1
|
Aziz S, Germano TA, Oliveira AER, da Cruz Freire JE, de Oliveira MFR, Thiers KLL, Arnholdt-Schmitt B, Costa JH. The enigma of introns: Intronic miRNA-directed mechanisms and alternative splicing diversify alternative oxidase potential in Vitis vinifera. Int J Biol Macromol 2025:144300. [PMID: 40383341 DOI: 10.1016/j.ijbiomac.2025.144300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Alternative oxidase (AOX) transcript levels were associated with efficiently balanced respiration and validated to assist selection on multiple-resilience. Consistently, AOX has also been identified as a target for weakening the survival capabilities of parasites and microorganisms responsible for severe human diseases. Despite the unique features of AOX in Vitis vinifera, particularly intense constitutive expression of AOX2 in the presence of unusually large introns that challenge the dogma of gene expression in eukaryotes, V. vinifera has been overlooked in AOX research. This study uncovered two distinct alternative splicing variants of the AOX: AOX1a-Alternative variant attributed to unusual retention of the intron-4 in the 3´UTR, and AOX2-alternative variant, which is intron-1-dependent, involving the skipping of exon-1. The AOX2-alternative variant differed in that cystine-I changed to serine, which is linked to different metabolite stimulation. However, molecular docking suggested that AOX2 and the variant proteins exhibit the same catalytic activities and binding affinities for ubiquinol. The unique large introns in AOX2 exhibited 16 miRNAs, including the master regulator of development and stress responses, mir-398. Among these, nine were conserved and validated in other plant species, whereas seven were considered potential novel miRNA candidates. Transcriptome analyses revealed down- and up-regulation of AOX1a-Alternative during shrivelling and water deficiency, and up-regulation of AOX2-Alternative with increasing temperatures. Consistent with previous studies, AOX1a and AOX1d were linked to biotic and abiotic stress, whereas AOX2 showed constitutive or developmental regulation. This study encourages hypothesis-driven advanced research on early mechanisms and functionality of newly discovered alternative splicing events and intronic miRNAs. Given functional marker-assisted breeding, it strengthened the requirement to consider overall AOX transcript levels as markers for predicting multiple-resilient phenotypes.
Collapse
Affiliation(s)
- Shahid Aziz
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal.
| | - Thais Andrade Germano
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | | | - José Ednésio da Cruz Freire
- Biochemistry and Gene Expression Laboratory, Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Matheus Finger Ramos de Oliveira
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal.
| | - Jose Helio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal; INCTAgriS - National Institute of Science and Technology in Sustainable Agriculture in the Tropical Semi-Arid Region, Brazil.
| |
Collapse
|
2
|
Maghoumi M, Amodio ML, Cisneros-Zevallos L, Colelli G. Prevention of Chilling Injury in Pomegranates Revisited: Pre- and Post-Harvest Factors, Mode of Actions, and Technologies Involved. Foods 2023; 12:foods12071462. [PMID: 37048282 PMCID: PMC10093716 DOI: 10.3390/foods12071462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The storage life of pomegranate fruit (Punica granatum L.) is limited by decay, chilling injury, weight loss, and husk scald. In particular, chilling injury (CI) limits pomegranate long-term storage at chilling temperatures. CI manifests as skin browning that expands randomly with surface spots, albedo brown discoloration, and changes in aril colors from red to brown discoloration during handling or storage (6-8 weeks) at <5-7 °C. Since CI symptoms affect external and internal appearance, it significantly reduces pomegranate fruit marketability. Several postharvest treatments have been proposed to prevent CI, including atmospheric modifications (MA), heat treatments (HT), coatings, use of polyamines (PAs), salicylic acid (SA), jasmonates (JA), melatonin and glycine betaine (GB), among others. There is no complete understanding of the etiology and biochemistry of CI, however, a hypothetical model proposed herein indicates that oxidative stress plays a key role, which alters cell membrane functionality and integrity and alters protein/enzyme biosynthesis associated with chilling injury symptoms. This review discusses the hypothesized mechanism of CI based on recent research, its association to postharvest treatments, and their possible targets. It also indicates that the proposed mode of action model can be used to combine treatments in a hurdle synergistic or additive approach or as the basis for novel technological developments.
Collapse
Affiliation(s)
- Mahshad Maghoumi
- Dipartimento di Scienze Agrarie, Degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Maria Luisa Amodio
- Dipartimento di Scienze Agrarie, Degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Giancarlo Colelli
- Dipartimento di Scienze Agrarie, Degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
3
|
Qiao K, Yao X, Zhou Z, Xiong J, Fang K, Lan J, Xu F, Deng X, Zhang D, Lin H. Mitochondrial alternative oxidase enhanced ABA-mediated drought tolerance in Solanum lycopersicum. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153892. [PMID: 36566671 DOI: 10.1016/j.jplph.2022.153892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The phytohormone abscisic acid (ABA) plays essential roles in modulating drought stress responses. Mitochondrial alternative oxidase (AOX) is critical for reactive oxygen species (ROS) scavenging in drought stress responses. However, whether ABA signal in concert with AOX to moderate drought stress response remains largely unclear. In our study, we uncover the positive role of AOX in ABA-mediated drought tolerance in tomato (Solanum lycopersicum). Here, we report that ABA participates in the regulation of alternative respiration, and the increased AOX was found to improve drought tolerance by reducing total ROS accumulation. We also found that transcription factor ABA response element-binding factor 1 (SlAREB1) can directly bind to the promoter of AOX1a to activate its transcription. Virus-induced gene silencing (VIGS) of SlAREB1 compromised the ABA-induced alternative respiratory pathway, disrupted redox homeostasis and decreased plant resistance to drought stress, while overexpression of AOX1a in TRV2-SlAREB1 plants partially rescued the severe drought phenotype. Taken together, our results indicated that AOX1a plays an essential role in ABA-mediated drought tolerance partially in a SlAREB1-dependent manner, providing new insights into how ABA modulates ROS levels to cope with drought stress by AOX.
Collapse
Affiliation(s)
- Kang Qiao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Xiuhong Yao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Zuxu Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Jiawei Xiong
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Ke Fang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Jiayi Lan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Fei Xu
- Life Science and Biotechnology, Wuhan Bioengineering Institute, Wuhan, China
| | - Xingguang Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Dawei Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China.
| | - Honghui Lin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Butsanets PA, Shugaeva NA, Shugaev AG. Identification of Mitochondrial Alternative Oxidase Genes in Lupinus luteus and the Effect of Salicylic Acid on Their Expression. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Jin X. Regulatory Network of Serine/Arginine-Rich (SR) Proteins: The Molecular Mechanism and Physiological Function in Plants. Int J Mol Sci 2022; 23:ijms231710147. [PMID: 36077545 PMCID: PMC9456285 DOI: 10.3390/ijms231710147] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Serine/arginine-rich (SR) proteins are a type of splicing factor. They play significant roles in constitutive and alternative pre-mRNA splicing, and are involved in post-splicing activities, such as mRNA nuclear export, nonsense-mediated mRNA decay, mRNA translation, and miRNA biogenesis. In plants, SR proteins function under a complex regulatory network by protein–protein and RNA–protein interactions between SR proteins, other splicing factors, other proteins, or even RNAs. The regulatory networks of SR proteins are complex—they are regulated by the SR proteins themselves, they are phosphorylated and dephosphorylated through interactions with kinase, and they participate in signal transduction pathways, whereby signaling cascades can link the splicing machinery to the exterior environment. In a complex network, SR proteins are involved in plant growth and development, signal transduction, responses to abiotic and biotic stresses, and metabolism. Here, I review the current status of research on plant SR proteins, construct a model of SR proteins function, and ask many questions about SR proteins in plants.
Collapse
Affiliation(s)
- Xiaoli Jin
- Departmeng of Agronomy, College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
John S, Olas JJ, Mueller-Roeber B. Regulation of alternative splicing in response to temperature variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6150-6163. [PMID: 34028544 PMCID: PMC8483784 DOI: 10.1093/jxb/erab232] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
Plants have evolved numerous molecular strategies to cope with perturbations in environmental temperature, and to adjust growth and physiology to limit the negative effects of extreme temperature. One of the strategies involves alternative splicing of primary transcripts to encode alternative protein products or transcript variants destined for degradation by nonsense-mediated decay. Here, we review how changes in environmental temperature-cold, heat, and moderate alterations in temperature-affect alternative splicing in plants, including crops. We present examples of the mode of action of various temperature-induced splice variants and discuss how these alternative splicing events enable favourable plant responses to altered temperatures. Finally, we point out unanswered questions that should be addressed to fully utilize the endogenous mechanisms in plants to adjust their growth to environmental temperature. We also indicate how this knowledge might be used to enhance crop productivity in the future.
