1
|
Cruz de Carvalho R, Carreiras JA, Matos AR, Caçador I, Duarte B. Enhancing Drought Tolerance in Salicornia ramosissima Through Biofertilization with Marine Plant Growth-Promoting Bacteria (PGPB). PLANTS (BASEL, SWITZERLAND) 2025; 14:1227. [PMID: 40284115 PMCID: PMC12030189 DOI: 10.3390/plants14081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
The duration, frequency, and intensity of drought events in the Mediterranean region pose increasing threats to conventional crop production. Consequently, eco-friendly and sustainable development approaches should aim to address future food production goals. Halophytes, such as Salicornia ramosissima J. Woods, represent promising cash crops for cultivation in conjunction with novel biofertilization strategies involving plant growth-promoting bacteria (PGPB). In the present study, the physiological fitness of S. ramosissima under various drought conditions, with and without marine PGPB inoculation, was evaluated to enhance the resilience of this cash crop halophyte under water-limited conditions. Our results indicate that PGPB inoculation significantly decreased water loss under extreme drought, with non-inoculated plants showing a water content (WC) of 59%, while in inoculated plants, the decrease in WC was lower at 77%. Furthermore, PGPB inoculation significantly enhanced the photochemistry of the plant, which maintained higher active oxygen-evolving complexes and a greater ability for complete closure of reaction centers under severe and extreme drought, thus demonstrating an improved capacity for light energy utilization in photosynthesis even under water-limited conditions. Furthermore, bioaugmented plants generally exhibited improved osmoregulation through increased yet appropriate accumulation of proline, a major osmolyte, and higher relative water content in the stem compared to the corresponding non-inoculated plants. Drought stress similarly modified the fatty acid profile in both plant groups, resulting in increased membrane stability due to reduced fluidity. However, PGPB-inoculated plants demonstrated a higher capacity for mitigation of oxidative stress, primarily through enhanced activities of superoxide dismutase, which is crucial for the scavenging of harmful reactive oxygen species (ROS). This, along with improvements in energy use and dissipation, as evidenced by photochemistry, reveals a multi-dimensional mechanism for drought tolerance in bioaugmented plants. Metabolic changes, particularly in PGPB-inoculated plants, clearly demonstrate the potential of these bacteria to be utilized in the enhancement of drought tolerance in S. ramosissima. Moreover, these data elucidate the complex metabolic aspects regarding photochemistry, osmoregulation, and oxidative stress that should be considered when phenotyping plants for drought tolerance, given the increasing water scarcity worldwide scenario.
Collapse
Affiliation(s)
- Ricardo Cruz de Carvalho
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal (I.C.); (B.D.)
- CE3C—Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - João Albuquerque Carreiras
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal (I.C.); (B.D.)
- BioISI—Biosystems and Integrative Sciences Institute, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| | - Ana Rita Matos
- BioISI—Biosystems and Integrative Sciences Institute, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal (I.C.); (B.D.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal (I.C.); (B.D.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
2
|
Xu Y, Li M, Jia Z, Gong Y, Li X, Fu YH. Incorporating Drought Thresholds Improves Model Predictions of Autumn Phenology in Tropical and Subtropical Forests. GLOBAL CHANGE BIOLOGY 2025; 31:e70177. [PMID: 40237248 DOI: 10.1111/gcb.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025]
Abstract
Drought dramatically influences vegetation phenology, thereby impacting terrestrial carbon and water cycles. However, the mechanisms by which drought drives changes in autumn phenology remain unclear, hindering the accurate simulation of these processes in phenology models. In this study, we employed ridge regression analysis to quantify the dynamic effects of intensifying drought on the end-of-photosynthetic-growing-season (EOPS) and identified the drought threshold at which the vegetation's response to drought shifts. We demonstrate that the response of EOPS in tropical and subtropical forests reverses from a delay to an advancement as drought intensity surpasses specific thresholds, with the average drought threshold across the study area corresponding to a standardized precipitation evapotranspiration index (SPEI) value of -0.9. Drought thresholds, however, vary geographically, increasing along the precipitation gradient, potentially due to variations in drought stress-related gene expression and tolerance strategies across different humidity environments. Therefore, we developed a new autumn phenology model (DMPD) by incorporating a drought threshold parameter that distinguishes contrasting drought effects and predicts future EOPS under two scenarios (SSP245 and SSP585). The DMPD model substantially enhanced the representation of EOPS, as evidenced by a lower root mean square error (RMSE), higher correlation, and a greater proportion of significant correlations with EOPS derived from GOSIF. By the end of the century, EOPS is projected to be consistently delayed under both moderate (SSP245) and high (SSP585) warming scenarios, with the rate of delay decelerating under SSP245 after 2066. Our study confirms that increasing drought intensity leads to contrasting shifts in the autumnal photosynthetic phenology of tropical and subtropical forests and highlights the potential of integrating these contrasting drought effects into phenology models to improve the accuracy of vegetation phenology predictions under future climate change scenarios.
Collapse
Affiliation(s)
- Yue Xu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Mingwei Li
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Zitong Jia
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yufeng Gong
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Xiran Li
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Yongshuo H Fu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
- College of Water Sciences, Beijing Normal University, Beijing, China
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
3
|
Mohi-Ud-Din M, Hossain MA, Rohman MM, Uddin MN, Haque MS, Tahery MH, Hasanuzzaman M. Multi-Trait Index-Based Selection of Drought Tolerant Wheat: Physiological and Biochemical Profiling. PLANTS (BASEL, SWITZERLAND) 2024; 14:35. [PMID: 39795295 PMCID: PMC11723105 DOI: 10.3390/plants14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Drought is a detrimental abiotic stress that severely limits wheat growth and productivity worldwide by altering several physiological processes. Thus, understanding the mechanisms of drought tolerance is essential for the selection of drought-resilient features and drought-tolerant cultivars for wheat breeding programs. This exploratory study evaluated 14 wheat genotypes (13 relatively tolerant, one susceptible) for drought endurance based on flag leaf physiological and biochemical traits during the critical grain-filling stage in the field conditions. Measurements included six physiological, seven gas exchange, six photosystem II, six stomatal, three reactive species, seven metabolomic solutes, and two biomass traits. All parameters were significantly influenced by drought, with varying genotypic responses. Hierarchical cluster analysis (HCA) categorized genotypes into three drought tolerance groups based on trait performance. Seven genotypes in Cluster 2 (BARI Gom 26, BARI Gom 33, BD-631, BD-600, BD-9910, BD-9889, BD-637) exhibited superior drought tolerance, characterized by minimal changes in physiological traits and biomass accumulation, reduced oxidative stress markers, and increased accumulation of osmoprotectants. The innovative multi-trait genotype-ideotype distance index (MGIDI) further ranked wheat genotypes in regard to drought tolerance, identifying BARI Gom 33, BARI Gom 26, BD-9889, and BD-600 as top performers. Notably, all these top-ranking genotypes belonged to Cluster 2, previously identified as the highest-performing group in the HCA. The identified genotypes with superior drought tolerance offer valuable genetic resources for enhancing wheat productivity in water-limiting environments. Traits related to photosynthetic activity, biomass gain, leaf conductance, water stress, and osmoprotection showed high selection differentials and heritability in MGIDI analysis, indicating their potential as selection targets for drought-tolerant wheat. Overall, the strategic approaches have yielded novel insights into genotype screening that can be directly applied to deepen our understanding of drought tolerance mechanisms in wheat.
Collapse
Affiliation(s)
- Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.-U.-D.)
| | - Md. Alamgir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Motiar Rohman
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Md. Nesar Uddin
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Sabibul Haque
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahmudul Hasan Tahery
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.-U.-D.)
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
4
|
Guo J, Li T, Wu T, Wang Z, Zou Z, Peng C, Zhou X, Li P, Liu Z, Tang J, Zhang C. Drought and warming interaction cause substantial economic losses in the carbon market potential of China's northern grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176182. [PMID: 39270863 DOI: 10.1016/j.scitotenv.2024.176182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Grasslands are being threatened by global drought and warming. Economic assessments of changing grassland carbon sequestration, a prerequisite for nature-based climate-change mitigation policies, are limited when researchers inadequate consider interactions between drought and warming. Here, we quantified the responses of 35 grass biomasses to combined drought and warming, based on manipulation experiments from 34 peer-reviewed papers; subsequently, we matched them with grasslands in northern China-the eastern range of the larger Eurasian Steppe-and further projected the economic implications for carbon market trading and carbon-sequestration costs. The results show that carbon sequestration in all grassland types, except for forbrich steppe, was significantly reduced by the synergistic interactions of drought and warming. Approximately 10 % of the grasslands in central Xinjiang, identified as forbrich steppe, showed resilience to these stressors. In contrast, the rest of northern China's grasslands suffered increased carbon losses due to drought and warming. The combined effects of drought and warming have caused a loss of 1.6 × 104 million Chinese yuan (CNY) in revenue and excess carbon-sequestration costs exceeding 1.1 × 105 million CNY. Overall, our study results indicate that the synergistic effects of drought and warming significantly undermine the economic viability of carbon sequestration in most of northern China's grasslands. As climate change intensifies, understanding and incorporating the complex interactions of drought and warming can aid in the sustainable management of grassland ecosystems and the development of effective climate-change mitigation policies in arenas, including carbon markets.
Collapse
Affiliation(s)
- Jingwen Guo
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, China
| | - Tong Li
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, China; Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dong-ting Lake Basin, Hunan Normal University, Changsha 410081, China
| | - Tong Wu
- Natural Capital Project, Stanford University, Stanford, CA 94305, USA
| | - Zhaoguo Wang
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Ziying Zou
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, China; Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dong-ting Lake Basin, Hunan Normal University, Changsha 410081, China.
| | - Changhui Peng
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, China; Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dong-ting Lake Basin, Hunan Normal University, Changsha 410081, China; Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, C.P. 8888, Succ. Centre-ville, Montreal H3C 3P8, Canada
| | - Xiaolu Zhou
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, China; Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dong-ting Lake Basin, Hunan Normal University, Changsha 410081, China
| | - Peng Li
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, China; Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dong-ting Lake Basin, Hunan Normal University, Changsha 410081, China
| | - Zelin Liu
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, China; Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dong-ting Lake Basin, Hunan Normal University, Changsha 410081, China
| | - Jiayi Tang
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, China; Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dong-ting Lake Basin, Hunan Normal University, Changsha 410081, China
| | - Cicheng Zhang
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, China; Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dong-ting Lake Basin, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
5
|
Tóth D, Tengölics R, Aarabi F, Karlsson A, Vidal-Meireles A, Kovács L, Kuntam S, Körmöczi T, Fernie AR, Hudson EP, Papp B, Tóth SZ. Chloroplastic ascorbate modifies plant metabolism and may act as a metabolite signal regardless of oxidative stress. PLANT PHYSIOLOGY 2024; 196:1691-1711. [PMID: 39106412 PMCID: PMC11444284 DOI: 10.1093/plphys/kiae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 08/09/2024]
Abstract
Ascorbate (Asc) is a major plant metabolite that plays crucial roles in various processes, from reactive oxygen scavenging to epigenetic regulation. However, to what extent and how Asc modulates metabolism is largely unknown. We investigated the consequences of chloroplastic and total cellular Asc deficiencies by studying chloroplastic Asc transporter mutant lines lacking PHOSPHATE TRANSPORTER 4; 4 and the Asc-deficient vtc2-4 mutant of Arabidopsis (Arabidopsis thaliana). Under regular growth conditions, both Asc deficiencies caused minor alterations in photosynthesis, with no apparent signs of oxidative damage. In contrast, metabolomics analysis revealed global and largely overlapping alterations in the metabolome profiles of both Asc-deficient mutants, suggesting that chloroplastic Asc modulates plant metabolism. We observed significant alterations in amino acid metabolism, particularly in arginine metabolism, activation of nucleotide salvage pathways, and changes in secondary metabolism. In addition, proteome-wide analysis of thermostability revealed that Asc may interact with enzymes involved in arginine metabolism, the Calvin-Benson cycle, and several photosynthetic electron transport components. Overall, our results suggest that, independent of oxidative stress, chloroplastic Asc modulates the activity of diverse metabolic pathways in vascular plants and may act as an internal metabolite signal.
