1
|
Patil SS, Nadaf AB, Pable AA, Ahmed SM, Barvkar VT. Heterologous overexpression of Pandanus odorifer Asparagine synthetase 1 (PoASN1) confers enhanced salinity tolerance in Escherichia coli and Rice. PHYSIOLOGIA PLANTARUM 2025; 177:e70200. [PMID: 40189802 DOI: 10.1111/ppl.70200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/01/2025] [Accepted: 03/21/2025] [Indexed: 05/17/2025]
Abstract
Salinity stress is one of the major environmental factors drastically affecting crop productivity all over the world. At a biochemical level, salinity stress results in the production and accumulation of osmoprotectants, which serve as a mechanism for survival. The halophyte Pandanus odorifer (Forssk.) Kuntze grows in the wild, mainly along the seashore in the tropical and subtropical Pacific Oceans. Previously, we reported that the upregulated expression of asparagine synthetase (PoASN1) (EC 6.3.5.4) and the accumulation of the osmolyte asparagine conferred salt tolerance to the P. odorifer. Here, we focused on understanding the PoASN1 gene structure, enzymatic characteristics, regulatory mechanism and function via its overexpression in E. coli and Oryza sativa. In this study, expression analysis revealed that the PoASN1 gene was inducible only beyond 500 mM NaCl. Remarkably, overexpression of PoASN1 resulted in enhanced salinity survival of E. coli (up to 500 mM) and rice (up to 250 mM) because of osmolyte glycine betaine and asparagine, respectively, implying that glutamine-hydrolyzing PoASN1 plays a critical function in salinity tolerance.
Collapse
Affiliation(s)
| | | | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Shadab M Ahmed
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | | |
Collapse
|
2
|
Padmavathi G, Bangale U, Rao K, Balakrishnan D, Arun M, Singh RK, Sundaram RM. Progress and prospects in harnessing wild relatives for genetic enhancement of salt tolerance in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1253726. [PMID: 38371332 PMCID: PMC10870985 DOI: 10.3389/fpls.2023.1253726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/13/2023] [Indexed: 02/20/2024]
Abstract
Salt stress is the second most devastating abiotic stress after drought and limits rice production globally. Genetic enhancement of salinity tolerance is a promising and cost-effective approach to achieve yield gains in salt-affected areas. Breeding for salinity tolerance is challenging because of the genetic complexity of the response of rice plants to salt stress, as it is governed by minor genes with low heritability and high G × E interactions. The involvement of numerous physiological and biochemical factors further complicates this complexity. The intensive selection and breeding efforts targeted towards the improvement of yield in the green-revolution era inadvertently resulted in the gradual disappearance of the loci governing salinity tolerance and a significant reduction in genetic variability among cultivars. The limited utilization of genetic resources and narrow genetic base of improved cultivars have resulted in a plateau in response to salinity tolerance in modern cultivars. Wild species are an excellent genetic resource for broadening the genetic base of domesticated rice. Exploiting novel genes of underutilized wild rice relatives to restore salinity tolerance loci eliminated during domestication can result in significant genetic gain in rice cultivars. Wild species of rice, Oryza rufipogon and Oryza nivara, have been harnessed in the development of a few improved rice varieties like Jarava and Chinsura Nona 2. Furthermore, increased access to sequence information and enhanced knowledge about the genomics of salinity tolerance in wild relatives has provided an opportunity for the deployment of wild rice accessions in breeding programs, while overcoming the cross-incompatibility and linkage drag barriers witnessed in wild hybridization. Pre-breeding is another avenue for building material that are ready for utilization in breeding programs. Efforts should be directed towards systematic collection, evaluation, characterization, and deciphering salt tolerance mechanisms in wild rice introgression lines and deploying untapped novel loci to improve salinity tolerance in rice cultivars. This review highlights the potential of wild relatives of Oryza to enhance tolerance to salinity, track the progress of work, and provide a perspective for future research.
Collapse
Affiliation(s)
- Guntupalli Padmavathi
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Umakanth Bangale
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - K. Nagendra Rao
- Genetics and Plant Breeding, Sugarcane Research Station, Vuyyuru, India
| | - Divya Balakrishnan
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Melekote Nagabhushan Arun
- Crop Production Section, Agronomy, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Rakesh Kumar Singh
- Crop Diversification and Genetics Section, International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates
| | - Raman Meenakshi Sundaram
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| |
Collapse
|
3
|
Saifi SK, Passricha N, Tuteja R, Nath M, Gill R, Gill SS, Tuteja N. OsRuvBL1a DNA helicase boost salinity and drought tolerance in transgenic indica rice raised by in planta transformation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111786. [PMID: 37419328 DOI: 10.1016/j.plantsci.2023.111786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
RuvBL, is a member of SF6 superfamily of helicases and is conserved among the various model systems. Recently, rice (Oryza sativa L.) homolog of RuvBL has been biochemically characterized for its ATPase and DNA helicase activities; however its involvement in stress has not been studied so far. Present investigation reports the detailed functional characterization of OsRuvBL under abiotic stresses through genetic engineering. An efficient Agrobacterium-mediated in planta transformation protocol was developed in indica rice to generate the transgenic lines and study was focused on optimization of factors to achieve maximum transformation efficiency. Overexpressing OsRuvBL1a transgenic lines showed enhanced tolerance under in vivo salinity stress as compared to WT plants. The physiological and biochemical analysis of the OsRuvBL1a transgenic lines showed better performance under salinity and drought stresses. Several stress responsive interacting partners of OsRuvBL1a were identified using Y2H system revealed to its role in stress tolerance. Functional mechanism for boosting stress tolerance by OsRuvBL1a has been proposed in this study. This integration of OsRuvBL1a gene in rice genome using in planta transformation method helped to achieve the abiotic stress resilient smart crop. This study is the first direct evidence to show the novel function of RuvBL in boosting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Shabnam K Saifi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nishat Passricha
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Nath
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh 173213, India
| | - Ritu Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India
| | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India.
