1
|
Yan Y, Wang ML, Zhang Z, Liu G, Wei WX, Shi XT, Lan C, Zhang X, Xu S, Shehzad Baloch F, Rasheed A, Ni Z, Sun Q, Gou JY. Suppressing wheat sucrose phosphate synthase 1-B protects wheat against stripe rust. J Adv Res 2025:S2090-1232(25)00291-7. [PMID: 40316209 DOI: 10.1016/j.jare.2025.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/04/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025] Open
Abstract
INTRODUCTION Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici (Pst) is a highly destructive wheat disease that threatens global food security. Pst extracts energy from wheat by interfering with photosynthesis, leading to significant yield losses. Redirecting metabolite flux to counteract pathogens remains a major challenge in enhancing crop resilience. OBJECTIVE The primary objective of this study is to clarify the regulations of sucrose synthesis in wheat during its interaction with Pst, especially in relation to susceptibility and resistance response, and to supply genetic resources for breeding programs dedicated to ensuring food security. METHODS Utilizing bulked segregant RNA sequencing (BSR-Seq), we identified and cloned a novel susceptibility (S) gene, sucrose 6 - phosphate synthase 1 (SPS1). We investigated the transcriptional and post-translational regulations of SPS1 by Pst, the wheat APETALA2 transcription factor (wAP2), and Wheat Kinase START 1 (WKS1, Yr36) in transgenic plants using molecular and biochemical approaches. Sugar content variations were analyzed using gas chromatography-mass spectrometry (GC/MS) and colorimetric assays, while Pst infection dynamics were examined by staining or quantifying biomass and uredinial pustule densities. RESULTS Targeted mutagenesis of the Pst-inducible SPS1-B gene significantly reduced sucrose content accumulation and restricted Pst growth without compromising yield. In contrast, over-expressing SPS1-B enhanced Pst growth, confirming its role as a susceptibility (S) gene to Pst. Pst upregulated SPS1-B under optimal conditions, enhancing its own pathogenic success. Conversely, wAP2 suppressed SPS1-B transcription, reduced SPS1 protein level, and inhibited Pst infection intensity in transgenic wheat lines. Moreover, WKS1, a high-temperature adult-plant resistance protein, bound, phosphorylated, and suppressed SPS1-B at the post-translational level. CONCLUSION This study identifies SPS1-B as a pivotal molecular switch in sucrose metabolism hijacked by Pst to support its infection. The characterization of SPS1-B and its upstream regulators provides multiple genetic targets for enhancing wheat resistance against stripe rust.
Collapse
Affiliation(s)
- Yan Yan
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China; Xianghu Laboratory, Hangzhou 311231, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Meng-Lu Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Zhen Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Guoyu Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Wen-Xin Wei
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Xin-Tian Shi
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | | | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Turkey; Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Jin-Ying Gou
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Valente IDL, Wancura JHC, Zabot GL, Mazutti MA. Endophytic and Rhizospheric Microorganisms: An Alternative for Sustainable, Organic, and Regenerative Bioinput Formulations for Modern Agriculture. Microorganisms 2025; 13:813. [PMID: 40284649 PMCID: PMC12029156 DOI: 10.3390/microorganisms13040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Large amounts of chemical fertilizers are still used to suppress pathogens and boost agricultural productivity and food generation. However, their use can cause harmful environmental imbalance. Furthermore, plants typically absorb limited amounts of the nutrients provided by chemical fertilizers. Recent studies are recommending the use of microbiota present in the soil in different formulations, considering that several microorganisms are found in nature in association with plants in a symbiotic, antagonistic, or synergistic way. This ecological alternative is positive because no undesirable significant alterations occur in the environment while stimulating plant nutrition development and protection against damage caused by control pathogens. Therefore, this review presents a comprehensive discussion regarding endophytic and rhizospheric microorganisms and their interaction with plants, including signaling and bio-control processes concerning the plant's defense against pathogenic spread. A discussion is provided about the importance of these bioinputs as a microbial resource that promotes plant development and their sustainable protection methods aiming to increase resilience in the agricultural system. In modern agriculture, the manipulation of bioinputs through Rhizobium contributes to reducing the effects of greenhouse gases by managing nitrogen runoff and decreasing nitrous oxide. Additionally, mycorrhizal fungi extend their root systems, providing plants with greater access to water and nutrients.
Collapse
Affiliation(s)
- Isabela de L. Valente
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000 Roraima Av., Camobi, Santa Maria 97105-340, RS, Brazil; (I.d.L.V.); (M.A.M.)
| | - João H. C. Wancura
- Laboratory of Biomass and Biofuels (L2B), Federal University of Santa Maria (UFSM), 1000 Roraima Av., Camobi, Santa Maria 97105-340, RS, Brazil;
| | - Giovani L. Zabot
- Laboratory of Agroindustrial Process Engineering (LAPE), Federal University of Santa Maria (UFSM), 3013 Taufik Germano Rd, Universitário II, Cachoeira do Sul 96503-205, RS, Brazil
| | - Marcio A. Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000 Roraima Av., Camobi, Santa Maria 97105-340, RS, Brazil; (I.d.L.V.); (M.A.M.)