Collapse
Affiliation(s)
- Dávid Tóth
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
- Doctoral School of Biology, University of Szeged, Közép fasor 52, Szeged H-6722, Hungary
| | - Roland Tengölics
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, Szeged H-6726, Hungary
- Metabolomics Lab, Core Facilities, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Anna Karlsson
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, PO Box 1031, Solna 171 21, Sweden
| | - André Vidal-Meireles
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - László Kovács
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Soujanya Kuntam
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Tímea Körmöczi
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Elton P Hudson
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, PO Box 1031, Solna 171 21, Sweden
| | - Balázs Papp
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, Szeged H-6726, Hungary
- National Laboratory for Health Security, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Szilvia Z Tóth
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
6
|
Bayona-Rodríguez C, Romero HM. Drought Resilience in Oil Palm Cultivars: A Multidimensional Analysis of Diagnostic Variables. PLANTS (BASEL, SWITZERLAND) 2024; 13:1598. [PMID: 38931030 PMCID: PMC11207721 DOI: 10.3390/plants13121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Water scarcity is a significant constraint on agricultural practices, particularly in Colombia, where numerous palm cultivators rely on rainfed systems for their plantations. Identifying drought-tolerant cultivars becomes pivotal to mitigating the detrimental impacts of water stress on growth and productivity. This study scrutinizes the variability in drought responses of growth, physiological, and biochemical variables integral to selecting drought-tolerant oil palm cultivars in the nursery. A comprehensive dataset was compiled by subjecting seedlings of eleven cultivars to four soil water potentials (-0.05 MPa, -0.5 MPa, -1 MPa, and -2 MPa) over 60 days. This dataset encompasses growth attributes, photosynthetic parameters like maximum quantum yield and electron transfer rate, gas exchange (photosynthesis, transpiration, and water use efficiency), levels of osmolytes (proline and sugars), abscisic acid (ABA) content, as well as antioxidant-related enzymes, including peroxidase, catalase, ascorbate peroxidase, glutathione reductase, and superoxide dismutase. Principal Component Analysis (PCA) elucidated two principal components that account for approximately 65% of the cumulative variance. Noteworthy enzyme activity was detected for glutathione reductase and ascorbate peroxidase. When juxtaposed with the other evaluated cultivars, one of the cultivars (IRHO 7001) exhibited the most robust response to water deficit. The six characteristics evaluated (photosynthesis, predawn water potential, proline, transpiration, catalase activity, sugars) were determined to be the most discriminant when selecting palm oil cultivars with tolerance to water deficit.
Collapse
Affiliation(s)
- Cristihian Bayona-Rodríguez
- Colombian Oil Palm Research Center—Cenipalma, Oil Palm Biology and Breeding Research Program, Bogotá 11121, Colombia;
| | - Hernán Mauricio Romero
- Colombian Oil Palm Research Center—Cenipalma, Oil Palm Biology and Breeding Research Program, Bogotá 11121, Colombia;
- Department of Biology, Universidad Nacional de Colombia, Bogotá 11132, Colombia
| |
Collapse
|
7
|
Iwasa Y, Hayashi R, Satake A. Optimal seasonal schedule for the production of isoprene, a highly volatile biogenic VOC. Sci Rep 2024; 14:12311. [PMID: 38811652 PMCID: PMC11137007 DOI: 10.1038/s41598-024-62975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
The leaves of many trees emit volatile organic compounds (abbreviated as BVOCs), which protect them from various damages, such as herbivory, pathogens, and heat stress. For example, isoprene is highly volatile and is known to enhance the resistance to heat stress. In this study, we analyze the optimal seasonal schedule for producing isoprene in leaves to mitigate damage. We assume that photosynthetic rate, heat stress, and the stress-suppressing effect of isoprene may vary throughout the season. We seek the seasonal schedule of isoprene production that maximizes the total net photosynthesis using Pontryagin's maximum principle. The isoprene production rate is determined by the changing balance between the cost and benefit of enhanced leaf protection over time. If heat stress peaks in midsummer, isoprene production can reach its highest levels during the summer. However, if a large portion of leaves is lost due to heat stress in a short period, the optimal schedule involves peaking isoprene production after the peak of heat stress. Both high photosynthetic rate and high isoprene volatility in midsummer make the peak of isoprene production in spring. These results can be clearly understood by distinguishing immediate impacts and the impacts of future expectations.
Collapse
Affiliation(s)
- Yoh Iwasa
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| | - Rena Hayashi
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
8
|
Bulle M, Venkatapuram AK, Rahman MM, Attia KA, Mohammed AA, Abbagani S, Kirti PB. Enhancing drought tolerance in chilli pepper through AdDjSKI-mediated modulation of ABA sensitivity, photosynthetic preservation, and ROS scavenging. PHYSIOLOGIA PLANTARUM 2024; 176:e14379. [PMID: 38853306 DOI: 10.1111/ppl.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/21/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
Drought stress threatens the productivity of numerous crops, including chilli pepper (Capsicum annuum). DnaJ proteins are known to play a protective role against a wide range of abiotic stresses. This study investigates the regulatory mechanism of the chloroplast-targeted chaperone protein AdDjSKI, derived from wild peanut (Arachis diogoi), in enhancing drought tolerance in chilli peppers. Overexpressing AdDjSKI in chilli plants increased chlorophyll content, reflected in the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with untransformed control (UC) plants. This enhancement coincided with the upregulated expression of PSII-related genes. Our subsequent investigations revealed that transgenic chilli pepper plants expressing AdDjSKI showed reduced accumulation of superoxide and hydrogen peroxide and, consequently, lower malondialdehyde levels and decreased relative electrolyte leakage percentage compared with UC plants. The mitigation of ROS-mediated oxidative damage was facilitated by heightened activities of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase, coinciding with the upregulation of the expression of associated antioxidant genes. Additionally, our observations revealed that the ectopic expression of the AdDjSKI protein in chilli pepper plants resulted in diminished ABA sensitivity, consequently promoting seed germination in comparison with UC plants under different concentrations of ABA. All of these collectively contributed to enhancing drought tolerance in transgenic chilli plants with improved root systems when compared with UC plants. Overall, our study highlights AdDjSKI as a promising biotechnological solution for enhancing drought tolerance in chilli peppers, addressing the growing global demand for this economically valuable crop.
Collapse
Affiliation(s)
- Mallesham Bulle
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- Plant Biotechnology Research Unit, Department of Biotechnology, Kakatiya University, Warangal, Telangana, India
| | - Ajay Kumar Venkatapuram
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Kotab A Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | - Sadanandam Abbagani
- Plant Biotechnology Research Unit, Department of Biotechnology, Kakatiya University, Warangal, Telangana, India
| | - P B Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
9
|
Poudyal D, Joshi BK, Zhou R, Ottosen CO, Dahal KC. Evaluating the physiological responses and identifying stress tolerance of Akabare chili landraces to individual and combined drought and heat stresses. AOB PLANTS 2023; 15:plad083. [PMID: 38106642 PMCID: PMC10721449 DOI: 10.1093/aobpla/plad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Abstract. Akabare chili (Capsicum annuum) contributes to Nepalese rural livelihoods but suffers from low productivity due to various abiotic stresses including drought and heat. This study aimed to assess the physiological responses of Akabare chili landraces to heat and drought stress, individually and together, and to identify stress-tolerant genotypes in the early vegetative stage. Selected eight Akabare chili landraces and chili variety 'Jwala' were subjected to control (30/22 °C day/night) and heat stress (40/32 °C) conditions with irrigation, and drought stress (30/22 °C) and combined drought-heat stress conditions without irrigation for 7 days, followed by a 5-day recovery under control condition. Stress-tolerant landraces showed better performance compared to sensitive ones in terms of efficacy of PS II (Fv/Fm), transpiration rate (E), net photosynthetic rate (PN), stomatal conductance (gs), leaf temperature depression, water use efficiency (WUE) and the ratio of stomata pore area to stomata area under stress conditions, resulting in improved biomass. Although all genotypes performed statistically similar under control conditions, their responses Fv/Fm, PN, E, gs and WUE were significantly reduced under thermal stress, further reduced under drought stress, and severely declined under the combination of both. Total biomass exhibited a 57.48 % reduction due to combined stress, followed by drought (37.8 %) and heat (21.4 %) compared to the control. Among the landraces, C44 showed the most significant gain in biomass (35 %), followed by DKT77 (33.48 %), while the lowest gain percentage was observed for C64C and PPR77 during the recovery phase (29 %). The tolerant landraces also showed a higher percentage of leaf cooling, chlorophyll content and leaf relative water content with fewer stomata but broader openings of pores. The study identifies potential stress-tolerant Akabare chili landraces and discusses the stress-tolerant physiological mechanisms to develop resilient crop varieties in changing climates.
Collapse
Affiliation(s)
- Damodar Poudyal
- Postgraduate Program, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur-10, 44618 Kathmandu, Nepal
| | - Bal Krishna Joshi
- National Agriculture Genetic Resource Center, Nepal Agriculture Research Council, Khumaltar, 44700 Lalitpur, Nepal
| | - Rong Zhou
- College of Horticulture, Nanjing Agriculture University, Weigang No.1, 210095 Nanjing, China
| | - Carl-Otto Ottosen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Kishor Chandra Dahal
- Postgraduate Program, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur-10, 44618 Kathmandu, Nepal
| |
Collapse
|
10
|
Cheng J, Xiang L, Yang M, Liu Y, Pan L, Guo Z, Lu S. Transcriptome Analysis of Native Kentucky Bluegrass ( Poa pratensis L.) in Response to Osmotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3971. [PMID: 38068609 PMCID: PMC10708062 DOI: 10.3390/plants12233971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/01/2025]
Abstract
Kentucky bluegrass (Poa pratensis L.) is an important cool season turfgrass species with a high cold tolerance, but it is sensitive to drought. It is valuable for the applications of Kentucky bluegrass to improve its drought tolerance. However, little is known about the underlying drought mechanism. In the present study, transcriptomic profiling in the roots and leaves of the Kentucky bluegrass cultivar 'Qinghai', in response to osmotic stress in the form of treatment with 2 h and 50 h of 25% (v/v) PEG-6000, was analyzed. The results showed that a large number of genes were significantly up-regulated or down-regulated under osmotic stress. The majority of genes were up-regulated in leaves but down-regulated in roots after 2 h and 50 h of osmotic stress, among them were 350 up-regulated DEGs and 20 down-regulated DEGs shared in both leaves and roots. GO and KEGG analysis showed that carbohydrate metabolism, polyamine and amino acid metabolism and the plant hormone signaling pathway were enriched in the leaves and roots of 'Qinghai' after osmotic stress. The genes involving in carbohydrate metabolism were up-regulated, and sucrose, trehalose and raffinose levels were consistently increased. The genes involved in polyamine and amino acid metabolism were up-regulated in leaves in response to osmotic stress and several amino acids, such as Glu, Met and Val levels were increased, while the genes involved in photosynthesis, carbon fixation and citrate cycle in leaves were down-regulated. In addition, the genes involved in plant hormone biosynthesis and signal transduction were altered in leaves after osmotic stress. This study provided promising candidate genes for studying drought mechanisms in 'Qinghai' and improving the drought tolerance of Kentucky bluegrass and drought-sensitive crops.