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
4
|
Miao W, Xiao X, Wang Y, Ge L, Yang Y, Liu Y, Liao Y, Guan Z, Chen S, Fang W, Chen F, Zhao S. CmWRKY6-1-CmWRKY15-like transcriptional cascade negatively regulates the resistance to fusarium oxysporum infection in Chrysanthemum morifolium. HORTICULTURE RESEARCH 2023; 10:uhad101. [PMID: 37577400 PMCID: PMC10419886 DOI: 10.1093/hr/uhad101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/09/2023] [Indexed: 08/15/2023]
Abstract
Chrysanthemum Fusarium wilt is a soil-borne disease that causes serious economic losses to the chrysanthemum industry. However, the molecular mechanism underlying the response of chrysanthemum WRKY to Fusarium oxysporum infection remains largely unknown. In this study, we isolated CmWRKY6-1 from chrysanthemum 'Jinba' and identified it as a transcriptional repressor localized in the nucleus via subcellular localization and transcriptional activation assays. We found that CmWRKY6-1 negatively regulated resistance to F. oxysporum and affected reactive oxygen species (ROS) and salicylic acid (SA) pathways using transgenic experiments and transcriptomic analysis. Moreover, CmWRKY6-1 bound to the W-box element on the CmWRKY15-like promoter and inhibited its expression. Additionally, we observed that CmWRKY15-like silencing in chrysanthemum reduced its resistance to F. oxysporum via transgenic experiments. In conclusion, we revealed the mechanism underlying the CmWRKY6-1-CmWRKY15-like cascade response to F. oxysporum infection in chrysanthemum and demonstrated that CmWRKY6-1 and CmWRKY15-like regulates the immune system.
Collapse
Affiliation(s)
- Weihao Miao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Xiangyu Xiao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Yuean Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Lijiao Ge
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Yanrong Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Ye Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Shuang Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| |
Collapse
|
5
|
Chen Y, Liu Y, Ge J, Li R, Zhang R, Zhang Y, Huo Z, Xu K, Wei H, Dai Q. Improved physiological and morphological traits of root synergistically enhanced salinity tolerance in rice under appropriate nitrogen application rate. FRONTIERS IN PLANT SCIENCE 2022; 13:982637. [PMID: 35968148 PMCID: PMC9372507 DOI: 10.3389/fpls.2022.982637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Numerous papers studied the relations between nitrogen rate and rice yield in saline soils, whereas the rice root morphological and physiological characteristics mediating nitrogen rates in yield formation under varied salinity levels remain less concerns. Through a field experiment applied with five nitrogen rates (0, 210, 255, 300, 345, and 390 kg ha-1) in saline land, we found that rice yield peaked at 7.7 t ha-1 under 300 kg ha-1 nitrogen, and excessive N was not conductive for increasing yield. To further elucidate its internal physiological mechanism, a pot experiment was designed with three N rates (210 [N1], 300 [N2], 390 [N3] kg ha-1) and three salt concentrations (0 [S0], 1.5 [S1], 3.0 [S2] g kg-1 NaCl). Results showed that the average grain yield was decreased by 19.1 and 51.1% under S1 and S2, respectively, while notably increased by 18.5 and 14.5% under N2 and N3, respectively. Salinity stress significantly inhibited root biomass, root length and surface area, root oxidation capacity (ROC), K+ and K+/Na+ ratio, and nitrogen metabolism-related enzyme activities, whereas root Na+ and antioxidant enzyme activities were notably increased. The mechanism of how insufficient N supply (N1) affected rice yield formation was consistent at different salinity levels, which displayed adverse impacts on root morphological and physiological traits, thereby significantly inhibiting leaf photosynthesis and grain yield of rice. However, the mechanism thorough which excessive N (N3) affected yield formation was quite different under varied salinity levels. Under lower salinity (S0 and S1), no significant differences on root morphological traits and grain yield were observed except the significantly decline in activities of NR and GS between N3 and N2 treatments. Under higher salinity level (S2), the decreased ROC, K+/Na+ ratio due to increased Na+, antioxidant enzyme activities, and NR and GS activities were the main reason leading to undesirable root morphological traits and leaf photosynthesis, which further triggered decreased grain yield under N3 treatment, compared to that under N2 treatment. Overall, our results suggest that improved physiological and morphological traits of root synergistically enhanced salinity tolerance in rice under appropriate nitrogen application rate.