| |
Collapse
|
3
|
Bilstein-Schloemer M, Müller MC, Saur IML. Technical Advances Drive the Molecular Understanding of Effectors from Wheat and Barley Powdery Mildew Fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:213-225. [PMID: 39799551 DOI: 10.1094/mpmi-12-24-0155-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Pathogens manipulate host physiology through the secretion of virulence factors (effectors) to invade and proliferate on the host. The molecular functions of effectors inside plant hosts have been of interest in the field of molecular plant-microbe interactions. Obligate biotrophic pathogens, such as rusts and powdery mildews, cannot proliferate outside of plant hosts. In addition to the inhibition of the plant's immune components, these pathogens are under particular pressure to extract nutrients efficiently from the host. Understanding the molecular basis of infections mediated by obligate biotrophic pathogens is significant because of their impact in modern agriculture. In addition, powdery mildews serve as excellent models for obligate biotrophic cereal pathogens. Here, we summarize the current knowledge on the effectorome of the barley and wheat powdery mildews and putative molecular virulence functions of effectors. We emphasize the availability of comprehensive genomic, transcriptomic, and proteomic resources and discuss the methodological approaches used for identifying candidate effectors, assessing effector virulence traits, and identifying effector targets in the host. We highlight established and more recently employed methodologies, discuss limitations, and suggest additional strategies. We identify open questions and discuss how addressing them with currently available resources will enhance our understanding of Blumeria candidates for secretor effector proteins. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Marion C Müller
- School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Osorio-Navarro C, Saez C, Durán F, Rubilar M, Reyes-Bravo P, Azócar M, Estrada V, Esterio M, Auger J. The Sweet Cherry Tree Genotype Restricts the Aggressiveness of the Wood Decay Fungi Cytospora sorbicola and Calosphaeria pulchella. Microorganisms 2024; 12:2456. [PMID: 39770659 PMCID: PMC11678750 DOI: 10.3390/microorganisms12122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 01/11/2025] Open
Abstract
The wood decay fungi Cytospora sorbicola and Calosphaeria pulchella severely threaten the worldwide cultivation of sweet cherry trees (Prunus avium L.). Both fungi cause similar symptoms, including vascular necrosis, which leads to branch and twig dieback. In advanced stages of the disease, cankers are visible on tree branches and trunks. The sweet cherry is the most widely planted fruit tree in Chile, with 74,000 hectares in 2023. According to the planted surface, the predominant sweet cherry varieties are Lapins, Santina, Regina, and Bing. Variety-dependent susceptibility studies on Cyt. sorbicola and Cal. pulchella are lacking. The main entry points for wood necrosis-causing fungi are pruning wounds; therefore, we evaluated the aggressiveness of Cyt. sorbicola and Cal. pulchella in one-year-old sweet cherry plants. Santina and Lapins showed the lowest necrotic lesion caused by Cyt. sorbicola (13.6 and 14.31 mm, respectively), followed by Bing (19.51 mm) and Regina (26.14 mm). All plants infected by Cyt. sorbicola showed shoot blight regardless of the variety. In addition, there was a varying susceptibility to Cal. pulchella, with Lapins (21.6 mm), Bing (22.83 mm), Santina (27.62 mm), and Regina (30.8 mm) showing increasing levels of observed necrosis. The lesion caused by Cal. pulchella was more significant than that observed for Cyt. sorbicola, regardless of the cherry tree genotype. We identified each fungal growth from the wood necrosis progression area using two independent novel PCR-HRM strategies based on the ITS fungal region, which allowed us to differentiate each pathogen of interest individually or simultaneously. This study demonstrates different levels of susceptibility of sweet cherry tree genotypes to wood-degrading pathogens, emphasizing the need to include these factors in phytosanitary management programs.
Collapse
Affiliation(s)
- Claudio Osorio-Navarro
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile; (C.O.-N.); (C.S.); (F.D.); (M.R.); (P.R.-B.); (M.A.); (V.E.)
- Centre of Molecular Biology in Plants, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Constanza Saez
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile; (C.O.-N.); (C.S.); (F.D.); (M.R.); (P.R.-B.); (M.A.); (V.E.)
| | - Felipe Durán
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile; (C.O.-N.); (C.S.); (F.D.); (M.R.); (P.R.-B.); (M.A.); (V.E.)
| | - Mauricio Rubilar
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile; (C.O.-N.); (C.S.); (F.D.); (M.R.); (P.R.-B.); (M.A.); (V.E.)
| | - Paula Reyes-Bravo
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile; (C.O.-N.); (C.S.); (F.D.); (M.R.); (P.R.-B.); (M.A.); (V.E.)
| | - Madelaine Azócar
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile; (C.O.-N.); (C.S.); (F.D.); (M.R.); (P.R.-B.); (M.A.); (V.E.)
| | - Verónica Estrada
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile; (C.O.-N.); (C.S.); (F.D.); (M.R.); (P.R.-B.); (M.A.); (V.E.)
| | - Marcela Esterio
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile; (C.O.-N.); (C.S.); (F.D.); (M.R.); (P.R.-B.); (M.A.); (V.E.)
| | - Jaime Auger
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile; (C.O.-N.); (C.S.); (F.D.); (M.R.); (P.R.-B.); (M.A.); (V.E.)
| |
Collapse
|
5
|
Leiva-Mora M, Capdesuñer Y, Villalobos-Olivera A, Moya-Jiménez R, Saa LR, Martínez-Montero ME. Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses. J Fungi (Basel) 2024; 10:635. [PMID: 39330396 PMCID: PMC11433257 DOI: 10.3390/jof10090635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant-pathogen interactions. Pathogen-produced effector molecules possess the ability to mimic pathogen-associated molecular patterns or hinder the binding of pattern recognition receptors. Effectors can directly target nucleotide-binding domain, leucine-rich repeat receptors, or manipulate downstream signaling components to suppress plant defense. Interactions between these effectors and receptor-like kinases in host plants are critical in this process. Biotrophic fungi adeptly exploit the signaling networks of key plant hormones, including salicylic acid, jasmonic acid, abscisic acid, and ethylene, to establish a compatible interaction with their plant hosts. Overall, the paper highlights the importance of understanding the complex interplay between plant defense mechanisms and fungal effectors to develop effective strategies for plant disease management.