Collapse
Affiliation(s)
- Jinjing Cheng
- Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.X.); (M.Y.)
| | - Leilei Xiang
- Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.X.); (M.Y.)
| | - Meizhen Yang
- Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.X.); (M.Y.)
| | - Ying Liu
- College of Grassland Science, Qinhai University, Xining 210095, China;
| | - Luyi Pan
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou 510642, China;
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoyun Lu
- Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.X.); (M.Y.)
| |
Collapse
|
11
|
Song M, Hu N, Zhou S, Xie S, Yang J, Ma W, Teng Z, Liang W, Wang C, Bu M, Zhang S, Yang X, He D. Physiological and RNA-Seq Analyses on Exogenous Strigolactones Alleviating Drought by Improving Antioxidation and Photosynthesis in Wheat ( Triticum aestivum L.). Antioxidants (Basel) 2023; 12:1884. [PMID: 37891963 PMCID: PMC10604895 DOI: 10.3390/antiox12101884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Drought poses a significant challenge to global wheat production, and the application of exogenous phytohormones offers a convenient approach to enhancing drought tolerance of wheat. However, little is known about the molecular mechanism by which strigolactones (SLs), newly discovered phytohormones, alleviate drought stress in wheat. Therefore, this study is aimed at elucidating the physiological and molecular mechanisms operating in wheat and gaining insights into the specific role of SLs in ameliorating responses to the stress. The results showed that SLs application upregulated the expression of genes associated with the antioxidant defense system (Fe/Mn-SOD, PER1, PER22, SPC4, CAT2, APX1, APX7, GSTU6, GST4, GOR, GRXC1, and GRXC15), chlorophyll biogenesis (CHLH, and CPX), light-harvesting chlorophyll A-B binding proteins (WHAB1.6, and LHC Ib-21), electron transfer (PNSL2), E3 ubiquitin-protein ligase (BB, CHIP, and RHY1A), heat stress transcription factor (HSFA1, HSFA4D, and HSFC2B), heat shock proteins (HSP23.2, HSP16.9A, HSP17.9A, HSP21, HSP70, HSP70-16, HSP70-17, HSP70-8, HSP90-5, and HSP90-6), DnaJ family members (ATJ1, ATJ3, and DJA6), as well as other chaperones (BAG1, CIP73, CIPB1, and CPN60I). but the expression level of genes involved in chlorophyll degradation (SGR, NOL, PPH, PAO, TIC55, and PTC52) as well as photorespiration (AGT2) was found to be downregulated by SLs priming. As a result, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced, and chlorophyll content and photosynthetic rate were increased, which indicated the alleviation of drought stress in wheat. These findings demonstrated that SLs alleviate drought stress by promoting photosynthesis through enhancing chlorophyll levels, and by facilitating ROS scavenging through modulation of the antioxidant system. The study advances understandings of the molecular mechanism underlying SLs-mediated drought alleviation and provides valuable insights for implementing sustainable farming practice under water restriction.
Collapse
Affiliation(s)
- Miao Song
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Naiyue Hu
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Sumei Zhou
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Songxin Xie
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Jian Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Wenqi Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Zhengkai Teng
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Wenxian Liang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Chunyan Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Mingna Bu
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Shuo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Xiwen Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Dexian He
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| |
Collapse
|
12
|
Hong E, Xia X, Ji W, Li T, Xu X, Chen J, Chen X, Zhu X. Effects of High Temperature Stress on the Physiological and Biochemical Characteristics of Paeonia ostii. Int J Mol Sci 2023; 24:11180. [PMID: 37446356 DOI: 10.3390/ijms241311180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
In order to explore the effects of high temperature stress on the physiological characteristics of Paeonia ostii, the Paeonia ostii were subjected to 25 °C, 35 °C, 38 °C, and 40 °C for 7 days. Meanwhile, the physiological indicators of oxidative stress (hydrogen peroxide, H2O2; malondialdehyde, MDA; relative electrical conductivity, REC), antioxidant enzyme activity (superoxide dismutase, SOD; ascorbate peroxidase, APX; catalase, CAT; peroxidase, POD), photosynthetic pigment content (chlorophyll a, Chla; chlorophyll b, Chlb), photosynthetic characteristics (net photosynthetic rate, Pn; intercellular CO2 concentration, Ci; stomatal conductance, Gs; transpiration rate, Tr), and osmoregulatory substances content (soluble protein, SP; soluble sugar, SS) were determined. The results showed that, with the increase in temperature and stress time, the H2O2 content, MDA content, REC value, CAT activity, and APX activity increased, while Chla content, Chlb content, SS content, and SP content decreased. With the extension of stress time, the SOD activity, POD activity, and Tr value of each high temperature stress group first increased and then decreased; Ci first decreased, then increased, and then decreased; meanwhile, Pn and Gs showed an overall downward trend. PLS-DA (partial least squares discriminant analysis) was used to analyze the changes in physiological and biochemical indexes of peony leaves under 40 °C stress for different days. SOD was found to be the biggest factor affecting the changes in physiological and biochemical indexes of peony leaves treated with different days of stress.
Collapse
Affiliation(s)
- Erman Hong
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Xuanze Xia
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Wen Ji
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Tianyao Li
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Xianyi Xu
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Jingran Chen
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Xia Chen
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Xiangtao Zhu
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| |
Collapse
|
13
|
Rahmat BPN, Octavianis G, Budiarto R, Jadid N, Widiastuti A, Matra DD, Ezura H, Mubarok S. SlIAA9 Mutation Maintains Photosynthetic Capabilities under Heat-Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:378. [PMID: 36679090 PMCID: PMC9867002 DOI: 10.3390/plants12020378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Tomato is one of the most widely consumed horticultural products. However, tomato is very sensitive to changes in temperature. Daily average temperatures above 32 °C severely reduced tomato plant growth, development, and productivity. Therefore, climate change-induced global warming is a major threat to future tomato production. Good photosynthetic capability under heat stress conditions is known to be a major sign of heat tolerance. Tomato INDOLE-ACETIC-ACID (SlIAA9) is a transcriptional repressor in auxin signaling. SlIAA9 mutation caused heightened endogenous auxin response and biosynthesis within plant tissues. In this study, we studied the photosynthetic capability of iaa9-3 and iaa9-5 mutants under heat-stress conditions. We discovered that both iaa9-3 and iaa9-5 could maintain their photosynthetic capability after 14 days of heat treatment (>40 °C), differing from Wild Type-Micro-Tom (WT-MT) tomato. Both iaa9 mutants had higher net photosynthetic rate, stomatal conductance, leaf total chlorophyll, leaf carotenoids, Fv/Fm value, and lower leaf MDA than WT-MT. These results suggested that the SlIAA9 mutation benefits plant adaptation to heat stress.
Collapse
Affiliation(s)
- Bayu Pradana Nur Rahmat
- Master Program of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Grace Octavianis
- Under Graduate Program of Agrotechnology, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Rahmat Budiarto
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Nurul Jadid
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Ani Widiastuti
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Deden Derajat Matra
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor 16680, Indonesia
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Syariful Mubarok
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
14
|
Nasar J, Wang GY, Zhou FJ, Gitari H, Zhou XB, Tabl KM, Hasan ME, Ali H, Waqas MM, Ali I, Jahan MS. Nitrogen fertilization coupled with foliar application of iron and molybdenum improves shade tolerance of soybean under maize-soybean intercropping. FRONTIERS IN PLANT SCIENCE 2022; 13:1014640. [PMID: 36267939 PMCID: PMC9577300 DOI: 10.3389/fpls.2022.1014640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/15/2022] [Indexed: 06/01/2023]
Abstract
Maize-soybean intercropping is practiced worldwide because of some of the anticipated advantages such as high crop yield and better utilization of resources (i.e., water, light, nutrients and land). However, the shade of the maize crop has a detrimental effect on the growth and yield of soybean under the maize-soybean intercropping system. Hence, this experiment was conducted to improve the shade tolerance of such soybean crops with optimal nitrogen (N) fertilization combined with foliar application of iron (Fe) and molybdenum (Mo). The treatments comprised five (5) maize-soybean intercropping practices: without fertilizer application (F0), with N fertilizer application (F1), with N fertilizer combined with foliar application of Fe (F2), with N fertilizer coupled with foliar application of Mo (F3) and with N fertilizer combined with foliar application of Fe and Mo (F4). The findings of this study showed that maize-soybean intercropping under F4 treatment had significantly (p< 0.05) increased growth indices such as leaf area (cm2), plant height (cm), stem diameter (mm), stem strength (g pot-1), and internode length (cm) and yield indices (i.e., No of pods plant-1, grain yield (g plant-1), 100-grain weight (g), and biomass dry matter (g plant-1)) of the soybean crop. Moreover, intercropping under F4 treatment enhanced the chlorophyll SPAD values by 26% and photosynthetic activities such as Pn by 30%, gs by 28%, and Tr by 28% of the soybean crops, but reduced its CO2 by 11%. Furthermore, maize-soybean intercropping under F4 treatment showed improved efficiency of leaf chlorophyll florescence parameters of soybean crops such as Fv/Fm (26%), qp (17%), ϕPSII (20%), and ETR (17%), but reduced NPQ (12%). In addition, the rubisco activity and soluble protein content of the soybean crop increased by 18% in maize-soybean intercropping under F4 treatment. Thus, this suggested that intercropping under optimal N fertilization combined with foliar application of Fe and Mo can improve the shade tolerance of soybean crops by regulating their chlorophyll content, photosynthetic activities, and the associated enzymes, thereby enhancing their yield and yield traits.
Collapse
Affiliation(s)
- Jamal Nasar
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Gui Yang Wang
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Feng Jue Zhou
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Harun Gitari
- Department of Agricultural Science and Technology, School of Agriculture and Enterprise Development, Kenyatta University, Nairobi, Kenya
| | - Xun Bo Zhou
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Karim M. Tabl
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Habib Ali
- Khwaja Fareed University of Engineering and Information Technology, Rahim, Yar Khan, Pakistan
| | - Muhammad Mohsin Waqas
- Khwaja Fareed University of Engineering and Information Technology, Rahim, Yar Khan, Pakistan
| | - Izhar Ali
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Mohammad Shah Jahan
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
15
|
Rodríguez-Calcerrada J, Chano V, Matías L, Hidalgo-Galvez MD, Cambrollé J, Pérez-Ramos IM. Three years of warming and rainfall reduction alter leaf physiology but not relative abundance of an annual species in a Mediterranean savanna. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153761. [PMID: 35803049 DOI: 10.1016/j.jplph.2022.153761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Increasing air temperatures and decreasing rainfall can alter Mediterranean ecosystems, where summer heat and drought already limit plant regeneration. Manipulative field studies can help to understand and anticipate community responses to climate changes. In a Mediterranean oak wooded pasture, we have investigated the effects of warming (W, via open-top chambers increasing 1.4 °C mean air temperature), reduced rainfall (D, via gutters removing 33% of rainfall) and the combination of both factors (WD) on the winter-annual Geranium dissectum L. We measured reproductive phenology and output, leaf physiology during the reproductive phase, and plant relative abundance. Warming had a positive effect on plant height and little effects on leaf physiology. Rainfall reduction enhanced leaf water use efficiency. However, the most noticeable effects occurred in WD plants, which exhibited lower leaf predawn water potential and earlier flowering phenology in the first year of treatment, and a higher ratio of leaf dark respiration (R) to net CO2 assimilation (Pn) at comparable temperatures in the third year, compared to control plants. Leaf R at ambient temperature was similar across climatic treatments. The relative abundance of G. dissectum decreased by 23% over three years, but similarly across treatments. A short life cycle helps G. dissectum to escape severe late-spring heat and drought stress. Moreover, stomata closure and thermal acclimation of R can attenuate plant stress impact on reproduction. Adaptability of the short-lived annual G. dissectum could mitigate climate change impact on community composition over short periods (e.g. three years); however, a reduction in net carbon gain could eventually affect its reproductive success and persistence in the community.