Collapse
Affiliation(s)
- Yinglong Chen
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Yang Liu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Jianfei Ge
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Rongkai Li
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Rui Zhang
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Yang Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zhongyang Huo
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Ke Xu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Huanhe Wei
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Qigen Dai
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture and Rural Affairs, Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Muthuramalingam P, Jeyasri R, Rakkammal K, Satish L, Shamili S, Karthikeyan A, Valliammai A, Priya A, Selvaraj A, Gowri P, Wu QS, Karutha Pandian S, Shin H, Chen JT, Baskar V, Thiruvengadam M, Akilan M, Ramesh M. Multi-Omics and Integrative Approach towards Understanding Salinity Tolerance in Rice: A Review. BIOLOGY 2022; 11:biology11071022. [PMID: 36101403 PMCID: PMC9312129 DOI: 10.3390/biology11071022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Rice (Oryza sativa L.) plants are simultaneously encountered by environmental stressors, most importantly salinity stress. Salinity is the major hurdle that can negatively impact growth and crop yield. Understanding the salt stress and its associated complex trait mechanisms for enhancing salt tolerance in rice plants would ensure future food security. The main aim of this review is to provide insights and impacts of molecular-physiological responses, biochemical alterations, and plant hormonal signal transduction pathways in rice under saline stress. Furthermore, the review highlights the emerging breakthrough in multi-omics and computational biology in identifying the saline stress-responsive candidate genes and transcription factors (TFs). In addition, the review also summarizes the biotechnological tools, genetic engineering, breeding, and agricultural practicing factors that can be implemented to realize the bottlenecks and opportunities to enhance salt tolerance and develop salinity tolerant rice varieties. Future studies pinpointed the augmentation of powerful tools to dissect the salinity stress-related novel players, reveal in-depth mechanisms and ways to incorporate the available literature, and recent advancements to throw more light on salinity responsive transduction pathways in plants. Particularly, this review unravels the whole picture of salinity stress tolerance in rice by expanding knowledge that focuses on molecular aspects.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
- Department of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Korea
| | - Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Lakkakula Satish
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Sasanala Shamili
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Alaguvel Valliammai
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Arumugam Priya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Anthonymuthu Selvaraj
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Pandiyan Gowri
- Department of Botany, Science Campus, Alagappa University, Karaikudi 630 003, India;
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China;
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Hyunsuk Shin
- Department of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Korea
- Correspondence: (H.S.); (M.T.); (M.R.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan;
| | - Venkidasamy Baskar
- Department of Oral and Maxillofaciel Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, India;
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
- Correspondence: (H.S.); (M.T.); (M.R.)
| | - Manoharan Akilan
- Department of Plant Breeding and Genetics, Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University, Trichy 620 027, India;
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
- Correspondence: (H.S.); (M.T.); (M.R.)
| |
Collapse
|
7
|
A Review of Integrative Omic Approaches for Understanding Rice Salt Response Mechanisms. PLANTS 2022; 11:plants11111430. [PMID: 35684203 PMCID: PMC9182744 DOI: 10.3390/plants11111430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Soil salinity is one of the most serious environmental challenges, posing a growing threat to agriculture across the world. Soil salinity has a significant impact on rice growth, development, and production. Hence, improving rice varieties’ resistance to salt stress is a viable solution for meeting global food demand. Adaptation to salt stress is a multifaceted process that involves interacting physiological traits, biochemical or metabolic pathways, and molecular mechanisms. The integration of multi-omics approaches contributes to a better understanding of molecular mechanisms as well as the improvement of salt-resistant and tolerant rice varieties. Firstly, we present a thorough review of current knowledge about salt stress effects on rice and mechanisms behind rice salt tolerance and salt stress signalling. This review focuses on the use of multi-omics approaches to improve next-generation rice breeding for salinity resistance and tolerance, including genomics, transcriptomics, proteomics, metabolomics and phenomics. Integrating multi-omics data effectively is critical to gaining a more comprehensive and in-depth understanding of the molecular pathways, enzyme activity and interacting networks of genes controlling salinity tolerance in rice. The key data mining strategies within the artificial intelligence to analyse big and complex data sets that will allow more accurate prediction of outcomes and modernise traditional breeding programmes and also expedite precision rice breeding such as genetic engineering and genome editing.
