1
|
Alves G, Ogurtsov AY, Porterfield H, Maity T, Jenkins LM, Sacks DB, Yu YK. Multiplexing the Identification of Microorganisms via Tandem Mass Tag Labeling Augmented by Interference Removal through a Novel Modification of the Expectation Maximization Algorithm. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1138-1155. [PMID: 38740383 PMCID: PMC11157548 DOI: 10.1021/jasms.3c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Having fast, accurate, and broad spectrum methods for the identification of microorganisms is of paramount importance to public health, research, and safety. Bottom-up mass spectrometer-based proteomics has emerged as an effective tool for the accurate identification of microorganisms from microbial isolates. However, one major hurdle that limits the deployment of this tool for routine clinical diagnosis, and other areas of research such as culturomics, is the instrument time required for the mass spectrometer to analyze a single sample, which can take ∼1 h per sample, when using mass spectrometers that are presently used in most institutes. To address this issue, in this study, we employed, for the first time, tandem mass tags (TMTs) in multiplex identifications of microorganisms from multiple TMT-labeled samples in one MS/MS experiment. A difficulty encountered when using TMT labeling is the presence of interference in the measured intensities of TMT reporter ions. To correct for interference, we employed in the proposed method a modified version of the expectation maximization (EM) algorithm that redistributes the signal from ion interference back to the correct TMT-labeled samples. We have evaluated the sensitivity and specificity of the proposed method using 94 MS/MS experiments (covering a broad range of protein concentration ratios across TMT-labeled channels and experimental parameters), containing a total of 1931 true positive TMT-labeled channels and 317 true negative TMT-labeled channels. The results of the evaluation show that the proposed method has an identification sensitivity of 93-97% and a specificity of 100% at the species level. Furthermore, as a proof of concept, using an in-house-generated data set composed of some of the most common urinary tract pathogens, we demonstrated that by using the proposed method the mass spectrometer time required per sample, using a 1 h LC-MS/MS run, can be reduced to 10 and 6 min when samples are labeled with TMT-6 and TMT-10, respectively. The proposed method can also be used along with Orbitrap mass spectrometers that have faster MS/MS acquisition rates, like the recently released Orbitrap Astral mass spectrometer, to further reduce the mass spectrometer time required per sample.
Collapse
Affiliation(s)
- Gelio Alves
- National
Center for Biotechnology Information, National Library of Medicine,
National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Aleksey Y. Ogurtsov
- National
Center for Biotechnology Information, National Library of Medicine,
National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Harry Porterfield
- Department
of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tapan Maity
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lisa M. Jenkins
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David B. Sacks
- Department
of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yi-Kuo Yu
- National
Center for Biotechnology Information, National Library of Medicine,
National Institutes of Health, Bethesda, Maryland 20894, United States
| |
Collapse
|
2
|
Klein JA, Zaia J. A Perspective on the Confident Comparison of Glycoprotein Site-Specific Glycosylation in Sample Cohorts. Biochemistry 2019; 59:3089-3097. [PMID: 31833756 DOI: 10.1021/acs.biochem.9b00730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation, resulting from glycosyl transferase reactions under complex control in the secretory pathway, consists of a distribution of related glycoforms at each glycosylation site. Because the biosynthetic substrate concentration and transport rates depend on architecture and other aspects of cellular phenotypes, site-specific glycosylation cannot be predicted accurately from genomic, transcriptomic, or proteomic information. Rather, it is necessary to quantify glycosylation at each protein site and how this changes among a sample cohort to provide information about disease mechanisms. At present, mature mass spectrometry-based methods allow for qualitative assignment of the glycan composition and glycosylation site of singly glycosylated proteolytic peptides. To make such quantitative comparisons, it is necessary to sample the glycosylation distribution with sufficient coverage and accuracy for confident assessment of the glycosylation changes that occur in the biological cohort. In this Perspective, we discuss the unmet needs for mass spectrometry acquisition methods and bioinformatics for the confident comparison of protein site-specific glycosylation among sample cohorts.
Collapse
|
3
|
Nagnan-Le Meillour P, Joly A, Le Danvic C, Marie A, Zirah S, Cornard JP. Binding Specificity of Native Odorant-Binding Protein Isoforms Is Driven by Phosphorylation and O-N-Acetylglucosaminylation in the Pig Sus scrofa. Front Endocrinol (Lausanne) 2018; 9:816. [PMID: 30740091 PMCID: PMC6355697 DOI: 10.3389/fendo.2018.00816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
Abstract
Odorant-binding proteins (OBP) are secreted in the nasal mucus at the vicinity of olfactory receptors (ORs). They act, at least, as an interface between hydrophobic and volatile odorant molecules and the hydrophilic medium bathing the ORs. They have also been hypothesized to be part of the molecular coding of odors and pheromones, by forming specific complexes with odorant molecules that could ultimately stimulate ORs to trigger the olfactory transduction cascade. In a previous study, we have evidenced that pig olfactory secretome was composed of numerous olfactory binding protein isoforms, generated by O-GlcNAcylation and phosphorylation. In addition, we have shown that recombinant OBP (stricto sensu) produced in yeast is made up of a mixture of isoforms that differ in their phosphorylation pattern, which in turn determines binding specificity. Taking advantage of the high amount of OBP secreted by a single animal, we performed a similar study, under exactly the same experimental conditions, on native isoforms isolated from pig, Sus scrofa, nasal tissue. Four fractions were obtained by using strong anion exchange HPLC. Mapping of phosphorylation and O-GlcNAcylation sites by CID-nanoLC-MS/MS allowed unambiguous localization of phosphosites at S13 and T122 and HexNAc sites at S13 and S19. T112 or T115 could also be phosphorylated. BEMAD analysis suggested extra phosphosites located at S23, S24, S41, S49, S57, S67, and T71. Due to the very low stoichiometry of GlcNAc-peptides and phosphopeptides, these sites were identified on total mixture of OBP isoforms instead of HPLC-purified OBP isoforms. Nevertheless, binding properties of native OBP isoforms to specific ligands in S. scrofa were monitored by fluorescence spectroscopy. Recombinant phosphorylated OBP-Pichia isoforms bind steroids and fatty acids with slight differences. Native isoforms, that are phosphorylated but also O-GlcNAcylated show radically different binding affinities for the same compounds, which strongly suggests that O-GlcNAcylation increases the binding specificity of OBP isoforms. These findings extend the role of O-GlcNAc in regulating the function of proteins involved in many mechanisms of metabolic homeostasis, including extracellular signaling in olfaction. Data is available via ProteomeXChange with identifier PXD011371.
Collapse
Affiliation(s)
- Patricia Nagnan-Le Meillour
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576, USC-UGSF INRA 1409, CNRS-Université de Lille, Lille, France
- *Correspondence: Patricia Nagnan-Le Meillour
| | - Alexandre Joly
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576, USC-UGSF INRA 1409, CNRS-Université de Lille, Lille, France
| | - Chrystelle Le Danvic
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576, USC-UGSF INRA 1409, CNRS-Université de Lille, Lille, France
- ALLICE R&D, Paris, France
| | - Arul Marie
- Unité Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, UMR 7245 CNRS/MNHN, Paris, France
| | - Séverine Zirah
- Unité Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, UMR 7245 CNRS/MNHN, Paris, France
| | - Jean-Paul Cornard
- Laboratoire de Spectroscopie Infrarouge et Raman, UMR8516 CNRS-Université de Lille, Lille, France
| |
Collapse
|
4
|
Hu H, Khatri K, Zaia J. Algorithms and design strategies towards automated glycoproteomics analysis. MASS SPECTROMETRY REVIEWS 2017; 36:475-498. [PMID: 26728195 PMCID: PMC4931994 DOI: 10.1002/mas.21487] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/30/2015] [Indexed: 05/09/2023]
Abstract
Glycoproteomics involves the study of glycosylation events on protein sequences ranging from purified proteins to whole proteome scales. Understanding these complex post-translational modification (PTM) events requires elucidation of the glycan moieties (monosaccharide sequences and glycosidic linkages between residues), protein sequences, as well as site-specific attachment of glycan moieties onto protein sequences, in a spatial and temporal manner in a variety of biological contexts. Compared with proteomics, bioinformatics for glycoproteomics is immature and many researchers still rely on tedious manual interpretation of glycoproteomics data. As sample preparation protocols and analysis techniques have matured, the number of publications on glycoproteomics and bioinformatics has increased substantially; however, the lack of consensus on tool development and code reuse limits the dissemination of bioinformatics tools because it requires significant effort to migrate a computational tool tailored for one method design to alternative methods. This review discusses algorithms and methods in glycoproteomics, and refers to the general proteomics field for potential solutions. It also introduces general strategies for tool integration and pipeline construction in order to better serve the glycoproteomics community. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:475-498, 2017.