Collapse
Affiliation(s)
- Jesús Rodríguez-Calcerrada
- Research Group Functioning of Forest Systems in a Changing Environment. Department of Natural Systems and Resources. Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Víctor Chano
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Luis Matías
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apdo.1095, 41080, Sevilla, Spain
| | - Maria Dolores Hidalgo-Galvez
- Research group "Sistemas Forestales Mediterráneos", Instituto de Recursos Naturales y Agrobiología de Sevilla. Dpto. Biogeoquímica, Ecología Vegetal y Microbiana, Consejo Superior de Investigaciones Científicas, Av. Reina Mercedes 10, 41012, Sevilla, Spain
| | - Jesús Cambrollé
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apdo.1095, 41080, Sevilla, Spain
| | - Ignacio Manuel Pérez-Ramos
- Research group "Sistemas Forestales Mediterráneos", Instituto de Recursos Naturales y Agrobiología de Sevilla. Dpto. Biogeoquímica, Ecología Vegetal y Microbiana, Consejo Superior de Investigaciones Científicas, Av. Reina Mercedes 10, 41012, Sevilla, Spain
| |
Collapse
|
16
|
The Water Storage Function of Litters and Soil in Five Typical Plantations in the Northern and Southern Mountains of Lanzhou, Northwest China. SUSTAINABILITY 2022. [DOI: 10.3390/su14148231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Soil and water conservation is an important function of forest ecosystems; however, it remains unclear which forest type is best suited for water and soil conservation under the same site conditions. In order to clarify the soil and water conservation function of different plantations in the northern and southern mountains of Lanzhou city, we investigated several soil and water conservation function indicators (thickness and accumulation of litter, maximum water holding capacity and rate of litter, water holding capacity and water absorption rate of litter, soil infiltration rates, soil water content, soil bulk density, soil porosity, and soil water storage) of five plantation types (Platycladus orientalis plantations (Po), Robinia pseudoacacia plantations (Rp), Populus alba var. pyramidalis plantations (Pa), P. alba var. pyramidalis + R. pseudoacacia mixed plantations (Pa + Rp), and P. orientalis + R. pseudoacacia mixed plantations (Po + Rp)) and evaluated them using the gray correlation method. The results indicated the accumulation of litter varied from 13.50 to 47.01 t·hm−2 and increased in the order of Pa < Rp < Po < Po + Rp < Pa + Rp. The maximum water holding capacity of litter varied from 35.29 to 123.59 t·hm−2 and increased in the order of Pa < Rp < Po < Po + Rp < Pa + Rp. The soil physical properties (soil infiltration, porosity, and bulk density) of mixed plantations were better than those of pure plantations. The soil maximum water storage was significantly different among plantation types (p < 0.05), with an average varying from 3930.87 to 4307.45 t·hm−2, and was greater in mixed plantations than in pure plantations. Gray correlation analysis revealed that mixed plantations had the best conservation function of the five plantation types, followed by broad-leaved plantations and coniferous plantations. This suggests that the planting of mixed plantations dominated by Pa + Rp is therefore recommended in the future construction of plantations in the northern and southern mountains of Lanzhou to realize sustainable forest development.
Collapse
|
17
|
Meena RP, Ghosh G, Vishwakarma H, Padaria JC. Expression of a Pennisetum glaucum gene DREB2A confers enhanced heat, drought and salinity tolerance in transgenic Arabidopsis. Mol Biol Rep 2022; 49:7347-7358. [PMID: 35666421 DOI: 10.1007/s11033-022-07527-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Pearl millet (Pennisetum glaucum) is an essential cereal crop, whose growth and yield are not impacted by abiotic stresses, such as drought, heat, and cold. The DREB transcription factors (TF) are some of the largest groups of TFs in plants and play varied roles in plant stress response and signal transduction. METHODS AND RESULTS In the present study, PgDREB2A gene encoding a DREB transcription factor in pearl millet was functionally characterized in Arabidopsis. DREB2A proteins contain a conserved domain that binds toethylene responsive element binding factors. Three different T1 transgenic lines overexpressing PgDREB2A gene were identified by Southern blot. Quantitative real-time polymerase chain reaction exhibited that PgDREB2A could be induced under drought conditions. As compared with the control, PgDREB2A overexpressing transgenic Arabidopsis showed increased rate of seed germination and root growth in transgenic lines under higher concentrations of mannitol, NaCl, ABA, heat and cold stress. Additionally, PgDREB2A transgenic lines showed enhanced durability after rehydration and tolerance to drought and salt stress was augmented with increased proline and reduced MDA build-up and diminishing water loss. CONCLUSIONS Results from this study suggested that PgDREB2A as a transcription factor may improve endurance to various abiotic stresses and can be employed for developing crops tolerant to abiotic stresses.
Collapse
Affiliation(s)
- Rajendra Prasad Meena
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India.,PG School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Gourab Ghosh
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | - Jasdeep Chatrath Padaria
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India. .,PG School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
18
|
Bioprospecting Desert Plants for Endophytic and Biostimulant Microbes: A Strategy for Enhancing Agricultural Production in a Hotter, Drier Future. BIOLOGY 2021; 10:biology10100961. [PMID: 34681060 PMCID: PMC8533330 DOI: 10.3390/biology10100961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/14/2023]
Abstract
Simple Summary Endophytes are microbes that live inside plants without causing negative effects in their hosts. All land plants are known to have endophytes, and these endophytes have the capacity to be transferred between plants. Taking endophytes from desert plants, which grow in low-nutrient, high-stress environments, and transferring them to crop plants may alleviate some of the challenges being faced by the agricultural industry, such as increasing drought frequency and rising opposition to chemical use in agriculture. Studies have shown that desert endophytes have the capacity to increase nutrient uptake and increase plant resistance to drought and heat stress, salt stress, and pathogen attack. Currently, the agricultural industry focuses on using irrigation, chemical fertilizers, and chemical pesticides to solve such issues, which can be extremely damaging to the environment. While there is still a lot that is unknown about endophytes, particularly desert plant endophytes, current research provides evidence that desert plant endophytes could be an environmentally friendly alternative to the conventional solutions being applied today. Abstract Deserts are challenging places for plants to survive in due to low nutrient availability, drought and heat stress, water stress, and herbivory. Endophytes—microbes that colonize and infect plant tissues without causing apparent disease—may contribute to plant success in such harsh environments. Current knowledge of desert plant endophytes is limited, but studies performed so far reveal that they can improve host nutrient acquisition, increase host tolerance to abiotic stresses, and increase host resistance to biotic stresses. When considered in combination with their broad host range and high colonization rate, there is great potential for desert endophytes to be used in a commercial agricultural setting, especially as croplands face more frequent and severe droughts due to climate change and as the agricultural industry faces mounting pressure to break away from agrochemicals towards more environmentally friendly alternatives. Much is still unknown about desert endophytes, but future studies may prove fruitful for the discovery of new endophyte-based biofertilizers, biocontrol agents, and abiotic stress relievers of crops.
Collapse
|
19
|
Lodeyro AF, Krapp AR, Carrillo N. Photosynthesis and chloroplast redox signaling in the age of global warming: stress tolerance, acclimation, and developmental plasticity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5919-5937. [PMID: 34111246 DOI: 10.1093/jxb/erab270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Contemporary climate change is characterized by the increased intensity and frequency of environmental stress events such as floods, droughts, and heatwaves, which have a debilitating impact on photosynthesis and growth, compromising the production of food, feed, and biofuels for an expanding population. The need to increase crop productivity in the context of global warming has fueled attempts to improve several key plant features such as photosynthetic performance, assimilate partitioning, and tolerance to environmental stresses. Chloroplast redox metabolism, including photosynthetic electron transport and CO2 reductive assimilation, are primary targets of most stress conditions, leading to excessive excitation pressure, photodamage, and propagation of reactive oxygen species. Alterations in chloroplast redox poise, in turn, provide signals that exit the plastid and modulate plant responses to the environmental conditions. Understanding the molecular mechanisms involved in these processes could provide novel tools to increase crop yield in suboptimal environments. We describe herein various interventions into chloroplast redox networks that resulted in increased tolerance to multiple sources of environmental stress. They included manipulation of endogenous components and introduction of electron carriers from other organisms, which affected not only stress endurance but also leaf size and longevity. The resulting scenario indicates that chloroplast redox pathways have an important impact on plant growth, development, and defense that goes beyond their roles in primary metabolism. Manipulation of these processes provides additional strategies for the design of crops with improved performance under destabilized climate conditions as foreseen for the future.
Collapse
Affiliation(s)
- Anabella F Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Adriana R Krapp
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
20
|
Engineering Climate-Change-Resilient Crops: New Tools and Approaches. Int J Mol Sci 2021; 22:ijms22157877. [PMID: 34360645 PMCID: PMC8346029 DOI: 10.3390/ijms22157877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world's population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect plant growth and thus enhance crop yield. In recent decades, engineering strategies have been successfully developed with the aim to improve growth and stress tolerance in plants. Most strategies applied so far have relied on transgenic approaches and/or chemical treatments. However, to cope with rapid climate change and the need to secure sustainable agriculture and biomass production, innovative approaches need to be developed to effectively meet these challenges and demands. In this review, we summarize recent and advanced strategies that involve the use of plant-related cyanobacterial proteins, macro- and micronutrient management, nutrient-coated nanoparticles, and phytopathogenic organisms, all of which offer promise as protective resources to shield plants from climate challenges and to boost stress tolerance in crops.
Collapse
|
21
|
Khan MIR, Palakolanu SR, Chopra P, Rajurkar AB, Gupta R, Iqbal N, Maheshwari C. Improving drought tolerance in rice: Ensuring food security through multi-dimensional approaches. PHYSIOLOGIA PLANTARUM 2021; 172:645-668. [PMID: 33006143 DOI: 10.1111/ppl.13223] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Drought has been highly prevalent around the world especially in Sub-Saharan Africa and South-East Asian countries. Consistent climatic instabilities and unpredictable rainfall patterns are further worsening the situation. Rice is a C3 staple cereal and an important food crop for the majority of the world's population and drought stress is one of the major growth retarding threats for rice that slashes down grain quality and yield. Drought deteriorates rice productivity and induces various acclimation responses that aids in stress mitigation. However, the complexity of traits associated with drought tolerance has made the understanding of drought stress-induced responses in rice a challenging process. An integrative understanding based on physiological adaptations, omics, transgenic and molecular breeding approaches successively backed up to developing drought stress-tolerant rice. The review represents a step forward to develop drought-resilient rice plants by exploiting the knowledge that collaborates with omics-based developments with integrative efforts to ensure the compilation of all the possible strategies undertaken to develop drought stress-tolerant rice.
Collapse
Affiliation(s)
| | - Sudhakar R Palakolanu
- Cell, Molecular Biology and Genetic Engineering Group, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Ashish B Rajurkar
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Ravi Gupta
- Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
22
|
Chen T, Cohen D, Itkin M, Malitsky S, Fluhr R. Lipoxygenase functions in 1O2 production during root responses to osmotic stress. PLANT PHYSIOLOGY 2021; 185:1638-1651. [PMID: 33793947 PMCID: PMC8133667 DOI: 10.1093/plphys/kiab025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/07/2021] [Indexed: 05/27/2023]
Abstract
Drought induces osmotic stress in roots, a condition simulated by the application of high-molecular-weight polyethylene glycol. Osmotic stress results in the reduction of Arabidopsis thaliana root growth and production of 1O2 from an unknown non-photosynthetic source. Reduced root growth can be alleviated by application of the 1O2 scavenger histidine (HIS). Here, we examined the possibility that 1O2 production involves Russell reactions occurring among the enzymatic products of lipoxygenases (LOXs), the fatty acid hydroperoxides. LOX activity was measured for purified soybean (Glycine max) LOX1 and in crude Arabidopsis root extracts using linoleic acid as substrate. Formation of the 13(S)-Hydroperoxy-9(Z),11(E)-octadecadienoic acid product was inhibited by salicylhdroxamic acid, which is a LOX inhibitor, but not by HIS, whereas 1O2 production was inhibited by both. D2O, which specifically extends the half-life of 1O2, augmented the LOX-dependent generation of 1O2, as expected from a Russell-type reaction. The addition of linoleic acid to roots stimulated 1O2 production and inhibited growth, suggesting that the availability of LOX substrate is a rate-limiting step. Indeed, water stress rapidly increased linoleic and linolenic acids by 2.5-fold in roots. Mutants with root-specific microRNA repression of LOXs showed downregulation of LOX protein and activity. The lines with downregulated LOX displayed significantly less 1O2 formation, improved root growth in osmotic stress, and an altered transcriptome response compared with wild type. The results show that LOXs can serve as an enzymatic source of "dark" 1O2 during osmotic stress and demonstrate a role for 1O2 in defining the physiological response.