Collapse
|
8
|
Zahedi SM, Hosseini MS, Fahadi Hoveizeh N, Gholami R, Abdelrahman M, Tran LSP. Exogenous melatonin mitigates salinity-induced damage in olive seedlings by modulating ion homeostasis, antioxidant defense, and phytohormone balance. PHYSIOLOGIA PLANTARUM 2021; 173:1682-1694. [PMID: 34716914 DOI: 10.1111/ppl.13589] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 05/22/2023]
Abstract
Melatonin (MEL) is a ubiquitous molecule with pleiotropic roles in plant adaption to stress. In this study, we investigated the effects of foliar spray of 100 and 200 μM MEL on the biochemical and physiological traits linked with the growth performance of olive seedlings exposed to moderate (45 mM NaCl) and severe (90 mM NaCl) salinity. Both salt stress conditions caused a considerable reduction in leaf relative water content and the contents of photosynthetic pigments (carotenoids, chlorophylls a and b, and total chlorophylls), K+ and Ca+2 , while the contents of Na+ and the activities of antioxidant enzymes increased. In addition, salt-stressed olive seedlings showed high accumulations of hydrogen peroxide (H2 O2 ), malondialdehyde (MDA), and electrolyte leakage (EL), indicating that olive seedlings suffered from salinity-induced oxidative damage. In contrast, MEL application revived the growth of olive seedlings, including shoot height, root length and biomass under salt stress conditions. MEL protected the photosynthetic pigments and decreased the Na+ /K+ ratio under both moderate and severe salt stresses. Furthermore, MEL induced the accumulations of proline, total soluble sugars, glycine betaine, abscisic acid, and indole acetic acid in salt-stressed olive seedlings, which showed a positive correlation with improved leaf water status and biomass. MEL application also increased the activities of catalase, superoxide dismutase, ascorbate peroxidase, and peroxidase in salt-stressed seedlings, resulting in lower levels of H2 O2 , MDA, and EL in these plants. Taken together, MEL mitigates salinity through its roles in various biochemical and physiological processes, thereby representing a promising agent for application in crop protection.
Collapse
Affiliation(s)
- Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Narjes Fahadi Hoveizeh
- Department of Horticultural Science, College of Agriculture, Shahid Chamran University of Ahwaz, Ahwaz, Iran
| | - Rahmatollah Gholami
- Crop and Horticultural Science Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Science, Aswan University, Aswan, Egypt
- Faculty of Science, Galala University, Suze, Galala, Egypt
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
9
|
Shafiq F, Iqbal M, Ashraf MA, Ali M. Foliar applied fullerol differentially improves salt tolerance in wheat through ion compartmentalization, osmotic adjustments and regulation of enzymatic antioxidants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:475-487. [PMID: 32205924 PMCID: PMC7078423 DOI: 10.1007/s12298-020-00761-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 05/11/2023]
Abstract
Earlier we reported that seed pre-treatment with PHF promoted early seedling growth and salinity tolerance in wheat. As a way forward, experiments were conducted to investigate whether and to what extent foliar spray of fullerol could influence growth and physio-biochemical responses in salt stressed wheat. In a control experiment, seeds were sown in sand filled pots (500 g) under control and 150 mM NaCl stress. After 15 days, foliar spray of fullerol at 0, 10, 40, 80 and 120 nM concentration was applied and the data for various morpho-biochemical attributes recorded after 2 weeks. Fullerol caused improvements in shoot growth attributes while had least effect on root growth traits. Increase in total chlorophyll while reduction in Car/Chl ratio was evident under salinity in response to fullerol spray. Only 40 and 80 nM spray treatments improved antioxidant activities and reduced H2O2 contents while MDA contents which increased due to salt stress, remained unaffected by foliar spray. Fullerol spray also improved sugars, proline and free amino acids under salinity. During second experiment under natural conditions, 60 day old plants grown in sand filled pots (10 kg) under 0 and 150 mM NaCl were foliar sprayed with selected concentrations (0, 40 and 80 nM) of fullerol. Salinity inhibited gas exchange and grain yield attributes while fullerol-sprayed plants exhibited recovery. Fullerol spray resulted in high root and shoot K+ and shoot Ca2+ contents. Also, increase in shoot and root P, while lesser shoot Na+ was recorded due to 80 nM spray under salt stress. Overall, 40 and 80 nM fullerol spray improved photosynthetic activity, osmolytes accumulation and altered tissue ion compartmentalization which contributed to improvement in grain yield attributes under salinity.
Collapse
Affiliation(s)
- Fahad Shafiq
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Iqbal
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Ali
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
- Faculty of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
10
|
Wang C, Chen L, Cai ZC, Chen C, Liu Z, Liu X, Zou L, Chen J, Tan M, Wei L, Mei Y. Comparative Proteomic Analysis Reveals the Molecular Mechanisms Underlying the Accumulation Difference of Bioactive Constituents in Glycyrrhiza uralensis Fisch under Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1480-1493. [PMID: 31899641 DOI: 10.1021/acs.jafc.9b04887] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Licorice (Glycyrrhiza uralensis Fisch) possesses a substantial share of the global markets for its unique sweet flavor and diverse pharmacological compounds. Cultivated licorice is widely distributed in northwest regions of China, covered with land with a broad range of salinities. A preliminary study indicated that suitable salt stress significantly increased the content of bioactive constituents in licorice. However, the molecular mechanisms underlying the influence of salinity on the accumulation of these constituents remain unclear, which hinders quality breeding of cultivated licorice. In our study, flavonoid-related structural genes were obtained, and most of them, such as phenylalanine ammonia-lyases, cinnamate 4-hydroxylases, 4-coumarate: CoA ligases, chalcone synthases, chalcone-flavanone isomerase, and flavonol synthase, showed high levels after salt treatment. In the biosynthesis of glycyrrhizin, three key enzymes (bAS, CYP88D6, and CYP72A154) were identified as differentially expressed proteins and remarkably upregulated in the salt-stressed group. Combining these results with the contents of 14 bioactive constituents, we also found that the expression patterns of those structural proteins were logically consistent with changes in bioactive constituent profiles. Thus, we believe that suitable salt stress increased the accumulation of bioactive constituents in licorice by upregulating proteins involved in the related biosynthesis pathways. This work provided valuable proteomic information for unraveling the molecular mechanism of flavonoid and glycyrrhizin metabolism and offered fundamental resources for quality breeding in licorice.
