1
|
Yuan P, Tian J, Wei Y, Wang M, Song C, Jiao J, Wang M, Zhang K, Hao P, Zheng X, Bai T. The MdCo gene encodes a putative 2OG-Fe (II) oxygenase that positively regulates salt tolerance in transgenic tomato and apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112267. [PMID: 39278570 DOI: 10.1016/j.plantsci.2024.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Salinity stress is a significant environmental factor that impacts the growth, development, quality, and yield of crops. The 2OG-Fe (II) oxygenase family of enzyme proteins plays crucial roles in plant growth and stress responses. Previously, we identified and characterized MdCo, which encodes a putative 2OG-Fe (II) oxygenase, a key gene for controlling the columnar growth habit of apples. In this study, we explored the role of MdCo in salt stress tolerance. Expression analysis suggested that MdCo exhibits high expression in roots and is significantly induced by NaCl stress. Ectopic expression of MdCo exhibited enhanced salt stress tolerance in transgenic tomatoes, and these plants were characterized by better growth performance, and higher chlorophyll content, but lower electrolyte leakage and malondialdehyde (MDA), and less hydrogen peroxide (H2O2) and superoxide radicals (O2-) under salt stress. Overexpression of MdCo can effectively scavenge reactive oxygen species (ROS) by enhancing the activities of antioxidant enzymes and up-regulating the expression of stress-associated genes under salt stress, thereby enhancing salt tolerance in apple calli. Collectively, these findings provide new insights into the function of MdCo in salt stress tolerance as well as future potential application for apple breeding aimed at improving salt stress tolerance.
Collapse
Affiliation(s)
- Penghao Yuan
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianwen Tian
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuyao Wei
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Meige Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Chunhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China
| | - Jian Jiao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China
| | - Miaomiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China
| | - Kunxi Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China
| | - Pengbo Hao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China.
| | - Tuanhui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Malakar P, Gupta SK, Chattopadhyay D. Role of plant neurotransmitters in salt stress: A critical review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108601. [PMID: 38696867 DOI: 10.1016/j.plaphy.2024.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Neurotransmitters are naturally found in many plants, but the molecular processes that govern their actions still need to be better understood. Acetylcholine, γ-Aminobutyric acid, histamine, melatonin, serotonin, and glutamate are the most common neurotransmitters in animals, and they all play a part in the development and information processing. It is worth noting that all these chemicals have been found in plants. Although much emphasis has been placed on understanding how neurotransmitters regulate mood and behaviour in humans, little is known about how they regulate plant growth and development. In this article, the information was reviewed and updated considering current thinking on neurotransmitter signaling in plants' metabolism, growth, development, salt tolerance, and the associated avenues for underlying research. The goal of this study is to advance neurotransmitter signaling research in plant biology, especially in the area of salt stress physiology.
Collapse
Affiliation(s)
- Paheli Malakar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Santosh K Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
3
|
Feng L, Li Q, Zhou D, Jia M, Liu Z, Hou Z, Ren Q, Ji S, Sang S, Lu S, Yu J. B. subtilis CNBG-PGPR-1 induces methionine to regulate ethylene pathway and ROS scavenging for improving salt tolerance of tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:193-211. [PMID: 37812678 DOI: 10.1111/tpj.16489] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Soil salinity severely threatens plant growth and crop yields. The utilization of PGPR is an effective strategy for enhancing plant salt tolerance, but the mechanisms involved in this process have rarely been reported. In this study, we investigated the effects of Bacillus subtilis CNBG-PGPR-1 on improving plant salt tolerance and elucidated the molecular pathways involved. The results showed that CNBG-PGPR-1 significantly improved the cellular homeostasis and photosynthetic efficiency of leaves and reduced ion toxicity and osmotic stress caused by salt in tomato. Transcriptome analysis uncovered that CNBG-PGPR-1 enhanced plant salt tolerance through the activation of complex molecular pathways, with plant hormone signal transduction playing an important role. Comparative analysis and pharmacological experiments confirmed that the ethylene pathway was closely related to the beneficial effect of CNBG-PGPR-1 on improving plant salt tolerance. Furthermore, we found that methionine, a precursor of ethylene synthesis, significantly accumulated in response to CNBG-PGPR-1 in tomato. Exogenous L-methionine largely mimicked the beneficial effects of CNBG-PGPR-1 and activated the expression of ethylene pathway-related genes, indicating CNBG-PGPR-1 induces methionine accumulation to regulate the ethylene pathway in tomato. Finally, CNBG-PGPR-1 reduced salt-induced ROS by activating ROS scavenger-encoding genes, mainly involved in GSH metabolism and POD-related genes, which were also closely linked to methionine metabolism. Overall, our studies demonstrate that CNBG-PGPR-1-induced methionine is a key regulator in enhancing plant salt tolerance through the ethylene pathway and ROS scavenging, providing a novel understanding of the mechanism by which beneficial microbes improve plant salt tolerance.