Collapse
Affiliation(s)
- Sheeba John
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
| | - Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Correspondence: or
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
- Correspondence: or
| |
Collapse
|
7
|
Hunter DA, Napier NJ, Erridge ZA, Saei A, Chen RKY, McKenzie MJ, O’Donoghue EM, Hunt M, Favre L, Lill RE, Brummell DA. Transcriptome Responses of Ripe Cherry Tomato Fruit Exposed to Chilling and Rewarming Identify Reversible and Irreversible Gene Expression Changes. FRONTIERS IN PLANT SCIENCE 2021; 12:685416. [PMID: 34335654 PMCID: PMC8322768 DOI: 10.3389/fpls.2021.685416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Tomato fruit stored below 12°C lose quality and can develop chilling injury upon subsequent transfer to a shelf temperature of 20°C. The more severe symptoms of altered fruit softening, uneven ripening and susceptibility to rots can cause postharvest losses. We compared the effects of exposure to mild (10°C) and severe chilling (4°C) on the fruit quality and transcriptome of 'Angelle', a cherry-type tomato, harvested at the red ripe stage. Storage at 4°C (but not at 10°C) for 27 days plus an additional 6 days at 20°C caused accelerated softening and the development of mealiness, both of which are commonly related to cell wall metabolism. Transcriptome analysis using RNA-Seq identified a range of transcripts encoding enzymes putatively involved in cell wall disassembly whose expression was strongly down-regulated at both 10 and 4°C, suggesting that accelerated softening at 4°C was due to factors unrelated to cell wall disassembly, such as reductions in turgor. In fruit exposed to severe chilling, the reduced transcript abundances of genes related to cell wall modification were predominantly irreversible and only partially restored upon rewarming of the fruit. Within 1 day of exposure to 4°C, large increases occurred in the expression of alternative oxidase, superoxide dismutase and several glutathione S-transferases, enzymes that protect cell contents from oxidative damage. Numerous heat shock proteins and chaperonins also showed large increases in expression, with genes showing peak transcript accumulation after different times of chilling exposure. These changes in transcript abundance were not induced at 10°C, and were reversible upon transfer of the fruit from 4 to 20°C. The data show that genes involved in cell wall modification and cellular protection have differential sensitivity to chilling temperatures, and exhibit different capacities for recovery upon rewarming of the fruit.
Collapse
Affiliation(s)
- Donald A. Hunter
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, New Zealand
| | - Nathanael J. Napier
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, New Zealand
| | - Zoe A. Erridge
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, New Zealand
| | - Ali Saei
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, New Zealand
| | - Ronan K. Y. Chen
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, New Zealand
| | - Marian J. McKenzie
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, New Zealand
| | - Erin M. O’Donoghue
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, New Zealand
| | - Martin Hunt
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, New Zealand
| | - Laurie Favre
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, New Zealand
- Centre for Postharvest and Refrigeration Research, Massey University, Palmerston North, New Zealand
| | - Ross E. Lill
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, New Zealand
| | - David A. Brummell
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, New Zealand
| |
Collapse
|
8
|
Haider STA, Ahmad S, Anjum MA, Naz S, Liaqat M, Saddiq B. Effects of different postharvest techniques on quality management and shelf life of ‘Kinnow’ mandarin fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00820-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Hewitt S, Dhingra A. Beyond Ethylene: New Insights Regarding the Role of Alternative Oxidase in the Respiratory Climacteric. FRONTIERS IN PLANT SCIENCE 2020; 11:543958. [PMID: 33193478 PMCID: PMC7652990 DOI: 10.3389/fpls.2020.543958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Climacteric fruits are characterized by a dramatic increase in autocatalytic ethylene production that is accompanied by a spike in respiration at the onset of ripening. The change in the mode of ethylene production from autoinhibitory to autostimulatory is known as the System 1 (S1) to System 2 (S2) transition. Existing physiological models explain the basic and overarching genetic, hormonal, and transcriptional regulatory mechanisms governing the S1 to S2 transition of climacteric fruit. However, the links between ethylene and respiration, the two main factors that characterize the respiratory climacteric, have not been examined in detail at the molecular level. Results of recent studies indicate that the alternative oxidase (AOX) respiratory pathway may play an essential role in mediating cross-talk between ethylene response, carbon metabolism, ATP production, and ROS signaling during climacteric ripening. New genomic, metabolic, and epigenetic information sheds light on the interconnectedness of ripening metabolic pathways, necessitating an expansion of the current, ethylene-centric physiological models. Understanding points at which ripening responses can be manipulated may reveal key, species- and cultivar-specific targets for regulation of ripening, enabling superior strategies for reducing postharvest wastage.
Collapse
Affiliation(s)
- Seanna Hewitt
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Amit Dhingra
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
10
|
Dourmap C, Roque S, Morin A, Caubrière D, Kerdiles M, Béguin K, Perdoux R, Reynoud N, Bourdet L, Audebert PA, Moullec JL, Couée I. Stress signalling dynamics of the mitochondrial electron transport chain and oxidative phosphorylation system in higher plants. ANNALS OF BOTANY 2020; 125:721-736. [PMID: 31711195 PMCID: PMC7182585 DOI: 10.1093/aob/mcz184] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/07/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Mitochondria play a diversity of physiological and metabolic roles under conditions of abiotic or biotic stress. They may be directly subjected to physico-chemical constraints, and they are also involved in integrative responses to environmental stresses through their central position in cell nutrition, respiration, energy balance and biosyntheses. In plant cells, mitochondria present various biochemical peculiarities, such as cyanide-insensitive alternative respiration, and, besides integration with ubiquitous eukaryotic compartments, their functioning must be coupled with plastid functioning. Moreover, given the sessile lifestyle of plants, their relative lack of protective barriers and present threats of climate change, the plant cell is an attractive model to understand the mechanisms of stress/organelle/cell integration in the context of environmental stress responses. SCOPE The involvement of mitochondria in this integration entails a complex network of signalling, which has not been fully elucidated, because of the great diversity of mitochondrial constituents (metabolites, reactive molecular species and structural and regulatory biomolecules) that are linked to stress signalling pathways. The present review analyses the complexity of stress signalling connexions that are related to the mitochondrial electron transport chain and oxidative phosphorylation system, and how they can be involved in stress perception and transduction, signal amplification or cell stress response modulation. CONCLUSIONS Plant mitochondria are endowed with a diversity of multi-directional hubs of stress signalling that lead to regulatory loops and regulatory rheostats, whose functioning can amplify and diversify some signals or, conversely, dampen and reduce other signals. Involvement in a wide range of abiotic and biotic responses also implies that mitochondrial stress signalling could result in synergistic or conflicting outcomes during acclimation to multiple and complex stresses, such as those arising from climate change.
Collapse
Affiliation(s)
- Corentin Dourmap
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Solène Roque
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Amélie Morin
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Damien Caubrière
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Margaux Kerdiles
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| | - Kyllian Béguin
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| | - Romain Perdoux
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Nicolas Reynoud
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Lucile Bourdet
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Pierre-Alexandre Audebert
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Julien Le Moullec
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Ivan Couée
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| |
Collapse
|
11
|
Guan Y, Hu W, Jiang A, Xu Y, Sa R, Feng K, Zhao M, Yu J, Ji Y, Hou M, Yang X. Effect of Methyl Jasmonate on Phenolic Accumulation in Wounded Broccoli. Molecules 2019; 24:E3537. [PMID: 31574924 PMCID: PMC6804049 DOI: 10.3390/molecules24193537] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 11/17/2022] Open
Abstract
In order to find an efficient way for broccoli to increase the phenolic content, this study intended primarily to elucidate the effect of methyl jasmonate (MeJA) treatment on the phenolic accumulation in broccoli. The optimum concentration of MeJA was studied first, and 10 μM MeJA was chosen as the most effective concentration to improve the phenolic content in wounded broccoli. Furthermore, in order to elucidate the effect of methyl jasmonate (MeJA) treatment on phenolic biosynthesis in broccoli, the key enzyme activities of phenylpropanoid metabolism, the total phenolic content (TPC), individual phenolic compounds (PC), antioxidant activity (AOX) and antioxidant metabolism-associated enzyme activities were investigated. Results show that MeJA treatment stimulated phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarin coenzyme A ligase (4CL) enzymes activities in phenylpropanoid metabolism, and inhibited the activity of polyphenol oxidase (PPO), and further accelerated the accumulation of the wound-induced rutin, caffeic acid, and cinnamic acid accumulation, which contributed to the result of the total phenolic content increasing by 34.8% and ferric reducing antioxidant power increasing by 154.9% in broccoli. These results demonstrate that MeJA in combination with wounding stress can induce phenylpropanoid metabolism for the wound-induced phenolic accumulation in broccoli.
