1
|
Li N, Li J, Xie J, Rui W, Pu K, Gao Y, Wang T, Zhang M. Glycine betaine and plant abiotic stresses: Unravelling physiological and molecular responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112479. [PMID: 40132665 DOI: 10.1016/j.plantsci.2025.112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Plants are constantly subjected to various abiotic stresses (drought, salinity, heavy metals and low temperature) throughout their life cycle, which significantly hinder their growth and productivity. Key abiotic stresses include drought, salinity, heavy metals, and extreme temperatures. In response, plants modulate glycine betaine (GB) levels, a vital compatible solute that influences growth and stress tolerance by interacting with phytohormones and cellular signaling pathways. Not all species can synthesize endogenous GB; however, some non-GB accumulating plants have been genetically modified to enhance GB production through the overexpression of synthesis genes such as choline oxidase, choline monooxygenase, and betaine aldehyde dehydrogenase. Exogenous GB treatment can mitigate stress effects by improving nutritional balance, reducing reactive oxygen species (ROS), minimizing membrane damage, and alleviating photoinhibition. Nonetheless, the specificity of GB application, transport, and accumulation across species, as well as its interaction with phytohormones in stress alleviation, remains uncertain. This review focuses on GB's role as an antioxidant, osmo-regulator, and nitrogen source, evaluating the physiological, biochemical, and molecular mechanisms by which GB mitigates abiotic stresses, aiming to develop GB-based strategies for enhancing plant stress resilience.
Collapse
Affiliation(s)
- Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China.
| | - Wenjing Rui
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Tiantian Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Miao Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| |
Collapse
|
2
|
Sharma J, Kumar S, Singh P, Kumar V, Verma S, Khyalia P, Sharma A. Emerging role of osmoprotectant glycine betaine to mitigate heavy metals toxicity in plants: a systematic review. Biol Futur 2024; 75:159-176. [PMID: 38183566 DOI: 10.1007/s42977-023-00198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2023] [Indexed: 01/08/2024]
Abstract
Heavy metals (HMs) toxicity has become one of the major global issues and poses a serious threat to the environment in recent years. HM pollution in agricultural soil is caused by metal mining, smelting, volcanic activity, industrial discharges, and excessive use of phosphate fertilizers. HMs above a threshold level adversely affect the cellular metabolism of plants by producing reactive oxygen species (ROS), which attack cellular proteins. There are different mechanisms (physiological and morphological) adopted by plants to survive in the era of abiotic stress. Various osmoprotectants or compatible solutes, including amino acids, sugar, and betaines, enable the plants to counteract the HM stress. Glycine betaine (GB) is an effective osmolyte against HM stress among compatible solutes. GB has been shown to improve plant growth, photosynthesis, uptake of nutrients, and minimize oxidative stress in plants under HM stress. Additionally, GB increases the activity of antioxidant enzymes such as CAT (catalase), SOD (superoxide dismutase), and POD (peroxidase), which are effective in scavenging unwarranted ROS. Since not all species of plants can naturally produce or accumulate GB in response to stress, various approaches have been explored for introducing them. Plant hormones like salicylic acid, ABA (abscisic acid), and JA (jasmonic acid) co-ordinately stimulate the accumulation of GB inside the cell under HM stress. Apart from the exogenous application, the introduction of GB pathway genes in GB deficient species via genetic engineering also seems to be efficient in mediating HM stress. This review complied the beneficial effects of GB in mitigating HM stress and its role as a plant growth regulator. Additionally, the review explores the potential for engineering GB biosynthesis in plants as a strategy to bolster their resilience to HMs.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sandeep Kumar
- Department of Botany, Baba Mast Nath University, Rohtak, Haryana, 124001, India
| | - Pooja Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vikram Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Shivani Verma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Pradeep Khyalia
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
- Department of Botany, Baba Mast Nath University, Rohtak, Haryana, 124001, India.
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
3
|
Tian J, Chang K, Lei Y, Li S, Wang J, Huang C, Zhong F. Genome-Wide Identification of Proline Transporter Gene Family in Non-Heading Chinese Cabbage and Functional Analysis of BchProT1 under Heat Stress. Int J Mol Sci 2023; 25:99. [PMID: 38203270 PMCID: PMC10778735 DOI: 10.3390/ijms25010099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Non-heading Chinese cabbage prefers cool temperatures, and heat stress has become a major factor for reduced yield. The proline transporter protein (ProT) is highly selective for proline transport, contributing to the heat tolerance of non-heading Chinese cabbage. However, there has been no systematic study on the identification and potential functions of the ProT gene family in response to heat stress in non-heading Chinese cabbage. We identified six BchProT genes containing 11-12 transmembrane helices characteristic of membrane proteins through whole-genome sequencing. These genes diverged into three evolutionary branches and exhibited similarity in motifs and intron/exon numbers. Segmental duplication is the primary driving force for the amplification of BchProT. Notably, many stress-related elements have been identified in the promoters of BchProT using cis-acting element analysis. The expression level of BchProT6 was the highest in petioles, and the expression level of BchProT1 was the highest under high-temperature stress. Subcellular localization indicated their function at cell membranes. Heterologous expression of BchProT1 in Arabidopsis plants increased proline transport synthesis under heat-stress conditions. This study provides valuable information for exploring the molecular mechanisms underlying heat tolerance mediated by members of the BchProT family.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.T.); (K.C.); (Y.L.); (S.L.); (J.W.); (C.H.)