Collapse
Affiliation(s)
- Chengcheng Wang
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Lihong Chen
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Zhi Chen Cai
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Cuihua Chen
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Zixiu Liu
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Xunhong Liu
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing 210023 , China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing 210023 , China
| | - Lisi Zou
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Jiali Chen
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Mengxia Tan
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Lifang Wei
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Yuqi Mei
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| |
Collapse
|
11
|
Dabral S, Varma A, Choudhary DK, Bahuguna RN, Nath M. Biopriming with Piriformospora indica ameliorates cadmium stress in rice by lowering oxidative stress and cell death in root cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109741. [PMID: 31600651 DOI: 10.1016/j.ecoenv.2019.109741] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 05/24/2023]
Abstract
Piriformospora indica is known for plant growth promotion and abiotic stress alleviation potential in several agricultural crops. However, a systemic analysis is warranted to explore potential application of this important fungus to augment heavy metal tolerance in rice. The present study explores potential of P. indica in ameliorating the effect of cadmium (Cd) stress in rice cultivars N22 and IR64. Seedlings inoculated with P. indica recorded significantly higher root-shoot length and biomass as compared to non-inoculated plants under control and Cd stress, respectively. Moreover, P. indica inoculated stressed roots accumulated more Cd as compared to non-inoculated stressed roots in both the varieties. Interestingly, cell death and reactive oxygen species (ROS) accumulation were significantly lower in the inoculated plant roots as compare with non-inoculated roots under Cd stress. The results emphasized significantly higher accumulation of Cd in fungal spores could reduce ROS accumulation in root cells resulting in lower cell death.
Collapse
Affiliation(s)
- Surbhi Dabral
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Devendra Kumar Choudhary
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India.
| | - Rajeev Nayan Bahuguna
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India; Center for Advance Studies on Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India.
| | - Manoj Nath
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India; ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh, 173213, India.
| |
Collapse
|
12
|
Passricha N, Saifi SK, Kharb P, Tuteja N. Rice lectin receptor‐like kinase provides salinity tolerance by ion homeostasis. Biotechnol Bioeng 2019; 117:498-510. [DOI: 10.1002/bit.27216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Nishat Passricha
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali MargNew Delhi India
| | - Shabnam K. Saifi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali MargNew Delhi India
| | - Pushpa Kharb
- Department of Molecular Biology, Biotechnology and BioinformaticsCOBS&H, CCS Haryana Agricultural UniversityHisar Haryana India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali MargNew Delhi India
| |
Collapse
|
13
|
Park YC, Lim SD, Moon JC, Jang CS. A rice really interesting new gene H2-type E3 ligase, OsSIRH2-14, enhances salinity tolerance via ubiquitin/26S proteasome-mediated degradation of salt-related proteins. PLANT, CELL & ENVIRONMENT 2019; 42:3061-3076. [PMID: 31325169 DOI: 10.1111/pce.13619] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/12/2019] [Indexed: 05/20/2023]
Abstract
Salinity is a deleterious abiotic stress factor that affects growth, productivity, and physiology of crop plants. Strategies for improving salinity tolerance in plants are critical for crop breeding programmes. Here, we characterized the rice (Oryza sativa) really interesting new gene (RING) H2-type E3 ligase, OsSIRH2-14 (previously named OsRFPH2-14), which plays a positive role in salinity tolerance by regulating salt-related proteins including an HKT-type Na+ transporter (OsHKT2;1). OsSIRH2-14 expression was induced in root and shoot tissues treated with NaCl. The OsSIRH2-14-EYFP fusion protein was predominately expressed in the cytoplasm, Golgi, and plasma membrane of rice protoplasts. In vitro pull-down assays and bimolecular fluorescence complementation assays revealed that OsSIRH2-14 interacts with salt-related proteins, including OsHKT2;1. OsSIRH2-14 E3 ligase regulates OsHKT2;1 via the 26S proteasome system under high NaCl concentrations but not under normal conditions. Compared with wild type plants, OsSIRH2-14-overexpressing rice plants showed significantly enhanced salinity tolerance and reduced Na+ accumulation in the aerial shoot and root tissues. These results suggest that the OsSIRH2-14 RING E3 ligase positively regulates the salinity stress response by modulating the stability of salt-related proteins.
