1
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024; 9:2085-2166. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
2
|
Ferreira MM, Marins-Gonçalves L, De Souza D. An integrative review of analytical techniques used in food authentication: A detailed description for milk and dairy products. Food Chem 2024; 457:140206. [PMID: 38936134 DOI: 10.1016/j.foodchem.2024.140206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The use of suitable analytical techniques for the detection of adulteration, falsification, deliberate substitution, and mislabeling of foods has great importance in the industrial, scientific, legislative, and public health contexts. This way, this work reports an integrative review with a current analytical approach for food authentication, indicating the main analytical techniques to identify adulteration and perform the traceability of chemical components in processed and non-processed foods, evaluating the authenticity and geographic origin. This work presents results from a systematic search in Science Direct® and Scopus® databases using the keywords "authentication" AND "food", "authentication," AND "beverage", from published papers from 2013 to, 2024. All research and reviews published were employed in the bibliometric analysis, evaluating the advantages and disadvantages of analytical techniques, indicating the perspectives for direct, quick, and simple analysis, guaranteeing the application of quality standards, and ensuring food safety for consumers. Furthermore, this work reports the analysis of natural foods to evaluate the origin (traceability), and industrialized foods to detect adulterations and fraud. A focus on research to detect adulteration in milk and dairy products is presented due to the importance of these products in the nutrition of the world population. All analytical tools discussed have advantages and drawbacks, including sample preparation steps, the need for reference materials, and mathematical treatments. So, the main advances in modern analytical techniques for the identification and quantification of food adulterations, mainly milk and dairy products, were discussed, indicating trends and perspectives on food authentication.
Collapse
Affiliation(s)
- Mariana Martins Ferreira
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo Street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Lorranne Marins-Gonçalves
- Laboratory of Electroanalytical of Food and Environmental Contaminants (LECAA), Chemistry Institute, Uberlândia Federal University, João Naves de Ávila Street, 2121, 1D block, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical of Food and Environmental Contaminants (LECAA), Chemistry Institute, Uberlândia Federal University, João Naves de Ávila Street, 2121, 1D block, Santa Mônica, Uberlândia, MG, 38400-902, Brazil..
| |
Collapse
|
3
|
Farooq A, Khan I, Shehzad J, Hasan M, Mustafa G. Proteomic insights to decipher nanoparticle uptake, translocation, and intercellular mechanisms in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18313-18339. [PMID: 38347361 DOI: 10.1007/s11356-024-32121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Advent of proteomic techniques has made it possible to identify a broad spectrum of proteins in living systems. Studying the impact of nanoparticle (NP)-mediated plant protein responses is an emerging field. NPs are continuously being released into the environment and directly or indirectly affect plant's biochemistry. Exposure of plants to NPs, especially crops, poses a significant risk to the food chain, leading to changes in underlying metabolic processes. Once absorbed by plants, NPs interact with cellular proteins, thereby inducing changes in plant protein patterns. Based on the reactivity, properties, and translocation of nanoparticles, NPs can interfere with proteins involved in various cellular processes in plants such as energy regulation, redox metabolism, and cytotoxicity. Such interactions of NPs at the subcellular level enhance ROS scavenging activity, especially under stress conditions. Although higher concentrations of NPs induce ROS production and hinder oxidative mechanisms under stress conditions, NPs also mediate metabolic changes from fermentation to normal cellular processes. Although there has been lots of work conducted to understand the different effects of NPs on plants, the knowledge of proteomic responses of plants toward NPs is still very limited. This review has focused on the multi-omic analysis of NP interaction mechanisms with crop plants mainly centering on the proteomic perspective in response to both stress and non-stressed conditions. Furthermore, NP-specific interaction mechanisms with the biological pathways are discussed in detail.
Collapse
Affiliation(s)
- Atikah Farooq
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Junaid Shehzad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Murtaza Hasan
- Department of Biotechnology, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, 323000, China.