| |
Collapse
|
4
|
Yolcu S, Alavilli H, Ganesh P, Panigrahy M, Song K. Salt and Drought Stress Responses in Cultivated Beets ( Beta vulgaris L.) and Wild Beet ( Beta maritima L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:1843. [PMID: 34579375 PMCID: PMC8472689 DOI: 10.3390/plants10091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Cultivated beets, including leaf beets, garden beets, fodder beets, and sugar beets, which belong to the species Beta vulgaris L., are economically important edible crops that have been originated from a halophytic wild ancestor, Beta maritima L. (sea beet or wild beet). Salt and drought are major abiotic stresses, which limit crop growth and production and have been most studied in beets compared to other environmental stresses. Characteristically, beets are salt- and drought-tolerant crops; however, prolonged and persistent exposure to salt and drought stress results in a significant drop in beet productivity and yield. Hence, to harness the best benefits of beet cultivation, knowledge of stress-coping strategies, and stress-tolerant beet varieties, are prerequisites. In the current review, we have summarized morpho-physiological, biochemical, and molecular responses of sugar beet, fodder beet, red beet, chard (B. vulgaris L.), and their ancestor, wild beet (B. maritima L.) under salt and drought stresses. We have also described the beet genes and noncoding RNAs previously reported for their roles in salt and drought response/tolerance. The plant biologists and breeders can potentiate the utilization of these resources as prospective targets for developing crops with abiotic stress tolerance.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Khurda 761211, Odisha, India;
| | - Madhusmita Panigrahy
- Biofuel & Bioprocessing Research Center, Institute of Technical Education & Research, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
5
|
Zhang K, Lyu W, Gao Y, Zhang X, Sun Y, Huang B. Choline-Mediated Lipid Reprogramming as a Dominant Salt Tolerance Mechanism in Grass Species Lacking Glycine Betaine. PLANT & CELL PHYSIOLOGY 2021; 61:2018-2030. [PMID: 32931553 DOI: 10.1093/pcp/pcaa116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Choline, as a precursor of glycine betaine (GB) and phospholipids, is known to play roles in plant tolerance to salt stress, but the downstream metabolic pathways regulated by choline conferring salt tolerance are still unclear for non-GB-accumulating species. The objectives were to examine how choline affects salt tolerance in a non-GB-accumulating grass species and to determine major metabolic pathways of choline regulating salt tolerance involving GB or lipid metabolism. Kentucky bluegrass (Poa pratensis) plants were subjected to salt stress (100 mM NaCl) with or without foliar application of choline chloride (1 mM) in a growth chamber. Choline or GB alone and the combined application increased leaf photochemical efficiency, relative water content and osmotic adjustment and reduced leaf electrolyte leakage. Choline application had no effects on the endogenous GB content and GB synthesis genes did not show responses to choline under nonstress and salt stress conditions. GB was not detected in Kentucky bluegrass leaves. Lipidomic analysis revealed an increase in the content of monogalactosyl diacylglycerol, phosphatidylcholine and phosphatidylethanolamine and a decrease in the phosphatidic acid content by choline application in plants exposed to salt stress. Choline-mediated lipid reprogramming could function as a dominant salt tolerance mechanism in non-GB-accumulating grass species.
Collapse
Affiliation(s)
- Kun Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Weiting Lyu
- Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yanli Gao
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Xiaxiang Zhang
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
6
|
Akbudak MA, Filiz E. Genome-wide investigation of proline transporter (ProT) gene family in tomato: Bioinformatics and expression analyses in response to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:13-22. [PMID: 33069977 DOI: 10.1016/j.plaphy.2020.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Proline has various functions in plants, such as growth, development and stress response to biotic and abiotic factors. Therefore, proline accumulation and transport are vital for crop production in higher quality and quantity. The present study addresses genome-wide identification and bioinformatics analyses of tomato (Solanum lycopersicum) proline transporter (ProT) genes and their expression profiles under drought stress. The analyses indicated four novel ProT genes (SlProTs) in the tomato genome and their protein lengths ranged from 439 to 452 amino acid residues. All SlProTs contained a PF01490 (transmembrane amino acid transporter protein) domain and seven exons, and they had a basic pI. The phylogeny analysis proved that monocot-dicot divergence was not present and the SlProT proteins were distinct from the ProT proteins in monocots and Arabidopsis. Based on the digital expression analysis, SlProT1 and SlProT2 genes seemed to be more active than the others in response to abiotic stress conditions. However, detected by RT-qPCR, the expression levels of all SlProT genes under drought stress were similar. The promotor analyses of SlProT genes revealed that they contained many transcription factors binding sites in cis-elements, such as MYB, Dof, Hox, bZIP, bHLH, AP2/ERF and WRKY. Finally, our findings could contribute to the understanding of SlProT genes and proline metabolism in plants.
Collapse
Affiliation(s)
- M Aydın Akbudak
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey.
| | - Ertugrul Filiz
- Duzce University, Department of Crop and Animal Production, Cilimli Vocational School, 81750, Cilimli, Duzce, Turkey.
| |
Collapse
|
7
|
Sheng Y, Yu L, Shen Y, Gu R, Li J, Sun F, Zhan X. Distribution Characteristics of Phenanthrene in Wheat, Soybean and Maize Leaves. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1720748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yu Sheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
- Team 810, Jiangsu East China Geological Engineering Co. Ltd, Nanjing, Jiangsu, People’s Republic of China
| | - Luyi Yu
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Yu Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Ruochen Gu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Jinfeng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Fengfei Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
8
|
Wiśniewska A, Andryka-Dudek P, Czerwiński M, Chołuj D. Fodder beet is a reservoir of drought tolerance alleles for sugar beet breeding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:120-131. [PMID: 31677543 DOI: 10.1016/j.plaphy.2019.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/12/2019] [Accepted: 10/23/2019] [Indexed: 05/20/2023]
Abstract
Drought leads to serious yield losses and followed by increasing food prices. Thereby, drought tolerance is one of most important, pivotal issues for plant breeding and is determined by the very complex genetic architecture, which involves a lot of genes engaged in many cell processes. Within genomes of currently cultivated sugar beet forms, the number of favourable allelic variants is limited. However, there is a potential to identify genes related to drought tolerance deposited in genomes of wild or fodder relatives. Therefore, the goal of our study, was to identify the source of allelic variants involved in drought tolerance using a large spectrum of sugar or fodder beets and their wild relatives for analyses. Based on the drought tolerance index, calculated for morphophysiological traits, it was demonstrated that some of selected fodder beets showed the highest level of drought tolerance. The most drought tolerant fodder beet genotype did not show differences in the level of expression of genes engaged in osmoprotection and the antioxidative system, between control and drought condition, compared to sugar and wild beets. The genetic distance between selected beet forms was broad and ranged from 18 to 87%, however the most drought tolerant sugar, fodder and wild beets showed high genetic similarity and formed the common clade. Based on obtained results we propose that an adequate broad source of genes related to drought tolerance occurs in fodder beets, the crossing with which is easier, less time-consuming and more cost-effective than with wild forms of beets.