Collapse
Affiliation(s)
- Liuchun Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Qi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Dongqin Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Mingyun Jia
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Zhuangzhuang Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Zhaoqi Hou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Quanjin Ren
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Shengdong Ji
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shifei Sang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shipeng Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| |
Collapse
|
4
|
Luo S, Liu Z, Wan Z, He X, Lv J, Yu J, Zhang G. Foliar Spraying of NaHS Alleviates Cucumber Salt Stress by Maintaining N +/K + Balance and Activating Salt Tolerance Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2023; 12:2450. [PMID: 37447010 DOI: 10.3390/plants12132450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Hydrogen sulfide (H2S) is involved in the regulation of plant salt stress as a potential signaling molecule. This work investigated the effect of H2S on cucumber growth, photosynthesis, antioxidation, ion balance, and other salt tolerance pathways. The plant height, stem diameter, leaf area and photosynthesis of cucumber seedlings were significantly inhibited by 50 mmol·L-1 NaCl. Moreover, NaCl treatment induced superoxide anion (O2·-) and Na+ accumulation and affected the absorption of other mineral ions. On the contrary, exogenous spraying of 200 μmol·L-1 sodium hydrosulfide (NaHS) maintained the growth of cucumber seedlings, increased photosynthesis, enhanced the ascorbate-glutathione cycle (AsA-GSH), and promoted the absorption of mineral ions under salt stress. Meanwhile, NaHS upregulated SOS1, SOS2, SOS3, NHX1, and AKT1 genes to maintain Na+/K+ balance and increased the relative expression of MAPK3, MAPK4, MAPK6, and MAPK9 genes to enhance salt tolerance. These positive effects of H2S could be reversed by 150 mmol·L-1 propargylglycine (PAG, a specific inhibitor of H2S biosynthesis). These results indicated that H2S could mitigate salt damage in cucumber, mainly by improving photosynthesis, enhancing the AsA-GSH cycle, reducing the Na+/K+ ratio, and inducing the SOS pathway and MAPK pathway.
Collapse
Affiliation(s)
- Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zilong Wan
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xianxia He
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Feng C, Gao H, Zhou Y, Jing Y, Li S, Yan Z, Xu K, Zhou F, Zhang W, Yang X, Hussain MA, Li H. Unfolding molecular switches for salt stress resilience in soybean: recent advances and prospects for salt-tolerant smart plant production. FRONTIERS IN PLANT SCIENCE 2023; 14:1162014. [PMID: 37152141 PMCID: PMC10154572 DOI: 10.3389/fpls.2023.1162014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
The increasing sodium salts (NaCl, NaHCO3, NaSO4 etc.) in agricultural soil is a serious global concern for sustainable agricultural production and food security. Soybean is an important food crop, and their cultivation is severely challenged by high salt concentration in soils. Classical transgenic and innovative breeding technologies are immediately needed to engineer salt tolerant soybean plants. Additionally, unfolding the molecular switches and the key components of the soybean salt tolerance network are crucial for soybean salt tolerance improvement. Here we review our understandings of the core salt stress response mechanism in soybean. Recent findings described that salt stress sensing, signalling, ionic homeostasis (Na+/K+) and osmotic stress adjustment might be important in regulating the soybean salinity stress response. We also evaluated the importance of antiporters and transporters such as Arabidopsis K+ Transporter 1 (AKT1) potassium channel and the impact of epigenetic modification on soybean salt tolerance. We also review key phytohormones, and osmo-protectants and their role in salt tolerance in soybean. In addition, we discuss the progress of omics technologies for identifying salt stress responsive molecular switches and their targeted engineering for salt tolerance in soybean. This review summarizes recent progress in soybean salt stress functional genomics and way forward for molecular breeding for developing salt-tolerant soybean plant.
Collapse
Affiliation(s)
- Chen Feng
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Hongtao Gao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yonggang Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yan Jing
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Senquan Li
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhao Yan
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Keheng Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Fangxue Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Wenping Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Muhammad Azhar Hussain
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| | - Haiyan Li
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| |
Collapse
|
6
|
Feng G, Xiao P, Wang X, Huang L, Nie G, Li Z, Peng Y, Li D, Zhang X. Comprehensive Transcriptome Analysis Uncovers Distinct Expression Patterns Associated with Early Salinity Stress in Annual Ryegrass ( Lolium Multiflorum L.). Int J Mol Sci 2022; 23:3279. [PMID: 35328700 PMCID: PMC8948850 DOI: 10.3390/ijms23063279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Soil salination is likely to reduce crop production worldwide. Annual ryegrass (Lolium multiflorum L.) is one of the most important forages cultivated in temperate and subtropical regions. We performed a time-course comparative transcriptome for salinity-sensitive (SS) and salinity-insensitive (SI) genotypes of the annual ryegrass at six intervals post-stress to describe the transcriptional changes and identify the core genes involved in the early responses to salt stress. Our study generated 215.18 Gb of clean data and identified 7642 DEGs in six pairwise comparisons between the SS and SI genotypes of annual ryegrass. Function enrichment of the DEGs indicated that the differences in lipid, vitamins, and carbohydrate metabolism are responsible for variation in salt tolerance of the SS and SI genotypes. Stage-specific profiles revealed novel regulation mechanisms in salinity stress sensing, phytohormones signaling transduction, and transcriptional regulation of the early salinity responses. High-affinity K+ (HAKs) and high-affinity K1 transporter (HKT1) play different roles in the ionic homeostasis of the two genotypes. Moreover, our results also revealed that transcription factors (TFs), such as WRKYs, ERFs, and MYBs, may have different functions during the early signaling sensing of salt stress, such as WRKYs, ERFs, and MYBs. Generally, our study provides insights into the mechanisms of the early salinity response in the annual ryegrass and accelerates the breeding of salt-tolerant forage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xinquan Zhang
- Department of Forage Science, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (P.X.); (X.W.); (L.H.); (G.N.); (Z.L.); (Y.P.); (D.L.)