Collapse
Affiliation(s)
- Han Hu
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Kshitij Khatri
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| |
Collapse
|
5
|
Yu Q, Shi X, Feng Y, Kent KC, Li L. Improving data quality and preserving HCD-generated reporter ions with EThcD for isobaric tag-based quantitative proteomics and proteome-wide PTM studies. Anal Chim Acta 2017; 968:40-49. [PMID: 28395773 PMCID: PMC5509462 DOI: 10.1016/j.aca.2017.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/03/2017] [Accepted: 03/02/2017] [Indexed: 11/22/2022]
Abstract
Mass spectrometry (MS)-based isobaric labeling has undergone rapid development in recent years due to its capability for high throughput quantitation. Apart from its originally designed use with collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD), isobaric tagging technique could also work with electron-transfer dissociation (ETD), which provides complementarity to CID and is preferred in sequencing peptides with post-translational modifications (PTMs). However, ETD suffers from long reaction time, reduced duty cycle and bias against peptides with lower charge states. In addition, common fragmentation mechanism in ETD results in altered reporter ion production, decreased multiplexing capability, and even loss of quantitation capability for some of the isobaric tags, including custom-designed dimethyl leucine (DiLeu) tags. Here, we demonstrate a novel electron-transfer/higher-energy collision dissociation (EThcD) approach that preserves original reporter ion channels, mitigates bias against lower charge states, improves sensitivity, and significantly improves data quality for quantitative proteomics and proteome-wide PTM studies. Systematic optimization was performed to achieve a balance between data quality and sensitivity. We provide direct comparison of EThcD with ETD and HCD for DiLeu- and TMT-labeled HEK cell lysate and IMAC enriched phosphopeptides. Results demonstrate improved data quality and phosphorylation localization accuracy while preserving sufficient reporter ion production. Biological studies were performed to investigate phosphorylation changes in a mouse vascular smooth muscle cell line treated with four different conditions. Overall, EThcD exhibits superior performance compared to conventional ETD and offers distinct advantages compared to HCD in isobaric labeling based quantitative proteomics and quantitative PTM studies.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Xudong Shi
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Yu Feng
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - K Craig Kent
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
6
|
Mokou M, Lygirou V, Vlahou A, Mischak H. Proteomics in cardiovascular disease: recent progress and clinical implication and implementation. Expert Rev Proteomics 2017; 14:117-136. [DOI: 10.1080/14789450.2017.1274653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marika Mokou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Vasiliki Lygirou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Harald Mischak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Mosaiques Diagnostics, Hannover, Germany
| |
Collapse
|
7
|
Use of an informed search space maximizes confidence of site-specific assignment of glycoprotein glycosylation. Anal Bioanal Chem 2016; 409:607-618. [PMID: 27734143 DOI: 10.1007/s00216-016-9970-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 01/13/2023]
Abstract
In order to interpret glycopeptide tandem mass spectra, it is necessary to estimate the theoretical glycan compositions and peptide sequences, known as the search space. The simplest way to do this is to build a naïve search space from sets of glycan compositions from public databases and to assume that the target glycoprotein is pure. Often, however, purified glycoproteins contain co-purified glycoprotein contaminants that have the potential to confound assignment of tandem mass spectra based on naïve assumptions. In addition, there is increasing need to characterize glycopeptides from complex biological mixtures. Fortunately, liquid chromatography-mass spectrometry (LC-MS) methods for glycomics and proteomics are now mature and accessible. We demonstrate the value of using an informed search space built from measured glycomes and proteomes to define the search space for interpretation of glycoproteomics data. We show this using α-1-acid glycoprotein (AGP) mixed into a set of increasingly complex matrices. As the mixture complexity increases, the naïve search space balloons and the ability to assign glycopeptides with acceptable confidence diminishes. In addition, it is not possible to identify glycopeptides not foreseen as part of the naïve search space. A search space built from released glycan glycomics and proteomics data is smaller than its naïve counterpart while including the full range of proteins detected in the mixture. This maximizes the ability to assign glycopeptide tandem mass spectra with confidence. As the mixture complexity increases, the number of tandem mass spectra per glycopeptide precursor ion decreases, resulting in lower overall scores and reduced depth of coverage for the target glycoprotein. We suggest use of α-1-acid glycoprotein as a standard to gauge effectiveness of analytical methods and bioinformatics search parameters for glycoproteomics studies. Graphical Abstract Assignment of site specific glycosylation from LC-tandemMS data.
Collapse
|
8
|
Xie B, Sharp JS. Relative Quantification of Sites of Peptide and Protein Modification Using Size Exclusion Chromatography Coupled with Electron Transfer Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1322-1327. [PMID: 27075875 PMCID: PMC4945384 DOI: 10.1007/s13361-016-1403-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
One difficult problem in the analysis of peptide modifications is quantifying isomeric modifications that differ by the position of the amino acid modified. HPLC separation using C18 reverse phase chromatography coupled with electron transfer dissociation (ETD) in tandem mass spectrometry has recently been shown to be able to relatively quantify how much of a given modification occurs at each amino acid position for isomeric mixtures; however, the resolution of reverse phase chromatography greatly complicates quantification of isomeric modifications by ETD because of the chromatographic separation of peptides with identical modifications at different sequence positions. Using peptide oxidation as a model system, we investigated the use of size exclusion chromatography coupled with ETD fragmentation to separate peptide sequences. This approach allows for the benefits of chromatographic separation of peptide sequences while ensuring co-elution of modification isomers for accurate relative quantification of modifications using standard data-dependent acquisitions. Using this method, the relative amount of modification at each amino acid can be accurately measured from single ETD MS/MS spectra in a standard data-dependent acquisition experiment. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Boer Xie
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Joshua S Sharp
- Department of Biomolecular Sciences, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
9
|
Liu JM, Sweredoski MJ, Hess S. Improved 6-Plex Tandem Mass Tags Quantification Throughput Using a Linear Ion Trap-High-Energy Collision Induced Dissociation MS(3) Scan. Anal Chem 2016; 88:7471-5. [PMID: 27377715 DOI: 10.1021/acs.analchem.6b01067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of tandem mass tags (TMT) as an isobaric labeling strategy is a powerful method for quantitative proteomics, yet its accuracy has traditionally suffered from interference. This interference can be largely overcome by selecting MS(2) fragment precursor ions for high-energy collision induced dissociation (HCD) MS(3) analysis in an Orbitrap scan. While this approach minimizes the interference effect, sensitivity suffers due to the high AGC targets and long acquisition times associated with MS(3) Orbitrap detection. We investigated whether acquiring the MS(3) scan in a linear ion trap with its lower AGC target would increase overall quantification levels with a minimal effect on precision and accuracy. Trypsin-digested proteins from Saccharomyces cerevisiae were tagged with 6-plex TMT reagents. The sample was subjected to replicate analyses using either the Orbitrap or the linear ion trap for the HCD MS(3) scan. HCD MS(3) detection in the linear ion trap vs Orbitrap increased protein identification by 66% with minor loss in precision and accuracy. Thus, the use of a linear ion trap-HCD MS(3) scan during a 6-plex TMT experiment can improve overall identification levels while maintaining the power of multiplexed quantitative analysis.