Collapse
Affiliation(s)
- Anita Wiśniewska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Paulina Andryka-Dudek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mateusz Czerwiński
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Danuta Chołuj
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
9
|
Meena M, Divyanshu K, Kumar S, Swapnil P, Zehra A, Shukla V, Yadav M, Upadhyay R. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 2019; 5:e02952. [PMID: 31872123 PMCID: PMC6909094 DOI: 10.1016/j.heliyon.2019.e02952] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/28/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In response to various environmental stresses, many plant species synthesize L-proline in the cytosol and accumulates in the chloroplasts. L-Proline accumulation in plants is a well-recognized physiological reaction to osmotic stress prompted by salinity, drought and other abiotic stresses. L-Proline plays several protective functions such as osmoprotectant, stabilizing cellular structures, enzymes, and scavenging reactive oxygen species (ROS), and keeps up redox balance in adverse situations. In addition, ample-studied osmoprotective capacity, L-proline has been also ensnared in the regulation of plant improvement, including flowering, pollen, embryo, and leaf enlargement. SCOPE AND CONCLUSIONS Albeit, ample is now well-known about L-proline metabolism, but certain characteristics of its biological roles are still indistinct. In the present review, we discuss the L-proline accumulation, metabolism, signaling, transport and regulation in the plants. We also discuss the effects of exogenous L-proline during different environmental conditions. L-Proline biosynthesis and catabolism are controlled by several cellular mechanisms, of which we identify only very fewer mechanisms. So, in the future, there is a requirement to identify such types of cellular mechanisms.
Collapse
Affiliation(s)
- Mukesh Meena
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, India
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kumari Divyanshu
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sunil Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vaishali Shukla
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mukesh Yadav
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - R.S. Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
10
|
Geng G, Lv C, Stevanato P, Li R, Liu H, Yu L, Wang Y. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet. Int J Mol Sci 2019; 20:ijms20235910. [PMID: 31775274 PMCID: PMC6928841 DOI: 10.3390/ijms20235910] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Soil salinization is a common environmental problem that seriously affects the yield and quality of crops. Sugar beet (Beta vulgaris L.), one of the main sugar crops in the world, shows a strong tolerance to salt stress. To decipher the molecular mechanism of sugar beet under salt stress, we conducted transcriptomic analyses of two contrasting sugar beet genotypes. To the best of our knowledge, this is the first comparison of salt-response transcriptomes in sugar beet with contrasting genotypes. Compared to the salt-sensitive cultivar (S710), the salt-tolerant one (T710MU) showed better growth and exhibited a higher chlorophyll content, higher antioxidant enzyme activity, and increased levels of osmotic adjustment molecules. Based on a high-throughput experimental system, 1714 differentially expressed genes were identified in the leaves of the salt-sensitive genotype, and 2912 in the salt-tolerant one. Many of the differentially expressed genes were involved in stress and defense responses, metabolic processes, signal transduction, transport processes, and cell wall synthesis. Moreover, expression patterns of several genes differed between the two cultivars in response to salt stress, and several key pathways involved in determining the salt tolerance of sugar beet, were identified. Our results revealed the mechanism of salt tolerance in sugar beet and provided potential metabolic pathways and gene markers for growing salt-tolerant cultivars.
Collapse
Affiliation(s)
- Gui Geng
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Crop Academy of Heilongjiang University, Heilongjiang University, Harbin 150080, China; (G.G.); (L.Y.)
- Heilongjiang Sugar beet Center of Technology Innovation, Crop Academy of Heilongjiang University, Heilongjiang University, Harbin 150080, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin 150080, China; (C.L.); (R.L.); (H.L.)
| | - Chunhua Lv
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin 150080, China; (C.L.); (R.L.); (H.L.)
| | - Piergiorgio Stevanato
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università degli Studi di Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Renren Li
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin 150080, China; (C.L.); (R.L.); (H.L.)
| | - Hui Liu
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin 150080, China; (C.L.); (R.L.); (H.L.)
| | - Lihua Yu
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Crop Academy of Heilongjiang University, Heilongjiang University, Harbin 150080, China; (G.G.); (L.Y.)
- Heilongjiang Sugar beet Center of Technology Innovation, Crop Academy of Heilongjiang University, Heilongjiang University, Harbin 150080, China
| | - Yuguang Wang
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Crop Academy of Heilongjiang University, Heilongjiang University, Harbin 150080, China; (G.G.); (L.Y.)