| |
Collapse
|
7
|
Farouk S, AL-Huqail AA. Sustainable Biochar and/or Melatonin Improve Salinity Tolerance in Borage Plants by Modulating Osmotic Adjustment, Antioxidants, and Ion Homeostasis. PLANTS (BASEL, SWITZERLAND) 2022; 11:765. [PMID: 35336647 PMCID: PMC8956032 DOI: 10.3390/plants11060765] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 05/12/2023]
Abstract
Salinity is persistently a decisive feature confining agricultural sustainability and food security in arid and semi-arid regions. Biochar (Bi) has been advocated as a means of lessening climate changes by sequestering carbon, concurrently supplying energy and rising crop productivity under normal or stressful conditions. Melatonin (Mt) has been shown to mediate numerous biochemical pathways and play important roles in mitigating multi-stress factors. However, their integrated roles in mitigating salt toxicity remain largely inexpressible. A completely randomized design was conducted to realize the remediation potential of Bi and/or Mt in attenuation salinity injury on borage plants by evaluating its effects on growth, water status, osmotic adjustment, antioxidant capacity, ions, and finally the yield. Salinity stress significantly decreased the plant growth and attributed yield when compared with non-salinized control plants. The depression effect of salinity on borage productivity was associated with the reduction in photosynthetic pigment and ascorbic acid (AsA) concentrations, potassium (K+) percentage, K+-translocation, and potassium/sodium ratio as well as catalase (CAT) activity. Additionally, borage plants' water status was disrupted by salinity through decreasing water content (WC), relative water content (RWC), and water retention capacity (WTC), as well as water potential (Ψw), osmotic potential (Ψs), and turgor potential (Ψp). Moreover, salinity stress evoked oxidative bursts via hyper-accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as protein carbonyl, which is associated with membrane dysfunction. The oxidative burst was connected with the hyper-accumulation of sodium (Na+) and chloride (Cl-) in plant tissues, coupled with osmolytes' accumulation and accelerating plants' osmotic adjustment (OA) capacity. The addition of Bi and/or Mt had a positive effect in mitigating salinity on borage plants by reducing Cl-, Na+, and Na+-translocation, and oxidative biomarkers as well as Ψw, Ψs, and Ψp. Moreover, Bi and/or Mt addition to salt-affected plants increased plant growth and yield by improving plant water status and OA capacity associated with the activation of antioxidant capacity and osmolytes accumulation as well as increased photosynthetic pigments, K+, and K+/Na+ ratio. Considering these observations, Bi and/or Mt can be used as a promising approach for enhancing the productivity of salt-affected borage plants due to their roles in sustaining water relations, rising solutes synthesis, progressing OA, improving redox homeostasis, and antioxidant aptitude.
Collapse
Affiliation(s)
- Saad Farouk
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Arwa Abdulkreem AL-Huqail
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
8
|
Genome-Wide Identification and Characterization of the Shaker-Type K+ Channel Genes in Prunus persica (L.) Batsch. Int J Genomics 2022; 2022:5053838. [PMID: 35310822 PMCID: PMC8926527 DOI: 10.1155/2022/5053838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Shaker-type K+ channels are critical for plant K+ acquisition and translocation that play key roles during plant growth and development. However, molecular mechanisms towards K+ channels are extremely rare in fruit trees, especially in peach. In this study, we identified 7 putative shaker-type K+ channel genes from peach, which were unevenly distributed on 5 chromosomes. The peach shaker K+ channel proteins were classified into 5 subfamilies, I-V, and were tightly clustered with pear homologs in the phylogenetic tree. Various cis-acting regulatory elements were detected in the promoter region of the shaker-type K+ channel genes, including phytohormone-responsive, abiotic stress-responsive, and development regulatory elements. The peach shaker K+ channel genes were expressed differentially in distinct tissues, and PpSPIK was specifically expressed in the full-bloom flowers; PpKAT1 and PpGORK were predominantly expressed in the leaves, while PpAKT1, PpKC1, and PpSKOR were majorly expressed in the roots. The peach shaker K+ channel genes were differentially regulated by abiotic stresses in that K+ deficiency, and ABA treatment mainly increased the shaker K+ channel gene expression throughout the whole seedling, whereas NaCl and PEG treatment reduced the shaker K+ channel gene expression, especially in the roots. Moreover, electrophysiological analysis demonstrated that PpSKOR is a typical voltage-dependent outwardly rectifying K+ channel in peach. This study lays a molecular basis for further functional studies of the shaker-type K+ channel genes in peach and provides a theoretical foundation for K+ nutrition and balance research in fruit trees.
Collapse
|
9
|
Feng C, He C, Wang Y, Xu H, Xu K, Zhao Y, Yao B, Zhang Y, Zhao Y, Idrice Carther KF, Luo J, Sun D, Gao H, Wang F, Li X, Liu W, Dong Y, Wang N, Zhou Y, Li H. Genome-wide identification of soybean Shaker K + channel gene family and functional characterization of GmAKT1 in transgenic Arabidopsis thaliana under salt and drought stress. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153529. [PMID: 34583134 DOI: 10.1016/j.jplph.2021.153529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 05/27/2023]
Abstract
Potassium is a major cationic nutrient involved in numerous physiological processes in plants. The uptake of K+ is mediated by K+ channels and transporters, and the Shaker K+ channel gene family plays an essential role in K+ uptake and stress resistance in plants. However, little is known regarding this family in soybean. In this study, 14 members of the Shaker K+ channel gene family were identified in soybean and were classified into five groups. Protein domain analysis revealed that Shaker K+ channel gene members have an ion transport domain (ion trans), a cyclic nucleotide-binding domain, ankyrin repeat domains, and a dimerization domain in the potassium ion channel. Quantitative real-time polymerase chain reaction analysis indicated that the expression of eight genes (notably GmAKT1) in soybean leaves and roots was significantly increased in response to salt and drought stress. Furthermore, the overexpression of GmAKT1 in Arabidopsis enhanced root length, K+ concentration, and fresh/dry weight ratio compared with wild-type plants subjected to salt and drought stress; this suggests that GmAKT1 improves the tolerance of soybean to abiotic stress. Our results provide important insight into the characterization of Shaker K+ channel gene family members in soybean and highlight the function of GmAKT1 in soybean plants under salt and drought stress.