Collapse
Affiliation(s)
- Jane M Liu
- Department of Chemistry, Pomona College , Claremont, California 91711, United States.,Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Sonja Hess
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
10
|
Komatsu E, Buist M, Roy R, Gomes de Oliveira AG, Bodnar E, Salama A, Soulillou JP, Perreault H. Characterization of immunoglobulins through analysis of N-glycopeptides by MALDI-TOF MS. Methods 2016; 104:170-81. [DOI: 10.1016/j.ymeth.2016.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/17/2015] [Accepted: 01/06/2016] [Indexed: 12/11/2022] Open
|
11
|
Bunkenborg J, Falkenby LG, Harder LM, Molina H. Covalent perturbation as a tool for validation of identifications and PTM mapping applied to bovine alpha-crystallin. Proteomics 2016; 16:545-53. [DOI: 10.1002/pmic.201500068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 09/28/2015] [Accepted: 12/03/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Jakob Bunkenborg
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense M Denmark
- Department of Clinical Biochemistry; Copenhagen University Hospital Hvidovre; Hvidovre Denmark
| | - Lasse Gaarde Falkenby
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense M Denmark
| | - Lea Mørch Harder
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense M Denmark
| | | |
Collapse
|
12
|
Quantitation of protein post-translational modifications using isobaric tandem mass tags. Bioanalysis 2015; 7:383-400. [PMID: 25697195 DOI: 10.4155/bio.14.296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins are known to modulate many cellular processes and their qualitative and quantitative evaluation is fundamental for understanding the mechanisms of biological events. Over the past decade, improvements in sample preparation techniques and enrichment strategies, the development of quantitative labeling strategies, the launch of a new generation of mass spectrometers and the creation of bioinformatics tools for the interrogation of ever larger datasets has established MS-based quantitative proteomics as a powerful workflow for global proteomics, PTM analysis and the elucidation of key biological mechanisms. With the advantage of their multiplexing capacity and the flexibility of an ever-growing family of different peptide-reactive groups, isobaric tandem mass tags facilitate quantitative proteomics and PTM experiments and enable higher sample throughput. In this review, we focus on the technical concept and utility of the isobaric tandem mass tag labeling approach to PTM analysis, including phosphorylation, glycosylation and S-nitrosylation.
Collapse
|
13
|
Jedrychowski MP, Liu L, Laflamme CJ, Karastergiou K, Meshulam T, Ding SY, Wu Y, Lee MJ, Gygi SP, Fried SK, Pilch PF. Adiporedoxin, an upstream regulator of ER oxidative folding and protein secretion in adipocytes. Mol Metab 2015; 4:758-70. [PMID: 26629401 PMCID: PMC4632174 DOI: 10.1016/j.molmet.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/23/2022] Open
Abstract
Objective Adipocytes are robust protein secretors, most notably of adipokines, hormone-like polypeptides, which act in an endocrine and paracrine fashion to affect numerous physiological processes such as energy balance and insulin sensitivity. To understand how such proteins are assembled for secretion we describe the function of a novel endoplasmic reticulum oxidoreductase, adiporedoxin (Adrx). Methods Adrx knockdown and overexpressing 3T3-L1 murine adipocyte cell lines and a knockout mouse model were used to assess the influence of Adrx on secreted proteins as well as the redox state of ER resident chaperones. The metabolic phenotypes of Adrx null mice were characterized and compared to WT mice. The correlation of Adrx levels BMI, adiponectin levels, and other inflammatory markers from adipose tissue of human subjects was also studied. Results Adiporedoxin functions via a CXXC active site, and is upstream of protein disulfide isomerase whose direct function is disulfide bond formation, and ultimately protein secretion. Over and under expression of Adrx in vitro enhances and reduces, respectively, the secretion of the disulfide-bonded proteins including adiponectin and collagen isoforms. On a chow diet, Adrx null mice have normal body weights, and glucose tolerance, are moderately hyperinsulinemic, have reduced levels of circulating adiponectin and are virtually free of adipocyte fibrosis resulting in a complex phenotype tending towards insulin resistance. Adrx protein levels in human adipose tissue correlate positively with adiponectin levels and negatively with the inflammatory marker phospho-Jun kinase. Conclusion These data support the notion that Adrx plays a critical role in adipocyte biology and in the regulation of mouse and human metabolism via its modulation of adipocyte protein secretion. Adrx is an adipocyte specific, endoplasmic reticulum oxidoreductase upstream of disulfide bond formation. Adrx over and under expression in vitro results enhanced and decreased protein secretion, respectively. Mice lacking Adrx have lower levels of circulating adiponectin and decreased fibrosis. Adrx is expressed in human adipocytes and down regulated in proportion to the level of inflammation.
Collapse
Affiliation(s)
- Mark P. Jedrychowski
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
- Department of Cell Biology, Harvard University School of Medicine, 240 Longwood Avenue Boston, MA 02115, USA
| | - Libin Liu
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Collette J. Laflamme
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Kalypso Karastergiou
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Tova Meshulam
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Shi-Ying Ding
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Yuanyuan Wu
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Mi-Jeong Lee
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard University School of Medicine, 240 Longwood Avenue Boston, MA 02115, USA
| | - Susan K. Fried
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Paul F. Pilch
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
- Corresponding author. Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St., Boston, MA 02118, USA. Tel.: +1 617 638 4044.
| |
Collapse
|
14
|
Abstract
O-GlcNAcylation is a dynamic protein post-translational modification of serine or threonine residues by an O-linked monosaccharide N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation was discovered three decades ago and its significance has been implicated in several disease states, such as metabolic diseases, cancer and neurological diseases. Yet it remains technically challenging to characterize comprehensively and quantitatively because of its low abundance, low stoichiometry and extremely labile nature under conventional collision-induced dissociation tandem MS conditions. Herein, we review the recent advances addressing these challenges in developing proteomic approaches for site-specific O-GlcNAcylation analysis, including specific enrichment of O-GlcNAc peptides/proteins, unambiguous site-determination of O-GlcNAc modification and quantitative analysis of O-GlcNAcylation.
Collapse
|
15
|
Chahrour O, Cobice D, Malone J. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J Pharm Biomed Anal 2015; 113:2-20. [PMID: 25956803 DOI: 10.1016/j.jpba.2015.04.013] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/05/2015] [Accepted: 04/08/2015] [Indexed: 02/04/2023]
Abstract
Mass-spectrometry based proteomics has evolved as a promising technology over the last decade and is undergoing a dramatic development in a number of different areas, such as; mass spectrometric instrumentation, peptide identification algorithms and bioinformatic computational data analysis. The improved methodology allows quantitative measurement of relative or absolute protein amounts, which is essential for gaining insights into their functions and dynamics in biological systems. Several different strategies involving stable isotopes label (ICAT, ICPL, IDBEST, iTRAQ, TMT, IPTL, SILAC), label-free statistical assessment approaches (MRM, SWATH) and absolute quantification methods (AQUA) are possible, each having specific strengths and weaknesses. Inductively coupled plasma mass spectrometry (ICP-MS), which is still widely recognised as elemental detector, has recently emerged as a complementary technique to the previous methods. The new application area for ICP-MS is targeting the fast growing field of proteomics related research, allowing absolute protein quantification using suitable elemental based tags. This document describes the different stable isotope labelling methods which incorporate metabolic labelling in live cells, ICP-MS based detection and post-harvest chemical label tagging for protein quantification, in addition to summarising their pros and cons.
