1
|
Sylvain Bonfanti L, Arbelet-Bonnin D, Filaine F, Lalanne C, Renault A, Meimoun P, Laurenti P, Grésillon E, Bouteau F. Toxic and signaling effects of the anaesthetic lidocaine on rice cultured cells. PLANT SIGNALING & BEHAVIOR 2024; 19:2388443. [PMID: 39116108 PMCID: PMC11312988 DOI: 10.1080/15592324.2024.2388443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Most studies on anesthesia focus on the nervous system of mammals due to their interest in medicine. The fact that any life form can be anaesthetised is often overlooked although anesthesia targets ion channel activities that exist in all living beings. This study examines the impact of lidocaine on rice (Oryza sativa). It reveals that the cellular responses observed in rice are analogous to those documented in animals, encompassing direct effects, the inhibition of cellular responses, and the long-distance transmission of electrical signals. We show that in rice cells, lidocaine has a cytotoxic effect at a concentration of 1%, since it induces programmed reactive oxygen species (ROS) and caspase-like-dependent cell death, as already demonstrated in animal cells. Additionally, lidocaine causes changes in membrane ion conductance and induces a sharp reduction in electrical long-distance signaling following seedlings leaves burning. Finally, lidocaine was shown to inhibit osmotic stress-induced cell death and the regulation of Ca2+ homeostasis. Thus, lidocaine treatment in rice and tobacco (Nicotiana benthamiana) seedlings induces not only cellular but also systemic effects similar to those induced in mammals.
Collapse
Affiliation(s)
- Lucia Sylvain Bonfanti
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
- Université Paris-Cité, Laboratoire Dynamiques sociales et recomposition des espaces (LADYSS UMR 7533), Paris, France
| | - Delphine Arbelet-Bonnin
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Frédéric Filaine
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Christophe Lalanne
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Aurélien Renault
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Patrice Meimoun
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
- Sorbonne Université, Paris, France
| | - Patrick Laurenti
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Etienne Grésillon
- Université Paris-Cité, Laboratoire Dynamiques sociales et recomposition des espaces (LADYSS UMR 7533), Paris, France
| | - François Bouteau
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| |
Collapse
|
2
|
Development of an Algorithm to Indicate the Right Moment of Plant Watering Using the Analysis of Plant Biomasses Based on Dahlia × hybrida. SUSTAINABILITY 2022. [DOI: 10.3390/su14095165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water management in agriculture and horticulture has a strong ecological importance related to the necessity of optimizing the use of water resources. To achieve sustainable water use, it is necessary to optimize the time, frequency and the methods of water application. In this study, we hypothesized that the right moment for watering may be established on the grounds of the observation of the physiological state of the plant (if the plant is still in turgor) and the biomass of plant and the substrate. The proper irrigation scheduling, that is, just before the plant loses turgor, which appears at ca. 73% of LRWC in dahlias, determined with the use of the proposed measurement and computing system, makes it possible to save ca. 30% of irrigation water, in comparison to standard watering. Controlled watering also affected plant growth parameters, such as the content of chlorophyll a and b and carotenoid, as well as total and reducing sugar content (ca. 7%, 9% and 23% more than in plants watered in a standard way, respectively). Plants watered in a controlled way were 12% more compact when compared with the ones watered in a standard way. The results clearly proved that the computing system connected to scales made it possible to save water used for irrigation without a negative impact on the parameters of plant growth.