Collapse
Affiliation(s)
- Chen Feng
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Chengming He
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yifan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Hehan Xu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Keheng Xu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yu Zhao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Bowen Yao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yinhe Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yan Zhao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Kue Foka Idrice Carther
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Jun Luo
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - DaQian Sun
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Hongtao Gao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Fawei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Xiaowei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Weican Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yuanyuan Dong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Nan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yonggang Zhou
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China; College of Tropical Crops, Hainan University, Haikou, 570228, China.
| | - Haiyan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China; College of Tropical Crops, Hainan University, Haikou, 570228, China.
| |
Collapse
|
10
|
Amin I, Rasool S, Mir MA, Wani W, Masoodi KZ, Ahmad P. Ion homeostasis for salinity tolerance in plants: a molecular approach. PHYSIOLOGIA PLANTARUM 2021; 171:578-594. [PMID: 32770745 DOI: 10.1111/ppl.13185] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 05/07/2023]
Abstract
Soil salinity is one of the major environmental stresses faced by the plants. Sodium chloride is the most important salt responsible for inducing salt stress by disrupting the osmotic potential. Due to various innate mechanisms, plants adapt to the sodic niche around them. Genes and transcription factors regulating ion transport and exclusion such as salt overly sensitive (SOS), Na+ /H+ exchangers (NHXs), high sodium affinity transporter (HKT) and plasma membrane protein (PMP) are activated during salinity stress and help in alleviating cells of ion toxicity. For salt tolerance in plants signal transduction and gene expression is regulated via transcription factors such as NAM (no apical meristem), ATAF (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon), Apetala 2/ethylene responsive factor (AP2/ERF), W-box binding factor (WRKY) and basic leucine zipper domain (bZIP). Cross-talk between all these transcription factors and genes aid in developing the tolerance mechanisms adopted by plants against salt stress. These genes and transcription factors regulate the movement of ions out of the cells by opening various membrane ion channels. Mutants or knockouts of all these genes are known to be less salt-tolerant compared to wild-types. Using novel molecular techniques such as analysis of genome, transcriptome, ionome and metabolome of a plant, can help in expanding the understanding of salt tolerance mechanism in plants. In this review, we discuss the genes responsible for imparting salt tolerance under salinity stress through transport dynamics of ion balance and need to integrate high-throughput molecular biology techniques to delineate the issue.
Collapse
Affiliation(s)
- Insha Amin
- Molecular Biology Lab, Division of Veterinary Biochemistry, FVSc & A.H., SKUAST, Shuhama, India
| | - Saiema Rasool
- Department of School Education, Govt. of Jammu & Kashmir, Srinagar, 190001, India
| | - Mudasir A Mir
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Wasia Wani
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Khalid Z Masoodi
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Botany, S. P. College, Srinagar, Jammu and Kashmir, 190001, India
| |
Collapse
|
11
|
Sun T, Ma N, Wang C, Fan H, Wang M, Zhang J, Cao J, Wang D. A Golgi-Localized Sodium/Hydrogen Exchanger Positively Regulates Salt Tolerance by Maintaining Higher K +/Na + Ratio in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:638340. [PMID: 33767722 PMCID: PMC7985447 DOI: 10.3389/fpls.2021.638340] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/26/2021] [Indexed: 05/17/2023]
Abstract
Salt stress caused by soil salinization, is one of the main factors that reduce soybean yield and quality. A large number of genes have been found to be involved in the regulation of salt tolerance. In this study, we characterized a soybean sodium/hydrogen exchanger gene GmNHX5 and revealed its functional mechanism involved in the salt tolerance process in soybean. GmNHX5 responded to salt stress at the transcription level in the salt stress-tolerant soybean plants, but not significantly changed in the salt-sensitive ones. GmNHX5 was located in the Golgi apparatus, and distributed in new leaves and vascular, and was induced by salt treatment. Overexpression of GmNHX5 improved the salt tolerance of hairy roots induced by soybean cotyledons, while the opposite was observed when GmNHX5 was knockout by CRISPR/Cas9. Soybean seedlings overexpressing GmNHX5 also showed an increased expression of GmSOS1, GmSKOR, and GmHKT1, higher K+/Na+ ratio, and higher viability when exposed to salt stress. Our findings provide an effective candidate gene for the cultivation of salt-tolerant germplasm resources and new clues for further understanding of the salt-tolerance mechanism in plants.
Collapse
Affiliation(s)
- Tianjie Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Nan Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Caiqing Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Huifen Fan
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Mengxuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jie Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jinfeng Cao
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou, China
- Academy of Agricultural and Forestry Sciences, Cangzhou, China
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
Wang X, Zhao J, Fang Q, Chang X, Sun M, Li W, Li Y. GmAKT1 is involved in K + uptake and Na +/K + homeostasis in Arabidopsis and soybean plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110736. [PMID: 33568288 DOI: 10.1016/j.plantsci.2020.110736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 05/27/2023]
Abstract
Plant roots absorb K+ from soil via K+ channels and transporters, which are important for stress responses. In this research, GmAKT1, an AKT1-type K+ channel, was isolated and characterized. The expression of GmAKT1 was induced by K+-starvation and salinity stresses, and it was preferentially expressed in the soybean roots. And GmAKT1 was located in the plasma membrane. As an inward K+ channel, GmAKT1 participated in K+ uptake, as well as rescued the low-K+-sensitive phenotype of the yeast mutant and Arabidopsis akt1 mutant. Overexpression of GmAKT1 significantly improved the growth of plants and increased K+ concentration, leading to lower Na+/K+ ratios in transgenic Arabidopsis and chimeric soybean plants with transgenic hairy roots. In addition, GmAKT1 overexpression resulted in significant upregulation of these ion uptake-related genes, including GmSKOR, GmsSOS1, GmHKT1, and GmNHX1. Our findings suggested that GmAKT1 plays an important part in K+ uptake under low-K+ condition, and could maintain Na+/K+ homeostasis under salt stress in Arabidopsis and soybean plants.