Collapse
Affiliation(s)
- Yong Chan Park
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung Don Lim
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun-Cheol Moon
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
14
|
Rohilla P, Yadav JP. Acute salt stress differentially modulates nitrate reductase expression in contrasting salt responsive rice cultivars. PROTOPLASMA 2019; 256:1267-1278. [PMID: 31041536 DOI: 10.1007/s00709-019-01378-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Salt stress response includes alteration in the activity of various important enzymes in plants. Nitrate reductase (NR) is one of the known enzyme affected by salt stress. In this study, contrasting salt responsive cultivars (CVS) (IR64-sensitive and CSR 36-tolerant) were considered to study the regulation of NR genes under salt stress conditions. Using Arabidopsis genes Nia1 and Nia2, three different NR genes were identified in rice and their expression study was conducted. Under stress condition, salt-sensitive CVS (IR64) showed a decrease in NR activity under in vitro and in vivo conditions, whereas tolerant CVS showed an increase in NR activity. Different trends for NR activity in contrasting genotype are explained by the variable number of GATA element in the upstream region of the NR gene. This variation of NR activity in contrasting CVS further co-relates with the transcript level of NR genes. The transcript level of three different NR genes also evidenced the effect of CREs in gene regulation. Promoter (1-kb upstream region) of different NR genes contained different abiotic stress-responsive CREs, which explain the differential behavior of these genes towards the abiotic stress. Overall, this study concludes the role of CREs in the regulation of NR gene and indicates the importance of transcriptional control of NR activity under stress condition. This is the first type of report that highlights the role of the regulatory mechanism of NR genes under salt stress condition.
Collapse
Affiliation(s)
- Pooja Rohilla
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jaya Parkash Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
15
|
Singh M, Singh VP, Prasad SM. Nitrogen alleviates salinity toxicity in Solanum lycopersicum seedlings by regulating ROS homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:466-476. [PMID: 31252252 DOI: 10.1016/j.plaphy.2019.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
The present study was aimed to investigate adaptation in physiology and biochemistry of Solanum lycopersicum seedlings under NaCl (NaCl0; 0.0 g NaCl kg-1 sand, NaCl1; 0.3 g NaCl/kg sand and NaCl2; 0.5 g NaCl/kg sand) stress, simultaneously supplemented with different (deprived; 0 mg/kg sand, LN; 105 mg/kg sand, MN; 210 mg/kg sand and HN; 270 mg/kg sand) levels of nitrogen (N). NaCl at both doses caused significant loss in growth, K+ content, K+/Na+ ratio, total chlorophyll and photosynthetic oxygen evolution. Further, N supplementation influences growth of test seedlings, that attained maximum growth in HN followed by MN, LN and deprived N conditions. N at HN level significantly declined Na+ accumulation in the cell and enhanced level of K+. NaCl treatment enhanced level of oxidative stress biomarkers: superoxide radical (O2•-), hydrogen peroxide (H2O2), MDA equivalents contents and electrolyte leakage in leaf as well as root despite enhanced activity of SOD, POD, CAT and GST, and enzymes participating in the ascorbate-glutathione cycle (AsA-GSH cycle) viz. APX, DHAR and GR. At the same time, higher contents of total AsA (AsA + DHA) and total GSH (GSH + GSSG), and maintained ratios of AsA/DHA and GSH/GSSG in HN fed seedlings were observed. Overall, the results suggest that HN supplementation was able in alleviating NaCl induced toxicity in test seedlings which was mainly due to the up-regulation of the AsA-GSH cycle, K+ and K+/Na+ ratio, which resulted into better growth performance of HN fed seedlings under NaCl stress while reverse was noticed for LN and deprive N conditions.
Collapse
Affiliation(s)
- Madhulika Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Vijay Pratap Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
16
|
Nidumukkala S, Tayi L, Chittela RK, Vudem DR, Khareedu VR. DEAD box helicases as promising molecular tools for engineering abiotic stress tolerance in plants. Crit Rev Biotechnol 2019; 39:395-407. [DOI: 10.1080/07388551.2019.1566204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Lavanya Tayi
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, India
| | | | | | | |
Collapse
|
17
|