Collapse
Affiliation(s)
- Michel Leiva-Mora
- Laboratorio de Biotecnología, Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato (UTA-DIDE), Cantón Cevallos Vía a Quero, Sector El Tambo-La Universidad, Cevallos 1801334, Ecuador
| | - Yanelis Capdesuñer
- Natural Products Department, Centro de Bioplantas, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Ariel Villalobos-Olivera
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Roberto Moya-Jiménez
- Facultad de Diseño y Arquitectura, Universidad Técnica de Ambato (UTA-DIDE), Huachi 180207, Ecuador;
| | - Luis Rodrigo Saa
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador;
| | - Marcos Edel Martínez-Montero
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| |
Collapse
|
6
|
Chang J, Mapuranga J, Li R, Zhang Y, Shi J, Yan H, Yang W. Wheat Leaf Rust Fungus Effector Protein Pt1641 Is Avirulent to TcLr1. PLANTS (BASEL, SWITZERLAND) 2024; 13:2255. [PMID: 39204691 PMCID: PMC11359021 DOI: 10.3390/plants13162255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Wheat leaf rust fungus is an obligate parasitic fungus that can absorb nutrients from its host plant through haustoria and secrete effector proteins into host cells. The effector proteins are crucial factors for pathogenesis as well as targets for host disease resistance protein recognition. Exploring the role of effector proteins in the pathogenic process of Puccinia triticina Eriks. (Pt) is of great significance for unraveling its pathogenic mechanisms. We previously found that a cysteine-rich effector protein, Pt1641, is highly expressed during the interaction between wheat and Pt, but its specific role in pathogenesis remains unclear. Therefore, this study employed techniques such as heterologous expression, qRT-PCR analysis, and host-induced gene silencing (HIGS) to investigate the role of Pt1641 in the pathogenic process of Pt. The results indicate that Pt1641 is an effector protein with a secretory function and can inhibit BAX-induced programmed cell death in Nicotiana benthamiana. qRT-PCR analyses showed that expression levels of Pt1641 were different during the interaction between the high-virulence strain THTT and low-virulence strains FGD and Thatcher, respectively. The highest expression level in the low-virulence strain FGD was four times that of the high-virulence strain THTT. The overexpression of Pt1641 in wheat near-isogenic line TcLr1 induced callose deposition and H2O2 production on TcLr1. After silencing Pt1641 in the Pt low-virulence strain FGD on wheat near-isogenic line TcLr1, the pathogenic phenotype of Pt physiological race FGD on TcLr1 changed from ";" to "3", indicating that Pt1641 plays a non-toxic function in the pathogenicity of FGD to TcLr1. This study helps to reveal the pathogenic mechanism of wheat leaf rust and provides important guidance for the mining and application of Pt avirulent genes.
Collapse
Affiliation(s)
- Jiaying Chang
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Johannes Mapuranga
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Ruolin Li
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Yingdan Zhang
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Jie Shi
- International Science and Technology Joint Research Center on IPM of Hebei Province, IPM Innovation Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding 071000, China;
| | - Hongfei Yan
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| | - Wenxiang Yang
- Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.C.); (J.M.); (R.L.); (Y.Z.)
| |
Collapse
|
7
|
Guo H, Wang J, Yao D, Yu L, Jiang W, Xie L, Lv S, Zhang X, Wang Y, Wang C, Ji W, Zhang H. Identification of nuclear membrane SUN proteins and components associated with wheat fungal stress responses. STRESS BIOLOGY 2024; 4:29. [PMID: 38861095 PMCID: PMC11166608 DOI: 10.1007/s44154-024-00163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/21/2024] [Indexed: 06/12/2024]
Abstract
In eukaryotes, the nuclear membrane that encapsulates genomic DNA is composed of an inner nuclear membrane (INM), an outer nuclear membrane (ONM), and a perinuclear space. SUN proteins located in the INM and KASH proteins in the ONM form the SUN-KASH NM-bridge, which functions as the junction of the nucleocytoplasmic complex junction. Proteins containing the SUN domain showed the highest correlation with differentially accumulated proteins (DAPs) in the wheat response to fungal stress. To understand the characteristics of SUN and its associated proteins in wheat responding to pathogen stress, here we investigated and comprehensive analyzed SUN- and KASH-related proteins among the DAPs under fungi infection based on their conserved motifs. In total, four SUN proteins, one WPP domain-interacting protein (WIP), four WPP domain-interacting tail-anchored proteins (WIT), two WPP proteins and one Ran GTPase activating protein (RanGAP) were identified. Following transient expression of Nicotiana benthamiana, TaSUN2, TaRanGAP2, TaWIT1 and TaWIP1 were identified as nuclear membrane proteins, while TaWPP1 and TaWPP2 were expressed in both the nucleus and cell membrane. RT-qPCR analysis demonstrated that the transcription of TaSUN2, TaRanGAP2 and TaWPP1 were strongly upregulated in response to fungal infection. Furthermore, using the bimolecular fluorescence complementation, the luciferase complementation and a nuclear and split-ubiquitin-based membrane yeast two-hybrid systems, we substantiated the interaction between TaSUN2 and TaWIP1, as well as TaWIP1/WIT1 and TaWPP1/WPP2. Silencing of TaSUN2, TaRanGAP2 and TaWPP1 in wheat leaves promoted powdery mildew infection and hyphal growth, and reduced the expression of TaBRI1, TaBAK1 and Ta14-3-3, indicating that these NM proteins play a positive role in resistance to fungal stress. Our study reveals the characteristics of NM proteins and propose the preliminary construction of SUN-WIP-WPP-RanGAP complex in wheat, which represents a foundation for detail elucidating their functions in wheat in future.
Collapse
Affiliation(s)
- Huan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jianfeng Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Di Yao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ligang Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Wenting Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Lincai Xie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shikai Lv
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiangyu Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yajuan Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Changyou Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Wanquan Ji
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Hong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China.