Collapse
Affiliation(s)
- Xuesong Wang
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Jialiang Zhao
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Qingwei Fang
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Xingchao Chang
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Mingyang Sun
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Wenbin Li
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| | - Yongguang Li
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| |
Collapse
|
13
|
Bai Q, Shen Y, Huang Y. Advances in Mineral Nutrition Transport and Signal Transduction in Rosaceae Fruit Quality and Postharvest Storage. FRONTIERS IN PLANT SCIENCE 2021; 12:620018. [PMID: 33692815 PMCID: PMC7937644 DOI: 10.3389/fpls.2021.620018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 05/12/2023]
Abstract
Mineral nutrition, taken up from the soil or foliar sprayed, plays fundamental roles in plant growth and development. Among of at least 14 mineral elements, the macronutrients nitrogen (N), potassium (K), phosphorus (P), and calcium (Ca) and the micronutrient iron (Fe) are essential to Rosaceae fruit yield and quality. Deficiencies in minerals strongly affect metabolism with subsequent impacts on the growth and development of fruit trees. This ultimately affects the yield, nutritional value, and quality of fruit. Especially, the main reason of the postharvest storage loss caused by physiological disorders is the improper proportion of mineral nutrient elements. In recent years, many important mineral transport proteins and their regulatory components are increasingly revealed, which make drastic progress in understanding the molecular mechanisms for mineral nutrition (N, P, K, Ca, and Fe) in various aspects including plant growth, fruit development, quality, nutrition, and postharvest storage. Importantly, many studies have found that mineral nutrition, such as N, P, and Fe, not only affects fruit quality directly but also influences the absorption and the content of other nutrient elements. In this review, we provide insights of the mineral nutrients into their function, transport, signal transduction associated with Rosaceae fruit quality, and postharvest storage at physiological and molecular levels. These studies will contribute to provide theoretical basis to improve fertilizer efficient utilization and fruit industry sustainable development.
Collapse
|
14
|
Chen G, Chen Q, Qi K, Xie Z, Yin H, Wang P, Wang R, Huang Z, Zhang S, Wang L, Wu J. Identification of Shaker K + channel family members in Rosaceae and a functional exploration of PbrKAT1. PLANTA 2019; 250:1911-1925. [PMID: 31523779 DOI: 10.1007/s00425-019-03275-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/06/2019] [Indexed: 05/20/2023]
Abstract
PbrKAT1, which is inhibited by external Na+ in Xenopus laevis oocytes, is characterized as encoding a typical inward rectifying channel that is mainly expressed in guard cells. Potassium (K+) is the most abundant cation in plant cells necessary for plant growth and development. The uptake and transport of K+ are mainly completed through transporters and channels, and the Shaker family genes are the most studied K+ channels in plants. However, there is far less information about this family in Rosaceae species. We performed a genome-wide analysis and identified Shaker K+ channel gene family members in Rosaceae. We cloned and characterized a Shaker K+ channel KAT1 from pear (Pyrus × bretschneideri). In total, 36 Shaker K+ channel genes were identified from Rosaceae species and were classified into five subgroups based on structural characteristics and a phylogenetic analysis. Whole-genome and dispersed duplications were the primary forces underlying Shaker K+ channel gene family expansion in Rosaceae, and purifying selection played a key role in the evolution of Shaker K+ channel genes. β-Glucuronidase and qRT-PCR assays revealed that PbrKAT1 was mainly expressed in leaves, especially in guard cells. PbrKAT1 displayed a typical inward-rectifying current when expressed in Xenopus laevis oocytes. The activity of PbrKAT1 was inhibited by external sodium ions, possibly playing an important role in the regulation of salt tolerance in pear. These results provide valuable information on evolution, expression and functions of the Shaker K+ channel gene family in plants.
Collapse
Affiliation(s)
- Guodong Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Yin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Runze Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Huang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Wang L, Liu Y, Li D, Feng S, Yang J, Zhang J, Zhang J, Wang D, Gan Y. Improving salt tolerance in potato through overexpression of AtHKT1 gene. BMC PLANT BIOLOGY 2019; 19:357. [PMID: 31419943 PMCID: PMC6697938 DOI: 10.1186/s12870-019-1963-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 08/06/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Survival of plants in response to salinity stress is typically related to Na+ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). RESULTS In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing Na+ content and improving K+/Na+ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol L- 1 NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. CONCLUSIONS We conclude that the constitutive overexpression of AtHKT1 reduces Na+ accumulation in potato leaves and promotes the K+/Na+ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity.