- Heilongjiang Sugar beet Center of Technology Innovation, Crop Academy of Heilongjiang University, Heilongjiang University, Harbin 150080, China
- Correspondence: ; Tel.: +86-0451-8660-9753
| |
Collapse
|
11
|
Hasegawa D, Kito K, Maeda T, Rai V, Cha-Um S, Tanaka Y, Fukaya M, Takabe T. Functional characterization of aminotransferase involved in serine and aspartate metabolism in a halotolerant cyanobacterium, Aphanothece halophytica. PROTOPLASMA 2019; 256:1727-1736. [PMID: 31342153 DOI: 10.1007/s00709-019-01414-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Aminotransferases catalyze the reversible pyridoxal phosphate-dependent transfer of amino groups from amino acids to oxo acids and play important roles for the balance between carbon and nitrogen metabolism. In this report, four aminotransferases (Ap1-Ap4) from a halotolerant cyanobacterium Aphanothece halophytica were examined. The results revealed that Ap1 and Ap2 exhibited the aspartate:2-oxoglutarate aminotransferase (AspAT) activity whereas Ap2 catalyzed further aminotransferase activities with alanine (AlaAT) and LL-diaminopimelate (an intermediate for the synthesis of Lys/peptidoglycan) as amino donors. Ap4 exhibited bifunctional aminotransferase with phosphoserine (PSAT) and glycine (GGAT) as amino donors. No activity was observed for Ap3. We identified third gene encoding phosphoserine phosphatase (PSP) in phosphorylate serine biosynthetic pathway. The levels of mRNA for Ap2 and ApMurE encoding UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase were increased after salt stress. These results suggest the link among photorespiratory metabolite (serine, glycine, glyoxylate), phosphorylate serine biosynthetic pathway and aspartate metabolism via aminotransferases for the synthesis of peptidoglycan and betaine under salt stress conditions.
Collapse
Affiliation(s)
- Daichi Hasegawa
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Kunihide Kito
- Research Institute, Meijo University, Nagoya, 468-8502, Japan
| | - Takumi Maeda
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Vandna Rai
- National Research Center on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Yoshito Tanaka
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Minoru Fukaya
- Faculty of Science & Technology, Meijo University, Nagoya, 468-8502, Japan
| | - Teruhiro Takabe
- Research Institute, Meijo University, Nagoya, 468-8502, Japan.
| |
Collapse
|
12
|
Sahashi K, Yamada-Kato N, Maeda T, Kito K, Cha-Um S, Rai V, Tanaka Y, Takabe T. Expression and functional characterization of sugar beet phosphoethanolamine/phosphocholine phosphatase under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:211-216. [PMID: 31302410 DOI: 10.1016/j.plaphy.2019.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Choline is a vital metabolite in plant and synthesized from phosphocholine by phosphocholine phosphatase. The Arabidopsis At1g17710 was identified as the first plant gene encoding the phosphatase for both phosphoethanolamine and phosphocholine (PECP) with much higher catalytic efficiency (>10-fold) for former. In betaine accumulating plants, choline is further required for betaine synthesis. In this report, we found three putative PECP genes in sugar beet, betaine accumulating plants. Two genes encode the proteins of 274 amino acid residues and designated as BvPECP1S and BvPECP2S. Another gene encodes the 331 amino acid protein (BvPECP2L) consisted of BvPECP2S with extra C-terminal amino acid. Enzymatic assays of BvPECP1S revealed that BvPECP1S exhibited the phosphatase activity for both phosphoethanolamine and phosphocholine with higher affinity (>1.8-fold) and catalytic efficiency (>2.64-fold) for phosphocholine. BvPECP2L exhibited low activity. RT-PCR experiments for BvPECP1S showed the increased expression in young leaf and root tip under salt-stress whereas the increased expression in all organs under phosphate deficiency. The expression level of BvPECP2L in salt stressed young leaf and root tip was induced by phosphate deficient. Physiological roles of BvPECP1S and BvPECP2L for the betaine synthesis were discussed.
Collapse
Affiliation(s)
- Kosuke Sahashi
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | | | - Takumi Maeda
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Kunihide Kito
- Research Institute, Meijo University, Nagoya, 468-8502, Japan
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Vandna Rai
- National Research Center on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Yoshito Tanaka
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Teruhiro Takabe
- Research Institute, Meijo University, Nagoya, 468-8502, Japan.
| |
Collapse
|
13
|
Hanif FM, Mandhwani R, Lail G, Luck NH, Aziz T. Virological Response to Sofosbuvir-Based Treatment in Renal Transplant Recipients With Hepatitis C in Pakistan. EXP CLIN TRANSPLANT 2019; 17:198-201. [PMID: 30777554 DOI: 10.6002/ect.mesot2018.p64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Direct-acting antiviral agents have recently been recommended in renal transplant recipients. Considering our previous encouraging responses with combined sofosbuvir and ribavirin in renal transplant recipients and the availability of daclatasvir, we aimed to evaluate the effectiveness and safety of sofosbuvir-based direct-acting antiviral agents in our population. MATERIALS AND METHODS All renal transplant recipients who received sofosbuvir-based direct-acting antivirals from August 2015 to March 2018 were included in our study. Patients were treated with sofosbuvir and ribavirin for 24 weeks or with combined sofosuvir, daclatasvir, and ribavirin for 12 weeks. Patient demographics and baseline laboratory parameters were collected. Rapid virologic response, end of treatment response, and sustained virologic response at 12 weeks were analyzed. Statistical analyses were performed with SPSS software (SPSS: An IBM Company, version 20.0, IBM Corporation, Armonk, NY, USA). RESULTS In our study group of 79 patients, mean age was 36.5 ± 10.2 years and 60 were men (78.5%). Fiftysix patients (70.9%) were treatment naive; of the remaining patients, 20 received interferon before transplant and 3 were treated with sofosbuvir and ribavirin after renal transplant. Genotype 1 was observed in 42 patients (53.2%), whereas mixed genotype (1 and 3) was shown in 10 patients (12.6%). Sixty-two patients (78.5%) received sofosbuvir and ribavirin, and 17 patients (21.5%) received sofosbuvir, daclatasvir, and ribavirin. End of treatment response was achieved in 78 recipients (98.1%). Anemia was observed in 13 patients (16.4%). CONCLUSIONS Hepatitis C virus was successfully eradicated in renal transplant recipients who received a combination of sofosbuvir plus ribavirin or sofosbuvir, daclatasvir, and ribavirin. These combinations were effective and well tolerated in our study population, even in those with mixed genotype, with no major adverse events.