Collapse
Affiliation(s)
- Tomer Chen
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| | - Dekel Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| |
Collapse
|
23
|
Ogden AJ, Abdali S, Engbrecht KM, Zhou M, Handakumbura PP. Distinct Preflowering Drought Tolerance Strategies of Sorghum bicolor Genotype RTx430 Revealed by Subcellular Protein Profiling. Int J Mol Sci 2020; 21:ijms21249706. [PMID: 33352693 PMCID: PMC7767018 DOI: 10.3390/ijms21249706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 11/16/2022] Open
Abstract
Drought is the largest stress affecting agricultural crops, resulting in substantial reductions in yield. Plant adaptation to water stress is a complex trait involving changes in hormone signaling, physiology, and morphology. Sorghum (Sorghum bicolor (L.) Moench) is a C4 cereal grass; it is an agricultural staple, and it is particularly drought-tolerant. To better understand drought adaptation strategies, we compared the cytosolic- and organelle-enriched protein profiles of leaves from two Sorghum bicolor genotypes, RTx430 and BTx642, with differing preflowering drought tolerances after 8 weeks of growth under water limitation in the field. In agreement with previous findings, we observed significant drought-induced changes in the abundance of multiple heat shock proteins and dehydrins in both genotypes. Interestingly, our data suggest a larger genotype-specific drought response in protein profiles of organelles, while cytosolic responses are largely similar between genotypes. Organelle-enriched proteins whose abundance significantly changed exclusively in the preflowering drought-tolerant genotype RTx430 upon drought stress suggest multiple mechanisms of drought tolerance. These include an RTx430-specific change in proteins associated with ABA metabolism and signal transduction, Rubisco activation, reactive oxygen species scavenging, flowering time regulation, and epicuticular wax production. We discuss the current understanding of these processes in relation to drought tolerance and their potential implications.
Collapse
Affiliation(s)
- Aaron J. Ogden
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, Richland, WA 99354, USA; (A.J.O.); (S.A.); (K.M.E.)
| | - Shadan Abdali
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, Richland, WA 99354, USA; (A.J.O.); (S.A.); (K.M.E.)
| | - Kristin M. Engbrecht
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, Richland, WA 99354, USA; (A.J.O.); (S.A.); (K.M.E.)
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - Pubudu P. Handakumbura
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA;
- Correspondence:
| |
Collapse
|
24
|
Meena RP, Vishwakarma H, Ghosh G, Gaikwad K, Chellapilla TS, Singh MP, Padaria JC. Novel ASR isolated from drought stress responsive SSH library in pearl millet confers multiple abiotic stress tolerance in PgASR3 transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:7-19. [PMID: 32891968 DOI: 10.1016/j.plaphy.2020.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 05/09/2023]
Abstract
A genomic resource of drought stress responsive genes/ESTs was generated using Suppression Subtractive Hybridization (SSH) approach in a drought stress tolerant Pennisetum glaucum genotype 841B. Fifty five days old plants were subjected to drought stress after withholding water for different time intervals (10 days, 15 days, 20 days and 25 days). A forward subtractive cDNA library was prepared from isolated RNA of leaf tissue. Differential gene expression under drought stress was validated for selected nine contigs by RT-qPCR. A transcript homologous to Setaria italica ASR3 upregulated under drought stress was isolated from genotype 841B and characterized. Heterologous expression of PgASR3 was validated in Arabidopsis and confirmed under multiple abiotic stress conditions. A total of four independent transgenic lines overexpressing gene PgASR3 were analyzed by Southern blot at T1 stage. For drought stress tolerance, three independent lines (T2 stage) were analyzed by biochemical and physiological assays at seedling stage. The growth rate (shoot and root length) of transgenic seedlings improved as compared to WT seedling under differenct abiotic stress conditions. The three transgenic lines were also validated for drought stress tolerance and RT-qPCR analysis, at maturity stage. Under drought stress conditions, the mature transgenic lines showed higher levels of RWC, chlorophyll and proline but lower levels of MDA as compared to WT plants. PgASR3 gene isolated and validated in this study can be utilized for developing abiotic stress tolerant crops.
Collapse
Affiliation(s)
| | | | - Gourab Ghosh
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Kishor Gaikwad
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Tara Satyavathi Chellapilla
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India; Division of Genetics, IARI, Pusa Campus, New Delhi, India
| | - Madan Pal Singh
- Division of Plant Physiology, IARI Pusa Campus, New Delhi, India
| | | |
Collapse
|
25
|
Zhuang J, Wang Y, Chi Y, Zhou L, Chen J, Zhou W, Song J, Zhao N, Ding J. Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. PeerJ 2020; 8:e10046. [PMID: 33024649 PMCID: PMC7520092 DOI: 10.7717/peerj.10046] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/04/2020] [Indexed: 01/13/2023] Open
Abstract
Chlorophyll fluorescence (ChlF) has been used to understand photosynthesis and its response to climate change, particularly with satellite-based data. However, it remains unclear how the ChlF ratio and photosynthesis are linked at the leaf level under drought stress. Here, we examined the link between ChlF ratio and photosynthesis at the leaf level by measuring photosynthetic traits, such as net CO2 assimilation rate (An), the maximum carboxylation rate of Rubisco (Vcmax), the maximum rate of electron transport (Jmax), stomatal conductance (gs) and total chlorophyll content (Chlt). The ChlF ratio of the leaf level such as maximum quantum efficiency of PSII (Fv/Fm) is based on fluorescence kinetics. ChlF intensity ratio (LD685/LD740) based on spectrum analysis was obtained. We found that a combination of the stomatal limitation, non-stomatal limitation, and Chlt regulated leaf photosynthesis under drought stress, while Jmax and Chlt governed the ChlF ratio. A significant link between the ChlF ratio and An was found under drought stress while no significant correlation in the control, which indicated that drought stress strengthens the link between the ChlF ratio and photosynthetic traits. These results suggest that the ChlF ratio can be a powerful tool to track photosynthetic traits of terrestrial ecosystems under drought stress.
Collapse
Affiliation(s)
- Jie Zhuang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yonglin Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yonggang Chi
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Lei Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jijing Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Wen Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jun Song
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Ning Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jianxi Ding
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
26
|
Drake-Schultheis L, Oono R, D'Antonio CM. Mechanisms of severe dieback and mortality in a classically drought-tolerant shrubland species (Arctostaphylos glauca). AMERICAN JOURNAL OF BOTANY 2020; 107:1136-1147. [PMID: 32864741 DOI: 10.1002/ajb2.1522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Mortality events involving drought and pathogens in natural plant systems are on the rise due to global climate change. In Santa Barbara, California, United States, big berry manzanita (Arctostaphylos glauca) has experienced canopy dieback related to a multi-year drought and infection from fungal pathogens in the Botryosphaeriaceae family. A greenhouse experiment was conducted using Neofusicoccum australe to test the specific influences of drought and fungal infection on A. glauca. METHODS A full factorial design was used to compare four treatment groups (drought + inoculation; drought - inoculation; watering + inoculation; and control: watering - inoculation). Data were collected for 10 weeks on stress symptoms, changes in leaf fluorescence and photosynthesis, and mortality. RESULTS Results indicated significant effects of watering and inoculation treatments on net photosynthesis, dark-adapted fluorescence, and disease symptom severity (P < 0.05), and a strong correlation was found between physiological decline and visible stress (P < 0.0001). Mortality differed between treatments, with all groups except for the control experiencing mortality (43% mortality in drought - inoculation, 83% in watering - inoculation, and 100% in drought + inoculation). A Kaplan-Meier survival analysis showed drought + inoculation to have the least estimated survivorship compared to all other treatment groups. CONCLUSIONS In addition to a possible synergistic interaction between drought and fungal infection in disease onset and mortality rates in A. glauca, these results indicate that young, non-drought-stressed plants are susceptible to mortality from N. australe infection, with important implications for the future of wildland shrub communities.
Collapse
Affiliation(s)
- Laura Drake-Schultheis
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Ryoko Oono
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Carla M D'Antonio
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
27
|
Salmon Y, Lintunen A, Dayet A, Chan T, Dewar R, Vesala T, Hölttä T. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. THE NEW PHYTOLOGIST 2020; 226:690-703. [PMID: 31955422 DOI: 10.1111/nph.16436] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/18/2019] [Indexed: 05/22/2023]
Abstract
Photosynthetic rate is concurrently limited by stomatal limitations and nonstomatal limitations (NSLs). However, the controls on NSLs to photosynthesis and their coordination with stomatal control on different timescales remain poorly understood. According to a recent optimization hypothesis, NSLs depend on leaf osmotic or water status and are coordinated with stomatal control so as to maximize leaf photosynthesis. Drought and notching experiments were conducted on Pinus sylvestris, Picea abies, Betula Pendula and Populus tremula seedlings in glasshouse conditions to study the dependence of NSLs on leaf osmotic and water status, and their coordination with stomatal control, on timescales of minutes and weeks, to test the assumptions and predictions of the optimization hypothesis. Both NSLs and stomatal conductance followed power-law functions of leaf osmotic concentration and leaf water potential. Moreover, stomatal conductance was proportional to the square root of soil-to-leaf hydraulic conductance, as predicted by the optimization hypothesis. Though the detailed mechanisms underlying the dependence of NSLs on leaf osmotic or water status lie outside the scope of this study, our results support the hypothesis that NSLs and stomatal control are coordinated to maximize leaf photosynthesis and allow the effect of NSLs to be included in models of tree gas-exchange.
Collapse
Affiliation(s)
- Yann Salmon
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Anna Lintunen
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Alexia Dayet
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Tommy Chan
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Roderick Dewar
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Timo Vesala
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Teemu Hölttä
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| |
Collapse
|
28
|
Kumari P, Rastogi A, Yadav S. Effects of Heat stress and molecular mitigation approaches in orphan legume, Chickpea. Mol Biol Rep 2020; 47:4659-4670. [PMID: 32133603 DOI: 10.1007/s11033-020-05358-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/27/2020] [Indexed: 11/28/2022]
Abstract
Global warming has an adverse impact on agriculture and food security is in doldrums around the world. A sharp increase in the temperature of earth is expected and may lead to ~ 1.8-4 °C rise in average earth temperature by the year 2100. Thus, heat stress is a critical factor for plant growth development and crop yield. Chickpea, which is an important leguminous crop and rich source of proteins is also a heat sensitive crop but high temperature exceeding 35 °C inhibit its productivity. Climate-smart agriculture seems to be a plausible approach to minimize the drastic effect of climate change on plant's adaptation. This may help in better selection of tolerant cultivars of chickpea that can be used in breeding programmes for heat stress tolerance in chickpea. Also the biotechnological approaches using candidate genes expressed in transgenics plants may play pivotal role in the production of climate resilient chickpea plants. Some preliminary findings using CAP2, Galactinol synthase genes, proteomic approaches, RNA seq data, stay green traits and -OMICS in general, have proved to be promising. A close collaboration between agronomists, plant physiologists, geneticists, biotechnologists is the pressing need and must be envisioned in order to address heat stress tolerance in chickpea under the prevailing climatic conditions and continuously increasing temperature. In the context of global heat stress and climate change, adaptation and mitigation are the keywords for employing transdisciplinary methodologies with respect to plant growth, development and agronomy.