- Engineering Research Center of Wheat Breeding, Ministry of Education, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Peracchi LM, Panahabadi R, Barros-Rios J, Bartley LE, Sanguinet KA. Grass lignin: biosynthesis, biological roles, and industrial applications. FRONTIERS IN PLANT SCIENCE 2024; 15:1343097. [PMID: 38463570 PMCID: PMC10921064 DOI: 10.3389/fpls.2024.1343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications.
Collapse
Affiliation(s)
- Luigi M. Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Rahele Panahabadi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jaime Barros-Rios
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
9
|
Crean EE, Bilstein-Schloemer M, Maekawa T, Schulze-Lefert P, Saur IML. A dominant-negative avirulence effector of the barley powdery mildew fungus provides mechanistic insight into barley MLA immune receptor activation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5854-5869. [PMID: 37474129 PMCID: PMC10540733 DOI: 10.1093/jxb/erad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Nucleotide-binding leucine-rich repeat receptors (NLRs) recognize pathogen effectors to mediate plant disease resistance often involving host cell death. Effectors escape NLR recognition through polymorphisms, allowing the pathogen to proliferate on previously resistant host plants. The powdery mildew effector AVRA13-1 is recognized by the barley NLR MLA13 and activates host cell death. We demonstrate here that a virulent form of AVRA13, called AVRA13-V2, escapes MLA13 recognition by substituting a serine for a leucine residue at the C-terminus. Counterintuitively, this substitution in AVRA13-V2 resulted in an enhanced MLA13 association and prevented the detection of AVRA13-1 by MLA13. Therefore, AVRA13-V2 is a dominant-negative form of AVRA13 and has probably contributed to the breakdown of Mla13 resistance. Despite this dominant-negative activity, AVRA13-V2 failed to suppress host cell death mediated by the MLA13 autoactive MHD variant. Neither AVRA13-1 nor AVRA13-V2 interacted with the MLA13 autoactive variant, implying that the binding moiety in MLA13 that mediates association with AVRA13-1 is altered after receptor activation. We also show that mutations in the MLA13 coiled-coil domain, which were thought to impair Ca2+ channel activity and NLR function, instead resulted in MLA13 autoactive cell death. Our results constitute an important step to define intermediate receptor conformations during NLR activation.
Collapse
Affiliation(s)
- Emma E Crean
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| | | | - Takaki Maekawa
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Department for Plant Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| | - Paul Schulze-Lefert
- Department for Plant Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| |
Collapse
|
10
|
Giorni P, Zhang L, Bavaresco L, Lucini L, Battilani P. Metabolomics Insight into the Variety-Mediated Responses to Aspergillus carbonarius Infection in Grapevine Berries. ACS OMEGA 2023; 8:32352-32364. [PMID: 37720731 PMCID: PMC10500680 DOI: 10.1021/acsomega.3c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 09/19/2023]
Abstract
Limited knowledge regarding the susceptibility of grape varieties to ochratoxin A (OTA)-producing fungi is available to date. This study aimed to investigate the susceptibility of different grape varieties to Aspergillus carbonarius concerning OTA contamination and modulation at the metabolome level. Six grape varieties were selected, sampled at early veraison and ripening, artificially inoculated with A. carbonarius, and incubated at two temperature regimes. Significant differences were observed across cultivars, with Barbera showing the highest incidence of moldy berries (around 30%), while Malvasia and Ortrugo showed the lowest incidence (about 2%). OTA contamination was the lowest in Ortrugo and Malvasia, and the highest in Croatina, although it was not significantly different from Barbera, Merlot, and Sauvignon Blanc. Fungal development and mycotoxin production changed with grape variety; the sugar content in berries could also have played a role. Unsupervised multivariate statistical analysis from metabolomic fingerprints highlighted cultivar-specific responses, although a more generalized response was observed by supervised OPLS-DA modeling. An accumulation of nitrogen-containing compounds (alkaloids and glucosinolates), phenylpropanoids, and terpenoids, in addition to phytoalexins, was observed in all samples. A broader modulation of the metabolome was observed in white grapes, which were less contaminated by OTA. Jasmonates and oxylipins were identified as critical upstream modulators in metabolomic profiles. A direct correlation between the plant defense machinery and OTA was not observed, but the information was acquired and can contribute to optimizing preventive actions.
Collapse
Affiliation(s)
- Paola Giorni
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department
for Sustainable Food Process, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Bavaresco
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department
for Sustainable Food Process, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Paola Battilani
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
11
|
Han Z, Xiong D, Schneiter R, Tian C. The function of plant PR1 and other members of the CAP protein superfamily in plant-pathogen interactions. MOLECULAR PLANT PATHOLOGY 2023; 24:651-668. [PMID: 36932700 DOI: 10.1111/mpp.13320] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 05/18/2023]
Abstract
The pathogenesis-related (PR) proteins of plants have originally been identified as proteins that are strongly induced upon biotic and abiotic stress. These proteins fall into 17 distinct classes (PR1-PR17). The mode of action of most of these PR proteins has been well characterized, except for PR1, which belongs to a widespread superfamily of proteins that share a common CAP domain. Proteins of this family are not only expressed in plants but also in humans and in many different pathogens, including phytopathogenic nematodes and fungi. These proteins are associated with a diverse range of physiological functions. However, their precise mode of action has remained elusive. The importance of these proteins in immune defence is illustrated by the fact that PR1 overexpression in plants results in increased resistance against pathogens. However, PR1-like CAP proteins are also produced by pathogens and deletion of these genes results in reduced virulence, suggesting that CAP proteins can exert both defensive and offensive functions. Recent progress has revealed that plant PR1 is proteolytically cleaved to release a C-terminal CAPE1 peptide, which is sufficient to activate an immune response. The release of this signalling peptide is blocked by pathogenic effectors to evade immune defence. Moreover, plant PR1 forms complexes with other PR family members, including PR5, also known as thaumatin, and PR14, a lipid transfer protein, to enhance the host's immune response. Here, we discuss possible functions of PR1 proteins and their interactors, particularly in light of the fact that these proteins can bind lipids, which have important immune signalling functions.