Collapse
Affiliation(s)
- Farina Muhammad Hanif
- From the Department of Hepatogastroenterology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | | | | | | | | |
Collapse
|
14
|
Annunziata MG, Ciarmiello LF, Woodrow P, Dell’Aversana E, Carillo P. Spatial and Temporal Profile of Glycine Betaine Accumulation in Plants Under Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:230. [PMID: 30899269 PMCID: PMC6416205 DOI: 10.3389/fpls.2019.00230] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named N-methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues.
Collapse
Affiliation(s)
- Maria Grazia Annunziata
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Loredana Filomena Ciarmiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Pasqualina Woodrow
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Emilia Dell’Aversana
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
15
|
Lv X, Chen S, Wang Y. Advances in Understanding the Physiological and Molecular Responses of Sugar Beet to Salt Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1431. [PMID: 31781145 PMCID: PMC6851198 DOI: 10.3389/fpls.2019.01431] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/15/2019] [Indexed: 05/04/2023]
Abstract
Soil salinity is a major environmental stress on crop growth and productivity. A better understanding of the molecular and physiological mechanisms underlying salt tolerance will facilitate efforts to improve crop performance under salinity. Sugar beet is considered to be a salt-tolerant crop, and it is therefore a good model for studying salt acclimation in crops. Recently, many determinants of salt tolerance and regulatory mechanisms have been studied by using physiological and 'omics approaches. This review provides an overview of recent research advances regarding sugar beet response and tolerance to salt stress. We summarize the physiological and molecular mechanisms involved, including maintenance of ion homeostasis, accumulation of osmotic-adjustment substances, and antioxidant regulation. We focus on progress in deciphering the mechanisms using 'omic technologies and describe the key candidate genes involved in sugar beet salt tolerance. Understanding the response and tolerance of sugar beet to salt stress will enable translational application to other crops and thus will have significant impacts on agricultural sustainability and global food security.
Collapse
Affiliation(s)
- Xiaoyan Lv
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Yuguang Wang
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin, China
- *Correspondence: Yuguang Wang;
| |
Collapse
|
16
|
Kito K, Tsutsumi K, Rai V, Theerawitaya C, Cha-Um S, Yamada-Kato N, Sakakibara S, Tanaka Y, Takabe T. Isolation and functional characterization of 3-phosphoglycerate dehydrogenase involved in salt responses in sugar beet. PROTOPLASMA 2017; 254:2305-2313. [PMID: 28550469 DOI: 10.1007/s00709-017-1127-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/12/2017] [Indexed: 05/27/2023]
Abstract
The present study investigated the significance of serine biosynthetic genes for salt stress in sugar beet (Beta vulgaris). We isolated a total of four genes, two each encoding D-3-phosphoglycerate dehydrogenase (BvPGDHa and BvPGDHb) and serine hydroxymethyl transferase (BvSHMTa and BvSHMTb). mRNA transcriptional expression for BvPGDHa was significantly enhanced under salt stress conditions in both leaves and roots of sugar beet, whereas it was reduced for BvPGDHb. On the other hand, BvSHMTa was expressed transiently in leaves and roots under salt stress, whereas expression level of BvSHMTb was not altered. PGDH activity was high in storage root. After salt stress, PGDH activity was increased in leaf, petiole, and root. Recombinant proteins were expressed in Escherichia coli. The K m values for 3-phosphoglycerate in PGDHa and PGDHb were 1.38 and 2.92 mM, respectively. The findings suggest that BvPGDHa and BvSHMTa play an important role during salt stress in sugar beet.
Collapse
Affiliation(s)
- Kunihide Kito
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Koichi Tsutsumi
- Research Institute, Meijo University, Tenpaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Vandna Rai
- National Research Center on Plant Biotechnology IARI, New Delhi, 110012, India
| | - Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology, 113 Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology, 113 Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Nana Yamada-Kato
- Research Institute, Meijo University, Tenpaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Shota Sakakibara
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Yoshito Tanaka
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Teruhiro Takabe
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan.
- Research Institute, Meijo University, Tenpaku-ku, Nagoya, Aichi, 468-8502, Japan.
| |
Collapse
|
17
|
Zhang Y, Nan J, Yu B. OMICS Technologies and Applications in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2016; 7:900. [PMID: 27446130 PMCID: PMC4916227 DOI: 10.3389/fpls.2016.00900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/07/2016] [Indexed: 05/08/2023]
Abstract
Sugar beet is a species of the Chenopodiaceae family. It is an important sugar crop that supplies approximately 35% of the sugar in the world. Sugar beet M14 line is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss. And exhibits tolerance to salt stress. In this review, we have summarized OMICS technologies and applications in sugar beet including M14 for identification of novel genes, proteins related to biotic and abiotic stresses, apomixes and metabolites related to energy and food. An OMICS overview for the discovery of novel genes, proteins and metabolites in sugar beet has helped us understand the complex mechanisms underlying many processes such as apomixes, tolerance to biotic and abiotic stresses. The knowledge gained is valuable for improving the tolerance of sugar beet and other crops to biotic and abiotic stresses as well as for enhancing the yield of sugar beet for energy and food production.