Collapse
Affiliation(s)
- Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| | - Aili Jiang
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Rengaowa Sa
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| | - Manru Zhao
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Jiaoxue Yu
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Mengyang Hou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
12
|
Liu G, Li B, Li X, Wei Y, Liu D, Shi H. Comparative Physiological Analysis of Methyl Jasmonate in the Delay of Postharvest Physiological Deterioration and Cell Oxidative Damage in Cassava. Biomolecules 2019; 9:biom9090451. [PMID: 31492031 PMCID: PMC6769660 DOI: 10.3390/biom9090451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/16/2022] Open
Abstract
The short postharvest life of cassava is mainly due to its rapid postharvest physiological deterioration (PPD) and cell oxidative damage, however, how to effectively control this remains elusive. In this study, South China 5 cassava slices were sprayed with water and methyl jasmonate (MeJA) to study the effects of MeJA on reactive oxygen species, antioxidant enzymes, quality, endogenous hormone levels, and melatonin biosynthesis genes. We found that exogenous MeJA could delay the deterioration rate for at least 36 h and alleviate cell oxidative damage through activation of superoxide dismutase, catalase, and peroxidase. Moreover, MeJA increased the concentrations of melatonin and gibberellin during PPD, which had a significant effect on regulating PPD. Notably, exogenous MeJA had a significant effect on maintaining cassava quality, as evidenced by increased ascorbic acid content and carotenoid content. Taken together, MeJA treatment is an effective and promising way to maintain a long postharvest life, alleviate cell oxidative damage, and regulate storage quality in cassava.
Collapse
Affiliation(s)
- Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China.
- College of Forestry, Hainan University, Haikou 570228, China.
| | - Bing Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China.
| | - Xiuqiong Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China.
| | - Debing Liu
- College of Applied Science and Technology, Hainan University, Danzhou 571737, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
13
|
Effects of methyl salicylate on senescent spotting and hydrogen peroxide concentration in ripening ‘Sucrier’ bananas. ACTA ACUST UNITED AC 2019. [DOI: 10.17660/actahortic.2019.1245.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Albornoz K, Cantwell MI, Zhang L, Beckles DM. Integrative analysis of postharvest chilling injury in cherry tomato fruit reveals contrapuntal spatio-temporal responses to ripening and cold stress. Sci Rep 2019; 9:2795. [PMID: 30808915 PMCID: PMC6391400 DOI: 10.1038/s41598-019-38877-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
Postharvest chilling injury (PCI) reduces fruit quality and shelf-life in tomato (Solanum lycopersicum L.). PCI has been traditionally studied in the pericarp, however its development is likely heterogeneous in different fruit tissues. To gain insight into PCI's spatio-temporal development, we used postharvest biomarkers e.g. respiration and ethylene rates, ion leakage etc., to confirm the occurrence of PCI, and compared these data with molecular (gene expression), biophysical (MRI data) and biochemical parameters (Malondialdehyde (MDA) and starch content) from the pericarp or columella. Tissues were stored at control (12.5 °C) or PCI-inducing temperatures (2.5 or 5 °C) followed by rewarming at 20 °C. MRI and ion leakage revealed that cold irreversibly impairs ripening-associated membrane liquefaction; MRI also showed that the internal and external fruit tissues responded differently to cold. MDA and especially starch contents, were affected by chilling in a tissue-specific manner. The expression of the six genes studied: ACO1 and ACS2 (ripening), CBF1 (cold response), DHN, AOX1a and LoxB (stress-related) showed non-overlapping temporal and spatially-specific responses. Overall, the data highlighted the interconnectedness of fruit cold response and ripening, and showed how cold stress reconfigures the latter. They further underscored that multidimensional spatial and temporal biological studies are needed to develop effective solutions to PCI.
Collapse
Affiliation(s)
- Karin Albornoz
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, United States
| | - Marita I Cantwell
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, United States
| | - Lu Zhang
- Department of Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, CA, 95616, United States
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, United States.
| |
Collapse
|
15
|
Akan S, Tuna Gunes N, Yanmaz R. Methyl jasmonate and low temperature can help for keeping some physicochemical quality parameters in garlic (Allium sativum L.) cloves. Food Chem 2019; 270:546-553. [DOI: 10.1016/j.foodchem.2018.07.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
|
16
|
Carvajal F, Rosales R, Palma F, Manzano S, Cañizares J, Jamilena M, Garrido D. Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity. BMC Genomics 2018; 19:125. [PMID: 29415652 PMCID: PMC5804050 DOI: 10.1186/s12864-018-4500-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/28/2018] [Indexed: 11/18/2022] Open
Abstract
Background Zucchini fruit is susceptible to chilling injury (CI), but the response to low storage temperature is cultivar dependent. Previous reports about the response of zucchini fruit to chilling storage have been focused on the physiology and biochemistry of this process, with little information about the molecular mechanisms underlying it. In this work, we present a comprehensive analysis of transcriptomic changes that take place after cold storage in zucchini fruit of two commercial cultivars with contrasting response to chilling stress. Results RNA-Seq analysis was conducted in exocarp of fruit at harvest and after 14 days of storage at 4 and 20 °C. Differential expressed genes (DEGs) were obtained comparing fruit stored at 4 °C with their control at 20 °C, and then specific and common up and down-regulated DEGs of each cultivar were identified. Functional analysis of these DEGs identified similarities between the response of zucchini fruit to low temperature and other stresses, with an important number of GO terms related to biotic and abiotic stresses overrepresented in both cultivars. This study also revealed several molecular mechanisms that could be related to chilling tolerance, since they were up-regulated in cv. Natura (CI tolerant) or down-regulated in cv. Sinatra (CI sensitive). These mechanisms were mainly those related to carbohydrate and energy metabolism, transcription, signal transduction, and protein transport and degradation. Among DEGs belonging to these pathways, we selected candidate genes that could regulate or promote chilling tolerance in zucchini fruit including the transcription factors MYB76-like, ZAT10-like, DELLA protein GAIP, and AP2/ERF domain-containing protein. Conclusions This study provides a broader understanding of the important mechanisms and processes related to coping with low temperature stress in zucchini fruit and allowed the identification of some candidate genes that may be involved in the acquisition of chilling tolerance in this crop. These genes will be the basis of future studies aimed to identify markers involved in cold tolerance and aid in zucchini breeding programs. Electronic supplementary material The online version of this article (10.1186/s12864-018-4500-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Carvajal
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - R Rosales
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - F Palma
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - S Manzano
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), CIAIMBITAL, University of Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| | - J Cañizares
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
| | - M Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), CIAIMBITAL, University of Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| | - D Garrido
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
17
|
Roles of C-Repeat Binding Factors-Dependent Signaling Pathway in Jasmonates-Mediated Improvement of Chilling Tolerance of Postharvest Horticultural Commodities. J FOOD QUALITY 2018. [DOI: 10.1155/2018/8517018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
C-repeat binding factor- (CBF-) dependent signaling pathway is proposed to be a key responder to low temperature stress in plant. Jasmonates (JAs), the endogenous signal molecules in plant, participate in plant defense against (a)biotic stresses; however, the mechanism has not been fully clarified so far. With the progress made in JAs biopathway, signal transduction, and their relationship with CBF-dependent signaling pathway, our knowledge of the roles of the CBF-dependent signaling pathway in JAs-mediated improvement of chilling tolerance accumulates. In this review, we firstly briefly review the chilling injury (CI) characteristics of postharvest horticultural commodities, then introduce the biopathway and signal transduction of JAs, subsequently summarize the roles of the CBF-dependent signaling pathway under low temperature stress, and finally describe the linkage between JAs signal transduction and the CBF-dependent signaling pathway.