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Ghosh S, Bornman C, Meskini M, Joghataei M. Microbial Diversity in African Foods and Beverages: A Systematic Assessment. Curr Microbiol 2023; 81:19. [PMID: 38008849 PMCID: PMC10678836 DOI: 10.1007/s00284-023-03481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 11/28/2023]
Abstract
This article provides a comprehensive and in-depth examination of the microbial diversity inherent in African food and beverages, with a particular emphasis on fermented products. It identifies and characterizes the dominant microorganisms, including both prokaryotes and yeasts, prevalent in these foods, and furthermore, critically analyzes the health benefits of these microbial strains, especially their probiotic properties, which could potentially improve digestion and contribute to human health. Notably, it underscores the vital role these microorganisms play in bolstering food security across Africa by enhancing and preserving food quality and safety. It also delves into the potential applications of microbial products, such as metabolites, in the food industry, suggesting their possible use in food processing and preservation. Conclusively, with a summarization of the key findings, emphasizing the importance of gaining a deep understanding of microbial diversity in African beverages and foods. Such knowledge is crucial not only in promoting food security but also in advancing public health.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Charné Bornman
- Department of Engineering Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Maryam Meskini
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
- Microbiology Research Centre, Pasteur Institute of Iran, Teheran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Teheran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Mehri Joghataei
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Garcia-Vaquero M, Mirzapour-Kouhdasht A. A review on proteomic and genomic biomarkers for gelatin source authentication: Challenges and future outlook. Heliyon 2023; 9:e16621. [PMID: 37303544 PMCID: PMC10248112 DOI: 10.1016/j.heliyon.2023.e16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Biomarkers are compounds that could be detected and used as indicators of normal and/or abnormal functioning of different biological systems, including animal tissues and food matrices. Gelatin products of animal origin, mainly bovine and porcine, are currently under scrutiny mainly due to the specific needs of some sectors of the population related to religious beliefs and their dietary prohibitions, as well as some potential health threats associated with these products. Thus, manufacturers are currently in need of a reliable, convenient, and easy procedure to discern and authenticate the origin of animal-based gelatins (bovine, porcine, chicken, or fish). This work aims to review current advances in the creation of reliable gelatin biomarkers for food authentication purposes based on proteomic and DNA biomarkers that could be applied in the food sector. Overall, the presence of specific proteins and peptides in gelatin can be chemically analysed (i.e., by chromatography, mass spectroscopy, electrophoresis, lateral flow devices, and enzyme-linked immunosorbent assay), and different polymerase chain reaction (PCR) methods have been applied for the detection of nucleic acid substances in gelatin. Altogether, despite the fact that numerous methods are currently being developed for the purpose of detecting gelatin biomarkers, their widespread application is highly dependent on the cost of the equipment and reagents as well as the ease of use of the various methods. Combining different methods and approaches targeting multiple biomarkers may be key for manufacturers to achieve reliable authentication of gelatin's origin.
Collapse
|
6
|
Tejedor-Calvo E, García-Barreda S, Felices-Mayordomo M, Blanco D, Sánchez S, Marco P. Truffle flavored commercial products veracity and sensory analysis from truffle and non-truffle consumers. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Sarkar DJ, Behera BK, Parida PK, Aralappanavar VK, Mondal S, Dei J, Das BK, Mukherjee S, Pal S, Weerathunge P, Ramanathan R, Bansal V. Aptamer-based NanoBioSensors for seafood safety. Biosens Bioelectron 2023; 219:114771. [PMID: 36274429 DOI: 10.1016/j.bios.2022.114771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Chemical and biological contaminants are of primary concern in ensuring seafood safety. Rapid detection of such contaminants is needed to keep us safe from being affected. For over three decades, immunoassay (IA) technology has been used for the detection of contaminants in seafood products. However, limitations inherent to antibody generation against small molecular targets that cannot elicit an immune response, along with the instability of antibodies under ambient conditions greatly limit their wider application for developing robust detection and monitoring tools, particularly for non-biomedical applications. As an alternative, aptamer-based biosensors (aptasensors) have emerged as a powerful yet robust analytical tool for the detection of a wide range of analytes. Due to the high specificity of aptamers in recognising targets ranging from small molecules to large proteins and even whole cells, these have been suggested to be viable molecular recognition elements (MREs) in the development of new diagnostic and biosensing tools for detecting a wide range of contaminants including heavy metals, antibiotics, pesticides, pathogens and biotoxins. In this review, we discuss the recent progress made in the field of aptasensors for detection of contaminants in seafood products with a view of effectively managing their potential human health hazards. A critical outlook is also provided to facilitate translation of aptasensors from academic laboratories to the mainstream seafood industry and consumer applications.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Vijay Kumar Aralappanavar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Shirsak Mondal