Collapse
Affiliation(s)
- Yongxue Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Jingdong Nan
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Bing Yu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
- *Correspondence: Bing Yu
| |
Collapse
|
18
|
Yamada N, Takahashi H, Kitou K, Sahashi K, Tamagake H, Tanaka Y, Takabe T. Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:217-21. [PMID: 26302482 DOI: 10.1016/j.plaphy.2015.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/13/2015] [Accepted: 06/14/2015] [Indexed: 05/02/2023]
Abstract
Glycine betaine (GB) is an important osmoprotectant and synthesized by two-step oxidation of choline. Choline monooxygenase (CMO) catalyzes the first step of the pathway and is believed to be a rate limiting step for GB synthesis. Recent studies have shown the importance of choline-precursor supply for GB synthesis. In order to investigate the role of CMO for GB accumulation in sugar beet (Beta vulgaris), transgenic plants carrying the antisense BvCMO gene were developed. The antisense BvCMO plants showed the decreased activity of GB synthesis from choline compared to wild-type (WT) plants which is well related to the suppressed level of BvCMO protein. However, GB contents were similar between transgenic and WT plants with the exception of young leaves and storage roots. Transgenic plants showed enhanced susceptibility to salt stress than WT plants. These results suggest the importance of choline-precursor-supply for GB accumulation, and young leaves and storage root are sensitive sites for GB accumulation.
Collapse
Affiliation(s)
- Nana Yamada
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Hiroyuki Takahashi
- Hokkaido Agricultural Research Center, National Agriculture and Food Organization, Hokkaido, 082-0081, Japan
| | - Kunihide Kitou
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Kosuke Sahashi
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Hideto Tamagake
- Central Agricultural Experiment Station, Agriculture Research, Department, Hokkaido Research Organization, Naganuma, Yubari, 069-1395, Japan
| | - Yoshito Tanaka
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Teruhiro Takabe
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan; Research Institute, Meijo University, Nagoya, 468-8502, Japan.
| |
Collapse
|
19
|
Tsutsumi K, Yamada N, Cha-um S, Tanaka Y, Takabe T. Differential accumulation of glycinebetaine and choline monooxygenase in bladder hairs and lamina leaves of Atriplex gmelini under high salinity. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:101-7. [PMID: 25588694 DOI: 10.1016/j.jplph.2014.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 05/03/2023]
Abstract
Atriplex gmelini is a halophyte and possesses bladder hairs on the leaf surface. It is also known to accumulate the osmoprotectant glycinebetaine (GB). However, it remains unclear whether GB and its biosynthetic enzyme choline monooxygenase (CMO) accumulate in the bladder hairs. Microscopic observation of young leaves showed many bladder hairs on their surfaces, but their total number decreased along with leaf maturity. Sodium Green fluorescent approach revealed Na(+) accumulation in bladder cells of young leaves when A. gmelini was grown at high salinity (250 mM NaCl). Due to fewer bladder hairs in mature leaves, Na(+) accumulation was mostly found in mesophyll cells of mature leaves under high salinity. GB accumulation was found at significant level in both bladder- and laminae-cells without any addition of NaCl and its content increased at high salinity. CMO was not found in bladder hairs or young leaf laminae. Instead, the CMO protein expression was observed in mature leaves and that showed increased accumulation with increasing concentration of NaCl. Furthermore, in situ hybridization experiments revealed the expression of a transporter gene for GB, AgBetT, in the bladder hairs. Based on these results, the synthesis and translocation of GB in A. gmelini were discussed.
Collapse
Affiliation(s)
- Koichi Tsutsumi
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya 468-8502, Japan
| | - Nana Yamada
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya 468-8502, Japan; Plant Physiology and Biochemistry Laboratory, BIOTEC, Pathumthani 12120, Thailand
| | - Suriyan Cha-um
- Plant Physiology and Biochemistry Laboratory, BIOTEC, Pathumthani 12120, Thailand
| | - Yoshito Tanaka
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya 468-8502, Japan
| | - Teruhiro Takabe
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya 468-8502, Japan; Research Institute, Meijo University, Nagoya 468-8502, Japan.
| |
Collapse
|
20
|
Lee EJ, An D, Nguyen CTT, Patil BS, Kim J, Yoo KS. Betalain and betaine composition of greenhouse- or field-produced beetroot ( Beta vulgaris L.) and inhibition of HepG2 cell proliferation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1324-31. [PMID: 24467616 DOI: 10.1021/jf404648u] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The composition of betalain, red or yellow pigments, and betaine (trimethylglycine or glycinebetaine) of nine beetroot ( Beta vulgaris L.) cultivars produced in the greenhouse or field was studied. Inhibition of HepG2 cell proliferation by betanin and betaine was also tested. Four predominant betalains, two betacyanins (betanin and isobetanin) and two betaxanthins (vulgaxanthin I and miraxanthin V), were isolated and quantified. Betanin and vulgaxanthin I were the major compounds in red and yellow beetroot extracts, respectively, and they comprised >90% of the betalain content in the tested cultivars. The total betalain content of beetroots produced from the field was between 650 and 800 μg/g fresh weight, approximately 25% higher than those from the greenhouse. The betaine content of the beetroot grown in the field was between 3.0 and 4.8 mg/g fresh weight, approximately 20% higher than in plants from the greenhouse. There was great variation among the cultivars with respect to their contents of betalains and betaine. In vitro cancer cell cytotoxicity was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay on HepG2 cells after exposure to betanin and betaine at concentrations ranging from 0 to 400 μg/mL and from 0 to 800 μg/mL for 48 h, respectively. Betanin resulted in a 49% inhibition of HepG2 cell proliferation at 200 μg/mL, and betaine yielded a 25% inhibition at 800 μg/mL, implying a higher cytotoxicity of betanin compared with betaine. The results indicated that the contents of health-beneficial compounds in beetroots, betalains and betaine, could be increased by modifying the growing conditions and that betanin and betaine extracted from beetroots had some anticancer effects against HepG2 cells.