Collapse
Affiliation(s)
| | - Diego Cobice
- Spectroscopy Group, Analytical Services, Almac, UK
| | - John Malone
- Spectroscopy Group, Analytical Services, Almac, UK
| |
Collapse
|
16
|
Gu H, Stokes MP, Silva JC. Proteomic Analysis of Posttranslational Modifications in Neurobiology. ANALYSIS OF POST-TRANSLATIONAL MODIFICATIONS AND PROTEOLYSIS IN NEUROSCIENCE 2015. [DOI: 10.1007/7657_2015_99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Abstract
The blood serum proteome may be an ideal source of disease biomarkers, although its complexity necessitates novel strategies to enrich and quantify lower-abundance proteins with biomarker utility. Herein, serum samples from pre-diagnosis pancreatic cancer cases and controls were compared using a workflow of immunodepletion, multi-lectin fractionation, and peptide tandem mass tag (TMT) labeling. Samples were then subjected to SCX and high pH reversed-phase fractionation and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The aim was the discovery of candidate serum biomarkers of pancreatic cancer, although the method is applicable to any comparative proteomic analysis of serum samples.
Collapse
|
18
|
Ye H, Hill J, Gucinski AC, Boyne MT, Buhse LF. Direct site-specific glycoform identification and quantitative comparison of glycoprotein therapeutics: imiglucerase and velaglucerase alfa. AAPS JOURNAL 2014; 17:405-15. [PMID: 25501675 DOI: 10.1208/s12248-014-9706-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/20/2014] [Indexed: 01/01/2023]
Abstract
Gaucher disease, the most common lysosomal metabolic disorder, can be treated with enzyme replacement therapy (ERT). Recombinant human glucocerebrosidase imiglucerase (Cerezyme(®)), produced in Chinese hamster ovary cells, has been used for ERT of Gaucher disease for 20 years. Another recombinant glucocerebrosidase velaglucerase alfa (VPRIV), expressed in a human fibroblast cell line, was approved by the US Food and Drug Administration in 2010. The amino acid sequence difference at residue 495 of these two products is well documented. The overall N-linked qualitative glycan composition of these two products has also been reported previously. Herein, employing our recently developed approach utilizing isobaric tandem mass tag (TMT) labeling and an LTQ Orbitrap XL electron transfer dissociation (ETD) hybrid mass spectrometer, the site-specific glycoforms of these products were identified with ETD and collision-induced dissociation (CID) spectra. The quantitative comparison of site-specific glycans was achieved utilizing higher-energy collisional dissociation (HCD) spectra with a NanoMate used as both a fraction collector and a sample introduction device. From the trypsin-digested mixture of these two products, over 90 glycopeptides were identified by accurate mass matching. In addition to those previously reported, additional glycopeptides were detected with moderate abundance. The relative amount of each glycoform at a specific glycosylation site was determined based on reporter signal intensities of the TMT labeling reagents. This is the first report of site-specific simultaneous qualitative and quantitative comparison of glycoforms for Cerezyme(®) and VPRIV. The results demonstrate that this method could be utilized for biosimilarity determination and counterfeit identification of glycoproteins.
Collapse
Affiliation(s)
- Hongping Ye
- Division of Pharmaceutical Analysis, CDER, US Food and Drug Administration, 645 South Newstead Avenue, St. Louis, Missouri, 63110, USA,
| | | | | | | | | |
Collapse
|
19
|
Ortiz-Martinez M, Winkler R, García-Lara S. Preventive and therapeutic potential of peptides from cereals against cancer. J Proteomics 2014; 111:165-83. [PMID: 24727098 DOI: 10.1016/j.jprot.2014.03.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/13/2014] [Accepted: 03/31/2014] [Indexed: 01/08/2023]
Abstract
Epidemiological studies have shown that regular consumption of food based on whole-grain cereals and their products is associated with reduced risks of various types of degenerative chronic diseases. Food proteins are considered an important source of nutraceutical peptides and amino acids that can exert biological functions to promote health and prevent disease, including cancer. There have been several reports on peptides with anti-tumour activity in recent years. Plant-derived peptides, such as rapeseed, amaranth and soybean lunasin have received main attention. In this review, we extend this vision to analyse the evidence of current advances in peptides in cereals such as wheat, maize, rice, barley, rye and pseudocereals compared with soybean. We also show evidence of several mechanisms through which bioactive peptide exerts anti-tumour activity. Finally, we report the current status of major strategies for the fractionation, isolation and characterisation of bioactive peptides in cereals. BIOLOGICAL SIGNIFICANCE In recent reports, it has been shown that peptides are an interesting alternative in the search for new treatments for cancer. One of the most studied sources of these peptides is food proteins; however, a review that includes more recent findings for cereals as a potential source of bioactive peptides in the treatment of cancer, the techniques for their isolation and characterisation and the assays used to prove their bioactivity is not available. This review can be used as a tool in the search for new sources of anti-cancer peptides. The authors have no conflicts of interest, financial or otherwise.
Collapse
Affiliation(s)
| | - Robert Winkler
- Dep. of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Irapuato Gto., Mexico
| | | |
Collapse
|
20
|
Treumann A, Thiede B. Isobaric protein and peptide quantification: perspectives and issues. Expert Rev Proteomics 2014; 7:647-53. [DOI: 10.1586/epr.10.29] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Maury JJP, Ng D, Bi X, Bardor M, Choo ABH. Multiple Reaction Monitoring Mass Spectrometry for the Discovery and Quantification of O-GlcNAc-Modified Proteins. Anal Chem 2013; 86:395-402. [DOI: 10.1021/ac401821d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Julien Jean Pierre Maury
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Department
of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore 119077
| | - Daniel Ng
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
| | - Xuezhi Bi
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
| | - Muriel Bardor
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Université de Rouen, Laboratoire Glycobiologie et Matrice
Extracellulaire Végétale (Glyco-MEV) EA 4358, Institut
de Recherche et d’Innovation Biomédicale (IRIB), Faculté
des Sciences et Techniques, 76821 Mont-Saint-Aignan Cédex, France
| | - Andre Boon-Hwa Choo
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Department
of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore 119077
| |
Collapse
|
22
|
Bodnar ED, Perreault H. Qualitative and Quantitative Assessment on the Use of Magnetic Nanoparticles for Glycopeptide Enrichment. Anal Chem 2013; 85:10895-903. [DOI: 10.1021/ac402332z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Edward D. Bodnar
- University of Manitoba, Department of Chemistry, 144 Dysart Rd.,
Parker Building, Winnipeg, Manitoba, Canada R3T 2N2
| | - Hélène Perreault
- University of Manitoba, Department of Chemistry, 144 Dysart Rd.,
Parker Building, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
23
|
Abstract
Herein, we have utilized two cellular models of epithelial ovarian cancer (EOC), where transfer of normal chromosome 18 material into the EOC cell lines TOV-112D and TOV-21G induced in vitro and in vivo suppression of tumorigenic phenotype in derived hybrid clones. Two-dimensional-liquid chromatography tandem mass spectrometry (2D-LC-MS/MS) with tandem mass tagging (TMT) was then employed to profile the whole cell, secreted and crude membrane proteomes of the parental and hybrid cell models to identify differentially expressed proteins as potential markers of ovarian tumor suppression. Protein changes of interest were confirmed by immunoblotting in additional hybrid and revertant cell lines. This method afforded quantitative coverage of around 1,000 unique proteins and is applicable to the analysis of any cell model, tissue or biofluid.