Collapse
Affiliation(s)
- Zhu Han
- College of Forestry, Beijing Forestry University, Beijing, China
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dianguang Xiong
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Chengming Tian
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Zhao Z, Zhang R, Wang D, Zhang J, Zang S, Zou W, Feng A, You C, Su Y, Wu Q, Que Y. Dissecting the features of TGA gene family in Saccharum and the functions of ScTGA1 under biotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107760. [PMID: 37207494 DOI: 10.1016/j.plaphy.2023.107760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/22/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Sugarcane is an important sugar and energy crop and smut disease caused by Sporisorium scitamineum is a major fungal disease which can seriously reduce the yield and quality of sugarcane. In plants, TGACG motif binding (TGA) transcription factors are involved in the regulation of salicylic acid (SA) and methyl jasmonate (MeJA) signaling pathways, as well as in response to various biotic and abiotic stresses. However, no TGA-related transcription factor has been reported in Saccharum. In the present study, 44 SsTGA genes were identified from Saccharum spontaneum, and were assorted into three clades (I, II, III). Cis-regulatory elements (CREs) analysis revealed that SsTGA genes may be involved in hormone and stress response. RNA-seq data and RT-qPCR analysis indicated that SsTGAs were constitutively expressed in different tissues and induced by S. scitamineum stress. In addition, a ScTGA1 gene (GenBank accession number ON416997) was cloned from the sugarcane cultivar ROC22, which was homologous to SsTGA1e in S. spontaneum and encoded a nucleus protein. It was constitutively expressed in sugarcane tissues and up-regulated by SA, MeJA and S. scitamineum stresses. Furthermore, transient overexpression of ScTGA1 in Nicotiana benthamiana could enhance its resistance to the infection of Ralstonia solanacearum and Fusarium solani var. coeruleum, by regulating the expression of immune genes related to hypersensitive response (HR), ethylene (ET), SA and jasmonic acid (JA) pathways. This study should contribute to our understanding on the evolution and function of the SsTGA gene family in Saccharum, and provide a basis for the functional identification of ScTGA1 under biotic stresses.
Collapse
Affiliation(s)
- Zhennan Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Renren Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Aoyin Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chuihuai You
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China; National Key Laboratory for Tropical Crop Breeding, Kaiyuan, 661699, Yunnan, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; National Key Laboratory for Tropical Crop Breeding, Kaiyuan, 661699, Yunnan, China
| | - Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; National Key Laboratory for Tropical Crop Breeding, Kaiyuan, 661699, Yunnan, China.
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; National Key Laboratory for Tropical Crop Breeding, Kaiyuan, 661699, Yunnan, China.
| |
Collapse
|
13
|
Luo G, Shen Y, Wu K, Yang H, Wu C, Chang X, Tian W. Evaluation of inducing activity of CIP elicitors from diverse sources based on monosaccharide composition and physiological indicators. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:154002. [PMID: 37149979 DOI: 10.1016/j.jplph.2023.154002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/20/2022] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
Application of elicitors can greatly enhance plant immune resistance against pathogens. However, it is still obscure whether elicitor activity is influenced by diverse sources. This study investigated the effect of foliar spraying of 19 batches of Chrysanthemum indicum polysaccharides (CIPs) on the disease resistance of Atractylodes macrocephala Koidz. (A. macrocephala) and explored the main reasons for the differences of inducing activity of CIP elicitors. PCA, OPLS-DA, grey relational analysis and entropy weight method had good predictability for the activity evaluation of CIP elicitors and other plant-derived elicitors. The results showed that 19 batches of CIPs had definite regional differences in inducing activity and monosaccharide content. CIP elicitors with high inducing activity could significantly increase the accumulation of Atractylenolide Ⅱ and Atractylenolide Ⅲ, the mRNA relative transcription level of CAT, POD, PAL genes, the amount of pH change in the medium and effectively reduce the disease index of A. macrocephala. Furthermore, CIP with high inducing activity exhibited the high contents of Rha, Ara and GalA, which might be the main contributor to their high activity. The evaluation procedure developed in this work can be applied for screening CIP elicitors with high inducing activity, and it lays a foundation for identifying more functional elicitors related to plant immune resistance.
Collapse
Affiliation(s)
- Guofu Luo
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 310000, China
| | - Yirui Shen
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 310000, China
| | - Kun Wu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 310000, China
| | - Huining Yang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 310000, China
| | - Chuntao Wu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 310000, China
| | - Xiangbing Chang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 310000, China
| | - Wei Tian
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 310000, China.