Collapse
|
18
|
Wang L, Li X, Bai J, Luo H, Jin C, Hui J, Yu Z. Residual impact of methyl salicylate fumigation at the breaker stage on C6 volatile biopathway in red tomato fruit. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Libin Wang
- Department of Processing and Preservation and of Agricultural Product, College of Food Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu 210095 China
- Citrus and Other Subtropical Products Research Unit, U.S. Horticultural Research Laboratory; USDA, ARS, 2001 S. Rock Road; Ft. Pierce Florida 34945
- Department of Food Science, College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu 225127 China
| | - Xuehui Li
- Department of Food Science, College of Life Science and Technology; Nanyang Normal University; Nanyang Henan 473061 China
| | - Jinhe Bai
- Citrus and Other Subtropical Products Research Unit, U.S. Horticultural Research Laboratory; USDA, ARS, 2001 S. Rock Road; Ft. Pierce Florida 34945
| | - Haibo Luo
- Department of Food Science; Zhejiang Pharmaceutical College; Ningbo Zhejiang 315100 China
| | - Changhai Jin
- Department of Food Science, College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu 225127 China
| | - Jie Hui
- Department of Food Science, College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu 225127 China
| | - Zhifang Yu
- Department of Processing and Preservation and of Agricultural Product, College of Food Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu 210095 China
| |
Collapse
|
19
|
Tang Y, Sun X, Wen T, Liu M, Yang M, Chen X. Implications of terminal oxidase function in regulation of salicylic acid on soybean seedling photosynthetic performance under water stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:19-28. [PMID: 28024235 DOI: 10.1016/j.plaphy.2016.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 05/27/2023]
Abstract
The aim of this study is to investigate whether exogenous application of salicylic acid (SA) could modulate the photosynthetic capacity of soybean seedlings in water stress tolerance, and to clarify the potential functions of terminal oxidase (plastid terminal oxidase (PTOX) and alternative oxidase (AOX)) in SA' s regulation on photosynthesis. The effects of SA and water stress on gas exchange, pigment contents, chlorophyll fluorescence, enzymes (guaiacol peroxidase (POD; EC 1.11.1.7), superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and NADP-malate dehydrogenase (NADP-MDH; EC1.1.1.82)) activity and transcript levels of PTOX, AOX1, AOX2a, AOX2b were examined in a hydroponic cultivation system. Results indicate that water stress significantly decreased the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E), pigment contents (Chla + b, Chla/b, Car), maximum quantum yield of PSⅡphotochemistry (Fv/Fm), efficiency of excitation capture of open PSⅡcenter (Fv'/Fm'), quantum efficiency of PSⅡphotochemistry (ΦPSⅡ), photochemical quenching (qP), and increased malondialdehyde (MDA) content and the activity of all the enzymes. SA pretreatment led to significant decreases in Ci and MDA content, and increases in Pn, Gs, E, pigment contents, Fv/Fm, Fv'/Fm', ΦPSⅡ, qP, and the activity of all the enzymes. SA treatment and water stress alone significantly up-regulated the expression of PTOX, AOX1 and AOX2b. SA pretreatment further increased the transcript levels of PTOX and AOX2b of soybean seedling under water stress. These results indicate that SA application alleviates the water stress-induced decrease in photosynthesis may mainly through maintaining a lower reactive oxygen species (ROS) level, a greater PSⅡefficiency, and an enhanced alternative respiration and chlororespiration. PTOX and AOX may play important roles in SA-mediated resistance to water stress.
Collapse
Affiliation(s)
- Yanping Tang
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China; Agrotechnical Extension Station, Agricultural Bureau of Dazhou City, No.52, Heye Street, Tongchuan District, Dazhou, 635000, Sichuan, China.
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Tao Wen
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Mingjie Liu
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Mingyan Yang
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xuefei Chen
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China
| |
Collapse
|
20
|
Ding Y, Zhao J, Nie Y, Fan B, Wu S, Zhang Y, Sheng J, Shen L, Zhao R, Tang X. Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8200-8206. [PMID: 27754653 DOI: 10.1021/acs.jafc.6b02902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Effects of salicylic acid (SA) on gibberellin (GA) homeostasis, C-repeat/dehydration-responsive element binding factor (CBF) pathway, and antioxidant enzyme systems linked to chilling- and oxidative-stress tolerance in tomato fruit were investigated. Mature green tomatoes (Solanum lycopersicum L. cv. Moneymaker) were treated with 0, 0.5, and 1 mM SA solution for 15 min before storage at 4 °C for 28 days. In comparison to 0 or 0.5 mM SA, 1 mM SA significantly decreased the chilling injury (CI) index in tomato fruit. In the SA-treated fruit, the upregulation of GA biosynthetic gene (GA3ox1) expression was followed by gibberellic acid (GA3) surge and DELLA protein degradation. CBF1 participated in the SA-modulated tolerance and stimulated the expression of GA catabolic gene (GA2ox1). Furthermore, 1 mM SA enhanced activities of antioxidant enzymes and, thus, reduced reactive oxygen species accumulation. Our findings suggest that SA might protect tomato fruit from CI and oxidative damage through regulating GA metabolism, CBF1 gene expression, and antioxidant enzyme activities.
Collapse
Affiliation(s)
- Yang Ding
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
| | - Jinhong Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
| | - Ying Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
| | - Shujuan Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
| | - Yu Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China , Beijing 100872, People's Republic of China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| | - Ruirui Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| | - Xuanming Tang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
| |
Collapse
|
21
|
Dinakar C, Vishwakarma A, Raghavendra AS, Padmasree K. Alternative Oxidase Pathway Optimizes Photosynthesis During Osmotic and Temperature Stress by Regulating Cellular ROS, Malate Valve and Antioxidative Systems. FRONTIERS IN PLANT SCIENCE 2016; 7:68. [PMID: 26904045 PMCID: PMC4747084 DOI: 10.3389/fpls.2016.00068] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 01/15/2016] [Indexed: 05/19/2023]
Abstract
The present study reveals the importance of alternative oxidase (AOX) pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 μmoles m(-2) s(-1) at 25°C under a range of sorbitol concentrations from 0.4 to 1.0 M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 to 10°C to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25°C), the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation), under both hyper-osmotic (1.0 M sorbitol) and sub-optimal temperature stress conditions (10°C), while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS) levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA) related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG) related to antioxidative system during hyper-osmotic stress. Further, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD) and sub-optimal temperature (NADPH/NADP) stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM), the observed changes in NaHCO3-dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(P)H/NAD(P) and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the results indicated the importance of AOX pathway in optimizing photosynthesis under both hyper-osmotic stress and sub-optimal temperatures. Regulation of ROS through redox couples related to malate valve and antioxidant system by AOX pathway to optimize photosynthesis under these stresses are discussed.
Collapse
Affiliation(s)
- Challabathula Dinakar
- Department of Plant Sciences, School of Life Sciences, University of HyderabadHyderabad, India
- Department of Life Sciences, School of Basic and Applied Sciences, Central University of Tamil NaduThiruvarur, India
| | - Abhaypratap Vishwakarma
- Department of Plant Sciences, School of Life Sciences, University of HyderabadHyderabad, India
| | - Agepati S. Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of HyderabadHyderabad, India
| | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of HyderabadHyderabad, India
- *Correspondence: Kollipara Padmasree, ;
| |
Collapse
|
22
|
Campos C, Cardoso H, Nogales A, Svensson J, Lopez-Ráez JA, Pozo MJ, Nobre T, Schneider C, Arnholdt-Schmitt B. Intra and Inter-Spore Variability in Rhizophagus irregularis AOX Gene. PLoS One 2015; 10:e0142339. [PMID: 26540237 PMCID: PMC4634980 DOI: 10.1371/journal.pone.0142339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/20/2015] [Indexed: 12/03/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF symbiosis improves nutrient uptake and buffers the plant against a diversity of stresses. Rhizophagus irregularis is one of the most widespread AMF species in the world, and its application in agricultural systems for yield improvement has increased over the last years. Still, from the inoculum production perspective, a lack of consistency of inoculum quality is referred to, which partially may be due to a high genetic variability of the fungus. The alternative oxidase (AOX) is an enzyme of the alternative respiratory chain already described in different taxa, including various fungi, which decreases the damage caused by oxidative stress. Nevertheless, virtually nothing is known on the involvement of AMF AOX on symbiosis establishment, as well on the existence of AOX variability that could affect AMF effectiveness and consequently plant performance. Here, we report the isolation and characterisation of the AOX gene of R. irregularis (RiAOX), and show that it is highly expressed during early phases of the symbiosis with plant roots. Phylogenetic analysis clustered RiAOX sequence with ancient fungi, and multiple sequence alignment revealed the lack of several regulatory motifs which are present in plant AOX. The analysis of RiAOX polymorphisms in single spores of three different isolates showed a reduced variability in one spore relatively to a group of spores. A high number of polymorphisms occurred in introns; nevertheless, some putative amino acid changes resulting from non-synonymous variants were found, offering a basis for selective pressure to occur within the populations. Given the AOX relatedness with stress responses, differences in gene variants amongst R. irregularis isolates are likely to be related with its origin and environmental constraints and might have a potential impact on inoculum production.
