as a target for novel therapeutic agents.
Collapse
|
28
|
Tahara A, Takasu T, Yokono M, Imamura M, Kurosaki E. Characterization and comparison of SGLT2 inhibitors: Part 3. Effects on diabetic complications in type 2 diabetic mice. Eur J Pharmacol 2017; 809:163-171. [DOI: 10.1016/j.ejphar.2017.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/23/2023]
|
29
|
Yoshikawa T, Kishi T, Shinohara K, Takesue K, Shibata R, Sonoda N, Inoguchi T, Sunagawa K, Tsutsui H, Hirooka Y. Arterial pressure lability is improved by sodium-glucose cotransporter 2 inhibitor in streptozotocin-induced diabetic rats. Hypertens Res 2017; 40:646-651. [PMID: 28202943 DOI: 10.1038/hr.2017.14] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/06/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022]
Abstract
To prevent cardiovascular events in patients with diabetes mellitus (DM), it is essential to reduce arterial pressure (AP). Sodium-glucose cotransporter 2 inhibitor (SGLT2i) prevents cardiovascular events via the depressor response in patients with DM. In the present study, we examined whether SGLT2i ameliorates AP lability in DM rats. Ten-week-old male Sprague-Dawley rats were administered a single intravenous injection of streptozotocin (50 mg kg-1) and were divided into three groups treated with low-dose SGLT2i, vehicle (VEH) or subcutaneously implanted insulin pellets (SGLT2i, VEH and Insulin group, respectively) for 14 days. SGLT2i reduced blood glucose, but its effect was lower than that of insulin. The telemetered mean AP at the end of the experiment did not differ among the SGLT2i, Insulin and VEH groups (83±7 vs. 98±9 vs. 90±8 mm Hg, respectively, n=5 for each). The standard deviation of AP as the index of lability was significantly smaller during the active period in the SGLT2i group than in the VEH group (5.6±0.5 vs. 7.0±0.7 mm Hg, n=5 for each, P<0.05). Sympathetic nerve activity during the active period was significantly lower in the SGLT2i group than in the VEH group. Baroreflex sensitivity (BRS) was significantly higher in the SGLT2i group than in the VEH group. The standard deviation of AP and sympathoexcitation did not differ between the Insulin and VEH groups. In conclusion, SGLT2i at a non-depressor dose ameliorated the AP lability associated with sympathoinhibition during the active period and improved the BRS in streptozotocin-induced DM rats.
Collapse
Affiliation(s)
- Tomoko Yoshikawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuya Kishi
- Collaborative Research Institute of Innovative Therapeutics for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan
| | - Keisuke Shinohara
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ko Takesue
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Risa Shibata
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Noriyuki Sonoda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Toyoshi Inoguchi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Kenji Sunagawa
- Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics, Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan
| |
Collapse
|
30
|
Woodward L, Akoumianakis I, Antoniades C. Unravelling the adiponectin paradox: novel roles of adiponectin in the regulation of cardiovascular disease. Br J Pharmacol 2016; 174:4007-4020. [PMID: 27629236 DOI: 10.1111/bph.13619] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue (AT) has recently been identified as a dynamic endocrine organ secreting a wide range of adipokines. Adiponectin is one such hormone, exerting endocrine and paracrine effects on the cardiovascular system. At a cellular and molecular level, adiponectin has anti-inflammatory, antioxidant and anti-apoptotic roles, thereby mitigating key mechanisms underlying cardiovascular disease (CVD) pathogenesis. However, adiponectin expression in human AT as well as its circulating levels are increased in advanced CVD states, and it is actually considered by many as a 'rescue hormone'. Due to the complex mechanisms regulating adiponectin's biosynthesis in the human AT, measurement of its levels as a biomarker in CVD is highly controversial, given that adiponectin exerts protective effects on the cardiovascular system but at the same time its increased levels flag advanced CVD. In this review article, we present the involvement of adiponectin in CVD pathogenesis and we discuss its role as a clinical biomarker. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Lavinia Woodward
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|