Collapse
Affiliation(s)
- Li Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070 China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070 China
| | - Dan Li
- Longdong University, Qingyang, 745000 Gansu China
| | - Shoujiang Feng
- Institute of Soil, Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Jiangwei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jingjing Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070 China
| | - Junlian Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070 China
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Di Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070 China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
| | - Yantai Gan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2 Canada
| |
Collapse
|
16
|
Salicylic Acid Alleviated Salt Damage of Populus euphratica: A Physiological and Transcriptomic Analysis. FORESTS 2019. [DOI: 10.3390/f10050423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Populus euphratica Oliv. is a model tree for studying abiotic stress, especially salt stress response. Salt stress is one of the most extensive abiotic stresses, which has an adverse effect on plant growth and development. Salicylic acid (SA) is an important signaling molecule that plays an important role in modulating the plant responses to abiotic stresses. To answer whether the endogenous SA can be induced by salt stress, and whether SA effectively alleviates the negative effects of salt on poplar growth is the main purpose of the study. To elucidate the effects of SA and salt stress on the growth of P. euphratica, we examined the morphological and physiological changes of P. euphratica under 300 mM NaCl after treatment with different concentrations of SA. A pretreatment of P. euphratica with 0.4 mM SA for 3 days effectively improved the growth status of plants under subsequent salt stress. These results indicate that appropriate concentrations of exogenous SA can effectively counteract the negative effect of salt stress on growth and development. Subsequently, transcripts involved in salt stress response via SA signaling were captured by RNA sequencing. The results indicated that numerous specific genes encoding mitogen-activated protein kinase, calcium-dependent protein kinase, and antioxidant enzymes were upregulated. Potassium transporters and Na+/H+ antiporters, which maintain K+/Na+ balance, were also upregulated after SA pretreatment. The transcriptome changes show that the ion transport and antioxidant enzymes were the early enhanced systems in response of P. euphratica to salt via SA, expanding our knowledge about SA function in salt stress defense in P. euphratica. This provides a solid foundation for future study of functional genes controlling effective components in metabolic pathways of trees.
Collapse
|
17
|
Zhang F, Wang Y, Liu C, Chen F, Ge H, Tian F, Yang T, Ma K, Zhang Y. Trichoderma harzianum mitigates salt stress in cucumber via multiple responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:436-445. [PMID: 30553921 DOI: 10.1016/j.ecoenv.2018.11.084] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 05/21/2023]
Abstract
Trichoderma harzianum T-soybean plays an important role in controlling soybean root rot disease. However, the mechanism by which it improves plant tolerance to salt stress is not clear. In this study, we investigated the possible mechanism of T-soybean in mitigating the damage caused by salt stress in Cucumis sativus L plants. Our results suggest that T-soybean improved salt tolerance of cucumber seedlings by affecting the antioxidant enzymes including peroxidase (POD) (EC 1.11.1.6), polyphenol oxidase (PPO) (EC 1.14.18.1), phenylalanine ammonia-lyase (PAL) (EC 4.3.1.5), catalase (CAT) (EC 1.11.1.6), superoxide dismutase (SOD) (EC 1.15.1.1), ascorbate peroxidase (APX) (EC 1.11.1.11), and glutathione reductase (GR) (EC 1.6.4.2), by increasing the levels of proline, soluble sugars, soluble protein, ascorbic acid (AsA) and chlorophyll as well as improving root activity. Treatment with T-soybean improved the ratio of glutathione (GSH)/oxidized glutathione (GSSG) and AsA/dehydroascorbate (DHA), and up-regulated the expression of CsAPX and CsGR genes involved in the AsA-GSH cycle. In addition, treatment with T-soybean increased the K+ content and K+/Na+ ratio while decreased the Na+ concentration and ethylene level. In summary, the improved salt tolerance of cucumber plants may be due to multiple mechanisms of T-soybean, such as the increase in reactive oxygen species (ROS) scavenging, as well as maintaining osmotic balance and metabolic homeostasis under salt stress.
Collapse
Affiliation(s)
- Fuli Zhang
- School of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China; Key Laboratory of Three Gorges Rgional Plant Genetics and Germplasm Enhancement (CTGU) / Biotechnology Research Center, Three Gorges University, Yichang, Hubei 443002, PR China.
| | - Yunhua Wang
- School of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China
| | - Chang Liu
- School of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China; Key Laboratory of Three Gorges Rgional Plant Genetics and Germplasm Enhancement (CTGU) / Biotechnology Research Center, Three Gorges University, Yichang, Hubei 443002, PR China
| | - Faju Chen
- Key Laboratory of Three Gorges Rgional Plant Genetics and Germplasm Enhancement (CTGU) / Biotechnology Research Center, Three Gorges University, Yichang, Hubei 443002, PR China.
| | - Honglian Ge
- School of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China
| | - Fengshou Tian
- School of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China
| | - Tongwen Yang
- School of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China
| | - Keshi Ma
- School of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China
| | - Yi Zhang
- School of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, PR China
| |
Collapse
|
18
|
Ali A, Maggio A, Bressan RA, Yun DJ. Role and Functional Differences of HKT1-Type Transporters in Plants under Salt Stress. Int J Mol Sci 2019; 20:E1059. [PMID: 30823627 PMCID: PMC6429402 DOI: 10.3390/ijms20051059] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 02/03/2023] Open
Abstract
Abiotic stresses generally cause a series of morphological, biochemical and molecular changes that unfavorably affect plant growth and productivity. Among these stresses, soil salinity is a major threat that can seriously impair crop yield. To cope with the effects of high salinity on plants, it is important to understand the mechanisms that plants use to deal with it, including those activated in response to disturbed Na⁺ and K⁺ homeostasis at cellular and molecular levels. HKT1-type transporters are key determinants of Na⁺ and K⁺ homeostasis under salt stress and they contribute to reduce Na⁺-specific toxicity in plants. In this review, we provide a brief overview of the function of HKT1-type transporters and their importance in different plant species under salt stress. Comparison between HKT1 homologs in different plant species will shed light on different approaches plants may use to cope with salinity.
Collapse
Affiliation(s)
- Akhtar Ali
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, Korea.
| | - Albino Maggio
- Department of Agriculture, University of Naples Federico II, Via Universita 100, I-80055 Portici, Italy.