Collapse
Affiliation(s)
- Catarina Campos
- EU Marie Curie Chair, ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de Évora, Núcleo da Mitra, Évora, Portugal
| | - Hélia Cardoso
- EU Marie Curie Chair, ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de Évora, Núcleo da Mitra, Évora, Portugal
| | - Amaia Nogales
- EU Marie Curie Chair, ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de Évora, Núcleo da Mitra, Évora, Portugal
| | | | - Juan Antonio Lopez-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Granada, Spain
| | - María José Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Granada, Spain
| | - Tânia Nobre
- EU Marie Curie Chair, ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de Évora, Núcleo da Mitra, Évora, Portugal
| | | | - Birgit Arnholdt-Schmitt
- EU Marie Curie Chair, ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de Évora, Núcleo da Mitra, Évora, Portugal
| |
Collapse
|
23
|
Wang L, Baldwin EA, Bai J. Recent Advance in Aromatic Volatile Research in Tomato Fruit: The Metabolisms and Regulations. FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1638-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Pu X, Lv X, Tan T, Fu F, Qin G, Lin H. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress. ANNALS OF BOTANY 2015; 116:583-600. [PMID: 25987710 PMCID: PMC4577992 DOI: 10.1093/aob/mcv063] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/16/2015] [Accepted: 03/27/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants are sessile organisms that have the ability to integrate external cues into metabolic and developmental signals. The cues initiate specific signal cascades that can enhance the tolerance of plants to stress, and these mechanisms are crucial to the survival and fitness of plants. The adaption of plants to stresses is a complex process that involves decoding stress inputs as energy-deficiency signals. The process functions through vast metabolic and/or transcriptional reprogramming to re-establish the cellular energy balance. Members of the mitochondrial energy dissipation pathway (MEDP), alternative oxidases (AOXs) and uncoupling proteins (UCPs), act as energy mediators and might play crucial roles in the adaption of plants to stresses. However, their roles in plant growth and development have been relatively less explored. SCOPE This review summarizes current knowledge about the role of members of the MEDP in plant development as well as recent advances in identifying molecular components that regulate the expression of AOXs and UCPs. Highlighted in particular is a comparative analysis of the expression, regulation and stress responses between AOXs and UCPs when plants are exposed to stresses, and a possible signal cross-talk that orchestrates the MEDP, reactive oxygen species (ROS), calcium signalling and hormone signalling. CONCLUSIONS The MEDP might act as a cellular energy/metabolic mediator that integrates ROS signalling, energy signalling and hormone signalling with plant development and stress accumulation. However, the regulation of MEDP members is complex and occurs at transcriptional, translational, post-translational and metabolic levels. How this regulation is linked to actual fluxes through the AOX/UCP in vivo remains elusive.
Collapse
Affiliation(s)
- Xiaojun Pu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Tinghong Tan
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Faqiong Fu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Gongwei Qin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
25
|
Glowacz M, Rees D. Using jasmonates and salicylates to reduce losses within the fruit supply chain. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2527-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
MAF2 Is Regulated by Temperature-Dependent Splicing and Represses Flowering at Low Temperatures in Parallel with FLM. PLoS One 2015; 10:e0126516. [PMID: 25955034 PMCID: PMC4425511 DOI: 10.1371/journal.pone.0126516] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/03/2015] [Indexed: 11/19/2022] Open
Abstract
Plants enter their reproductive phase when the environmental conditions are favourable for the successful production of progeny. The transition from vegetative to reproductive phase is influenced by several environmental factors including ambient temperature. In the model plant Arabidopsis thaliana, SHORT VEGETATIVE PHASE (SVP) is critical for this pathway; svp mutants cannot modify their flowering time in response to ambient temperature. SVP encodes a MADS-box transcription factor that directly represses genes that promote flowering. SVP binds DNA in complexes with other MADS-box transcription factors, including FLOWERING LOCUS M (FLM), which acts with SVP to repress the floral transition at low temperatures. Small temperature changes post-transcriptionally regulate FLM through temperature-dependent alternative splicing (TD-AS). As ambient temperature increases, the predominant FLM splice isoform shifts to encode a protein incapable of exerting a repressive effect on flowering. Here we characterize a closely related MADS-box transcription factor, MADS AFFECTING FLOWERING2 (MAF2), which has independently evolved TD-AS. At low temperatures the most abundant MAF2 splice variant encodes a protein that interacts with SVP to repress flowering. At increased temperature the relative abundance of splice isoforms shifts in favour of an intron-retaining variant that introduces a premature termination codon. We show that this isoform encodes a protein that cannot interact with SVP or repress flowering. At lower temperatures MAF2 and SVP repress flowering in parallel with FLM and SVP, providing an additional input to sense ambient temperature for the control of flowering.
Collapse
|
27
|
Chen LJ, Xiang HZ, Miao Y, Zhang L, Guo ZF, Zhao XH, Lin JW, Li TL. An Overview of Cold Resistance in Plants. JOURNAL OF AGRONOMY AND CROP SCIENCE 2014; 200:237-245. [PMID: 0 DOI: 10.1111/jac.12082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- L.-J. Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province; Key Laboratory of Protected Horticulture(Ministry of Education); College of Biosciences and Biotechnology; Shenyang Agricultural University; Shenyang China
| | - H.-Z. Xiang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province; Key Laboratory of Protected Horticulture(Ministry of Education); College of Biosciences and Biotechnology; Shenyang Agricultural University; Shenyang China
| | - Y. Miao
- Key Laboratory of Agricultural Biotechnology of Liaoning Province; Key Laboratory of Protected Horticulture(Ministry of Education); College of Biosciences and Biotechnology; Shenyang Agricultural University; Shenyang China
| | - L. Zhang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province; Key Laboratory of Protected Horticulture(Ministry of Education); College of Biosciences and Biotechnology; Shenyang Agricultural University; Shenyang China
| | - Z.-F. Guo
- Key Laboratory of Agricultural Biotechnology of Liaoning Province; Key Laboratory of Protected Horticulture(Ministry of Education); College of Biosciences and Biotechnology; Shenyang Agricultural University; Shenyang China
| | - X.-H. Zhao
- The Liaoning Academy of Agricultural Sciences; Shenyang China
| | - J.-W. Lin
- Key Laboratory of Agricultural Biotechnology of Liaoning Province; Key Laboratory of Protected Horticulture(Ministry of Education); College of Biosciences and Biotechnology; Shenyang Agricultural University; Shenyang China
| | - T.-L. Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province; Key Laboratory of Protected Horticulture(Ministry of Education); College of Biosciences and Biotechnology; Shenyang Agricultural University; Shenyang China
| |
Collapse
|
28
|
Seo PJ, Park MJ, Park CM. Alternative splicing of transcription factors in plant responses to low temperature stress: mechanisms and functions. PLANTA 2013; 237:1415-24. [PMID: 23624977 PMCID: PMC3664756 DOI: 10.1007/s00425-013-1882-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/08/2013] [Indexed: 05/19/2023]
Abstract
Transcription factors play a central role in the gene regulatory networks that mediate various aspects of plant developmental processes and responses to environmental changes. Therefore, their activities are elaborately regulated at multiple steps. In particular, accumulating evidence illustrates that post-transcriptional control of mRNA metabolism is a key molecular scheme that modulates the transcription factor activities in plant responses to temperature fluctuations. Transcription factors have a modular structure consisting of distinct protein domains essential for DNA binding, dimerization, and transcriptional regulation. Alternative splicing produces multiple proteins having different structural domain compositions from a single transcription factor gene. Recent studies have shown that alternative splicing of some transcription factor genes generates small interfering peptides (siPEPs) that negatively regulate the target transcription factors via peptide interference (PEPi), constituting self-regulatory circuits in plant cold stress response. A number of splicing factors, which are involved in RNA binding, splice site selection, and spliceosome assembly, are also affected by temperature fluctuations, supporting the close association of alternative splicing of transcription factors with plant responses to low temperatures. In this review, we summarize recent progress on the temperature-responsive alternative splicing of transcription factors in plants with emphasis on the siPEP-mediated PEPi mechanism.