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Jyotsna Dei
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Subhankar Mukherjee
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Souvik Pal
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
8
|
Gao Y, Wang Y, Wang Y, Magaud P, Liu Y, Zeng F, Yang J, Baldas L, Song Y. Nanocatalysis meets microfluidics: A powerful platform for sensitive bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Analysis of Nanotoxicity with Integrated Omics and Mechanobiology. NANOMATERIALS 2021; 11:nano11092385. [PMID: 34578701 PMCID: PMC8470953 DOI: 10.3390/nano11092385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Nanoparticles (NPs) in biomedical applications have benefits owing to their small size. However, their intricate and sensitive nature makes an evaluation of the adverse effects of NPs on health necessary and challenging. Since there are limitations to conventional toxicological methods and omics analyses provide a more comprehensive molecular profiling of multifactorial biological systems, omics approaches are necessary to evaluate nanotoxicity. Compared to a single omics layer, integrated omics across multiple omics layers provides more sensitive and comprehensive details on NP-induced toxicity based on network integration analysis. As multi-omics data are heterogeneous and massive, computational methods such as machine learning (ML) have been applied for investigating correlation among each omics. This integration of omics and ML approaches will be helpful for analyzing nanotoxicity. To that end, mechanobiology has been applied for evaluating the biophysical changes in NPs by measuring the traction force and rigidity sensing in NP-treated cells using a sub-elastomeric pillar. Therefore, integrated omics approaches are suitable for elucidating mechanobiological effects exerted by NPs. These technologies will be valuable for expanding the safety evaluations of NPs. Here, we review the integration of omics, ML, and mechanobiology for evaluating nanotoxicity.
Collapse
|
10
|
Ilieș M, Uifălean A, Pașca S, Dhople VM, Lalk M, Iuga CA, Hammer E. From Proteomics to Personalized Medicine: The Importance of Isoflavone Dose and Estrogen Receptor Status in Breast Cancer Cells. J Pers Med 2020; 10:E292. [PMID: 33352803 PMCID: PMC7766658 DOI: 10.3390/jpm10040292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 01/06/2023] Open
Abstract
Continuing efforts are directed towards finding alternative breast cancer chemotherapeutics, with improved safety and efficacy profiles. Soy isoflavones represent promising agents but, despite extensive research, limited information exists regarding their impact on the breast cancer cell proteome. The purpose of this study was to compare the proteomic profiles of MCF-7 (estrogen responsive) and MDA-MB-231 (estrogen non-responsive) breast cancer cells exposed to different concentrations of genistein, daidzein, and a soy seed extract, using a high throughput LC-UDMSE protein profiling approach. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed the dual activity of soy isoflavones on MCF-7 cells and the inhibitory effect on MDA-MB-231 cells. Proteome profiling of paramagnetic beads prepared peptides by nano-LC UDMSE and pathway enrichment analysis revealed that isoflavones affected distinct molecular pathways in MCF-7 and MDA-MB-231 cells, such as tyrosine kinases signaling pathway, cytoskeleton organization, lipid and phospholipid catabolism, extracellular matrix degradation and mRNA splicing. Also, in MCF-7 cells, low and high isoflavone doses induced different changes of the proteome, including cell cycle alterations. Therefore, the expression of estrogen receptors and the isoflavone dose are determinant factors for the molecular impact of isoflavones and must be taken into account when considering adjuvant breast cancer therapy towards personalized medicine.
Collapse
Affiliation(s)
- Maria Ilieș
- MedFuture Research Center for Advanced Medicine, Department of Proteomics and Metabolomics, “Iuliu Hațieganu” University of Medicine and Pharmacy, no. 4–6 Louis Pasteur st., 400349 Cluj-Napoca, Romania; (M.I.); (S.P.); (C.A.I.)
| | - Alina Uifălean
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Sergiu Pașca
- MedFuture Research Center for Advanced Medicine, Department of Proteomics and Metabolomics, “Iuliu Hațieganu” University of Medicine and Pharmacy, no. 4–6 Louis Pasteur st., 400349 Cluj-Napoca, Romania; (M.I.); (S.P.); (C.A.I.)
- Department of Hematology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Vishnu Mukund Dhople
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Straße 8, 17475 Greifswald, Germany; (V.M.D.); (E.H.)
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany;
| | - Cristina Adela Iuga
- MedFuture Research Center for Advanced Medicine, Department of Proteomics and Metabolomics, “Iuliu Hațieganu” University of Medicine and Pharmacy, no. 4–6 Louis Pasteur st., 400349 Cluj-Napoca, Romania; (M.I.); (S.P.); (C.A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Straße 8, 17475 Greifswald, Germany; (V.M.D.); (E.H.)