Collapse
Affiliation(s)
- John Sinclair
- Cell Communication Team, The Institute of Cancer Research, London, UK
| | | |
Collapse
|
24
|
Ye H, Boyne MT, Buhse LF, Hill J. Direct Approach for Qualitative and Quantitative Characterization of Glycoproteins Using Tandem Mass Tags and an LTQ Orbitrap XL Electron Transfer Dissociation Hybrid Mass Spectrometer. Anal Chem 2013; 85:1531-9. [DOI: 10.1021/ac3026465] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hongping Ye
- U.S. Food and Drug Administration, CDER, DPA, St. Louis, Missouri 63101,
United States
| | - Michael T. Boyne
- U.S. Food and Drug Administration, CDER, DPA, St. Louis, Missouri 63101,
United States
| | - Lucinda F. Buhse
- U.S. Food and Drug Administration, CDER, DPA, St. Louis, Missouri 63101,
United States
| | - John Hill
- U.S. Food and Drug Administration, CDER, ONDQA/DPAII, Silver Spring, Maryland
20993, United States
| |
Collapse
|
25
|
Hwang HJ, Cho K, Kim JY, Kim YH, Oh HB. Protein Analysis Using a Combination of an Online Monolithic Trypsin Immobilized Enzyme Reactor and Collisionally-Activated Dissociation/Electron Transfer Dissociation Dual Tandem Mass Spectrometry. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.10.3233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
McAlister GC, Huttlin EL, Haas W, Ting L, Jedrychowski MP, Rogers JC, Kuhn K, Pike I, Grothe RA, Blethrow JD, Gygi SP. Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal Chem 2012; 84:7469-78. [PMID: 22880955 DOI: 10.1021/ac301572t] [Citation(s) in RCA: 483] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Quantitative mass spectrometry methods offer near-comprehensive proteome coverage; however, these methods still suffer with regards to sample throughput. Multiplex quantitation via isobaric chemical tags (e.g., TMT and iTRAQ) provides an avenue for mass spectrometry-based proteome quantitation experiments to move away from simple binary comparisons and toward greater parallelization. Herein, we demonstrate a straightforward method for immediately expanding the throughput of the TMT isobaric reagents from 6-plex to 8-plex. This method is based upon our ability to resolve the isotopic shift that results from substituting a (15)N for a (13)C. In an accommodation to the preferred fragmentation pathways of ETD, the TMT-127 and -129 reagents were recently modified such that a (13)C was exchanged for a (15)N. As a result of this substitution, the new TMT reporter ions are 6.32 mDa lighter. Even though the mass difference between these reporter ion isotopologues is incredibly small, modern high-resolution and mass accuracy analyzers can resolve these ions. On the basis of our ability to resolve and accurately measure the relative intensity of these isobaric reporter ions, we demonstrate that we are able to quantify across eight samples simultaneously by combining the (13)C- and (15)N-containing reporter ions. Considering the structure of the TMT reporter ion, we believe this work serves as a blueprint for expanding the multiplexing capacity of the TMT reagents to at least 10-plex and possibly up to 18-plex.
Collapse
Affiliation(s)
- Graeme C McAlister
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Werner T, Becher I, Sweetman G, Doce C, Savitski MM, Bantscheff M. High-resolution enabled TMT 8-plexing. Anal Chem 2012; 84:7188-94. [PMID: 22881393 DOI: 10.1021/ac301553x] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Isobaric mass tag-based quantitative proteomics strategies such as iTRAQ and TMT utilize reporter ions in the low-mass range of tandem MS spectra for relative quantification. The number of samples that can be compared in a single experiment (multiplexing) is limited by the number of different reporter ions that can be generated by differential stable isotope incorporation ((15)N, (13)C) across the reporter and the mass balancing parts of the reagents. Here, we demonstrate that a higher multiplexing rate can be achieved by utilizing the 6 mDa mass difference between (15)N- and (13)C-containing reporter fragments, in combination with high-resolution mass spectrometry. Two variants of the TMT127 and TMT129 reagents are available; these are distinguished by the position and the nature of the incorporated stable isotope in the reporter portions of the labels (TMT127L, (12)C(8)H(16)(15)N(1)(+); TMT127H, (12)C(7)(13)C(1)H(16)(14)N(1)(+); TMT129L, (12)C(6)(13)C(2)H(16)(15)N(1)(+); and TMT129H, (12)C(5)(13)C(3)H(16)(14)N(1)(+)). We demonstrate that these variants can be baseline-resolved in Orbitrap Elite higher-energy collision-induced dissociation spectra recorded with a 96 ms transient enabling comparable dynamic range, precision, and accuracy of quantification as 1 Da spaced reporter ions. The increased multiplexing rate enabled determination of inhibitor potencies in chemoproteomic kinase assays covering a wider range of compound concentrations in a single experiment, compared to conventional 6-plex TMT-based assays.
Collapse
Affiliation(s)
- Thilo Werner
- Cellzome AG, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Wu WW, Wang G, Insel PA, Hsiao CT, Zou S, Martin B, Maudsley S, Shen RF. Discovery- and target-based protein quantification using iTRAQ and pulsed Q collision induced dissociation (PQD). J Proteomics 2012; 75:2480-7. [PMID: 22397766 PMCID: PMC3321122 DOI: 10.1016/j.jprot.2012.02.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/07/2012] [Accepted: 02/20/2012] [Indexed: 12/27/2022]
Abstract
Pulsed Q collision-induced dissociation (PQD) was developed in part to facilitate detection of low-mass reporter ions using labeling reagents (e.g. iTRAQ) on LTQ platforms. It has generally been recognized that the scan speed and sensitivity of an LTQ are superior than those of an Orbitrap using the higher-energy collisional dissociation (HCD). However, the use of PQD in quantitative proteomics is limited, primarily due to the meager reproducibility of reporter ion ratios. Optimizations of PQD for iTRAQ quantification using LTQ have been reported, but a universally applicable strategy for quantifying the less abundant proteins has not been fully established. Adjustments of the AGC target, μscan, or scan speed offer only incremental improvements in reproducibility. From our experience, however, satisfactory coefficients of variation (CVs) of reporter ion ratios were difficult to achieve using the discovery-based approach. As an alternative, we implemented a target-based approach that obviates data dependency to allow repetitive data acquisitions across chromatographic peaks. Such a strategy generates enough data points for more reliable quantification. Using cAMP treatment in S49 cell lysates and this target-based approach, we were able to validate differentially expressed proteins, which were initially identified as potential candidates using the discovery-based PQD. The target-based strategy also yielded results comparable to those obtained from HCD in an Orbitrap. Our findings should aid LTQ users who desire to explore iTRAQ quantitative proteomics but have limited access to the more costly Orbitrap or other instruments.
Collapse
Affiliation(s)
- Wells W. Wu
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Guanghui Wang
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Paul A. Insel
- Department of Pharmacology and Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Cheng-Te Hsiao
- Functional Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Sige Zou
- Functional Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Rong-Fong Shen
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| |
Collapse
|
29
|
Lu Y, Zhou X, Stemmer PM, Reid GE. Sulfonium ion derivatization, isobaric stable isotope labeling and data dependent CID- and ETD-MS/MS for enhanced phosphopeptide quantitation, identification and phosphorylation site characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:577-93. [PMID: 21952753 PMCID: PMC4228788 DOI: 10.1007/s13361-011-0190-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/03/2011] [Accepted: 06/03/2011] [Indexed: 05/12/2023]
Abstract
An amine specific peptide derivatization strategy involving the use of novel isobaric stable isotope encoded 'fixed charge' sulfonium ion reagents, coupled with an analysis strategy employing capillary HPLC, ESI-MS, and automated data dependent ion trap CID-MS/MS, -MS(3), and/or ETD-MS/MS, has been developed for the improved quantitative analysis of protein phosphorylation, and for identification and characterization of their site(s) of modification. Derivatization of 50 synthetic phosphopeptides with S,S'-dimethylthiobutanoylhydroxysuccinimide ester iodide (DMBNHS), followed by analysis using capillary HPLC-ESI-MS, yielded an average 2.5-fold increase in ionization efficiencies and a significant increase in the presence and/or abundance of higher charge state precursor ions compared to the non-derivatized phosphopeptides. Notably, 44% of the phosphopeptides (22 of 50) in their underivatized states yielded precursor ions whose maximum charge states corresponded to +2, while only 8% (4 of 50) remained at this maximum charge state following DMBNHS derivatization. Quantitative analysis was achieved by measuring the abundances of the diagnostic product ions corresponding to the neutral losses of 'light' (S(CH(3))(2)) and 'heavy' (S(CD(3))(2)) dimethylsulfide exclusively formed upon CID-MS/MS of isobaric stable isotope labeled forms of the DMBNHS derivatized phosphopeptides. Under these conditions, the phosphate group stayed intact. Access for a greater number of peptides to provide enhanced phosphopeptide sequence identification and phosphorylation site characterization was achieved via automated data-dependent CID-MS(3) or ETD-MS/MS analysis due to the formation of the higher charge state precursor ions. Importantly, improved sequence coverage was observed using ETD-MS/MS following introduction of the sulfonium ion fixed charge, but with no detrimental effects on ETD fragmentation efficiency.