Collapse
Affiliation(s)
- Pil Joon Seo
- Department of Chemistry, Chonbuk National University, Jeonju, 561-756 Korea
| | - Mi-Jeong Park
- Department of Chemistry, Seoul National University, Seoul, 151-742 Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 151-742 Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-742 Korea
| |
Collapse
|
29
|
Wang H, Qian Z, Ma S, Zhou Y, Patrick JW, Duan X, Jiang Y, Qu H. Energy status of ripening and postharvest senescent fruit of litchi (Litchi chinensis Sonn.). BMC PLANT BIOLOGY 2013; 13:55. [PMID: 23547657 PMCID: PMC3636124 DOI: 10.1186/1471-2229-13-55] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/18/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Recent studies have demonstrated that cellular energy is a key factor switching on ripening and senescence of fruit. However, the factors that influence fruit energy status remain largely unknown. RESULTS HPLC profiling showed that ATP abundance increased significantly in developing preharvest litchi fruit and was strongly correlated with fruit fresh weight. In contrast, ATP levels declined significantly during postharvest fruit senescence and were correlated with the decrease in the proportion of edible fruit. The five gene transcripts isolated from the litchi fruit pericarp were highly expressed in vegetative tissues and peaked at 70 days after flowering (DAF) consistent with fruit ADP concentrations, except for uncoupling mitochondrial protein 1 (UCP1), which was predominantly expressed in the root, and ATP synthase beta subunit (AtpB), which was up-regulated significantly before harvest and peaked 2 days after storage. These results indicated that the color-breaker stage at 70 DAF and 2 days after storage may be key turning points in fruit energy metabolism. Transcript abundance of alternative oxidase 1 (AOX1) increased after 2 days of storage to significantly higher levels than those of LcAtpB, and was down-regulated significantly by exogenous ATP. ATP supplementation had no significant effect on transcript abundance of ADP/ATP carrier 1 (AAC1) and slowed the changes in sucrose non-fermenting-1-related kinase 2 (SnRK2) expression, but maintained ATP and energy charge levels, which were correlated with delayed senescence. CONCLUSIONS Our results suggest that senescence of litchi fruit is closely related with energy. A surge of LcAtpB expression marked the beginning of fruit senescence. The findings may provide a new strategy to extend fruit shelf life by regulating its energy level.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
- University of Chinese Academy of Sciences, Beijing, 100049, P R China
| | - Zhengjiang Qian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
- University of Chinese Academy of Sciences, Beijing, 100049, P R China
| | - Sanmei Ma
- Department of Biotechnology, Jinan University, Guangzhou, 510632, P R China
| | - Yuchuan Zhou
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane St Lucia, QLD, 4072, Australia
| | - John W Patrick
- School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xuewu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
| | - Hongxia Qu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
| |
Collapse
|
30
|
Liu H, Ouyang B, Zhang J, Wang T, Li H, Zhang Y, Yu C, Ye Z. Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. PLoS One 2012; 7:e50785. [PMID: 23226384 PMCID: PMC3511270 DOI: 10.1371/journal.pone.0050785] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/24/2012] [Indexed: 11/25/2022] Open
Abstract
The wild species Solanum habrochaites is more cold tolerant than the cultivated tomato (S. lycopersicum). To explore the mechanisms underlying cold tolerance of S. habrochaites, seedlings of S. habrochaites LA1777 introgression lines (ILs), as well as the two parents, were evaluated under low temperature (4°C). The IL LA3969 and its donor parent LA1777 were found to be more cold tolerant than the recurrent parent S. lycopersicum LA4024. The differences in physiology and global gene expression between cold-tolerant (LA1777 and LA3969) and -sensitive (LA4024) genotypes under cold stress were further investigated. Comparative transcriptome analysis identified 1613, 1456, and 1523 cold-responsive genes in LA1777, LA3969, and LA4024, respectively. Gene ontology (GO) term enrichment analysis revealed that more GO biological process terms were significantly enriched among the up-regulated genes in the two tolerant genotypes, whereas more biological processes were significantly repressed by cold stress in the sensitive one. A total of 92 genes with significant differential expression between tolerant and sensitive genotypes under cold stress were identified. Among these, many stress-related GO terms were significantly enriched, such as 'response to stimulus' and 'response to stress'. Moreover, GO terms 'response to hormone stimulus', 'response to reactive oxygen species (ROS)', and 'calcium-mediated signaling' were also overrepresented. Several transcripts involved in hormone or ROS homeostasis were also differentially expressed. ROS, hormones, and calcium as signaling molecules may play important roles in regulating gene expression in response to cold stress. Moreover, the expression of various transcription factors, post-translational proteins, metabolic enzymes, and photosynthesis-related genes was also specifically modulated. These specific modifications may play pivotal roles in conferring cold tolerance in tomato. These results not only provide new insights into the molecular mechanisms of cold tolerance in tomato, but also provide potential candidate genes for genetic improvement.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Chuying Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Xu F, Yuan S, Zhang DW, Lv X, Lin HH. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5705-16. [PMID: 22915749 PMCID: PMC3444281 DOI: 10.1093/jxb/ers226] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Although the alternative oxidase (AOX) has been proposed to play a role in fruit development, the function of AOX in fruit ripening is unclear. To gain further insight into the role of AOX in tomato fruit ripening, transgenic tomato plants 35S-AOX1a and 35S-AOX-RNAi were generated. Tomato plants with reduced LeAOX levels exhibited retarded ripening; reduced carotenoids, respiration, and ethylene production; and the down-regulation of ripening-associated genes. Moreover, no apparent respiratory climacteric occurred in the AOX-reduced tomato fruit, indicating that AOX might play an important role in climacteric respiration. In contrast, the fruit that overexpressed LeAOX1a accumulated more lycopene, though they displayed a similar pattern of ripening to wild-type fruit. Ethylene application promoted fruit ripening and anticipated ethylene production and respiration, including the alternative pathway respiration. Interestingly, the transgenic plants with reduced LeAOX levels failed to ripen after 1-methylcyclopropene (1-MCP) treatment, while such inhibition was notably less effective in 35S-AOX1a fruit. These findings indicate that AOX is involved in respiratory climacteric and ethylene-mediated fruit ripening of tomato.
Collapse
Affiliation(s)
- Fei Xu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
- These authors contributed equally to this work
| | - Shu Yuan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
- These authors contributed equally to this work
| | - Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
- These authors contributed equally to this work
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu 610065China
| |
Collapse
|
32
|
Alleviation of postharvest chilling injury of tomato fruit by salicylic acid treatment. Journal of Food Science and Technology 2012; 51:2815-20. [PMID: 25328231 DOI: 10.1007/s13197-012-0757-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/03/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
Tomato fruit at the mature green stage were treated with salicylic acid at different concentration (0, 1 and 2 mM) and analyzed for chilling injury (CI), electrolyte leakage (EL), malondialdehyde (MDA) and proline contents and phospholipase D (PLD) and lipoxygenase (LOX) activities during cold storage. PLD and LOX activities were significantly reduced by salicylic acid treatment. Compared with the control fruit, salicylic acid treatment alleviated chilling injury, reduced electrolyte leakage, malondialdehyde content and increased proline content. Our result suggest that the reduce activity of PLD and LOX, by salicylic acid may be a chilling tolerance strategy in tomato fruit. Inhibition of PLD and LOX activity during low temperature storage could ameliorate chilling injury and oxidation damage and enhance membrane integrity in tomato fruit.
Collapse
|
33
|
Zhang BY, He LW, Jia ZJ, Wang GC, Peng G. CHARACTERIZATION OF THE ALTERNATIVE OXIDASE GENE IN PORPHYRA YEZOENSIS (RHODOPHYTA) AND CYANIDE-RESISTANT RESPIRATION ANALYSIS(1). JOURNAL OF PHYCOLOGY 2012; 48:657-663. [PMID: 27011081 DOI: 10.1111/j.1529-8817.2012.01129.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The full-length cDNA of the alternative oxidase (AOX) gene from Porphyra yezoensis Ueda (PyAOX) [currently assigned as Pyropia yezoensis (Ueda) M. S. Hwang et H. G. Choi (http://www.algaebase.org)] an ancient member of the Rhodphyta, was cloned by electronic cloning, rapid amplification of cDNA ends (RACE), and reverse transcription PCR. The nucleotide sequence of PyAOX consists of 1,650 bp, including a 5' untranslated region (UTR) of 170 bp, a 3' UTR of 148 bp, and an open reading frame (ORF) of 1,332 bp that can be translated into a 443-amino-acid residue with a molecular mass of 47.33 kDa and a putative isoelectric point (pI) of 9.71. The putative amino acids had 50%-61% identity with AOX genes in Eukaryota and higher plants and had AOX-like characteristics. The expression of PyAOX mRNA in different stages of the life cycle, conchospores, filamentous thalli (conchocelis stage), and leafy thalli, was detected by real-time quantitative PCR (qPCR). The highest level of expression, which was observed in filamentous thalli, was three times higher than that observed in leafy thalli. The next highest level, which was observed in the conchospores, was twice as high as that observed in leafy thalli. We showed that an alternative respiration pathway existed in P. yezoensis with a noninvasive microsensing system. The contribution of the alternative pathway to total respiration in filamentous thalli was greater than that in leafy thalli. This result was consistent with the level of AOX gene expression observed in different stages of the life cycle.
Collapse
Affiliation(s)
- Bao Y Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, ChinaCollege of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, ChinaKey Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lin W He
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, ChinaCollege of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, ChinaKey Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhao J Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, ChinaCollege of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, ChinaKey Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Guang C Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, ChinaCollege of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, ChinaKey Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Guang Peng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, ChinaCollege of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, ChinaKey Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
34
|
Sircar D, Cardoso HG, Mukherjee C, Mitra A, Arnholdt-Schmitt B. Alternative oxidase (AOX) and phenolic metabolism in methyl jasmonate-treated hairy root cultures of Daucus carota L. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:657-63. [PMID: 22326792 DOI: 10.1016/j.jplph.2011.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 05/21/2023]
Abstract
Methyl-jasmonate (MJ)-treated hairy roots of Daucus carota L. were used to study the influence of alternative oxidase (AOX) in phenylpropanoid metabolism. Phenolic acid accumulation, as well as total flavonoids and lignin content of the MJ-treated hairy roots were decreased by treatment with salicylhydroxamic acid (SHAM), a known inhibitor of AOX. The inhibitory effect of SHAM was concentration dependent. Treatment with propyl gallate (PG), another inhibitor of AOX, also had a similar inhibitory effect on accumulation of phenolic acid, total flavonoids and lignin. The transcript levels of two DcAOX genes (DcAOX2a and DcAOX1a) were monitored at selected post-elicitation time points. A notable rise in the transcript levels of both DcAOX genes was observed preceding the MJ-induced enhanced accumulation of phenolics, flavonoids and lignin. An appreciable increase in phenylalanine ammonia-lyase (PAL) transcript level was also observed prior to enhanced phenolics accumulation. Both DcAOX genes showed differential transcript accumulation patterns after the onset of elicitation. The transcript levels of DcAOX1a and DcAOX2a attained peak at 6hours post elicitation (hpe) and 12hpe, respectively. An increase in the transcript levels of both DcAOX genes preceding the accumulation of phenylpropanoid-derivatives and lignin showed a positive correlation between AOX activity and phenylpropanoid biosynthesis. The results provide important new insight about the influence of AOX in phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Debabrata Sircar
- EU Marie Curie Chair, ICAAM, University of Évora, 7002-554 Évora, Portugal.