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-2010, USA.
| | - Dae-Jin Yun
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
19
|
Melatonin: A Small Molecule but Important for Salt Stress Tolerance in Plants. Int J Mol Sci 2019; 20:ijms20030709. [PMID: 30736409 PMCID: PMC6387279 DOI: 10.3390/ijms20030709] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Salt stress is one of the most serious limiting factors in worldwide agricultural production, resulting in huge annual yield loss. Since 1995, melatonin (N-acetyl-5-methoxytryptamine)—an ancient multi-functional molecule in eukaryotes and prokaryotes—has been extensively validated as a regulator of plant growth and development, as well as various stress responses, especially its crucial role in plant salt tolerance. Salt stress and exogenous melatonin lead to an increase in endogenous melatonin levels, partly via the phyto-melatonin receptor CAND2/PMTR1. Melatonin plays important roles, as a free radical scavenger and antioxidant, in the improvement of antioxidant systems under salt stress. These functions improve photosynthesis, ion homeostasis, and activate a series of downstream signals, such as hormones, nitric oxide (NO) and polyamine metabolism. Melatonin also regulates gene expression responses to salt stress. In this study, we review recent literature and summarize the regulatory roles and signaling networks involving melatonin in response to salt stress in plants. We also discuss genes and gene families involved in the melatonin-mediated salt stress tolerance.
Collapse
|
20
|
Li N, Du C, Ma B, Gao Z, Wu Z, Zheng L, Niu Y, Wang Y. Functional Analysis of Ion Transport Properties and Salt Tolerance Mechanisms of RtHKT1 from the Recretohalophyte Reaumuria trigyna. PLANT & CELL PHYSIOLOGY 2019; 60:85-106. [PMID: 30239906 DOI: 10.1093/pcp/pcy187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Indexed: 05/13/2023]
Abstract
Reaumuria trigyna is an endangered recretohalophyte and a small archaic feral shrub that is endemic to arid and semi-arid plateau regions of Inner Mongolia, China. Based on transcriptomic data, we isolated a high-affinity potassium transporter gene (RtHKT1) from R. trigyna, which encoded a plasma membrane-localized protein. RtHKT1 was rapidly up-regulated by high Na+ or low K+ and exhibited different tissue-specific expression patterns before and after stress treatment. Transgenic yeast showed tolerance to high Na+ or low K+, while transgenic Arabidopsis exhibited tolerance to high Na+ and sensitivity to high K+, or high Na+-low K+, confirming that Na+ tolerance in transgenic Arabidopsis depends on a sufficient external K+ concentration. Under external high Na+, high K+ and low K+ conditions, transgenic yeast accumulated more Na+-K+, Na+ and K+, while transgenic Arabidopsis accumulated less Na+-more K+, more Na+ and more Na+-K+, respectively, indicating that the ion transport properties of RtHKT1 depend on the external Na+-K+ environment. Salt stress induced up-regulation of some ion transporter genes (AtSOS1/AtHAK5/AtKUP5-6), as well as down-regulation of some genes (AtNHX1/AtAVP1/AtKUP9-12), revealing that multi-ion-transporter synergism maintains Na+/K+ homeostasis under salt stress in transgenic Arabidopsis. Overexpression of RtHKT1 enhanced K+ accumulation and prevented Na+ transport from roots to shoots, improved biomass accumulation and Chl content in salt-stressed transgenic Arabidopsis. The proline content and relative water content increased significantly, and some proline biosynthesis genes (AtP5CS1 and AtP5CS2) were also up-regulated in salt-stressed transgenic plants. These results suggest that RtHKT1 confers salt tolerance on transgenic Arabidopsis by maintaining Na+/K+ homeostasis and osmotic homeostasis.
Collapse
Affiliation(s)
- Ningning Li
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Chao Du
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Binjie Ma
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Ziqi Gao
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Zhigang Wu
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Linlin Zheng
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Yiding Niu
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| | - Yingchun Wang
- Key Laboratory of Herbage and Endemic Crop Biotechnology (Inner Mongolia University), Ministry of Education, College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, China
| |
Collapse
|
21
|
Wang L, Liu Y, Feng S, Wang Z, Zhang J, Zhang J, Wang D, Gan Y. AtHKT1 gene regulating K + state in whole plant improves salt tolerance in transgenic tobacco plants. Sci Rep 2018; 8:16585. [PMID: 30410009 PMCID: PMC6224463 DOI: 10.1038/s41598-018-34660-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
The status of K+ is important for plant health. However, little is known about if high-affinity potassium transporter HKTs may help K+ retention under salt stress. Here, we determined the effect of Arabidopsis thaliana transporter gene (AtHKT1) on the K+ status, Na+-induced toxicity, and salt tolerance in tobacco (Nicotiana tabacum L.). Six AtHKT1 transformed tobacco lines (T1, T2, … T6) were contrasted with a non-transgenic plantlet at the whole-plant and molecule levels. AtHKT1 gene was expressed in the xylems of stem, root and leaf vein in the transgenic tobacco, with the line T3 having highest expression. At Day 15, in the 200 mmol L-1 NaCl stress treatment, the transgenic plants remained a healthy K+ status, while the control plants decreased K+ content by 70% and Na+ contents in leaves and stems were 1.7 times that in the transgenic line. The AtHKT1 expression enhanced the activities of SOD, CAT and POD, raised chlorophyll and soluble sugar contents and root activity, and decreased MDA and proline contents and electrolyte leakage destruction. The constitutive over-expression of AtHKT1 that helps maintain a healthy K+ status while reducing Na+ toxicity may serve as a possible mechanism in maximizing productivity of tobacco under salt stress.