Collapse
Affiliation(s)
- Yali Lu
- Department of Chemistry, Michigan State University, 229 Chemistry Building, Michigan State University, East Lansing, MI, 48824, USA
| | - Xiao Zhou
- Department of Chemistry, Michigan State University, 229 Chemistry Building, Michigan State University, East Lansing, MI, 48824, USA
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Gavin E. Reid
- Department of Chemistry, Michigan State University, 229 Chemistry Building, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
30
|
Zachara NE. The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease. Am J Physiol Heart Circ Physiol 2012; 302:H1905-18. [PMID: 22287582 DOI: 10.1152/ajpheart.00445.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
More than 1,000 proteins of the nucleus, cytoplasm, and mitochondria are dynamically modified by O-linked β-N-acetylglucosamine (O-GlcNAc), an essential post-translational modification of metazoans. O-GlcNAc, which modifies Ser/Thr residues, is thought to regulate protein function in a manner analogous to protein phosphorylation and, on a subset of proteins, appears to have a reciprocal relationship with phosphorylation. Like phosphorylation, O-GlcNAc levels change dynamically in response to numerous signals including hyperglycemia and cellular injury. Recent data suggests that O-GlcNAc appears to be a key regulator of the cellular stress response, the augmentation of which is protective in models of acute vascular injury, trauma hemorrhage, and ischemia-reperfusion injury. In contrast to these studies, O-GlcNAc has also been implicated in the development of hypertension and type II diabetes, leading to vascular and cardiac dysfunction. Here we summarize the current understanding of the roles of O-GlcNAc in the heart and vasculature.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Abstract
The determination of protein changes related to stimuli such as pathological conditions is the core task of many proteomic studies. In the past decade, concomitantly to the increasing role of mass spectrometry (MS), several strategies have been implemented for the relative quantification of proteins with MS. Stable isotopic labels are introduced via metabolic, enzymatic, or chemical routes in different samples for their distinction during MS detection. Relative quantification is achieved by comparison of MS or tandem MS (MS/MS) signals of the differentially labeled moieties. Isobaric tagging is an elegant chemical isotope incorporation based on tags with an identical chemical structure and same total mass but with labile parts under collision-activated dissociation, the so-called reporter ions. The reporter ions are characteristic of each tag form and detected at distinct m/z. The TMT, iTRAQ, and ExacTag are examples of such technology. Experimental design, sample preparation and separation, MS acquisition parameters, and data analysis are the key steps to achieve accurate and precise quantitative measurements. We describe herein an isoelectric focusing shotgun proteomics workflow for the relative quantification of proteins in complex mixtures by MS/MS using tandem mass tags.
Collapse
|
32
|
Hung CW, Tholey A. Tandem Mass Tag Protein Labeling for Top-Down Identification and Quantification. Anal Chem 2011; 84:161-70. [DOI: 10.1021/ac202243r] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chien-Wen Hung
- Institut für Experimentelle Medizin—AG Systematische Proteomforschung, Christian-Albrechts-Universität, Niemannsweg 11, 24105 Kiel, Germany
| | - Andreas Tholey
- Institut für Experimentelle Medizin—AG Systematische Proteomforschung, Christian-Albrechts-Universität, Niemannsweg 11, 24105 Kiel, Germany
| |
Collapse
|
33
|
Zachara NE, Vosseller K, Hart GW. Detection and analysis of proteins modified by O-linked N-acetylglucosamine. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2011; Chapter 12:12.8.1-12.8.33. [PMID: 22045558 PMCID: PMC3349994 DOI: 10.1002/0471140864.ps1208s66] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
O-GlcNAc is a common post-translational modification of nuclear, mitochondrial, and cytoplasmic proteins that is implicated in the etiology of type II diabetes and Alzheimer's disease, as well as cardioprotection. This unit covers simple and comprehensive techniques for identifying proteins modified by O-GlcNAc, studying the enzymes that add and remove O-GlcNAc, and mapping O-GlcNAc modification sites.
Collapse
Affiliation(s)
- Natasha E. Zachara
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Keith Vosseller
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Gerald W. Hart
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
34
|
Bohrer BC, Clemmer DE. Biologically-inspired peptide reagents for enhancing IMS-MS analysis of carbohydrates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1602-1609. [PMID: 21953263 DOI: 10.1007/s13361-011-0168-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 05/31/2023]
Abstract
The binding properties of a peptidoglycan recognition protein are translated via combinatorial chemistry into short peptides. Non-adjacent histidine, tyrosine, and arginine residues in the protein's binding cleft that associate specifically with the glycan moiety of a peptidoglycan substrate are incorporated into linear sequences creating a library of 27 candidate tripeptide reagents (three possible residues permutated across three positions). Upon electrospraying the peptide library and carbohydrate mixtures, some noncovalent complexes are observed. The binding efficiencies of the peptides vary according to their amino acid composition as well as the disaccharide linkage and carbohydrate ring-type. In addition to providing a charge-carrier for the carbohydrate, peptide reagents can also be used to differentiate carbohydrate isomers by ion mobility spectrometry. The utility of these peptide reagents as a means of enhancing ion mobility analysis of carbohydrates is illustrated by examining four glucose-containing disaccharide isomers, including a pair that is not resolved by ion mobility alone. The specificity and stoichiometry of the peptide-carbohydrate complexes are also investigated. Trihistidine demonstrates both suitable binding efficiency and successful resolution of disaccharides isomers, suggesting it may be a useful reagent in IMS analyses of carbohydrates.
Collapse
Affiliation(s)
- Brian C Bohrer
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
35
|
Zachara NE, Vosseller K, Hart GW. Detection and analysis of proteins modified by O-linked N-acetylglucosamine. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2011; Chapter 17:Unit 17.6. [PMID: 21732316 PMCID: PMC3329785 DOI: 10.1002/0471142727.mb1706s95] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
O-GlcNAc is a common post-translational modification of nuclear, mitochondrial, and cytoplasmic proteins that is implicated in the etiology of type II diabetes and Alzheimer's disease, as well as cardioprotection. This unit covers simple and comprehensive techniques for identifying proteins modified by O-GlcNAc, studying the enzymes that add and remove O-GlcNAc, and mapping O-GlcNAc modification sites.
Collapse
Affiliation(s)
- Natasha E. Zachara
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Keith Vosseller
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Gerald W. Hart
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
36
|
Gao PP, Wang WH, Wang J, Li J, Dong XH. Proteomic profiling of Helicobacter pylori treated with celecoxib. Shijie Huaren Xiaohua Zazhi 2011; 19:1785-1790. [DOI: 10.11569/wcjd.v19.i17.1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To perform a proteomic investigation of the effect of celecoxib on Helicobacter pylori (H. pylori).