Collapse
Affiliation(s)
- Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan, 333515, India. .,Scientist Hostel-S-02, Chauras campus, Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Science, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University,, Srinagar Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
29
|
|
30
|
Khan M, Imran QM, Shahid M, Mun BG, Lee SU, Khan MA, Hussain A, Lee IJ, Yun BW. Nitric oxide- induced AtAO3 differentially regulates plant defense and drought tolerance in Arabidopsis thaliana. BMC PLANT BIOLOGY 2019; 19:602. [PMID: 31888479 PMCID: PMC6937950 DOI: 10.1186/s12870-019-2210-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/18/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Exposure of plants to different environmental insults instigates significant changes in the cellular redox tone driven in part by promoting the production of reactive nitrogen species. The key player, nitric oxide (NO) is a small gaseous diatomic molecule, well-known for its signaling role during stress. In this study, we focused on abscisic acid (ABA) metabolism-related genes that showed differential expression in response to the NO donor S-nitroso-L-cysteine (CySNO) by conducting RNA-seq-based transcriptomic analysis. RESULTS CySNO-induced ABA-related genes were identified and further characterized. Gene ontology terms for biological processes showed most of the genes were associated with protein phosphorylation. Promoter analysis suggested that several cis-regulatory elements were activated under biotic and/or abiotic stress conditions. The ABA biosynthetic gene AtAO3 was selected for validation using functional genomics. The loss of function mutant atao3 was found to differentially regulate oxidative and nitrosative stress. Further investigations for determining the role of AtAO3 in plant defense suggested a negative regulation of plant basal defense and R-gene-mediated resistance. The atao3 plants showed resistance to virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) with gradual increase in PR1 gene expression. Similarly, atao3 plants showed increased hypersensitive response (HR) when challenged with Pst DC3000 (avrB). The atgsnor1-3 and atsid2 mutants showed a susceptible phenotype with reduced PR1 transcript accumulation. Drought tolerance assay indicated that atao3 and atnced3 ABA-deficient mutants showed early wilting, followed by plant death. The study of stomatal structure showed that atao3 and atnced3 were unable to close stomata even at 7 days after drought stress. Further, they showed reduced ABA content and increased electrolyte leakage than the wild-type (WT) plants. The quantitative polymerase chain reaction analysis suggested that ABA biosynthesis genes were down-regulated, whereas expression of most of the drought-related genes were up-regulated in atao3 than in WT. CONCLUSIONS AtAO3 negatively regulates pathogen-induced salicylic acid pathway, although it is required for drought tolerance, despite the fact that ABA production is not totally dependent on AtAO3, and that drought-related genes like DREB2 and ABI2 show response to drought irrespective of ABA content.
Collapse
Affiliation(s)
| | | | | | - Bong-Gyu Mun
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Laboratory of Plant Physiology, Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, KPK, Mardan, Pakistan
| | - In-Jung Lee
- Laboratory of Plant Physiology, Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
31
|
Slattery RA, Ort DR. Carbon assimilation in crops at high temperatures. PLANT, CELL & ENVIRONMENT 2019; 42:2750-2758. [PMID: 31046135 DOI: 10.1111/pce.13572] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/15/2019] [Accepted: 04/27/2019] [Indexed: 05/24/2023]
Abstract
Global temperatures are rising, and higher rates of temperature increase are projected over land areas that encompass the globe's major agricultural regions. In addition to increased growing season temperatures, heat waves are predicted to become more common and severe. High temperatures can inhibit photosynthetic carbon gain of crop plants and thus threaten productivity, the effects of which may interact with other aspects of climate change. Here, we review the current literature assessing temperature effects on photosynthesis in key crops with special attention to field studies using crop canopy heating technology and in combination with other climate variables. We also discuss the biochemical reactions related to carbon fixation that may limit crop photosynthesis under warming temperatures and the current strategies for adaptation. Important progress has been made on several adaptation strategies demonstrating proof-of-concept for translating improved photosynthesis into higher yields. These are now poised to test in important food crops.
Collapse
Affiliation(s)
- Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| |
Collapse
|
32
|
Djukić N, Knežević D, Pantelić D, Živančev D, Torbica A, Marković S. Expression of protein synthesis elongation factors in winter wheat and oat in response to heat stress. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153015. [PMID: 31377481 DOI: 10.1016/j.jplph.2019.153015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
The aim of our work was to examine the expression and accumulation of EF-Tu and eEF1A in grain filing stage of five genotypes of winter wheat and one oat genotype in conditions of heat stress. In addition, the correlation between accumulation of elongation factors eEF1A and EF-Tu, and yield components of cereals in the field was investigated. Flag leaf protein samples were analyzed by immunoblotting. Flag leaves were collected under conditions of moderate (23 °C; MT) and high air temperature (38 °C; HT) in a field experiment. After the harvest, grain yield was determined. The yield components, the weight of dry seed and grains number per spike, were assessed in the stage of full physiological maturity of investigated cultivars. Obtained results revealed a difference in the level of EF-Tu accumulation both under conditions of moderate air temperatures and conditions of heat stress among investigated cultivars. Cultivar Zvezdana was the only one that showed increase in EF-Tu accumulation under HT (25%) compared to MT. Immunoblot analysis indicated that the highest increase of eEF1A accumulation (43%) in relation to moderate temperature was detected in cultivar Talas. A significant, positive, linear correlation was found between the expression of eEF1A and small grains productivity under heat-stress conditions.
Collapse
Affiliation(s)
- Nevena Djukić
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, Kragujevac, Serbia.
| | - Desimir Knežević
- University of Priština, Faculty of Agriculture, Kosovska Mitrovica, Kopaonicka bb, Lešak, Kosovo and Metohia, Serbia
| | - Danijel Pantelić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Bul. Despota Stefana 142, Belgrade, Serbia
| | - Dragan Živančev
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, Novi Sad, Serbia
| | - Aleksandra Torbica
- University of Novi Sad, Institute for Food Technology, Bulevar cara Lazara 1, Novi Sad, Serbia
| | - Stefan Marković
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, Kragujevac, Serbia
| |
Collapse
|
33
|
Rotundo JL, Tang T, Messina CD. Response of maize photosynthesis to high temperature: Implications for modeling the impact of global warming. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:202-205. [PMID: 31176879 DOI: 10.1016/j.plaphy.2019.05.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 05/13/2023]
Abstract
Negative impacts of increased temperature on maize yield are anticipated using simulation models. However, some temperature functions are parameterized with partial information. There is limited information on photosynthesis response to high temperature in modern maize hybrids. Improved photosynthesis-temperature functions are key for realistic yield simulations. Our experiment was aimed at building a functional relationship between photosynthesis and air temperature exploring temperature ranges relevant for global warming simulations. Maize hybrids from cold, temperate, and subtropical regions were included in the study to assess genetic adaptation. Results showed a trilinear response to temperature with an optimum of 40 °C. No genetic adaptation was observed among the diverse set of hybrids evaluated. Results contrast with common temperature-limiting functions indicating a decline in carbon assimilation above 30-33 °C. Our results suggest possible overestimations of negative impacts of global warming on maize yield due to the use of inadequate response functions relating carbon assimilation to temperature.
Collapse
Affiliation(s)
- J L Rotundo
- Corteva Agriscience™, Agriculture Division of DowDuPont. 7000 NW 62nd Ave, Johnston, IA, 50131, USA.
| | - T Tang
- Corteva Agriscience™, Agriculture Division of DowDuPont. 7000 NW 62nd Ave, Johnston, IA, 50131, USA
| | - C D Messina
- Corteva Agriscience™, Agriculture Division of DowDuPont. 7000 NW 62nd Ave, Johnston, IA, 50131, USA
| |
Collapse
|
34
|
Evaluation of the Water Conservation Function of Different Forest Types in Northeastern China. SUSTAINABILITY 2019. [DOI: 10.3390/su11154075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water conservation is an important function of forest ecosystems, but it is still unclear which forest types function best in this regard. We investigated the water conservation function indicators including the water-holding rate of branches and leaves (BLwr), water-holding capacity of litter (Lwc), water absorption rate of litter (Lwr), soil infiltration rate (Ir), soil and water content (SWC), soil water storage (SWS), and soil organic matter (SOM) accumulation of five forest types (Larix gmelinii forests, Pinus koraiensis forests, Robinia pseudoacacia forests, Pinus tabulaeformis forests, and mixed forests) and evaluated them using the gray correlation method (GCM). The results indicate that the BLwr of five stands in the study area varied from 18.3% to 33.5%. The SWC and SWS of the R. pseudoacacia stand were 13.76% and 178.9 mm, respectively, which was significantly higher than that of the other stands (p < 0.05). The SOM was similar for the R. pseudoacacia (0.23%), mixed forest (0.22%), and L. gmelinii (0.22%) sites. The BLwr, Lwc, Lwr, SWC, and SWS values of broad-leaved tree species were higher than those of the mixed species, followed by those for coniferous tree species. Soil infiltration rate followed the order L. gmelinii > P. koraiensis > mixed forest > P. tabulaeformis > R. pseudoacacia. Based on our results, the R. pseudoacacia stand had the highest water conservation ability, while the lowest performance was found for the P. tabuliformis site. This suggests that, in order to enhance the water conservation function of forests in northeastern China, the focus should be on the establishment of R. pseudoacacia forests.
Collapse
|
35
|
Tamary E, Nevo R, Naveh L, Levin‐Zaidman S, Kiss V, Savidor A, Levin Y, Eyal Y, Reich Z, Adam Z. Chlorophyll catabolism precedes changes in chloroplast structure and proteome during leaf senescence. PLANT DIRECT 2019; 3:e00127. [PMID: 31245770 PMCID: PMC6508775 DOI: 10.1002/pld3.127] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 05/18/2023]
Abstract
The earliest visual changes of leaf senescence occur in the chloroplast as chlorophyll is degraded and photosynthesis declines. Yet, a comprehensive understanding of the sequence of catabolic events occurring in chloroplasts during natural leaf senescence is still missing. Here, we combined confocal and electron microscopy together with proteomics and biochemistry to follow structural and molecular changes during Arabidopsis leaf senescence. We observed that initiation of chlorophyll catabolism precedes other breakdown processes. Chloroplast size, stacking of thylakoids, and efficiency of PSII remain stable until late stages of senescence, whereas the number and size of plastoglobules increase. Unlike catabolic enzymes, whose level increase, the level of most proteins decreases during senescence, and chloroplast proteins are overrepresented among these. However, the rate of their disappearance is variable, mostly uncoordinated and independent of their inherent stability during earlier developmental stages. Unexpectedly, degradation of chlorophyll-binding proteins lags behind chlorophyll catabolism. Autophagy and vacuole proteins are retained at relatively high levels, highlighting the role of extra-plastidic degradation processes especially in late stages of senescence. The observation that chlorophyll catabolism precedes all other catabolic events may suggest that this process enables or signals further catabolic processes in chloroplasts.