| |
Collapse
|
14
|
Shao C, Tao S, Liang Y. Comparative transcriptome analysis of juniper branches infected by Gymnosporangium spp. highlights their different infection strategies associated with cytokinins. BMC Genomics 2023; 24:173. [PMID: 37020280 PMCID: PMC10077639 DOI: 10.1186/s12864-023-09276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Gymnosporangium asiaticum and G. yamadae can share Juniperus chinensis as the telial host, but the symptoms are completely different. The infection of G. yamadae causes the enlargement of the phloem and cortex of young branches as a gall, but not for G. asiaticum, suggesting that different molecular interaction mechanisms exist the two Gymnosporangium species with junipers. RESULTS Comparative transcriptome analysis was performed to investigate genes regulation of juniper in responses to the infections of G. asiaticum and G. yamadae at different stages. Functional enrichment analysis showed that genes related to transport, catabolism and transcription pathways were up-regulated, while genes related to energy metabolism and photosynthesis were down-regulated in juniper branch tissues after infection with G. asiaticum and G. yamadae. The transcript profiling of G. yamadae-induced gall tissues revealed that more genes involved in photosynthesis, sugar metabolism, plant hormones and defense-related pathways were up-regulated in the vigorous development stage of gall compared to the initial stage, and were eventually repressed overall. Furthermore, the concentration of cytokinins (CKs) in the galls tissue and the telia of G. yamadae was significantly higher than in healthy branch tissues of juniper. As well, tRNA-isopentenyltransferase (tRNA-IPT) was identified in G. yamadae with highly expression levels during the gall development stages. CONCLUSIONS In general, our study provided new insights into the host-specific mechanisms by which G. asiaticum and G. yamadae differentially utilize CKs and specific adaptations on juniper during their co-evolution.
Collapse
Affiliation(s)
- Chenxi Shao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yingmei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, No. 35, Qinghua Eastern Road, Beijing, 100083, China.
| |
Collapse
|
15
|
Ninkuu V, Yan J, Fu Z, Yang T, Ziemah J, Ullrich MS, Kuhnert N, Zeng H. Lignin and Its Pathway-Associated Phytoalexins Modulate Plant Defense against Fungi. J Fungi (Basel) 2022; 9:52. [PMID: 36675873 PMCID: PMC9865837 DOI: 10.3390/jof9010052] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Fungi infections cause approximately 60-70% yield loss through diseases such as rice blast, powdery mildew, Fusarium rot, downy mildew, etc. Plants naturally respond to these infections by eliciting an array of protective metabolites to confer physical or chemical protection. Among plant metabolites, lignin, a phenolic compound, thickens the middle lamella and the secondary cell walls of plants to curtail fungi infection. The biosynthesis of monolignols (lignin monomers) is regulated by genes whose transcript abundance significantly improves plant defense against fungi. The catalytic activities of lignin biosynthetic enzymes also contribute to the accumulation of other defense compounds. Recent advances focus on modifying the lignin pathway to enhance plant growth and defense against pathogens. This review presents an overview of monolignol regulatory genes and their contributions to fungi immunity, as reported over the last five years. This review expands the frontiers in lignin pathway engineering to enhance plant defense.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jianpei Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Zenchao Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Tengfeng Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - James Ziemah
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Matthias S. Ullrich
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Nikolai Kuhnert
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
16
|
de Carpentier F, Maes A, Marchand CH, Chung C, Durand C, Crozet P, Lemaire SD, Danon A. How abiotic stress-induced socialization leads to the formation of massive aggregates in Chlamydomonas. PLANT PHYSIOLOGY 2022; 190:1927-1940. [PMID: 35775951 PMCID: PMC9614484 DOI: 10.1093/plphys/kiac321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 05/05/2023]
Abstract
Multicellular organisms implement a set of reactions involving signaling and cooperation between different types of cells. Unicellular organisms, on the other hand, activate defense systems that involve collective behaviors between individual organisms. In the unicellular model alga Chlamydomonas (Chlamydomonas reinhardtii), the existence and the function of collective behaviors mechanisms in response to stress remain mostly at the level of the formation of small structures called palmelloids. Here, we report the characterization of a mechanism of abiotic stress response that Chlamydomonas can trigger to form massive multicellular structures. We showed that these aggregates constitute an effective bulwark within which the cells are efficiently protected from the toxic environment. We generated a family of mutants that aggregate spontaneously, the socializer (saz) mutants, of which saz1 is described here in detail. We took advantage of the saz mutants to implement a large-scale multiomics approach that allowed us to show that aggregation is not the result of passive agglutination, but rather genetic reprogramming and substantial modification of the secretome. The reverse genetic analysis we conducted allowed us to identify positive and negative regulators of aggregation and to make hypotheses on how this process is controlled in Chlamydomonas.
Collapse
Affiliation(s)
- Félix de Carpentier
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Alexandre Maes
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Christophe H Marchand
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
| | - Céline Chung
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Cyrielle Durand
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Pierre Crozet
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
- Polytech-Sorbonne, Sorbonne Université, 75005 Paris, France
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
| | | |
Collapse
|
17
|
Corredor-Moreno P, Badgami R, Jones S, Saunders DGO. Temporally coordinated expression of nuclear genes encoding chloroplast proteins in wheat promotes Puccinia striiformis f. sp. tritici infection. Commun Biol 2022; 5:853. [PMID: 35996019 PMCID: PMC9395331 DOI: 10.1038/s42003-022-03780-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Targeting host processes that allow pathogens to thrive can be invaluable in resistance breeding. Here, we generated a deep-sequencing transcriptome time course for Puccinia striiformis f. sp. tritici (Pst) infection on wheat and compared datasets from three wheat varieties with different levels of susceptibility to two tested pathogen isolates. We sought genes specifically altered in a susceptible host as candidates that might support colonisation. Host responses differed between Pst-varietal pairs most prominently early during infection. Notably, however, nuclear genes encoding chloroplast-localised proteins (NGCPs) exhibited temporal coordination of expression profiles that differed at later time points in relation to Pst susceptibility. Disrupting one such NGCP, encoding the chloroplast-localised RNA binding protein TaCSP41a, led to lower Pst susceptibility. These analyses thus highlight NGCPs as prime targets for Pst manipulation during infection and point to TaCSP41a disruption as a potential source of Pst resistance for breeding programmes. A transcriptome time course of Puccinia striiformis f. sp. tritici (Pst) infection reveals nuclear genes encoding chloroplast-localized proteins are manipulated during infection and highlights TaCSP41a disruption as a target for resistance breeding.