METHODS: Total proteins of untreated and celecoxib-treated H. pylori 26695 were extracted and separated by 2-dimensionals polyacrylamide gel electrophoresis (2-DE). Differential protein expression was detected using computer-assisted image analysis. Differential proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and matrix-assisted laser desorption/ionization time-of-flight-tandem mass spectrometry (MALDI-TOF-MS/MS). The levels of mRNA expression were measured by real-time polymerase chain reaction.
RESULTS: Seventeen differentially expressed spots were detected between untreated and celecoxib-treated H. pylori 26695. Seven spots were positively identified as three proteins: heat shock protein 60 (HSP60), elongation factor TU (EF-TU) and gamma-glutamyltranspeptidase (GGT). The protein expression of HSP60, GGT, and EF-TU, and mRNA expression of GGT and EF-TU were down-regulated (0.07 ± 0.06 vs 1.01 ± 0.16; 0.31 ± 0.13 vs 0.98 ± 0.01, both P < 0.05), while the mRNA expression of HSP60 was up-regulated in the presence of celecoxib (1.85 ± 0.26 vs 1.07 ± 0.27, P < 0.05).
CONCLUSION: Celecoxib could down-regulate the protein expression of HSP60, GGT and EF-TU and mRNA expression of GGT and EF-TU in H. pylori; however, the mRNA expression of HSP60 was up-regulated. These results suggest that celecoxib might interfere with the pathogenicity of H. pylori.
Collapse
|
37
|
Kim EJ. Chemical arsenal for the study of O-GlcNAc. Molecules 2011; 16:1987-2022. [PMID: 21358590 PMCID: PMC6259741 DOI: 10.3390/molecules16031987] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/03/2011] [Accepted: 02/15/2011] [Indexed: 12/24/2022] Open
Abstract
The concepts of both protein glycosylation and cellular signaling have been influenced by O-linked-β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) on the hydroxyl group of serine or threonine residues. Unlike conventional protein glycosylation, O-GlcNAcylation is localized in the nucleocytoplasm and its cycling is a dynamic process that operates in a highly regulated manner in response to various cellular stimuli. These characteristics render O-GlcNAcylation similar to phosphorylation, which has long been considered a major regulatory mechanism in cellular processes. Various efficient chemical approaches and novel mass spectrometric (MS) techniques have uncovered numerous O-GlcNAcylated proteins that are involved in the regulation of many important cellular events. These discoveries imply that O-GlcNAcylation is another major regulator of cellular signaling. However, in contrast to phosphorylation, which is regulated by hundreds of kinases and phosphatases, dynamic O-GlcNAc cycling is catalyzed by only two enzymes: uridine diphospho-N-acetyl-glucosamine:polypeptide β-N-acetylglucosaminyl transferase (OGT) and β-D-N-acetylglucosaminidase (OGA). Many useful chemical tools have recently been used to greatly expand our understanding of the extensive crosstalk between O-GlcNAcylation and phosphorylation and hence of cellular signaling. This review article describes the various useful chemical tools that have been developed and discusses the considerable advances made in the O-GlcNAc field.
Collapse
Affiliation(s)
- Eun J Kim
- Department of Science Education-Chemistry Major, Daegu University, Gyeongbuk 712-714, Korea.
| |
Collapse
|
38
|
Jones AW, Cooper HJ. Dissociation techniques in mass spectrometry-based proteomics. Analyst 2011; 136:3419-29. [DOI: 10.1039/c0an01011a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Palmisano G, Thingholm TE. Strategies for quantitation of phosphoproteomic data. Expert Rev Proteomics 2010; 7:439-56. [PMID: 20536313 DOI: 10.1586/epr.10.19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent developments in phosphoproteomic sample-preparation techniques and sensitive mass spectrometry instrumentation have led to large-scale identifications of phosphoproteins and phosphorylation sites from highly complex samples. This has facilitated the implementation of different quantitation strategies in order to study the biological role of protein phosphorylation during disease progression, differentiation or during external stimulation of a cellular system. In this article, a brief summary of the most popular strategies for phosphoproteomic studies is given; however, the main focus will be on different quantitation strategies. Methods for metabolic labeling, chemical modification and label-free quantitation and their applicability or inapplicability in phosphoproteomic studies are discussed.
Collapse
Affiliation(s)
- Giuseppe Palmisano
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
40
|
Yuzwa SA, Yadav AK, Skorobogatko Y, Clark T, Vosseller K, Vocadlo DJ. Mapping O-GlcNAc modification sites on tau and generation of a site-specific O-GlcNAc tau antibody. Amino Acids 2010; 40:857-68. [PMID: 20706749 DOI: 10.1007/s00726-010-0705-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/14/2010] [Indexed: 11/30/2022]
Abstract
The microtubule-associated protein tau is known to be post-translationally modified by the addition of N-acetyl-D: -glucosamine monosaccharides to certain serine and threonine residues. These O-GlcNAc modification sites on tau have been challenging to identify due to the inherent complexity of tau from mammalian brains and the fact that the O-GlcNAc modification typically has substoichiometric occupancy. Here, we describe a method for the production of recombinant O-GlcNAc modified tau and, using this tau, we have mapped sites of O-GlcNAc on tau at Thr-123 and Ser-400 using mass spectrometry. We have also detected the presence of a third O-GlcNAc site on either Ser-409, Ser-412, or Ser-413. Using this information we have raised a rabbit polyclonal IgG antibody (3925) that detects tau O-GlcNAc modified at Ser-400. Further, using this antibody we have detected the Ser-400 tau O-GlcNAc modification in rat brain, which confirms the validity of this in vitro mapping approach. The identification of these O-GlcNAc sites on tau and this antibody will enable both in vivo and in vitro experiments designed to understand the possible functional roles of O-GlcNAc on tau.
Collapse
Affiliation(s)
- Scott A Yuzwa
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Wada Y, Tajiri M, Ohshima S. Quantitation of saccharide compositions of O-glycans by mass spectrometry of glycopeptides and its application to rheumatoid arthritis. J Proteome Res 2010; 9:1367-73. [PMID: 20104905 DOI: 10.1021/pr900913k] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Profiling of oligosaccharide structures is widely utilized for both identification and evaluation of glycobiomarkers, and site-specific profiling of N-linked glycans of glycoproteins is conducted by mass spectrometry of glycopeptides. However, our knowledge of mucin-type O-glycans including site occupancy and profile variance, as well as attachment sites, is quite limited. Saccharide compositions and site-occupancy of O-glycans were calculated from the signal intensity of glycopeptide ions in the mass spectra and tandem mass spectra from electron transfer dissociation. The results for two major plasma glycoproteins, IgA1 and hemopexin, representing clustered and scattered O-glycan attachments, respectively, indicated that the variability in modifications among individuals is so small as to justify rigorous standards enabling reliable detection of disease-related alterations. Indeed, this method revealed a novel abnormality associated with rheumatoid arthritis: a significant decrease in the N-acetylgalactosamine content of IgA1 O-glycans, indicating that the glycosylation abnormality is not limited to hypogalactosylation of IgG N-glycans in chronic inflammatory conditions.