| | | | | | | | | |
Collapse
|
35
|
Del Carratore R, Magaldi E, Podda A, Beffy P, Migheli Q, Maserti BE. A stress responsive alternative splicing mechanism in Citrus clementina leaves. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:952-959. [PMID: 21310505 DOI: 10.1016/j.jplph.2010.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 05/30/2023]
Abstract
Chitinases are often considered pathogenesis-related proteins since their activity can be induced by viral infections, fungal and bacterial cell wall components, and also by more general sources of stress such as wounding, salicylic acid, ethylene, auxins and cytokinins. In the present study, comparative proteomic analysis showed the defense-related acidic chitinase II to be specifically induced in Citrus clementina leaves infested by the two-spotted spider mite Tetranychus urticae or treated with MeJA. In parallel, changes in the mRNA profiles of two partially homologous chitinase forms were shown by RT-PCR. In particular, the appearance of an additional cDNA chitinase fragment in T. urticae-infested and MeJA-treated leaves was observed. This finding may indicate a specific regulatory mechanism of chitinase expression. We report evidence for alternative splicing in T. urticae-infested C. clementina, where a premature stop codon after the first 135 amino acids was introduced. We observed inducible chitinase activity after MeJA treatment, indicative of a rapid plant response to infestation. This work provides the first evidence of chitinase alternative splicing in C. clementina. In addition, the presence of the dual-band pattern for chitinase cDNA by RT-PCR may represent a suitable predictive marker for early diagnosis of plant biotic stress.
Collapse
Affiliation(s)
- Renata Del Carratore
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Sayyari M, Babalar M, Kalantari S, Martínez-Romero D, Guillén F, Serrano M, Valero D. Vapour treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.07.036] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Duque P. A role for SR proteins in plant stress responses. PLANT SIGNALING & BEHAVIOR 2011; 6:49-54. [PMID: 21258207 PMCID: PMC3122005 DOI: 10.4161/psb.6.1.14063] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 10/31/2010] [Indexed: 05/19/2023]
Abstract
Members of the SR (serine/arginine-rich) protein gene family are key players in the regulation of alternative splicing, an important means of generating proteome diversity and regulating gene expression. In plants, marked changes in alternative splicing are induced by a wide variety of abiotic stresses, suggesting a role for this highly versatile gene regulation mechanism in the response to environmental cues. In support of this notion, the expression of plant SR proteins is stress-regulated at multiple levels, with environmental signals controlling their own alternative splicing patterns, phosphorylation status and subcellular distribution. Most importantly, functional links between these RNA-binding proteins and plant stress tolerance are beginning to emerge, including a role in the regulation of abscisic acid (ABA) signaling. Future identification of the physiological mRNA targets of plant SR proteins holds much promise for the elucidation of the molecular mechanisms underlying their role in the response to abiotic stress.
Collapse
Affiliation(s)
- Paula Duque
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
38
|
Polidoros AN, Mylona PV, Arnholdt-Schmitt B. Aox gene structure, transcript variation and expression in plants. PHYSIOLOGIA PLANTARUM 2009; 137:342-53. [PMID: 19781002 DOI: 10.1111/j.1399-3054.2009.01284.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Alternative oxidase (Aox) has been proposed as a functional marker for breeding stress tolerant plant varieties. This requires presence of polymorphic Aox allele sequences in plants that affect plant phenotype in a recognizable way. In this review, we examine the hypothesis that organization of genomic Aox sequences and gene expression patterns are highly variable in relation to the possibility that such a variation may allow development of Aox functional markers in plants. Aox is encoded by a small multigene family, typically with four to five members in higher plants. The predominant structure of genomic Aox sequences is that of four exons interrupted by three introns at well conserved positions. Evolutionary intron loss and gain has resulted in the variation of intron numbers in some Aox members that may harbor two to four introns and three to five exons in their sequence. Accumulating evidence suggests that Aox gene structure is polymorphic enough to allow development of Aox markers in many plant species. However, the functional significance of Aox structural variation has not been examined exhaustively. Aox expression patterns display variability and typically Aox genes fall into two discrete subfamilies, Aox1 and Aox2, the former being present in all plants and the latter restricted in eudicot species. Typically, although not exclusively, the Aox1-type genes are induced by many different kinds of stress, whereas Aox2-type genes are expressed in a constitutive or developmentally regulated way. Specific Aox alleles are among the first and most intensively stress-induced genes in several experimental systems involving oxidative stress. Differential response of Aox genes to stress may provide a flexible plan of plant defense where an energy-dissipating system in mitochondria is involved. Evidence to link structural variation and differential allele expression patterns is scarce. Much research is still required to understand the significance of polymorphisms within AOX gene sequences for gene regulation and its potential for breeding on important agronomic traits. Association studies and mapping approaches will be helpful to advance future perspectives for application more efficiently.
Collapse
Affiliation(s)
- Alexios N Polidoros
- Department of Genetics and Plant Breeding, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | | |
Collapse
|
39
|
Matos AR, Mendes AT, Scotti-Campos P, Arrabaça JD. Study of the effects of salicylic acid on soybean mitochondrial lipids and respiratory properties using the alternative oxidase as a stress-reporter protein. PHYSIOLOGIA PLANTARUM 2009; 137:485-97. [PMID: 19508334 DOI: 10.1111/j.1399-3054.2009.01250.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Biotic and abiotic stresses can lead to modifications in the lipid composition of cell membranes. Although mitochondria appear to be implicated in stress responses, little is known about the membrane lipid changes that occur in these organelles in plants. Besides cytochrome c oxidase, plant mitochondria have an alternative oxidase (AOX) that accepts electrons directly from ubiquinol, dissipating energy as heat. AOX upregulation occurs under a variety of stresses and its induction by salicylic acid (SA) has been observed in different plant species. AOX was also suggested to be used as a functional marker for cell reprogramming under stress. In the present study, we have used etiolated soybean (Glycine max (L.) Merr. cv Cresir) seedlings to study the effects of SA treatment on the lipid composition and the respiratory properties of hypocotyl mitochondria. AOX expression was studied in detail, as a reporter protein, to evaluate whether modifications in mitochondrial energy metabolism were occurring. In mitochondria extracted from SA-treated seedlings, AOX capacity and protein contents increased. Both AOX1 and AOX2b transcripts accumulated in response to SA, but with different kinetics. A reduction in external NADH oxidation capacity was observed, whereas succinate respiration remained unchanged. The phospholipid composition of mitochondria remained similar in control and SA-treated plants, but a reduction in the relative amount of linolenic acid was observed in phosphatidylcholine, phosphatidylethanolamine and cardiolipin. The possible causes of the fatty acid modifications observed, and the implications for mitochondrial metabolism are discussed.
Collapse
Affiliation(s)
- Ana Rita Matos
- Centro de Engenharia Biológica, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | | | | | | |
Collapse
|
40
|
Crucial contribution of membrane lipids’ unsaturation to acquisition of chilling-tolerance in peach fruit stored at 0°С. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.12.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Abstract
A substantial fraction (approximately 30%) of plant genes is alternatively spliced, but how alternative splicing is regulated remains unknown. Many plant genes undergo alternative splicing in response to a variety of stresses. Large-scale computational analyses and experimental approaches focused on select genes are beginning to reveal that alternative splicing constitutes an integral part of gene regulation in stress responses. Based on the studies discussed in this chapter, it appears that alternative splicing generates transcriptome/proteome complexity that is likely to be important for stress adaptation. However, the signaling pathways that relay stress conditions to splicing machinery and if and how the alternative spliced products confer adaptive advantages to plants are poorly understood.
Collapse
|
42
|
McDonald AE. Alternative oxidase: an inter-kingdom perspective on the function and regulation of this broadly distributed 'cyanide-resistant' terminal oxidase. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:535-552. [PMID: 32688810 DOI: 10.1071/fp08025] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 07/11/2008] [Indexed: 06/11/2023]
Abstract
Alternative oxidase (AOX) is a terminal quinol oxidase located in the respiratory electron transport chain that catalyses the oxidation of quinol and the reduction of oxygen to water. However, unlike the cytochrome c oxidase respiratory pathway, the AOX pathway moves fewer protons across the inner mitochondrial membrane to generate a proton motive force that can be used to synthesise ATP. The energy passed to AOX is dissipated as heat. This appears to be very wasteful from an energetic perspective and it is likely that AOX fulfils some physiological function(s) that makes up for its apparent energetic shortcomings. An examination of the known taxonomic distribution of AOX and the specific organisms in which AOX has been studied has been used to explore themes pertaining to AOX function and regulation. A comparative approach was used to examine AOX function as it relates to the biochemical function of the enzyme as a quinol oxidase and associated topics, such as enzyme structure, catalysis and transcriptional expression and post-translational regulation. Hypotheses that have been put forward about the physiological function(s) of AOX were explored in light of some recent discoveries made with regard to species that contain AOX. Fruitful areas of research for the AOX community in the future have been highlighted.