Collapse
Affiliation(s)
| | | | - Sally Jones
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
18
|
Verma RK, Teper D. Immune recognition of the secreted serine protease ChpG restricts the host range of Clavibacter michiganensis from eggplant varieties. MOLECULAR PLANT PATHOLOGY 2022; 23:933-946. [PMID: 35441490 PMCID: PMC9190982 DOI: 10.1111/mpp.13215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 05/06/2023]
Abstract
Bacterial wilt and canker caused by Clavibacter michiganensis (Cm) inflict considerable damage in tomato-growing regions around the world. Cm has a narrow host range and can cause disease in tomato but not in many eggplant varieties. The pathogenicity of Cm is dependent on secreted serine proteases, encoded by the chp/tomA pathogenicity island (PI), and the pCM2 plasmid. Screening combinations of PI deletion mutants and plasmid-cured strains found that Cm-mediated hypersensitive response (HR) in the Cm-resistant eggplant variety Black Queen is dependent on the chp/tomA PI. Singular reintroduction of PI-encoded serine proteases into Cm∆PI identified that the HR is elicited by the protease ChpG. Eggplant leaves infiltrated with a chpG marker exchange mutant (CmΩchpG) did not display an HR, and infiltration of purified ChpG protein elicited immune responses in eggplant but not in Cm-susceptible tomato. Virulence assays found that while wild-type Cm and the CmΩchpG complemented strain were nonpathogenic on eggplant, CmΩchpG caused wilt and canker symptoms. Additionally, bacterial populations in CmΩchpG-inoculated eggplant stem tissues were c.1000-fold higher than wild-type and CmΩchpG-complemented Cm strains. Pathogenicity tests conducted in multiple Cm-resistance eggplant varieties demonstrated that immunity to Cm is dependent on ChpG in all tested varieties, indicating that ChpG-recognition is conserved in eggplant. ChpG-mediated avirulence interactions were disabled by alanine substitution of serine231 of the serine protease catalytic triad, suggesting that protease activity is required for immune recognition of ChpG. Our study identified ChpG as a novel avirulence protein that is recognized in resistant eggplant varieties and restricts the host range of Cm.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteRishon LeZionIsrael
| | - Doron Teper
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteRishon LeZionIsrael
| |
Collapse
|
19
|
Li R, Sun J, Ning X, Liu D, Chen X. BpEIL1 negatively regulates resistance to Rhizoctonia solani and Alternaria alternata in birch. Gene 2022; 97:81-91. [PMID: 35675986 DOI: 10.1266/ggs.21-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pathogen attacks affect tree health, causing considerable economic losses as well as serious damage to the surrounding environment. Understanding the disease resistance mechanisms of trees is important for tree breeding. In previous studies on birch (Betula platyphylla × B. pendula), we identified a lesion mimic mutant called lmd. We found that reduced expression of BpEIL1 was responsible for the phenotype in lmd. Following cloning, we acquired several BpEIL1 overexpression and suppression lines in birch. In this study, we cloned the BpEIL1 promoter and found that BpEIL1 was primarily expressed in leaves, particularly in veins. We further studied the traits of transgenic lines and the function of BpEIL1 in disease resistance in birch using the BpEIL1 overexpression line OE9, the suppression line SE13 and the non-transgenic line NT. We found that hydrogen peroxide accumulated in SE13 leaves. Ascorbate peroxidase and catalase activity significantly increased in SE13. SE13 was more resistant to the fungal pathogens Alternaria alternata and Rhizoctonia solani than were the OE9 and NT lines. RNA-seq indicated that pathways related to signal transduction, disease resistance and plant immunity were enriched in SE13. BpEIL1 is thus a negative regulatory transcription factor for disease resistance in birch. This study provides a reference for disease resistance of birch and other trees.
Collapse
Affiliation(s)
- Ranhong Li
- Department of Life Science and Technology, Mudanjiang Normal University
| | - Jingjing Sun
- Department of Life Science and Technology, Mudanjiang Normal University
| | - Xiaomeng Ning
- Department of Life Science and Technology, Mudanjiang Normal University
| | - Dan Liu
- Department of Life Science and Technology, Mudanjiang Normal University
| | - Xin Chen
- Department of Life Science and Technology, Mudanjiang Normal University
| |
Collapse
|
20
|
Rafiqi M, Jelonek L, Diouf AM, Mbaye A, Rep M, Diarra A. Profile of the in silico secretome of the palm dieback pathogen, Fusarium oxysporum f. sp. albedinis, a fungus that puts natural oases at risk. PLoS One 2022; 17:e0260830. [PMID: 35617325 PMCID: PMC9135196 DOI: 10.1371/journal.pone.0260830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding biotic changes that occur alongside climate change constitute a research priority of global significance. Here, we address a plant pathogen that poses a serious threat to life on natural oases, where climate change is already taking a toll and severely impacting human subsistence. Fusarium oxysporum f. sp. albedinis is a pathogen that causes dieback disease on date palms, a tree that provides several critical ecosystem services in natural oases; and consequently, of major importance in this vulnerable habitat. Here, we assess the current state of global pathogen spread, we annotate the genome of a sequenced pathogen strain isolated from the native range and we analyse its in silico secretome. The palm dieback pathogen secretes a large arsenal of effector candidates including a variety of toxins, a distinguished profile of secreted in xylem proteins (SIX) as well as an expanded protein family with an N-terminal conserved motif [SG]PC[KR]P that could be involved in interactions with host membranes. Using agrobiodiversity as a strategy to decrease pathogen infectivity, while providing short term resilient solutions, seems to be widely overcome by the pathogen. Hence, the urgent need for future mechanistic research on the palm dieback disease and a better understanding of pathogen genetic diversity.