Collapse
|
3
|
The Basse-Terre Island of Guadeloupe (Eastern Caribbean, France) and Its Volcanic-Hydrothermal Geodiversity: A Case Study of Challenges, Perspectives, and New Paradigms for Resilience and Sustainability on Volcanic Islands. GEOSCIENCES 2021. [DOI: 10.3390/geosciences11110454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The volcanic-hydrothermal geo-diversity of the Basse-Terre Island of Guadeloupe archipelago (Eastern Caribbean, France) is a major asset of the Caribbean bio-geoheritage. In this paper, we use Guadeloupe as a representative of many small island developing states (SIDS), to show that the volcanic-hydrothermal geodiversity is a major resource and strategic thread for resilience and sustainability. These latter are related to the specific richness of Guadeloupe’s volcanic-geothermal diversity, which is de facto inalienable even in the wake of climate change and natural risks that are responsible for this diversity, i.e., volcanic eruptions. We propose the interweaving the specificity of volcanic-geothermal diversity into planning initiatives for resilience and sustainability. Among these initiatives research and development programs focused on the knowledge of geodiversity, biodiversity and related resources and risks are central for the long-term management of the water resource, lato sensu. Such a management should include a comprehensive scientific observatory for the characterization, exploration, and sustainable exploitation of the volcanic-hydrothermal geodiversity alongside planning for and mitigating geophysical risks related to sudden volcanic-induced phenomena and long-term systemic drifts due to climate change. The results of this exercise for Guadeloupe could typify innovative paths for similar SIDS around their own volcanic-hydrothermal geodiversity.
Collapse
|
4
|
|
5
|
Hao Z, Li W, Hao X. Variations of electric potential in the xylem of tree trunks associated with water content rhythms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1321-1335. [PMID: 33098428 DOI: 10.1093/jxb/eraa492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Instantaneous electrical responses in plants have been widely studied, but the mechanism of spontaneous, periodic electric potential alternations in the xylem of tree trunks remains controversial. The generation of the electric potential can be explained by the electrode potential, which depends on ion concentrations near electrodes. However, several different hypotheses about its periodic variations have been proposed, including streaming potential, ion diffusion, charge transport, and oxygen turnover. Here, we performed long-term measurements on the electric potential and water content in the xylem of trees, and observed changes in the electric potential and transpiration rate in response to varied numbers of leaves, light radiation, temperature, and relative air humidity. The electric potential showed a distinct seasonal trend, combined with daily rhythms, and could be affected by environmental changes. Rapid changes in the electric potential routinely lagged behind those of the transpiration rate, but their ranges of change were proportional. Both annual and diurnal patterns of the electric potential were synchronous with the trees' water content. Moreover, we found potential function relationships between the electric potential and water content. Accordingly, we propose a new perspective, that the variations of the electric potential in tree xylem could be associated with water content rhythms.
Collapse
Affiliation(s)
- Zhibin Hao
- College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin, China
| | - Wenbin Li
- School of Technology, Beijing Forestry University, Beijing, China
| | - Xiaomie Hao
- No. 95 Fengya Road, Xiqing District, Tianjin, China
| |
Collapse
|
6
|
Zapata R, Oliver-Villanueva JV, Lemus-Zúñiga LG, Luzuriaga JE, Mateo Pla MA, Urchueguía JF. Evaluation of electrical signals in pine trees in a mediterranean forest ecosystem. PLANT SIGNALING & BEHAVIOR 2020; 15:1795580. [PMID: 32686612 PMCID: PMC8550538 DOI: 10.1080/15592324.2020.1795580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Electric potential differences in living plants are explained by theories based on sap flow. In order to acquire more advanced knowledge about the spatial distribution of these electric potential measures in trees, this research aims to analyze electrical signals in a population of Aleppo pines (Pinus halepensis Mill.) in a representative Mediterranean forest ecosystem. The specific research objective is to assess some of the most significant factors that influence the distribution pattern of those electric signals: tree age, measurement type and electrode placement. The research has been conducted in representative forest stands, obtaining measurements of different representative trees. After a statistical evaluation of the obtained results, the main conclusions of our research are: A.Tree maturity influences directly on electric potential. B.Maximum electrical signals can be measured in young pines showing values of 0.6 V and 0.6 µA for voltage and current, respectively. C.The distribution patterns of both voltage and short-circuit current depending on electrode placement are uniform.