Passricha N, Saifi SK, Kharb P, Tuteja N. Marker-free transgenic rice plant overexpressing pea LecRLK imparts salinity tolerance by inhibiting sodium accumulation. PLANT MOLECULAR BIOLOGY 2019; 99:265-281. [PMID: 30604324 DOI: 10.1007/s11103-018-0816-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 12/18/2018] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE PsLecRLK overexpression in rice provides tolerance against salinity stress and cause upregulation of SOS1 pathway genes, which are responsible for extrusion of excess Na+ ion under stress condition. Soil salinity is one of the most devastating factors threatening cultivable land. Rice is a major staple crop and immensely affected by soil salinity. The small genome size of rice relative to wheat and barley, together with its salt sensitivity, makes it an ideal candidate for studies on salt stress response caused by a particular gene. Under stress conditions crosstalk between organelles and cell to cell response is imperative. LecRLK is an important family, which plays a key role under stress conditions and regulates the physiology of the plant. Here we have functionally validated the PsLecRLK gene in rice for salinity stress tolerance and hypothesized the model for its working. Salt stress sensitive rice variety IR64 was used for developing marker-free transgenic with modified binary vector pCAMBIA1300 overexpressing PsLecRLK gene. Comparison of transgenic and wild-type (WT) plants showed better physiological and biochemical results in transgenic lines with a low level of ROS, MDA and ion accumulation and a higher level of proline, relative water content, root/shoot ration, enzymatic activities of ROS scavengers and upregulation of stress-responsive genes. Based on the relative expression of stress-responsive genes and ionic content, the working model highlights the role of PsLecRLK in the extrusion of Na+ ion from the cell. This extrusion of Na+ ion is facilitated by higher expression of SOS1 (Na+/K+ channel) in transgenic plants as compared to WT plants. Altered expression of stress-responsive genes and change in biochemical and physiological properties of the cell suggests an extensive reprogramming of the stress-responsive metabolic pathways by PsLecRLK under stress condition, which could be responsible for the salt tolerance capability.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Calcium/metabolism
- Cell Death
- Cell Membrane/drug effects
- Cloning, Molecular
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Genes, Plant
- Germination
- Homozygote
- Ions
- Oryza/genetics
- Oryza/metabolism
- Pisum sativum/genetics
- Pisum sativum/metabolism
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Protein Transport/drug effects
- Reactive Oxygen Species/metabolism
- Receptors, Mitogen/genetics
- Receptors, Mitogen/metabolism
- SOS1 Protein/genetics
- SOS1 Protein/metabolism
- Salinity
- Salt Tolerance/genetics
- Salt Tolerance/physiology
- Sodium/metabolism
- Sodium Chloride/metabolism
- Sodium Chloride/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Nishat Passricha
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shabnam K Saifi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pushpa Kharb
- Department of Molecular Biology, Biotechnology and Bioinformatics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
18
|
Biswas S, Amin USM, Sarker S, Rahman MS, Amin R, Karim R, Tuteja N, Seraj ZI. Introgression, Generational Expression and Salinity Tolerance Conferred by the Pea DNA Helicase 45 Transgene into Two Commercial Rice Genotypes, BR28 and BR47. Mol Biotechnol 2018; 60:111-123. [PMID: 29282651 DOI: 10.1007/s12033-017-0055-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA helicase (PDH45) from the pea plant (Pisum sativum) is a member of the DEAD box protein family and plays a vital regulatory role in saline stress tolerance in plants. We previously reported that over-expression of PDH45 gene confers both seedling and reproductive stage salinity tolerance to a Bangladeshi rice landrace, Binnatoa (BA). In this study, transgenic BA-containing PDH45 (♂) was crossed with two different farmer-popular BRRI rice varieties (♀), BR28 and BR47, in a contained net house. F1 plants positive for the transgene and having recipient phenotype were advanced from F1 to F5. Expression of the PDH45 gene was detected in all generations. The expression level of PDH45 was 200-fold higher in the donor compared to the two recipient genotypes but without any effect on their salt stress tolerance ability in various assays. Under 120 mM NaCl stress at seedling stage, all rice genotypes showed vigorous growth, higher chlorophyll content, lower electrolyte leakage and lower LDS (Leaf Damage Score) compared to their corresponding wild types. At the reproductive stage under continuous salinity stress at 80 mM NaCl, the cross-bred lines BR28 and BR47 showed significantly better spikelet fertility and yield per plant, which were two- and 2.5-folds, respectively, than their corresponding wild types. The PDH45 transgene was observed to increase the expression of 6 salt stress-related downstream genes at 150 mM NaCl stress to similar differential degrees in the donor and recipient genotypes. However, the expression of OsLEA was significantly higher in transgenic BR28 compared to transgenic BR47, where the latter shows comparatively higher salt tolerance. The study shows stability of transgene expression across generations. It also demonstrates that there may be an effect of background genotype on transgene expression. Moreover, some downstream effects of the transgene may also be genotype-specific.