Collapse
Affiliation(s)
- Yoshinao Wada
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodo-cho Izumi, Osaka 594-1101, Japan.
| | | | | |
Collapse
|
42
|
Allmer J. Existing bioinformatics tools for the quantitation of post-translational modifications. Amino Acids 2010; 42:129-38. [DOI: 10.1007/s00726-010-0614-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 04/27/2010] [Indexed: 12/25/2022]
|
43
|
Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. FEBS Lett 2010; 584:2526-38. [DOI: 10.1016/j.febslet.2010.04.044] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 04/15/2010] [Indexed: 11/17/2022]
|
44
|
Teo CF, Ingale S, Wolfert MA, Elsayed GA, Nöt LG, Chatham JC, Wells L, Boons GJ. Glycopeptide-specific monoclonal antibodies suggest new roles for O-GlcNAc. Nat Chem Biol 2010; 6:338-43. [PMID: 20305658 DOI: 10.1038/nchembio.338] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 01/22/2010] [Indexed: 12/26/2022]
Abstract
Studies of post-translational modification by beta-N-acetyl-D-glucosamine (O-GlcNAc) are hampered by a lack of efficient tools such as O-GlcNAc-specific antibodies that can be used for detection, isolation and site localization. We have obtained a large panel of O-GlcNAc-specific IgG monoclonal antibodies having a broad spectrum of binding partners by combining three-component immunogen methodology with hybridoma technology. Immunoprecipitation followed by large-scale shotgun proteomics led to the identification of more than 200 mammalian O-GlcNAc-modified proteins, including a large number of new glycoproteins. A substantial number of the glycoproteins were enriched by only one of the antibodies. This observation, combined with the results of inhibition ELISAs, suggests that the antibodies, in addition to their O-GlcNAc dependence, also appear to have different but overlapping local peptide determinants. The monoclonal antibodies made it possible to delineate differentially modified proteins of liver in response to trauma-hemorrhage and resuscitation in a rat model.
Collapse
Affiliation(s)
- Chin Fen Teo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Snovida SI, Bodnar ED, Viner R, Saba J, Perreault H. A simple cellulose column procedure for selective enrichment of glycopeptides and characterization by nano LC coupled with electron-transfer and high-energy collisional-dissociation tandem mass spectrometry. Carbohydr Res 2010; 345:792-801. [PMID: 20189550 DOI: 10.1016/j.carres.2010.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 10/20/2022]
Abstract
In this report we describe an on-column method for glycopeptide enrichment with cellulose as a solid-phase extraction material. The method was developed using tryptic digests of several standard glycoproteins and validated with more complex standard protein digest mixtures. Glycopeptides of different masses containing neutral and acidic glycoforms of both N- and O-linked sugars were obtained in good yield by this method. Upon isolation, glycopeptides may be subjected to further glycoproteomic and glycomic workflows for the purpose of identifying glycoproteins present in the sample and characterizing their glycosylation sites, as well as their global and site-specific glycosylation profiles at the glycopeptide level. Detailed structural analysis of glycoforms may then be performed at the glycan level upon chemical or enzymatic release of the oligosaccharides. Aiming at complementing other purification methods, this technique is extremely simple, cost-effective, and efficient. Glycopeptide enrichment was verified and validated by nano liquid chromatography-tandem mass spectrometry (LC-MS/MS) combining electron-transfer dissociation (ETD) and collision-activated dissociation (CAD) fragmentation techniques.
Collapse
Affiliation(s)
- Sergei I Snovida
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
47
|
Xie S, Moya C, Bilgin B, Jayaraman A, Walton SP. Emerging affinity-based techniques in proteomics. Expert Rev Proteomics 2010; 6:573-83. [PMID: 19811078 DOI: 10.1586/epr.09.74] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteomes of interest, such as the human proteome, have such complexity that no single technique is adequate for the complete analysis of the constituents. Depending on the goal (e.g., identification of a novel protein vs measurement of the level of a known protein), the tools required can vary significantly. While existing methods provide valuable information, their limitations drive the development of complementary, innovative methods to achieve greater breadth of coverage, dynamic range or specificity of analysis. We will discuss affinity-based methods and their applications, focusing on their unique advantages. In addition, we will describe emerging methods with potential value to proteomics, as well as the challenges that remain for proteomic studies.
Collapse
Affiliation(s)
- Shengnan Xie
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824-1226, USA
| | | | | | | | | |
Collapse
|
48
|
Timms JF, Cutillas PR. Overview of quantitative LC-MS techniques for proteomics and activitomics. Methods Mol Biol 2010; 658:19-45. [PMID: 20839096 DOI: 10.1007/978-1-60761-780-8_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
LC-MS is a useful technique for protein and peptide quantification. In addition, as a powerful tool for systems biology research, LC-MS can also be used to quantify post-translational modifications and metabolites that reflect biochemical pathway activity. This review discusses the different analytical techniques that use LC-MS for the quantification of proteins, their modifications and activities in a multiplex manner.
Collapse
Affiliation(s)
- John F Timms
- Cancer Proteomics Laboratory, EGA Institute for Women's Health, University College London, London, UK
| | | |
Collapse
|
49
|
Brimble S, Wollaston-Hayden EE, Teo CF, Morris AC, Wells L. The Role of the O-GlcNAc Modification in Regulating Eukaryotic Gene Expression. ACTA ACUST UNITED AC 2010; 5:12-24. [PMID: 25484640 DOI: 10.2174/157436210790226465] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins has been shown to be involved in many different cellular processes, such as cell cycle control, nutrient sensing, signal transduction, stress response and transcriptional regulation. Cells have developed complex regulatory systems in order to regulate gene expression appropriately in response to environmental and intracellular cues. Control of eukaryotic gene transcription often involves post-translational modification of a multitude of proteins including transcription factors, basal transcription machinery, and chromatin remodeling complexes to modulate their functions in a variety of manners. In this review we describe the emerging functional roles for and techniques to detect and modulate the O-GlcNAc modification and illustrate that the O-GlcNAc modification is intricately involved in at least seven different general mechanisms for the control of gene transcription.
Collapse
Affiliation(s)
- Sandii Brimble
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA 30602
| | - Edith E Wollaston-Hayden
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA 30602
| | - Chin Fen Teo
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA 30602
| | - Andrew C Morris
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA 30602
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA 30602 ; Department of Chemistry, University of Georgia, Athens, GA, USA 30602
| |
Collapse
|
50
|
Lefebvre T, Dehennaut V, Guinez C, Olivier S, Drougat L, Mir AM, Mortuaire M, Vercoutter-Edouart AS, Michalski JC. Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer's disease. Biochim Biophys Acta Gen Subj 2009; 1800:67-79. [PMID: 19732809 DOI: 10.1016/j.bbagen.2009.08.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 08/17/2009] [Accepted: 08/24/2009] [Indexed: 11/19/2022]
Abstract
O-GlcNAcylation is widespread within the cytosolic and nuclear compartments of cells. This post-translational modification is likely an indicator of good health since its intracellular level correlates with the availability of extracellular glucose. Apart from its status as a nutrient sensor, O-GlcNAcylation may also act as a stress sensor since it exerts its fundamental effects in response to stress. Several studies report that the cell quickly responds to an insult by elevating O-GlcNAcylation levels and by unmasking a newly described Hsp70-GlcNAc binding property. From a more practical point of view, it has been shown that O-GlcNAcylation impairments contribute to the etiology of cardiovascular diseases, type-2 diabetes and Alzheimer's disease (AD), three illnesses common in occidental societies. Many studies have demonstrated that O-GlcNAcylation operates as a powerful cardioprotector and that by raising O-GlcNAcylation levels, the organism more successfully resists trauma-hemorrhage and ischemia/reperfusion injury. Recent data have also shown that insulin resistance and, more broadly, type-2 diabetes can be controlled by O-GlcNAcylation of the insulin pathway and O-GlcNAcylation of the gluconeogenesis transcription factors FoxO1 and CRCT2. Lastly, the finding that AD may correspond to a type-3 diabetes offers new perspectives into the knowledge of the neuropathology and into the search for new therapeutic avenues.
Collapse
Affiliation(s)
- Tony Lefebvre
- CNRS-UMR 8576, Unit of Structural and Functional Glycobiology, IFR 147, University of Lille 1, Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | | | |
Collapse
|