Collapse
Affiliation(s)
- Rodolfo Zapata
- ITACA - Institute of Information and Communication Technologies, Research Group ICT against Climate Change, Universitat Politècnica De València, València, Spain
- CONTACT Rodolfo Zapata ITACA - Institute of Information and Communication Technologies, Research Group ICT against Climate Change, Universitat Politècnica De València, València46022, Spain
| | - Jose-Vicente Oliver-Villanueva
- ITACA - Institute of Information and Communication Technologies, Research Group ICT against Climate Change, Universitat Politècnica De València, València, Spain
| | - Lenin-Guillermo Lemus-Zúñiga
- ITACA - Institute of Information and Communication Technologies, Research Group ICT against Climate Change, Universitat Politècnica De València, València, Spain
| | - Jorge E. Luzuriaga
- ITACA - Institute of Information and Communication Technologies, Research Group ICT against Climate Change, Universitat Politècnica De València, València, Spain
| | - Miguel A. Mateo Pla
- ITACA - Institute of Information and Communication Technologies, Research Group ICT against Climate Change, Universitat Politècnica De València, València, Spain
| | - Javier F. Urchueguía
- ITACA - Institute of Information and Communication Technologies, Research Group ICT against Climate Change, Universitat Politècnica De València, València, Spain
| |
Collapse
|
7
|
Volana Randriamandimbisoa M, Manitra Nany Razafindralambo NA, Fakra D, Lucia Ravoajanahary D, Claude Gatina J, Jaffrezic-Renault N. Electrical response of plants to environmental stimuli: A short review and perspectives for meteorological applications. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
8
|
Chong PL, Singh AK, Kok SL. Characterization of Aloe Barbadensis Miller leaves as a potential electrical energy source with optimum experimental setup conditions. PLoS One 2019; 14:e0218758. [PMID: 31237903 PMCID: PMC6592541 DOI: 10.1371/journal.pone.0218758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/08/2019] [Indexed: 11/30/2022] Open
Abstract
Electrical energy can be harvested from the living plants as a new potential renewable energy source. Characterization of the electrical signal is needed to enable an optimum energy harvesting setup condition. In the present paper, an investigation is conducted to analyze the characteristic of Aloe Barbadensis Miller (Aloe Vera) leaves in terms of electrical energy generation under specific experimental setups. The experimental results show that 1111.55uW electrical power can be harvested from the Aloe Vera with 24 pairs of electrodes and this energy is capable to be stored in a capacitor. This energy has a high potential to be used to power up a low power consumption device.
Collapse
Affiliation(s)
- Peng Lean Chong
- Centre for Communication System and IC Design (CSID), Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia
| | - Ajay Kumar Singh
- Centre for Communication System and IC Design (CSID), Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia
| | - Swee Leong Kok
- Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia
| |
Collapse
|
9
|
Vodeneev V, Mudrilov M, Akinchits E, Balalaeva I, Sukhov V. Parameters of electrical signals and photosynthetic responses induced by them in pea seedlings depend on the nature of stimulus. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:160-170. [PMID: 32291030 DOI: 10.1071/fp16342] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/09/2016] [Indexed: 05/13/2023]
Abstract
Local damage induces generation and propagation of variation potentials (VPs) that affect physiological processes in plants. The aims of the work presented here were to investigate parameters of VP induced by burning, heating and mechanical injury in pea seedlings, and to undertake a theoretical analysis of the mechanisms underlying the differences in VP parameters and a study of the photosynthetic responses caused by VPs induced by the damaging factors. The velocity of propagation of burn-induced VP decreased with distance from the damaged area whereas the velocities of heating- and injury-induced VPs were constant. The amplitudes of burn- and heating-induced VPs did not depend on distance whereas the amplitude of VP induced by mechanical injury decreased. VP propagation has been simulated on the basis of wound substance spread. The simulation revealed two possible ways of wound substance propagation: turbulent diffusion from the damaged area and secondary active production in intact cells. The photosynthetic response (decrease in the quantum yield of PSII and raising the level of non-photochemical fluorescence quenching (NPQ)) developed in case of VP entering the intact leaf under heating and burn but was not registered after mechanical injury. An increase in NPQ level was biphasic under burn in comparison with a single-phase one under heating, and the NPQ amplitude was slightly higher under burn. We suggest that differences in photosynthetic responses may be determined by the parameters of VPs induced by stimuli of different nature.