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
11
|
Singh N, Rai V, Singh NK. Multi-omics strategies and prospects to enhance seed quality and nutritional traits in pigeonpea. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00341-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
12
|
Shahbazi N, Zare-Dorabei R. A Facile Colorimetric and Spectrophotometric Method for Sensitive Determination of Metformin in Human Serum Based on Citrate-Capped Gold Nanoparticles: Central Composite Design Optimization. ACS OMEGA 2019; 4:17519-17526. [PMID: 31656924 PMCID: PMC6812131 DOI: 10.1021/acsomega.9b02389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/27/2019] [Indexed: 05/10/2023]
Abstract
For the determination of Metformin in human serum, a facile colorimetric and spectrophotometric sensor was designed based on citrate-capped gold nanoparticles (citrate-GNPs). In this probe, the addition of Metformin to GNP solution generates a naked-eye color change resulting from the aggregation of GNPs. Study of this color conversion and quantity analysis of analyte is operated by spectrophotometric instruments. The three factors pH, time, and GNP ratio were selected to examine their effects on sensing results and their values optimization. The optimization of parameters was done by means of central composite design and one-at-a-time methods. The sensing results proved the highly selective and sensitive performance of the sensor for Metformin in a linear range of 6.25-133.3 ppm with a detection limit of 1.79 ppm. The relative standard deviation (RSD) of the reported method is 2.53%.
Collapse
Affiliation(s)
- Neda Shahbazi
- Research Laboratory of Spectrometry
& Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16844, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry
& Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16844, Iran
| |
Collapse
|
13
|
Tang J, Wang Y, Li Y, Zhang Y, Zhang R, Xiao Z, Luo Y, Guo X, Tao L, Lou Y, Xue W, Zhu F. Recent Technological Advances in the Mass Spectrometry-based Nanomedicine Studies: An Insight from Nanoproteomics. Curr Pharm Des 2019; 25:1536-1553. [PMID: 31258068 DOI: 10.2174/1381612825666190618123306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 11/22/2022]
Abstract
Nanoscience becomes one of the most cutting-edge research directions in recent years since it is gradually matured from basic to applied science. Nanoparticles (NPs) and nanomaterials (NMs) play important roles in various aspects of biomedicine science, and their influences on the environment have caused a whole range of uncertainties which require extensive attention. Due to the quantitative and dynamic information provided for human proteome, mass spectrometry (MS)-based quantitative proteomic technique has been a powerful tool for nanomedicine study. In this article, recent trends of progress and development in the nanomedicine of proteomics were discussed from quantification techniques and publicly available resources or tools. First, a variety of popular protein quantification techniques including labeling and label-free strategies applied to nanomedicine studies are overviewed and systematically discussed. Then, numerous protein profiling tools for data processing and postbiological statistical analysis and publicly available data repositories for providing enrichment MS raw data information sources are also discussed.
Collapse
Affiliation(s)
- Jing Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yi Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yang Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Runyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Ziyu Xiao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Xueying Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| |
Collapse
|
14
|
Beaulieu L. Insights into the Regulation of Algal Proteins and Bioactive Peptides Using Proteomic and Transcriptomic Approaches. Molecules 2019; 24:E1708. [PMID: 31052532 PMCID: PMC6539653 DOI: 10.3390/molecules24091708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 11/24/2022] Open
Abstract
Oceans abound in resources of various kinds for R&D and for commercial applications. Monitoring and bioprospecting allow the identification of an increasing number of key natural resources. Macroalgae are essential elements of marine ecosystems as well as a natural resource influenced by dynamic environmental factors. They are not only nutritionally attractive but have also demonstrated potential health benefits such as antioxidant, antihypertensive, and anti-inflammatory activities. Several bioactive peptides have been observed following enzymatic hydrolysis of macroalgal proteins. In addition, significant differences in protein bioactivities and peptide extracts of wild and cultivated macroalgae have been highlighted, but the metabolic pathways giving rise to these bioactive molecules remain largely elusive. Surprisingly, the biochemistry that underlies the environmental stress tolerance of macroalgae has not been well investigated and remains poorly understood. Proteomic and functional genomic approaches based on identifying precursor proteins and bioactive peptides of macroalgae through integrated multi-omics analysis can give insights into their regulation as influenced by abiotic factors. These strategies allow evaluating the proteomics profile of regulation of macroalgae in response to different growth conditions as well as establishing a comparative transcriptome profiling targeting structural protein-coding genes. Elucidation of biochemical pathways in macroalgae could provide an innovative means of enhancing the protein quality of edible macroalgae. This could be ultimately viewed as a powerful way to drive the development of a tailored production and extraction of high value molecules. This review provides an overview of algal proteins and bioactive peptide characterization using proteomics and transcriptomic analyses.