Collapse
Affiliation(s)
- Eyal Tamary
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew UniversityRehovotIsrael
| | - Reinat Nevo
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Leah Naveh
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew UniversityRehovotIsrael
| | - Smadar Levin‐Zaidman
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Vladimir Kiss
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Alon Savidor
- de Botton Institute for Protein ProfilingThe Nancy and Stephen Grand Israel National Center for Personalized MedicineWeizmann Institute of ScienceRehovotIsrael
| | - Yishai Levin
- de Botton Institute for Protein ProfilingThe Nancy and Stephen Grand Israel National Center for Personalized MedicineWeizmann Institute of ScienceRehovotIsrael
| | - Yoram Eyal
- Institute of Plant SciencesThe Volcani Center ARORishon LeZionIsrael
| | - Ziv Reich
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew UniversityRehovotIsrael
| |
Collapse
|
36
|
Sunil B, Saini D, Bapatla RB, Aswani V, Raghavendra AS. Photorespiration is complemented by cyclic electron flow and the alternative oxidase pathway to optimize photosynthesis and protect against abiotic stress. PHOTOSYNTHESIS RESEARCH 2019; 139:67-79. [PMID: 30187303 DOI: 10.1007/s11120-018-0577-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/24/2018] [Indexed: 05/02/2023]
Abstract
Optimization of photosynthetic performance and protection against abiotic stress are essential to sustain plant growth. Photorespiratory metabolism can help plants to adapt to abiotic stress. The beneficial role of photorespiration under abiotic stress is further strengthened by cyclic electron flow (CEF) and alternative oxidase (AOX) pathways. We have attempted to critically assess the literature on the responses of these three phenomena-photorespiration, CEF and AOX, to different stress situations. We emphasize that photorespiration is the key player to protect photosynthesis and upregulates CEF as well as AOX. Then these three processes work in coordination to protect the plants against photoinhibition and maintain an optimal redox state in the cell, while providing ATP for metabolism and protein repair. H2O2 generated during photorespiratory metabolism seems to be an important signal to upregulate CEF or AOX. Further experiments are necessary to identify the signals originating from CEF or AOX to modulate photorespiration. The mutants deficient in CEF or AOX or both could be useful in this regard. The mutual interactions between CEF and AOX, so as to keep their complementarity, are also to be examined further.
Collapse
Affiliation(s)
- Bobba Sunil
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepak Saini
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ramesh B Bapatla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Vetcha Aswani
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
37
|
Dusenge ME, Duarte AG, Way DA. Plant carbon metabolism and climate change: elevated CO 2 and temperature impacts on photosynthesis, photorespiration and respiration. THE NEW PHYTOLOGIST 2019; 221:32-49. [PMID: 29983005 DOI: 10.1111/nph.15283] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/11/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 32 I. The importance of plant carbon metabolism for climate change 32 II. Rising atmospheric CO2 and carbon metabolism 33 III. Rising temperatures and carbon metabolism 37 IV. Thermal acclimation responses of carbon metabolic processes can be best understood when studied together 38 V. Will elevated CO2 offset warming-induced changes in carbon metabolism? 40 VI. No plant is an island: water and nutrient limitations define plant responses to climate drivers 41 VII. Conclusions 42 Acknowledgements 42 References 42 Appendix A1 48 SUMMARY: Plant carbon metabolism is impacted by rising CO2 concentrations and temperatures, but also feeds back onto the climate system to help determine the trajectory of future climate change. Here we review how photosynthesis, photorespiration and respiration are affected by increasing atmospheric CO2 concentrations and climate warming, both separately and in combination. We also compile data from the literature on plants grown at multiple temperatures, focusing on net CO2 assimilation rates and leaf dark respiration rates measured at the growth temperature (Agrowth and Rgrowth , respectively). Our analyses show that the ratio of Agrowth to Rgrowth is generally homeostatic across a wide range of species and growth temperatures, and that species that have reduced Agrowth at higher growth temperatures also tend to have reduced Rgrowth , while species that show stimulations in Agrowth under warming tend to have higher Rgrowth in the hotter environment. These results highlight the need to study these physiological processes together to better predict how vegetation carbon metabolism will respond to climate change.
Collapse
Affiliation(s)
- Mirindi Eric Dusenge
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - André Galvao Duarte
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
38
|
Yavaş İ, Ünay A. Baklagillerde Kök, Nodül Oluşumu ve Azot Fiksasyonu Üzerine Bazı Küresel İklim Değişikliği Parametrelerinin Etkisi. ULUSLARARASI TARIM VE YABAN HAYATI BILIMLERI DERGISI 2018. [DOI: 10.24180/ijaws.366386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
39
|
Abstract
Climate change, associated with global warming, extreme weather events, and increasing incidence of weeds, pests and pathogens, is strongly influencing major cropping systems. In this challenging scenario, miscellaneous strategies are needed to expedite the rate of genetic gains with the purpose of developing novel varieties. Large plant breeding populations, efficient high-throughput technologies, big data management tools, and downstream biotechnology and molecular techniques are the pillars on which next generation breeding is based. In this review, we describe the toolbox the breeder has to face the challenges imposed by climate change, remark on the key role bioinformatics plays in the analysis and interpretation of big “omics” data, and acknowledge all the benefits that have been introduced into breeding strategies with the biotechnological and digital revolution.
Collapse
|
40
|
Loka D, Harper J, Humphreys M, Gasior D, Wootton-Beard P, Gwynn-Jones D, Scullion J, Doonan J, Kingston-Smith A, Dodd R, Wang J, Chadwick D, Hill P, Jones D, Mills G, Hayes F, Robinson D. Impacts of abiotic stresses on the physiology and metabolism of cool-season grasses: A review. Food Energy Secur 2018. [DOI: 10.1002/fes3.152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Dimitra Loka
- DEMETER; Larisa Greece
- IBERS; Aberystwyth University, Gogerddan; Aberystwyth Ceredigion UK
| | - John Harper
- IBERS; Aberystwyth University, Gogerddan; Aberystwyth Ceredigion UK
| | - Mike Humphreys
- IBERS; Aberystwyth University, Gogerddan; Aberystwyth Ceredigion UK
| | - Dagmara Gasior
- IBERS; Aberystwyth University, Gogerddan; Aberystwyth Ceredigion UK
| | | | | | - John Scullion
- IBERS; Aberystwyth University, Gogerddan; Aberystwyth Ceredigion UK
| | - John Doonan
- IBERS; Aberystwyth University, Gogerddan; Aberystwyth Ceredigion UK
| | | | - Rosalind Dodd
- Environment Centre Wales; Bangor University; Gwynedd UK
| | - Jinyang Wang
- Environment Centre Wales; Bangor University; Gwynedd UK
| | | | - Paul Hill
- Environment Centre Wales; Bangor University; Gwynedd UK
| | - Davey Jones
- Environment Centre Wales; Bangor University; Gwynedd UK
| | - Gina Mills
- Centre for Ecology and Hydrology, Environment Centre Wales; Bangor Gwynedd UK
| | - Felicity Hayes
- Centre for Ecology and Hydrology, Environment Centre Wales; Bangor Gwynedd UK
| | - David Robinson
- Centre for Ecology and Hydrology, Environment Centre Wales; Bangor Gwynedd UK
| |
Collapse
|
41
|
Unraveling Field Crops Sensitivity to Heat Stress:Mechanisms, Approaches, and Future Prospects. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070128] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The astonishing increase in temperature presents an alarming threat to crop production worldwide. As evident by huge yield decline in various crops, the escalating drastic impacts of heat stress (HS) are putting global food production as well as nutritional security at high risk. HS is a major abiotic stress that influences plant morphology, physiology, reproduction, and productivity worldwide. The physiological and molecular responses to HS are dynamic research areas, and molecular techniques are being adopted for producing heat tolerant crop plants. In this article, we reviewed recent findings, impacts, adoption, and tolerance at the cellular, organellar, and whole plant level and reported several approaches that are used to improve HS tolerance in crop plants. Omics approaches unravel various mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward HS. Our review about physiological and molecular mechanisms may enlighten ways to develop thermo-tolerant cultivars and to produce crop plants that are agriculturally important in adverse climatic conditions.
Collapse
|
42
|
Rodríguez-Calcerrada J, Rodrigues AM, Perdiguero P, António C, Atkin OK, Li M, Collada C, Gil L. A molecular approach to drought-induced reduction in leaf CO 2 exchange in drought-resistant Quercus ilex. PHYSIOLOGIA PLANTARUM 2018; 162:394-408. [PMID: 28984911 DOI: 10.1111/ppl.12649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/20/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Drought-induced reduction of leaf gas exchange entails a complex regulation of the plant leaf metabolism. We used a combined molecular and physiological approach to understand leaf photosynthetic and respiratory responses of 2-year-old Quercus ilex seedlings to drought. Mild drought stress resulted in glucose accumulation while net photosynthetic CO2 uptake (Pn ) remained unchanged, suggesting a role of glucose in stress signaling and/or osmoregulation. Simple sugars and sugar alcohols increased throughout moderate-to-very severe drought stress conditions, in parallel to a progressive decline in Pn and the quantum efficiency of photosystem II; by contrast, minor changes occurred in respiration rates until drought stress was very severe. At very severe drought stress, 2-oxoglutarate dehydrogenase complex gene expression significantly decreased, and the abundance of most amino acids dramatically increased, especially that of proline and γ-aminobutyric acid (GABA) suggesting enhanced protection against oxidative damage and a reorganization of the tricarboxylic cycle acid cycle via the GABA shunt. Altogether, our results point to Q. ilex drought tolerance being linked to signaling and osmoregulation by hexoses during early stages of drought stress, and enhanced protection against oxidative damage by polyols and amino acids under severe drought stress.
Collapse
Affiliation(s)
- Jesús Rodríguez-Calcerrada
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid 28040, Spain
| | - Ana M Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Pedro Perdiguero
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid 28040, Spain
- Forest Biotech Laboratory, Instituto de Biologia Experimental e Tecnológica, iBET, 2781-901 Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601, Australia
| | - Meng Li
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid 28040, Spain
| | - Carmen Collada
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid 28040, Spain
| | - Luis Gil
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid 28040, Spain
| |
Collapse
|
43
|
Abstract
Increases in ambient temperatures have been a severe threat to crop production in many countries around the world under climate change. Chloroplasts serve as metabolic centers and play a key role in physiological adaptive processes to heat stress. In addition to expressing heat shock proteins that protect proteins from heat-induced damage, metabolic reprogramming occurs during adaptive physiological processes in chloroplasts. Heat stress leads to inhibition of plant photosynthetic activity by damaging key components functioning in a variety of metabolic processes, with concomitant reductions in biomass production and crop yield. In this review article, we will focus on events through extensive and transient metabolic reprogramming in response to heat stress, which included chlorophyll breakdown, generation of reactive oxygen species (ROS), antioxidant defense, protein turnover, and metabolic alterations with carbon assimilation. Such diverse metabolic reprogramming in chloroplasts is required for systemic acquired acclimation to heat stress in plants.
Collapse
Affiliation(s)
- Qing-Long Wang
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Juan-Hua Chen
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Ning-Yu He
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
44
|
Digrado A, de la Motte LG, Bachy A, Mozaffar A, Schoon N, Bussotti F, Amelynck C, Dalcq AC, Fauconnier ML, Aubinet M, Heinesch B, du Jardin P, Delaplace P. Decrease in the Photosynthetic Performance of Temperate Grassland Species Does Not Lead to a Decline in the Gross Primary Production of the Ecosystem. FRONTIERS IN PLANT SCIENCE 2018; 9:67. [PMID: 29459875 PMCID: PMC5807415 DOI: 10.3389/fpls.2018.00067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
Plants, under stressful conditions, can proceed to photosynthetic adjustments in order to acclimatize and alleviate the detrimental impacts on the photosynthetic apparatus. However, it is currently unclear how adjustment of photosynthetic processes under environmental constraints by plants influences CO2 gas exchange at the ecosystem-scale. Over a 2-year period, photosynthetic performance of a temperate grassland ecosystem was characterized by conducting frequent chlorophyll fluorescence (ChlF) measurements on three primary grassland species (Lolium perenne L., Taraxacum sp., and Trifolium repens L.). Ecosystem photosynthetic performance was estimated from measurements performed on the three dominant grassland species weighed based on their relative abundance. In addition, monitoring CO2 fluxes was performed by eddy covariance. The highest decrease in photosynthetic performance was detected in summer, when environmental constraints were combined. Dicot species (Taraxacum sp. and T. repens) presented the strongest capacity to up-regulate PSI and exhibited the highest electron transport efficiency under stressful environmental conditions compared with L. perenne. The decline in ecosystem photosynthetic performance did not lead to a reduction in gross primary productivity, likely because increased light energy was available under these conditions. The carbon amounts fixed at light saturation were not influenced by alterations in photosynthetic processes, suggesting photosynthesis was not impaired. Decreased photosynthetic performance was associated with high respiration flux, but both were influenced by temperature. Our study revealed variation in photosynthetic performance of a grassland ecosystem responded to environmental constraints, but alterations in photosynthetic processes appeared to exhibit a negligible influence on ecosystem CO2 fluxes.