Collapse
Affiliation(s)
- Eun Jin Lee
- Department of Horticultural Science and Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University , Seoul 151-921, Korea
| | | | | | | | | | | |
Collapse
|
21
|
Yamada N, Sakakibara S, Tsutsumi K, Waditee R, Tanaka Y, Takabe T. Expression and substrate specificity of betaine/proline transporters suggest a novel choline transport mechanism in sugar beet. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1609-16. [PMID: 21511362 DOI: 10.1016/j.jplph.2011.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 03/15/2011] [Accepted: 03/22/2011] [Indexed: 05/03/2023]
Abstract
Proline transporters (ProTs) originally described as highly selective transporters for proline, have been shown to also transport glycinebetaine (betaine). Here we examined and compared the transport properties of Bet/ProTs from betaine accumulating (sugar beet, Amaranthus, and Atriplex,) and non-accumulating (Arabidopsis) plants. Using a yeast mutant deficient for uptake of proline and betaine, it was shown that all these transporters exhibited higher affinity for betaine than proline. The uptake of betaine and proline was pH-dependent and inhibited by the proton uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP). We also investigated choline transport by using a choline transport-deficient yeast mutant. Results revealed that these transporters exhibited a higher affinity for choline uptake rather than betaine. Uptake of choline by sugar beet BvBet/ProT1 was independent of the proton gradient and the inhibition by CCCP was reduced compared with that for uptake of betaine, suggesting different proton binding properties between the transport of choline and betaine. Additionally, in situ hybridization experiments revealed the localization of sugar beet BvBet/ProT1 in phloem and xylem parenchyma cells.
Collapse
Affiliation(s)
- Nana Yamada
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya 468-8502, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Amelioration of D-galactosamine-induced acute liver injury in rats by dietary supplementation with betaine derived from sugar beet molasses. Biosci Biotechnol Biochem 2011; 75:1335-41. [PMID: 21737928 DOI: 10.1271/bbb.110105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effects of betaine supplementation on D-galactosamine-induced liver injury were examined in terms of hepatic and serum enzyme activities and of the levels of glutathione and betaine-derived intermediates. The rats induced with liver injury showed marked increases in serum enzyme activity, but those receiving dietary supplementation of 1% betaine showed enzyme activity levels similar to a control group without liver injury. Administration of betaine also increased both hepatic and serum glutathione levels, even following D-galactosamine injection. The activity of glutathione-related enzymes was markedly decreased following injection of D-galactosamine, but remained comparable to that of the control group in rats receiving 1% betaine. The concentrations of hepatic S-adenosyl methionine and cysteine showed similar trends to that observed for hepatic glutathione levels. These results indicate that 1% betaine has a hepatoprotective effect by increasing hepatic and serum glutathione levels along with glutathione-related enzyme activities in rats.
Collapse
|
23
|
Cibis E, Ryznar-Luty A, Krzywonos M, Lutosławski K, Miśkiewicz T. Betaine removal during thermo- and mesophilic aerobic batch biodegradation of beet molasses vinasse: influence of temperature and pH on the progress and efficiency of the process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2011; 92:1733-1739. [PMID: 21367516 DOI: 10.1016/j.jenvman.2011.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 01/04/2011] [Accepted: 02/06/2011] [Indexed: 05/30/2023]
Abstract
The key issue in achieving a high extent of biodegradation of beet molasses vinasse is to establish the conditions for the assimilation of betaine, which is the main pollutant in this high-strength industrial effluent. In the present study, aerobic batch biodegradation was conducted over the temperature range of 27-63°C (step 9°C), at a pH of 6.5 and 8.0, using a mixed culture of bacteria of the genus Bacillus. Betaine was assimilated at 27-54°C and the pH of 8.0, as well as at 27-45°C and the pH of 6.5. The processes where betaine was assimilated produced a high BOD(5) removal, which exceeded 99.40% over the temperature range of 27-45°C at the pH of 8.0, as well as at 27°C and the pH of 6.5. Maximal COD removal (88.73%) was attained at 36°C and the pH of 6.5. The results indicate that the process can be applied on an industrial scale as the first step in the treatment of beet molasses vinasse.
Collapse
Affiliation(s)
- Edmund Cibis
- Department of Bioprocess Engineering, Wrocław University of Economics, Komandorska 118/120, 53-345 Wrocław, Poland.
| | | | | | | | | |
Collapse
|
24
|
Yamada N, Cha-Um S, Kageyama H, Promden W, Tanaka Y, Kirdmanee C, Takabe T. Isolation and characterization of proline/betaine transporter gene from oil palm. TREE PHYSIOLOGY 2011; 31:462-468. [PMID: 21474553 DOI: 10.1093/treephys/tpr017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oil production from oil palm is adversely affected by drought and salt. Under drought and salt stress, proline content increases in oil palm; the mechanism for this is unknown. Here, an 8319-nucleotide sequence including cDNA, genomic DNA and the promoter region of proline transporter gene from oil palm Elaeis guineensis was determined. The transporter gene exhibited high similarity to Bet/ProT genes from several plants, but the highest homology was found with rice ProT1. The exon-intron structure of genomic DNA was unique, and numerous stress-response cis-elements were found in the promoter region. Expression of cDNA EgProT1 in Escherichia coli mutant exhibited uptake activities for glycinebetaine and choline as well as proline. Under salt-stressed conditions, exogenously applied glycinebetaine was taken up into the root more rapidly than the control. These data indicate that oil palm has a unique Pro/T1 gene. Nucleotide sequence data for the cDNA and genomic DNA of proline transporter gene from Elaeis guineensis are available in the DDJB database under accession numbers AB597035 and AB597036, respectively.