Collapse
Affiliation(s)
- Sudip Biswas
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - U S Mahzabin Amin
- Molecular Biotechnology Division, National Institution of Biotechnology, Savar, Bangladesh
| | - Sarah Sarker
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - M Sazzadur Rahman
- Plant Physiology Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Ruhul Amin
- Institute of Food Science and Technology, BCSIR, Dhaka, Bangladesh
| | - Rezaul Karim
- Institute of Food Science and Technology, BCSIR, Dhaka, Bangladesh
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Zeba I Seraj
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
19
|
Kumari J, Udawat P, Dubey AK, Haque MI, Rathore MS, Jha B. Overexpression of SbSI-1, A Nuclear Protein from Salicornia brachiata Confers Drought and Salt Stress Tolerance and Maintains Photosynthetic Efficiency in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2017; 8:1215. [PMID: 28751902 PMCID: PMC5508026 DOI: 10.3389/fpls.2017.01215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 06/27/2017] [Indexed: 05/14/2023]
Abstract
A novel Salicornia brachiata Salt Inducible (SbSI-1) gene was isolated and overexpressed in tobacco for in planta functional validation subjected to drought and salt stress. SbSI-1 is a nuclear protein. The transgenic tobacco overexpressing SbSI-1 gene exhibited better seed germination, growth performances, pigment contents, cell viability, starch accumulation, and tolerance index under drought and salt stress. Overexpression of SbSI-1 gene alleviated the build-up of reactive oxygen species (ROS) and curtailed the ROS-induced oxidative damages thus improved the physiological health of transgenic tobacco under stressed conditions. The higher activities of antioxidant enzymes, lower accumulation of ROS, higher membrane stability, relative water content, and polyphenol contents indicated the better survival of the transgenic tobacco than wild-type (WT) tobacco under stressed conditions. Transgenic tobacco had a higher net photosynthetic rate, PSII operating efficiency, and performance index under drought and salt stress. Higher accumulation of compatible solutes and K+/Na+ ratio in transgenic tobacco than WT showed the better osmotic and redox homeostasis under stressed conditions. The up-regulation of genes encoding antioxidant enzymes (NtSOD, NtAPX, and NtCAT) and transcription factors (NtDREB2 and NtAP2) in transgenic tobacco under stressed conditions showed the role of SbSI-1 in ROS alleviation and involvement of this gene in abiotic stress tolerance. Multivariate data analysis exhibited statistical distinction among growth responses, physiological health, osmotic adjustment, and photosynthetic responses of WT and transgenic tobacco under stressed conditions. The overexpression of SbSI-1 gene curtailed the ROS-induced oxidative damages and maintained the osmotic homeostasis under stress conditions thus improved physiological health and photosynthetic efficiencies of the transgenic tobacco overexpressing SbSI-1 gene.
Collapse
Affiliation(s)
- Jyoti Kumari
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
| | - Pushpika Udawat
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
| | - Ashish K. Dubey
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Md Intesaful Haque
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Mangal S. Rathore
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
- *Correspondence: Mangal S. Rathore ;
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
- Bhavanath Jha
| |
Collapse
|
20
|
Passricha N, Saifi S, Khatodia S, Tuteja N. Assessing zygosity in progeny of transgenic plants: current methods and perspectives. J Biol Methods 2016; 3:e46. [PMID: 31453212 PMCID: PMC6706148 DOI: 10.14440/jbm.2016.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/29/2016] [Accepted: 05/25/2016] [Indexed: 01/20/2023] Open
Abstract
Homozygosity is highly desirable in transgenic plants research to ensure the stable integration and inheritance of transgene(s). Simple, reliable and high-throughput techniques to detect the zygosity of transgenic events in plants are invaluable tools for biotechnology and plant breeding companies. Currently, a number of basic techniques are being used to determine the zygosity of transgenic plants in T1 generation. For successful application of any technique, precision and simplicity of approach combined with the power of resolution are important parameters. On the basis of simplicity, resolution and cost involved, the available techniques have been classified into three major classes which are conventional methods, current methods and next generation methods. Conventional methods include antibiotic marker-based selection and the highly labor intensive Southern blot analysis. In contrast, methods such as real time PCR, TAIL PCR and competitive PCR are not only cost effective but rapid as well. Moreover, methods such as NGS, digital PCR and loop-mediated isothermal amplification also provide a cost effective, fast and not so labor intensive substitute of current methods. In this review, we have attempted to compare and contrast all the available efficient methods to distinguish homozygous plants in progeny of transgenics. This review also provides information of various techniques available for determining zygosity in plants so as to permit researchers to make informed choices of techniques that best suit their analyses. More importantly, detection and subsequent selection of homozygous individuals is central for facilitating the movement of transgenic plants from the laboratory to the field.
Collapse
Affiliation(s)
- Nishat Passricha
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shabnam Saifi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Surender Khatodia
- Amity Institute of Biotechnology, Amity University, Gurgaon 122413, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Amity Institute of Microbial Technology, Amity University, Noida 201313, India
| |
Collapse
|
21
|
Singh M, Singh VP, Prasad SM. Nitrogen modifies NaCl toxicity in eggplant seedlings: Assessment of chlorophyll a fluorescence, antioxidative response and proline metabolism. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Nath M, Bhatt D, Prasad R, Gill SS, Anjum NA, Tuteja N. Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition. FRONTIERS IN PLANT SCIENCE 2016; 7:1574. [PMID: 27818671 PMCID: PMC5073151 DOI: 10.3389/fpls.2016.01574] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/06/2016] [Indexed: 05/18/2023]
Abstract
A defined balance between the generation and scavenging of reactive oxygen species (ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also act as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant-microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant-microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation, scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.
Collapse
Affiliation(s)
- Manoj Nath
- Amity Institute of Microbial Technology, Amity University Uttar PradeshNoida, India
- *Correspondence: Manoj Nath, Narendra Tuteja,
| | - Deepesh Bhatt
- Department of Biotechnology, Shree Ramkrishna Institute of Computer Education and Applied Sciences, Veer Narmad South Gujarat UniversitySurat, India
| | - Ram Prasad
- Amity Institute of Microbial Technology, Amity University Uttar PradeshNoida, India
| | - Sarvajeet S. Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand UniversityRohtak, India
| | - Naser A. Anjum
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity University Uttar PradeshNoida, India
- *Correspondence: Manoj Nath, Narendra Tuteja,
| |
Collapse
|