Collapse
Affiliation(s)
- Allison E McDonald
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building, London, Ontario N6A 5B7, Canada. Email
| |
Collapse
|
43
|
Alternative splicing at NAGNAG acceptors in Arabidopsis thaliana SR and SR-related protein-coding genes. BMC Genomics 2008; 9:159. [PMID: 18402682 PMCID: PMC2375911 DOI: 10.1186/1471-2164-9-159] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 04/10/2008] [Indexed: 11/10/2022] Open
Abstract
Background Several recent studies indicate that alternative splicing in Arabidopsis and other plants is a common mechanism for post-transcriptional modulation of gene expression. However, few analyses have been done so far to elucidate the functional relevance of alternative splicing in higher plants. Representing a frequent and universal subtle alternative splicing event among eukaryotes, alternative splicing at NAGNAG acceptors contributes to transcriptome diversity and therefore, proteome plasticity. Alternatively spliced NAGNAG acceptors are overrepresented in genes coding for proteins with RNA-recognition motifs (RRMs). As SR proteins, a family of RRM-containing important splicing factors, are known to be extensively alternatively spliced in Arabidopsis, we analyzed alternative splicing at NAGNAG acceptors in SR and SR-related genes. Results In a comprehensive analysis of the Arabidopsis thaliana genome, we identified 6,772 introns that exhibit a NAGNAG acceptor motif. Alternative splicing at these acceptors was assessed using available EST data, complemented by a sequence-based prediction method. Of the 36 identified introns within 30 SR and SR-related protein-coding genes that have a NAGNAG acceptor, we selected 15 candidates for an experimental analysis of alternative splicing under several conditions. We provide experimental evidence for 8 of these candidates being alternatively spliced. Quantifying the ratio of NAGNAG-derived splice variants under several conditions, we found organ-specific splicing ratios in adult plants and changes in seedlings of different ages. Splicing ratio changes were observed in response to heat shock and most strikingly, cold shock. Interestingly, the patterns of differential splicing ratios are similar for all analyzed genes. Conclusion NAGNAG acceptors frequently occur in the Arabidopsis genome and are particularly prevalent in SR and SR-related protein-coding genes. A lack of extensive EST coverage can be compensated by using the proposed sequence-based method to predict alternative splicing at these acceptors. Our findings indicate that the differential effects on NAGNAG alternative splicing in SR and SR-related genes are organ- and condition-specific rather than gene-specific.
Collapse
|
44
|
Mizuno N, Sugie A, Kobayashi F, Takumi S. Mitochondrial alternative pathway is associated with development of freezing tolerance in common wheat. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:462-7. [PMID: 17766003 DOI: 10.1016/j.jplph.2007.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 04/29/2007] [Accepted: 04/30/2007] [Indexed: 05/17/2023]
Abstract
Cold acclimation is an adaptive process for acquiring cold/freezing tolerance in wheat. To clarify the cultivar difference of freezing tolerance, we compared mitochondrial respiration activity and the expression profile of alternative oxidase (AOX) genes under low-temperature conditions using two common wheat cultivars differing in freezing tolerance. During cold acclimation, the respiration capacity of the alternative pathway significantly increased in a freezing-tolerant cultivar compared with a freezing-sensitive cultivar. More abundant accumulation of the AOX and uncoupling protein gene transcripts was also observed under the low-temperature conditions in the tolerant cultivar than in the sensitive cultivar. These results suggest that the mitochondrial alternative pathway might be partly associated with the cold acclimation and freezing tolerance in wheat.
Collapse
Affiliation(s)
- Nobuyuki Mizuno
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | | | | | | |
Collapse
|
45
|
Lambracht-Washington D, Moore YF, Wonigeit K, Lindahl KF. Structure and expression of MHC class Ib genes of the central M region in rat and mouse: M4, M5, and M6. Immunogenetics 2008; 60:131-45. [PMID: 18324395 DOI: 10.1007/s00251-008-0282-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 01/25/2008] [Indexed: 10/22/2022]
Abstract
The M region at the telomeric end of the murine major histocompatibility complex (MHC) contains class I genes that are highly conserved in rat and mouse. We have sequenced a cosmid clone of the LEW rat strain (RT1 haplotype) containing three class I genes, RT1.M6-1, RT1.M4, and RT1.M5. The sequences of allelic genes of the BN strain (RT1n haplotype) were obtained either from cDNAs or genomic clones. For the coding parts of the genes few differences were found between the two RT1 haplotypes. In LEW, however, only RT1.M5 and RT1.M6 have open reading frames; whereas in BN all three genes were intact. In line with the findings in BN, transcription was found for all three rat genes in several tissues from strain Sprague Dawley. Protein expression in transfectants could be demonstrated for RT1.M6-1 using the monoclonal antibody OX18. By sequencing of transcripts obtained by RT-PCR, a second, transcribed M6 gene, RT1.M6-2, was discovered, which maps next to RT1.M6-1 outside of the region covered by the cosmid. In addition, alternatively spliced forms for RT1.M5 and RT1.M6 were detected. Of the orthologous mouse genes, H2-M4, H2-M5, and H2-M6, only H2-M5 has an open reading frame. Other important differences between the corresponding parts of the M region of the two species are insertion of long LINE repeats, duplication of RT1.M6, and the inversion of RT1.M5 in the rat. This demonstrates substantial evolutionary dynamics in this region despite conservation of the class I gene sequences themselves.
Collapse
|
46
|
Simpson CG, Fuller J, Maronova M, Kalyna M, Davidson D, McNicol J, Barta A, Brown JWS. Monitoring changes in alternative precursor messenger RNA splicing in multiple gene transcripts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:1035-48. [PMID: 18088312 DOI: 10.1111/j.1365-313x.2007.03392.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alternative splicing (AS) increases the proteomic and functional capacity of genomes through the generation of alternative mRNA transcripts from the same gene. AS is now estimated to occur in a third of Arabidopsis and rice genes, and includes genes involved in the control of growth and development, responses to stress and signalling. Regulation of AS reflects the interactions between positive and negative cis sequences in the precursor messenger RNA and a range of trans-acting factors. The levels and activities of these factors differ in different cells and growth conditions. To identify changes in AS in multiple genes simultaneously, we have established a reproducible RT-PCR panel that can analyse 96 alternative splicing events and accurately measure the ratio of alternatively spliced products. This procedure detected statistically significant changes in AS in different plant organs, in plants grown under different light and day-length conditions, and in plants overexpressing splicing factors. The system provides a convenient, medium-throughput means of monitoring changes in AS in multiple genes. It can readily be applied to much larger or targeted sets of gene transcripts to generate information on the significance and regulation of AS in plant growth and development, specific processes and responses to external stimuli.
Collapse
|
47
|
Tanabe N, Yoshimura K, Kimura A, Yabuta Y, Shigeoka S. Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. PLANT & CELL PHYSIOLOGY 2007; 48:1036-49. [PMID: 17556373 DOI: 10.1093/pcp/pcm069] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Serine/arginine-rich (SR) proteins are associated with either the regulation or the execution of both constitutive splicing and the selection of alternative splice sites in animals and plants. We demonstrated the molecular characterization of a homolog of SR protein, atSR45a, in Arabidopsis plants. Six types of mRNA variants (atSR45a-1a-e and atSR45a-2) were generated by the alternative selection of transcriptional initiation sites and the alternative splicing of introns in atSR45a pre-mRNA. The atSR45a-1a and -2 proteins, presumed mature forms, were located in the nucleus and interacted with U1-70K, suggesting that these proteins function as a splicing factor in Arabidopsis. The levels of the transcripts atSR45a and atSR30, SF2/ASF-like SR proteins, were increased by various types of stress, such as high-light irradiation and salinity. Furthermore, the splicing patterns of atSR45a and atSR30 pre-mRNA themselves were altered under these stressful conditions. In particular, the expression of atSR45a-1a, atSR45a-2, atSR30 mRNA1 and atSR30 mRNA3 was greatly increased by high-light irradiation. These results indicate that the regulation of transcription and alternative splicing of atSR45a and atSR30 is responsive to various stressful conditions.
Collapse
Affiliation(s)
- Noriaki Tanabe
- Advanced Bioscience, Graduate School, Kinki University, 3327-204 Nakamachi, Nara, 631-8505 Japan
| | | | | | | | | |
Collapse
|