Collapse
Affiliation(s)
- Vladimir Vodeneev
- Department of Biophysics, Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue, 23, Nizhni Novgorod, Russia
| | - Maxim Mudrilov
- Department of Biophysics, Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue, 23, Nizhni Novgorod, Russia
| | - Elena Akinchits
- Department of Biophysics, Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue, 23, Nizhni Novgorod, Russia
| | - Irina Balalaeva
- Department of Biophysics, Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue, 23, Nizhni Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue, 23, Nizhni Novgorod, Russia
| |
Collapse
|
10
|
Calvo P, Sahi VP, Trewavas A. Are plants sentient? PLANT, CELL & ENVIRONMENT 2017; 40:2858-2869. [PMID: 28875517 DOI: 10.1111/pce.13065] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/26/2017] [Accepted: 08/27/2017] [Indexed: 05/07/2023]
Abstract
Feelings in humans are mental states representing groups of physiological functions that usually have defined behavioural purposes. Feelings, being evolutionarily ancient, are thought to be coordinated in the brain stem of animals. One function of the brain is to prioritise between competing mental states and, thus, groups of physiological functions and in turn behaviour. Plants use groups of coordinated physiological activities to deal with defined environmental situations but currently have no known mental state to prioritise any order of response. Plants do have a nervous system based on action potentials transmitted along phloem conduits but which in addition, through anastomoses and other cross-links, forms a complex network. The emergent potential for this excitable network to form a mental state is unknown, but it might be used to distinguish between different and even contradictory signals to the individual plant and thus determine a priority of response. This plant nervous system stretches throughout the whole plant providing the potential for assessment in all parts and commensurate with its self-organising, phenotypically plastic behaviour. Plasticity may, in turn, depend heavily on the instructive capabilities of local bioelectric fields enabling both a degree of behavioural independence but influenced by the condition of the whole plant.
Collapse
Affiliation(s)
- Paco Calvo
- Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JH, UK
- Minimal Intelligence Lab, University of Murcia, Murcia, Spain
| | - Vaidurya Pratap Sahi
- Molecular Cell Biology, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Anthony Trewavas
- Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JH, UK
| |
Collapse
|
11
|
Flexible Boron-Doped Diamond (BDD) Electrodes for Plant Monitoring. SENSORS 2017; 17:s17071638. [PMID: 28714895 PMCID: PMC5539713 DOI: 10.3390/s17071638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 11/17/2022]
Abstract
Detecting the bio-potential changes of plants would be useful for monitoring their growth and health in the field. A sensitive plant monitoring system with flexible boron-doped diamond (BDD) electrodes prepared from BDD powder and resin (Nafion or Vylon-KE1830) was investigated. The properties of the electrodes were compared with those of small BDD plate-type electrodes by monitoring the bioelectric potentials of potted Aloe and hybrid species in the genus Opuntia. While flexible BDD electrodes have wide potential windows, their cyclic voltammograms are different from those of the BDD plate. Further, the potential gap between a pair of electrodes attached to the plants changes as the plants are stimulated artificially with a finger touch, suggesting that the bioelectric potentials in the plant also changed, manifesting as changes in the potential gap between the electrodes. The BDD electrodes were assessed for their response reproducibility to a finger stimulus for 30 days. It was concluded that the plant monitoring system worked well with flexible BDD electrodes. Further, the electrodes were stable, and as reliable as the BDD plate electrodes in this study. Thus, a flexible and inexpensive BDD electrode system was successfully fabricated for monitoring the bioelectric potential changes in plants.