Collapse
Affiliation(s)
- Maryam Rafiqi
- Plant Pathology Program, Agrobiosciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Lukas Jelonek
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Aliou Moussa Diouf
- Plant Pathology Program, Agrobiosciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - AbdouLahat Mbaye
- Plant Pathology Program, Agrobiosciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Martijn Rep
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Alhousseine Diarra
- Digital 4 Research Labs, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
21
|
Ortiz D, Chen J, Outram MA, Saur IM, Upadhyaya NM, Mago R, Ericsson DJ, Cesari S, Chen C, Williams SJ, Dodds PN. The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface-exposed residue. THE NEW PHYTOLOGIST 2022; 234:592-606. [PMID: 35107838 PMCID: PMC9306850 DOI: 10.1111/nph.18011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 05/28/2023]
Abstract
Pathogen effectors are crucial players during plant colonisation and infection. Plant resistance mostly relies on effector recognition to activate defence responses. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. Here we examined the role of genetic diversity of the stem rust (Puccinia graminis f. sp. tritici (Pgt)) AvrSr50 gene in determining recognition by the corresponding wheat Sr50 resistance gene. We solved the crystal structure of a natural variant of AvrSr50 and used site-directed mutagenesis and transient expression assays to dissect the molecular mechanisms explaining gain of virulence. We report that AvrSr50 can escape recognition by Sr50 through different mechanisms including DNA insertion, stop codon loss or by amino-acid variation involving a single substitution of the AvrSr50 surface-exposed residue Q121. We also report structural homology of AvrSr50 to cupin superfamily members and carbohydrate-binding modules indicating a potential role in binding sugar moieties. This study identifies key polymorphic sites present in AvrSr50 alleles from natural stem rust populations that play important roles to escape from Sr50 recognition. This constitutes an important step to better understand Pgt effector evolution and to monitor AvrSr50 variants in natural rust populations.
Collapse
Affiliation(s)
- Diana Ortiz
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
- National Research Institute for AgricultureFood and Environment, Genetics and Breeding of Fruit and Vegetables UnitMontfavet84143France
| | - Jian Chen
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Megan A. Outram
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Isabel M.L. Saur
- Department of Plant–Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologne50829Germany
- University of Plant SciencesUniversity of CologneCologne50674Germany
- Cluster of Excellence on Plant SciencesCologne50674Germany
| | - Narayana M. Upadhyaya
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Rohit Mago
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Daniel J. Ericsson
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Australian SynchrotronMacromolecular CrystallographyClaytonVic.3168Australia
| | - Stella Cesari
- PHIM Plant Health InstituteUniversité de MontpellierINRAE, CIRADInstitut AgroIRDMontpellier34980France
| | - Chunhong Chen
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Simon J. Williams
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Peter N. Dodds
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| |
Collapse
|
22
|
Hüdig M, Laibach N, Hein AC. Genome Editing in Crop Plant Research-Alignment of Expectations and Current Developments. PLANTS (BASEL, SWITZERLAND) 2022; 11:212. [PMID: 35050100 PMCID: PMC8778883 DOI: 10.3390/plants11020212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The rapid development of genome editing and other new genomic techniques (NGT) has evoked manifold expectations on purposes of the application of these techniques to crop plants. In this study, we identify and align these expectations with current scientific development. We apply a semi-quantitative text analysis approach on political, economic, and scientific opinion papers to disentangle and extract expectations towards the application of NGT-based plants. Using the sustainable development goals (SDG) of the 2030 agenda as categories, we identify contributions to food security or adaptation to climatic changes as the most frequently mentioned expectations, accompanied by the notion of sustainable agriculture and food systems. We then link SDG with relevant plant traits and review existing research and commercial field trials for genome-edited crop plants. For a detailed analysis we pick as representative traits drought tolerance and resistance against fungal pathogens. Diverse genetic setscrews for both traits have been identified, modified, and tested under laboratory conditions, although there are only a few in the field. All in all, NGT-plants that can withstand more than one stressor or different environments are not documented in advanced development states. We further conclude that developing new plants with modified traits will not be sufficient to reach food security or adaption to climatic changes in a short time frame. Further scientific development of sustainable agricultural systems will need to play an important role to tackle SDG challenges, as well.
Collapse
Affiliation(s)
- Meike Hüdig
- Molecular Plant Physiology Division, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Natalie Laibach
- Centre for Research in Agricultural Genomics (CRAG), Edifici CRAG-Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Anke-Christiane Hein
- Federal Agency for Nature Conservation, Assessment of Genetically Modified Organisms, Konstantinstraße 110, 53179 Bonn, Germany
| |
Collapse
|
23
|
Figueroa M, Ortiz D, Henningsen EC. Tactics of host manipulation by intracellular effectors from plant pathogenic fungi. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102054. [PMID: 33992840 DOI: 10.1016/j.pbi.2021.102054] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Fungal pathogens can secrete hundreds of effectors, some of which are known to promote host susceptibility. This biological complexity, together with the lack of genetic tools in some fungi, presents a substantial challenge to develop a broad picture of the mechanisms these pathogens use for host manipulation. Nevertheless, recent advances in understanding individual effector functions are beginning to flesh out our view of fungal pathogenesis. This review discusses some of the latest findings that illustrate how effectors from diverse species use similar strategies to modulate plant physiology to their advantage. We also summarize recent breakthroughs in the identification of effectors from challenging systems, like obligate biotrophs, and emerging concepts such as the 'iceberg model' to explain how the activation of plant immunity can be turned off by effectors with suppressive activity.
Collapse
Affiliation(s)
- Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Diana Ortiz
- National Research Institute for Agriculture, Food and Environment, Unit of Genetics and Breeding of Fruit and Vegetables, Domaine St Maurice, CS 60094, F-84143 Montfavet, France
| | - Eva C Henningsen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|