Collapse
Affiliation(s)
- Anthony Digrado
- Plant Biology Laboratory, AGRO-BIO-CHEM, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Louis G. de la Motte
- Biosystems Dynamics and Exchanges, TERRA, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Aurélie Bachy
- Biosystems Dynamics and Exchanges, TERRA, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Ahsan Mozaffar
- Biosystems Dynamics and Exchanges, TERRA, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
- Royal Belgian Institute for Space Aeronomy, Uccle, Belgium
| | - Niels Schoon
- Royal Belgian Institute for Space Aeronomy, Uccle, Belgium
| | - Filippo Bussotti
- Department of Agri-Food Production and Environmental Science, University of Florence, Florence, Italy
| | - Crist Amelynck
- Royal Belgian Institute for Space Aeronomy, Uccle, Belgium
- Department of Analytical Chemistry, Ghent University, Ghent, Belgium
| | - Anne-Catherine Dalcq
- Modelling and Development Unit, AGRO-BIO-CHEM, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Agro-Bio Systems Chemistry, TERRA, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Marc Aubinet
- Biosystems Dynamics and Exchanges, TERRA, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Bernard Heinesch
- Biosystems Dynamics and Exchanges, TERRA, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Patrick du Jardin
- Plant Biology Laboratory, AGRO-BIO-CHEM, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Pierre Delaplace
- Plant Biology Laboratory, AGRO-BIO-CHEM, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
| |
Collapse
|
45
|
Loik ME, Resco de Dios V, Smith R, Tissue DT. Relationships between climate of origin and photosynthetic responses to an episodic heatwave depend on growth CO 2 concentration for Eucalyptus camaldulensis var. camaldulensis. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1053-1062. [PMID: 32480632 DOI: 10.1071/fp17077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/28/2017] [Indexed: 06/11/2023]
Abstract
Stressful episodic weather is likely to affect the C balance of trees as the climate changes, potentially altering survival. However, the role of elevated CO2 concentration ([CO2]) in tolerating off-season episodic extremes is not clear. We tested for interactive effects of elevated CO2 and springtime heat stress on photosynthesis for seven genotypes of Eucalyptus camaldulensis Dehnh. var. camaldulensis, representing its widespread distribution across south-eastern Australia. We grew clonal material under glasshouse conditions of ambient (aCO2; 400 parts per million (ppm)) or elevated (eCO2; 640ppm) [CO2], and air temperatures of 25:17°C (day:night), and measured the electron transport rate in PSII (ETR), stomatal conductance to water vapour (gs) and net CO2 assimilation (A). Measurements were made before, during and after a four-day temperature excursion of 35:27°C. ETR and A were ~17% higher for plants grown in eCO2 than in aCO2. Photosynthesis remained stable for plants in eCO2 during the heatwave. Based on the effect size ratio (eCO2:aCO2), gs and ETR were temporarily affected more by the heatwave than A. A reduction in ETR in eCO2 was the only lasting effect of the heatwave. There were no significant differences among genotypes. Correlations between photosynthesis and climate of origin differed for plants grown in aCO2 compared with eCO2, suggesting potential complex and multiple control points on photosynthesis.
Collapse
Affiliation(s)
- Michael E Loik
- Department of Environmental Studies, University of California, Santa Cruz, CA 95064, USA
| | - Víctor Resco de Dios
- Department of Crop and Forest Sciences, Universitat de Lleida, 25198 Lleida, Spain
| | - Renee Smith
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| |
Collapse
|
46
|
Albert R, Acharya BR, Jeon BW, Zañudo JGT, Zhu M, Osman K, Assmann SM. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops. PLoS Biol 2017; 15:e2003451. [PMID: 28937978 PMCID: PMC5627951 DOI: 10.1371/journal.pbio.2003451] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/04/2017] [Accepted: 09/04/2017] [Indexed: 11/19/2022] Open
Abstract
Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA). This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs) of the protein kinase OPEN STOMATA 1 (OST1) and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich) component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure) and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed several predictions of the model with regard to reactive oxygen species, cytosolic Ca2+ (Ca2+c), and heterotrimeric G-protein signaling. We analyzed dynamics-determining positive and negative feedback loops, thereby elucidating the attractor (dynamic behavior) repertoire of the system and the groups of nodes that determine each attractor. Based on this analysis, we predict the likely presence of a previously unrecognized feedback mechanism dependent on Ca2+c. This mechanism would provide model agreement with 10 additional experimental observations, for a validation rate of 85%. Our research underscores the importance of feedback regulation in generating robust and adaptable biological responses. The high validation rate of our model illustrates the advantages of discrete dynamic modeling for complex, nonlinear systems common in biology.
Collapse
Affiliation(s)
- Réka Albert
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Biswa R. Acharya
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Byeong Wook Jeon
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jorge G. T. Zañudo
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mengmeng Zhu
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Karim Osman
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sarah M. Assmann
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
47
|
Safronov O, Kreuzwieser J, Haberer G, Alyousif MS, Schulze W, Al-Harbi N, Arab L, Ache P, Stempfl T, Kruse J, Mayer KX, Hedrich R, Rennenberg H, Salojärvi J, Kangasjärvi J. Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm). PLoS One 2017; 12:e0177883. [PMID: 28570677 PMCID: PMC5453443 DOI: 10.1371/journal.pone.0177883] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 05/04/2017] [Indexed: 11/19/2022] Open
Abstract
Plants adapt to the environment by either long-term genome evolution or by acclimatization processes where the cellular processes and metabolism of the plant are adjusted within the existing potential in the genome. Here we studied the adaptation strategies in date palm, Phoenix dactylifera, under mild heat, drought and combined heat and drought by transcriptomic and metabolomic profiling. In transcriptomics data, combined heat and drought resembled heat response, whereas in metabolomics data it was more similar to drought. In both conditions, soluble carbohydrates, such as fucose, and glucose derivatives, were increased, suggesting a switch to carbohydrate metabolism and cell wall biogenesis. This result is consistent with the evidence from transcriptomics and cis-motif analysis. In addition, transcriptomics data showed transcriptional activation of genes related to reactive oxygen species in all three conditions (drought, heat, and combined heat and drought), suggesting increased activity of enzymatic antioxidant systems in cytosol, chloroplast and peroxisome. Finally, the genes that were differentially expressed in heat and combined heat and drought stresses were significantly enriched for circadian and diurnal rhythm motifs, suggesting new stress avoidance strategies.
Collapse
Affiliation(s)
- Omid Safronov
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Georg Haberer
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Plant Genome and Systems Biology, Neuherberg, Germany
| | | | - Waltraud Schulze
- Institute for Physiology and Biotechnology of Plants, Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Naif Al-Harbi
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Leila Arab
- Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Thomas Stempfl
- Center of Excellence for Fluorescent Bioanalytics (KFB), University of Regensburg, Regensburg, Germany
| | - Joerg Kruse
- Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
| | - Klaus X. Mayer
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Plant Genome and Systems Biology, Neuherberg, Germany
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rainer Hedrich
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Heinz Rennenberg
- Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jarkko Salojärvi
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jaakko Kangasjärvi
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
48
|
Valliyodan B, Ye H, Song L, Murphy M, Shannon JG, Nguyen HT. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1835-1849. [PMID: 27927997 DOI: 10.1093/jxb/erw433] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drought and its interaction with high temperature are the major abiotic stress factors affecting soybean yield and production stability. Ongoing climate changes are anticipated to intensify drought events, which will further impact crop production and food security. However, excessive water also limits soybean production. The success of soybean breeding programmes for crop improvement is dependent on the extent of genetic variation present in the germplasm base. Screening for natural genetic variation in drought- and flooding tolerance-related traits, including root system architecture, water and nitrogen-fixation efficiency, and yield performance indices, has helped to identify the best resources for genetic studies in soybean. Genomic resources, including whole-genome sequences of diverse germplasms, millions of single-nucleotide polymorphisms, and high-throughput marker genotyping platforms, have expedited gene and marker discovery for translational genomics in soybean. This review highlights the current knowledge of the genetic diversity and quantitative trait loci associated with root system architecture, canopy wilting, nitrogen-fixation ability, and flooding tolerance that contributes to the understanding of drought- and flooding-tolerance mechanisms in soybean. Next-generation mapping approaches and high-throughput phenotyping will facilitate a better understanding of phenotype-genotype associations and help to formulate genomic-assisted breeding strategies, including genomic selection, in soybean for tolerance to drought and flooding stress.
Collapse
Affiliation(s)
- Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| | - Heng Ye
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| | - Li Song
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| | - MacKensie Murphy
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| | - J Grover Shannon
- Division of Plant Sciences, University of Missouri-Fisher Delta Research Center, Portageville, MO 63873, USA
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
49
|
Duarte AG, Katata G, Hoshika Y, Hossain M, Kreuzwieser J, Arneth A, Ruehr NK. Immediate and potential long-term effects of consecutive heat waves on the photosynthetic performance and water balance in Douglas-fir. JOURNAL OF PLANT PHYSIOLOGY 2016; 205:57-66. [PMID: 27614786 DOI: 10.1016/j.jplph.2016.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 05/16/2023]
Abstract
The frequency and intensity of climatic extremes, such as heat waves, are predicted to increase globally, with severe implications for terrestrial carbon and water cycling. Temperatures may rise above critical thresholds that allow trees to function optimally, with unknown long-term consequences for forest ecosystems. In this context, we investigated how photosynthetic traits and the water balance in Douglas-fir are affected by exposure to three heat waves with temperatures about 12°C above ambient. Photosynthetic carboxylation efficiency (Vcmax) was mostly unaffected, but electron transport (Jmax) and photosynthetic rates under saturating light (Asat) were strongly influenced by the heat waves, with lagging limitations on photosynthesis still being observed six weeks after the last heat wave. We also observed lingering heat-induced inhibitions on transpiration, minimum stomatal conductance, and night-time stomatal conductance (gs-night). Results from the stomatal models used to calculate minimum stomatal conductance were similar to gs-night and indicated changes in leaf morphology, e.g. stomatal occlusions and alterations in epicuticular wax. Our results show Douglas-fir's ability to restrict water loss following heat stress, but at the price of reduced photosynthetic performance. Such limitations indicate potential long-term restrictions that heat waves can impose on tree development and functioning under extreme climatic conditions.
Collapse
Affiliation(s)
- André G Duarte
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany; The University of Western Ontario, 1151 Richmond St., London, ON, N6A 3K7, Canada.
| | - Genki Katata
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany; Japan Atomic Energy Agency, Ibaraki, Japan
| | - Yasutomo Hoshika
- Institute of Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Mohitul Hossain
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany; The University of Western Australia, Perth, Australia
| | | | - Almut Arneth
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| |
Collapse
|
50
|
Britto DT, Wilhelm C, Kronzucker HJ. From biochemical pathways to the agro-ecological scale: Carbon capture in a changing climate. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:1-2. [PMID: 27644583 DOI: 10.1016/j.jplph.2016.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- D T Britto
- University of Toronto, Toronto, ON, Canada.
| | - C Wilhelm
- University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|