Collapse
|
12
|
|
13
|
Study on Electrophysiological Signal Monitoring of Plant under Stress Based on Integrated Op-Amps and Patch Electrode. JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING 2017. [DOI: 10.1155/2017/4182546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electrophysiological signal in plant is a weak electrical signal, which can fluctuate with the change of environment. An amplification detection system was designed for plant electrical signal acquisition by using integrated op-amps (CA3140, AD620, and INA118), patch electrode, data acquisition card (NI USB-6008), computer, and shielded box. Plant electrical signals were also studied under pressure and flooding stress. The amplification detection system can make nondestructive acquisition for Aquatic Scindapsus and Guaibcn with high precision, high sensitivity, low power consumption, high common mode rejection ratio, and working frequency bandwidth. Stress experiments were conducted through the system; results show that electrical signals were produced in the leaf of Aquatic Scindapsus under the stress of pressure. Electrical signals in the up-leaf surface of Aquatic Scindapsus were stronger than the down-leaf surface. Electrical signals produced in the leaf of Guaibcn were getting stronger when suffering flooding stress. The more the flooding stress was severe, the faster the electrical signal changed, the longer the time required for returning to a stable state was, and the greater the electrical signal got at the stable state was.
Collapse
|
14
|
Hao Z, Wang G, Li W, Zhang J, Kan J. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator. PLoS One 2015; 10:e0136639. [PMID: 26302491 PMCID: PMC4547757 DOI: 10.1371/journal.pone.0136639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022] Open
Abstract
The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.
Collapse
Affiliation(s)
- Zhibin Hao
- School of Technology, Beijing Forestry University, Beijing, China
| | - Guozhu Wang
- School of Technology, Beijing Forestry University, Beijing, China
| | - Wenbin Li
- School of Technology, Beijing Forestry University, Beijing, China
- * E-mail:
| | - Junguo Zhang
- School of Technology, Beijing Forestry University, Beijing, China
| | - Jiangming Kan
- School of Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
15
|
Tian L, Meng Q, Wang L, Dong J, Wu H. Research on the Effect of Electrical Signals on Growth of Sansevieria under Light-Emitting Diode (LED) Lighting Environment. PLoS One 2015; 10:e0131838. [PMID: 26121469 PMCID: PMC4487690 DOI: 10.1371/journal.pone.0131838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 06/07/2015] [Indexed: 11/23/2022] Open
Abstract
The plant electrical signal has some features, e.g. weak, low-frequency and time-varying. To detect changes in plant electrical signals, LED light source was used to create a controllable light environment in this study. The electrical signal data were collected from Sansevieria leaves under the different illumination conditions, and the data was analyzed in time domain, frequency domain and time–frequency domain, respectively. These analyses are helpful to explore the relationship between changes in the light environment and electrical signals in Sansevieria leaves. The changes in the plant electrical signal reflected the changes in the intensity of photosynthesis. In this study, we proposed a new method to express plant photosynthetic intensity as a function of the electrical signal. That is, the plant electrical signal can be used to describe the state of plant growth.
Collapse
Affiliation(s)
- Liguo Tian
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, China
- Tianjin Key laboratory of Information Sensing & Intelligent Control, Tianjin University of Technology and Education, Tianjin, China
| | - Qinghao Meng
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, China
- * E-mail: (QM); (JD)
| | - Liping Wang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Jianghui Dong
- School of Natural and Built Environments, University of South Australia, Adelaide, Australia
- * E-mail: (QM); (JD)
| | - Hai Wu
- Tianjin Key laboratory of Information Sensing & Intelligent Control, Tianjin University of Technology and Education, Tianjin, China
| |
Collapse
|
16
|
Zebelo SA, Maffei ME. Role of early signalling events in plant-insect interactions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:435-48. [PMID: 25429000 DOI: 10.1093/jxb/eru480] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The response of plants to the stress caused by herbivores involves several different defence mechanisms. These responses begin at the plant cell plasma membrane, where insect herbivores interact physically by causing mechanical damage and chemically by introducing elicitors or by triggering plant-derived signalling molecules. The earliest plant responses to herbivore contact are represented by ion flux unbalances generated in the plant cell plasma membrane at the damaged site. Differences in the charge distribution generate plasma transmembrane potential (V m) variation, the first event, which eventually leads to the initiation of signal transduction pathways and gene expression. Calcium signalling and the generation of reactive oxygen and nitrogen species are early events closely related to V m variations. This review provides an update on recent developments and advances in plant early signalling in response to herbivory, with particular emphasis on the electrophysiological variations of the plasma membrane potential, calcium signalling, cation channel activity, production of reactive oxygen and nitrogen species, and formation of a systemically moving signal from wounded tissues. The roles of calcium-dependent protein kinases and calcineurin signalling are also discussed.