Collapse
Affiliation(s)
- Li Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shoujiang Feng
- Institute of Soil, Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Zhuoyu Wang
- Centre de Recherche CHUM, Montreal, H2X0A9, Canada
| | - Jinwen Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junlian Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Di Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yantai Gan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, S9H3X2, Canada
| |
Collapse
|
22
|
Overexpression of PeHKT1;1 Improves Salt Tolerance in Populus. Genes (Basel) 2018; 9:genes9100475. [PMID: 30274294 PMCID: PMC6210203 DOI: 10.3390/genes9100475] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 02/03/2023] Open
Abstract
Soil salinization is an increasingly serious threat that limits plant growth and development. Class I transporters of the high-affinity K+ transporter (HKT) family have been demonstrated to be involved in salt tolerance by contributing to Na+ exclusion from roots and shoots. Here, we isolated the PeHKT1;1 gene from hybrid poplar based on the sequences of the Populus trichocarpa genome. The full-length PeHKT1;1 gene was 2173 bp, including a 1608 bp open reading frame (ORF) encoding 535 amino acids and containing eight distinct transmembrane domains. Multiple sequence alignment and phylogenetic analysis suggested that the PeHKT1;1 protein had a typical S–G–G–G signature for the P-loop domains and belonged to class I of HKT transporters. PeHKT1;1 transcripts were mainly detected in stem and root, and were remarkably induced by salt stress treatment. In further characterization of its functions, overexpression of PeHKT1;1 in Populus davidiana × Populus bolleana resulted in a better relative growth rate in phenotypic analysis, including root and plant height, and exhibited higher catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities than non-transgenic poplar under salt stress conditions. These observations indicated that PeHKT1;1 may enhance salt tolerance by improving the efficiency of antioxidant systems. Together, these data suggest that PeHKT1;1 plays an important role in response to salt stress in Populus.
Collapse
|
23
|
de Zélicourt A, Synek L, Saad MM, Alzubaidy H, Jalal R, Xie Y, Andrés-Barrao C, Rolli E, Guerard F, Mariappan KG, Daur I, Colcombet J, Benhamed M, Depaepe T, Van Der Straeten D, Hirt H. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production. PLoS Genet 2018; 14:e1007273. [PMID: 29554117 PMCID: PMC5875868 DOI: 10.1371/journal.pgen.1007273] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 03/29/2018] [Accepted: 02/23/2018] [Indexed: 11/18/2022] Open
Abstract
Several plant species require microbial associations for survival under different biotic and abiotic stresses. In this study, we show that Enterobacter sp. SA187, a desert plant endophytic bacterium, enhances yield of the crop plant alfalfa under field conditions as well as growth of the model plant Arabidopsis thaliana in vitro, revealing a high potential of SA187 as a biological solution for improving crop production. Studying the SA187 interaction with Arabidopsis, we uncovered a number of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA), known to be converted into ethylene. By transcriptomic, genetic and pharmacological analyses, we show that the ethylene signaling pathway, but not plant ethylene production, is required for KMBA-induced plant salt stress tolerance. These results reveal a novel molecular communication process during the beneficial microbe-induced plant stress tolerance.
Collapse
Affiliation(s)
- Axel de Zélicourt
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Kingdom of Saudi Arabia
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Lukas Synek
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Kingdom of Saudi Arabia
| | - Maged M. Saad
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Kingdom of Saudi Arabia
| | - Hanin Alzubaidy
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Kingdom of Saudi Arabia
| | - Rewaa Jalal
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Kingdom of Saudi Arabia
| | - Yakun Xie
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Kingdom of Saudi Arabia
| | - Cristina Andrés-Barrao
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Kingdom of Saudi Arabia
| | - Eleonora Rolli
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Florence Guerard
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Kiruthiga G. Mariappan
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Kingdom of Saudi Arabia
| | - Ihsanullah Daur
- King Abdulaziz University, Faculty of Meteorology, Environment and Arid Land Agriculture, Jeddah, Saudi Arabia
| | - Jean Colcombet
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Moussa Benhamed
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Kingdom of Saudi Arabia
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Thomas Depaepe
- Ghent University, Department of Physiology, Laboratory of Functional Plant Biology, Ghent, Belgium
| | | | - Heribert Hirt
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Kingdom of Saudi Arabia
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France
| |
Collapse
|
24
|
Zhao L, Yang Z, Guo Q, Mao S, Li S, Sun F, Wang H, Yang C. Transcriptomic Profiling and Physiological Responses of Halophyte Kochia sieversiana Provide Insights into Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1985. [PMID: 29225608 PMCID: PMC5705942 DOI: 10.3389/fpls.2017.01985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/03/2017] [Indexed: 05/25/2023]
Abstract
Halophytes are remarkable plants that can tolerate extremely high-salinity conditions, and have different salinity tolerance mechanisms from those of glycophytic plants. In this work, we investigated the mechanisms of salinity tolerance of an extreme halophyte, Kochia sieversiana (Pall.) C. A. M, using RNA sequencing and physiological tests. The results showed that moderate salinity stimulated the growth and water uptake of K. sieversiana and, even under 480-mM salinity condition, K. sieversiana maintained an extremely high water content. This high water content may be a specific adaptive strategy of K. sieversiana to high salinity. The physiological analysis indicated that increasing succulence and great accumulations of sodium, alanine, sucrose, and maltose may be favorable to the water uptake and osmotic regulation of K. sieversiana under high-salinity stress. Transcriptome data indicated that some aquaporin genes and potassium (K+) transporter genes may be important for water uptake and ion balance, respectively, while different members of those gene families were employed under low- and high-salinity stresses. In addition, several aquaporin genes were up-regulated in low- but not high-salinity stressed roots. The highly expressed aquaporin genes may allow low-salinity stressed K. sieversiana plants to uptake more water than control plants. The leaf K+/root K+ ratio was enhanced under low- but not high-salinity stress, which suggested that low salinity might promote K+ transport from the roots to the shoots. Hence, we speculated that low salinity might allow K. sieversiana to uptake more water and transport more K+ from roots to shoots, increasing the growth rate of K. sieversiana.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Zongze Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Qiaobing Guo
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Shun Mao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Shaoqiang Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Fasheng Sun
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Huan Wang
- Department of Agronomy, Jilin Agricultural University, Changchun, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|