Collapse
MESH Headings
- Amino Acid Transport Systems, Neutral/drug effects
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Arecaceae/drug effects
- Arecaceae/genetics
- Arecaceae/metabolism
- Base Sequence
- Betaine/analysis
- Betaine/metabolism
- Biological Transport
- Carrier Proteins/drug effects
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Choline/metabolism
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- GABA Plasma Membrane Transport Proteins
- Green Fluorescent Proteins
- Molecular Sequence Data
- Phylogeny
- Proline/analysis
- Proline/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Plant/genetics
- Seeds/genetics
- Seeds/metabolism
- Sequence Analysis, DNA
- Sodium Chloride/pharmacology
- Stress, Physiological
Collapse
Affiliation(s)
- Nana Yamada
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya 468-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Chen THH, Murata N. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. PLANT, CELL & ENVIRONMENT 2011; 34:1-20. [PMID: 20946588 DOI: 10.1111/j.1365-3040.2010.02232.x] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Various compatible solutes enable plants to tolerate abiotic stress, and glycinebetaine (GB) is one of the most-studied among such solutes. Early research on GB focused on the maintenance of cellular osmotic potential in plant cells. Subsequent genetically engineered synthesis of GB-biosynthetic enzymes and studies of transgenic plants demonstrated that accumulation of GB increases tolerance of plants to various abiotic stresses at all stages of their life cycle. Such GB-accumulating plants exhibit various advantageous traits, such as enlarged fruits and flowers and/or increased seed number under non-stress conditions. However, levels of GB in transgenic GB-accumulating plants are relatively low being, generally, in the millimolar range. Nonetheless, these low levels of GB confer considerable tolerance to various stresses, without necessarily contributing significantly to cellular osmotic potential. Moreover, low levels of GB, applied exogenously or generated by transgenes for GB biosynthesis, can induce the expression of certain stress-responsive genes, including those for enzymes that scavenge reactive oxygen species. Thus, transgenic approaches that increase tolerance to abiotic stress have enhanced our understanding of mechanisms that protect plants against such stress.
Collapse
Affiliation(s)
- Tony H H Chen
- Department of Horticulture, ALS 4017, Oregon State University, Corvallis, OR 97331, USA National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | |
Collapse
|
26
|
Lehmann S, Gumy C, Blatter E, Boeffel S, Fricke W, Rentsch D. In planta function of compatible solute transporters of the AtProT family. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:787-96. [PMID: 20959625 PMCID: PMC3003823 DOI: 10.1093/jxb/erq320] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The three proline transporters of Arabidopsis thaliana (AtProTs) transport the compatible solutes proline and glycine betaine and the stress-induced compound γ-aminobutyric acid when expressed in heterologous systems. The aim of the present study was to show transport and physiological relevance of these three AtProTs in planta. Using single, double, and triple knockout mutants and AtProT-overexpressing lines, proline content, growth on proline, transport of radiolabelled betaine, and expression of AtProT genes and enzymes of proline metabolism were analysed. AtProT2 was shown to facilitate uptake of L- and D-proline as well as [(14)C]glycine betaine in planta, indicating a role in the import of compatible solutes into the root. Toxic concentrations of L- and D-proline resulted in a drastic growth retardation of AtProT-overexpressing plants, demonstrating the need for a precise regulation of proline uptake and/or distribution. Furthermore evidence is provided that AtProT genes are highly expressed in tissues with elevated proline content--that is, pollen and leaf epidermis.
Collapse
Affiliation(s)
- Silke Lehmann
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Christophe Gumy
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Eva Blatter
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Silke Boeffel
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Wieland Fricke
- School of Biology and Environmental Science, UCD Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Tegeder M, Rentsch D. Uptake and partitioning of amino acids and peptides. MOLECULAR PLANT 2010; 3:997-1011. [PMID: 21081651 DOI: 10.1093/mp/ssq047] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant growth, productivity, and seed yield depend on the efficient uptake, metabolism, and allocation of nutrients. Nitrogen is an essential macronutrient needed in high amounts. Plants have evolved efficient and selective transport systems for nitrogen uptake and transport within the plant to sustain development, growth, and finally reproduction. This review summarizes current knowledge on membrane proteins involved in transport of amino acids and peptides. A special emphasis was put on their function in planta. We focus on uptake of the organic nitrogen by the root, source-sink partitioning, and import into floral tissues and seeds.
Collapse
Affiliation(s)
- Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | |
Collapse
|
28
|
Fujiwara T, Mitsuya S, Miyake H, Hattori T, Takabe T. Characterization of a novel glycinebetaine/proline transporter gene expressed in the mestome sheath and lateral root cap cells in barley. PLANTA 2010; 232:133-43. [PMID: 20376676 DOI: 10.1007/s00425-010-1155-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/17/2010] [Indexed: 05/09/2023]
Abstract
The accumulation of glycinebetaine (GB) is one of the adaptive strategies to adverse salt stress conditions. Although it has been demonstrated that barley plants accumulate GB in response to salt stress and various studies focused on GB synthesis were performed, its transport mechanism is still unclear. In this study, we identified a novel gene, HvProT2, encoding Hordeum vulgare GB/proline transporter from barley plants. Heterologous expression in yeast (Saccharomyces cerevisiae) mutant demonstrated that the affinity of HvProT2 was highest for GB, intermediate for proline and lowest for gamma-aminobutyric acid. Transient expression of fusions of HvProT2 and green fluorescent protein in onion epidermal cells revealed that HvProT2 is localized at the plasma membrane. Relative quantification of mRNA level of HvProT2 using semi-quantitative reverse transcription-polymerase chain reaction analysis showed that HvProT2 is constitutively expressed in both leaves and roots, and the expression level was higher in old leaves than young leaves and roots. Moreover, we found that HvProT2 was expressed in the mestome sheath and lateral root cap cells. We discussed the possible involvement of HvProT2 for salt stress tolerance.
Collapse
Affiliation(s)
- Takashi Fujiwara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | | | | | | | | |
Collapse
|