Collapse
Affiliation(s)
- Simon A Zebelo
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn 36849, AL, USA
| | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Via Quarello 15/A, Turin 10135, Italy
| |
Collapse
|
17
|
Ríos-Rojas L, Morales-Moraga D, Alcalde JA, Gurovich LA. Use of plant woody species electrical potential for irrigation scheduling. PLANT SIGNALING & BEHAVIOR 2015; 10:e976487. [PMID: 25826257 PMCID: PMC4623352 DOI: 10.4161/15592324.2014.976487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 05/26/2023]
Abstract
The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological sensor and the EP electrodes connected to the Keithley voltmeter in each irrigation stage. Also, both sensors show a daily cyclical signal (circadian cycle).
Collapse
Affiliation(s)
| | | | - José A Alcalde
- Pontificia Universidad Católica de Chile; Santiago, Chile
| | | |
Collapse
|
18
|
Ríos-Rojas L, Tapia F, Gurovich LA. Electrophysiological assessment of water stress in fruit-bearing woody plants. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:799-806. [PMID: 24877671 DOI: 10.1016/j.jplph.2014.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements. Systematic and differentiable patterns of electric potentials for water-stressed and no-stressed trees in 2 fruit species are presented. Early detection and recovery dynamics of water stress conditions can also be monitored with these electrophysiology sensors, which enable continuous and non-destructive measurements for efficient irrigation scheduling throughout the year. The experiment is developed under controlled conditions, in Faraday cages located at a greenhouse area, both in Persea americana and Prunus domestica plants. Soil moisture evolution is controlled using capacitance sensors and solar radiation, temperature, relative humidity, wind intensity and direction are continuously registered with accurate weather sensors, in a micro-agrometeorological automatic station located at the experimental site. The electrophysiological sensor has two stainless steel electrodes (measuring/reference), inserted on the stem; a high precision Keithley 2701 digital multimeter is used to measure plant electrical signals; an algorithm written in MatLab(®), allows correlating the signal to environmental variables. An electric cyclic behavior is observed (circadian cycle) in the experimental plants. For non-irrigated plants, the electrical signal shows a time positive slope and then, a negative slope after restarting irrigation throughout a rather extended recovery process, before reaching a stable electrical signal with zero slope. Well-watered plants presented a continuous signal with daily maximum and a minimum EP of similar magnitude in time, with zero slope. This plant electrical behavior is proposed for the development of a sensor measuring real-time plant water status.
Collapse
Affiliation(s)
- Liliana Ríos-Rojas
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Chile
| | | | - Luis A Gurovich
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
19
|
Lüttge U. Whole-Plant Physiology: Synergistic Emergence Rather Than Modularity. PROGRESS IN BOTANY 2013. [DOI: 10.1007/978-3-642-30967-0_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Zhang X, Yu N, Xi G, Meng X. Changes in the power spectrum of electrical signals in maize leaf induced by osmotic stress. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-011-4820-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Oyarce P, Gurovich L. Evidence for the transmission of information through electric potentials in injured avocado trees. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:103-108. [PMID: 20630616 DOI: 10.1016/j.jplph.2010.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 05/29/2023]
Abstract
Electrical excitability and signaling, frequently associated with rapid responses to environmental stimuli, have been documented in both animals and higher plants. The presence of electrical potentials (EPs), such as action potentials (APs) and variation potentials (VPs), in plant cells suggests that plants make use of ion channels to transmit information over long distances. The reason why plants have developed pathways for electrical signal transmission is most probably the necessity to respond rapidly, for example, to environmental stress factors. We examined the nature and specific characteristics of the electrical response to wounding in the woody plant Persea americana (avocado). Under field conditions, wounds can be the result of insect activity, strong winds or handling injury during fruit harvest. Evidence for extracellular EP signaling in avocado trees after mechanical injury was expressed in the form of variation potentials. For tipping and pruning, signal velocities of 8.7 and 20.9 cm/s, respectively, were calculated, based on data measured with Ag/AgCl microelectrodes inserted at different positions of the trunk. EP signal intensity decreased with increasing distance between the tipping and pruning point and the electrode. Recovery time to pre-tipping or pre-pruning EP values was also affected by the distance and signal intensity from the tipping or pruning point to the specific electrode position. Real time detection of remote EP signaling can provide an efficient tool for the early detection of insect attacks, strong wind damage or handling injury during fruit harvest. Our results indicate that electrical signaling in avocado, resulting from microenvironment modifications, can be quantitatively related to the intensity and duration of the stimuli, as well as to the distance between the stimuli site and the location of EP detection. These results may be indicative of the existence of a specific kind of proto-nervous system in plants.
Collapse
Affiliation(s)
- Patricio Oyarce
- Department of Fruit Science, Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
22
|
Development of Bio-Machine Based on the Plant Response to External Stimuli. JOURNAL OF ROBOTICS 2011. [DOI: 10.1155/2011/124314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the area of biorobotics, intense research work is being done based on plant intelligence. Any living cell continuously receives information from the environment. In this paper, research is conducted on the plant nameddescoingsiixhaworthioides(Pepe) obtaining the action potential signals and its responses to stimulations of different light modes. The plant electrical signal is the reaction of plant’s stimulation owing to various environmental conditions. Action potentials are responsible for signaling between plant cells and communication from the plants can be achieved through modulation of various parameters of the electrical signal in the plant tissue. The modulated signals are used for providing information to the microcontroller’s algorithm for working of the bio-machine. The changes of frequency of action potentials in plant are studied. Electromyography (EMG) electrodes and needle-type conductive electrodes along with electronic modules are used to collect and transform the information from the plant. Inverse fast Fourier transform (IFFT) is used to convert signal in frequency domain into voltage signal for real-time analysis. The changes in frequency of the plant action potentials to different light modes are used for the control of the bio-machine. This work has paved the way for an extensive research towards plant intelligence.
Collapse
|
23
|
Oyarce P, Gurovich L. Electrical signals in avocado trees: responses to light and water availability conditions. PLANT SIGNALING & BEHAVIOR 2010; 5:34-41. [PMID: 20592805 PMCID: PMC2835954 DOI: 10.4161/psb.5.1.10157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/23/2009] [Indexed: 05/23/2023]
Abstract
Plant responses to environmental changes are associated with electrical excitability and signaling; automatic and continuous measurements of electrical potential differences (DeltaEP) between plant tissues can be effectively used to study information transport mechanisms and physiological responses that result from external stimuli on plants. The generation and conduction of electrochemical impulses within plant different tissues and organs, resulting from abiotic and biotic changes in environmental conditions is reported. In this work, electrical potential differences are monitored continuously using Ag/AgCl microelectrodes, inserted 5 mm deep into sapwood at two positions in the trunks of several Avocado trees. Electrodes are referenced to a non polarisable Ag/AgCl microelectrode installed 20 cm deep in the soil. Systematic patterns of DeltaEP during absolute darkness, day-night cycles and different conditions of soil water availability are discussed as alternative tools to assess early plant stress conditions.
Collapse
Affiliation(s)
- Patricio Oyarce
- Fruit Science Department, Universidad Catolica de Chile, Santiago, Chile
| | | |
Collapse
|
24
|
Gil PM, Gurovich L, Schaffer B, García N, Iturriaga R. Electrical signaling, stomatal conductance, ABA and ethylene content in avocado trees in response to root hypoxia. PLANT SIGNALING & BEHAVIOR 2009; 4:100-8. [PMID: 19649181 PMCID: PMC2637490 DOI: 10.4161/psb.4.2.7872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 01/16/2009] [Indexed: 05/18/2023]
Abstract
Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone.
Collapse
Affiliation(s)
- Pilar M Gil
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla, Santiago, Chile.
| | | | | | | | | |
Collapse
|