Collapse
Affiliation(s)
- Lucie Beaulieu
- Département des Sciences des Aliments, Institut sur la Nutrition et les Aliments Fonctionnels (INAF), 2425, rue de l'Agriculture, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
15
|
Behera BK, Das A, Sarkar DJ, Weerathunge P, Parida PK, Das BK, Thavamani P, Ramanathan R, Bansal V. Polycyclic Aromatic Hydrocarbons (PAHs) in inland aquatic ecosystems: Perils and remedies through biosensors and bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:212-233. [PMID: 29807281 DOI: 10.1016/j.envpol.2018.05.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 05/14/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are among the most ubiquitous environmental pollutants of high global concern. PAHs belong to a diverse family of hydrocarbons with over one hundred compounds known, each containing at least two aromatic rings in their structure. Due to hydrophobic nature, PAHs tend to accumulate in the aquatic sediments, leading to bioaccumulation and elevated concentrations over time. In addition to their well-manifested mutagenic and carcinogenic effects in humans, they pose severe detrimental effects to aquatic life. The high eco-toxicity of PAHs has attracted a number of reviews, each dealing specifically with individual aspects of this global pollutant. However, efficient management of PAHs warrants a holistic approach that combines a thorough understanding of their physico-chemical properties, modes of environmental distribution and bioaccumulation, efficient detection, and bioremediation strategies. Currently, there is a lack of a comprehensive study that amalgamates all these aspects together. The current review, for the first time, overcomes this constraint, through providing a high level comprehensive understanding of the complexities faced during PAH management, while also recommending future directions through potentially viable solutions. Importantly, effective management of PAHs strongly relies upon reliable detection tools, which are currently non-existent, or at the very best inefficient, and therefore have a strong prospect of future development. Notably, the currently available biosensor technologies for PAH monitoring have not so far been compiled together, and therefore a significant focus of this article is on biosensor technologies that are critical for timely detection and efficient management of PAHs. This review is focussed on inland aquatic ecosystems with an emphasis on fish biodiversity, as fish remains a major source of food and livelihood for a large proportion of the global population. This thought provoking study is likely to instigate new collaborative approaches for protecting aquatic biodiversity from PAHs-induced eco-toxicity.
Collapse
Affiliation(s)
- Bijay Kumar Behera
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India; Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | - Abhishek Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Dhruba Jyoti Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Pabudi Weerathunge
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Pranaya Kumar Parida
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Palanisami Thavamani
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rajesh Ramanathan
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Vipul Bansal
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
16
|
Andjelković U, Josić D. Mass spectrometry based proteomics as foodomics tool in research and assurance of food quality and safety. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Slepička P, Siegel J, Lyutakov O, Slepičková Kasálková N, Kolská Z, Bačáková L, Švorčík V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol Adv 2018; 36:839-855. [DOI: 10.1016/j.biotechadv.2017.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/26/2023]
|
18
|
Abstract
Current food production faces tremendous challenges from growing human population, maintaining clean resources and food qualities, and protecting climate and environment. Food sustainability is mostly a cooperative effort resulting in technology development supported by both governments and enterprises. Multiple attempts have been promoted in tackling challenges and enhancing drivers in food production. Biosensors and biosensing technologies with their applications, are being widely applied to tackling top challenges in food production and its sustainability. Consequently, a growing demand in biosensing technologies exists in food sustainability. Microfluidics represents a technological system integrating multiple technologies. Nanomaterials, with its technology in biosensing, is thought to be the most promising tool in dealing with health, energy, and environmental issues closely related to world populations. The demand of point of care (POC) technologies in this area focus on rapid, simple, accurate, portable, and low-cost analytical instruments. This review provides current viewpoints from the literature on biosensing in food production, food processing, safety and security, food packaging and supply chain, food waste processing, food quality assurance, and food engineering. The current understanding of progress, solution, and future challenges, as well as the commercialization of biosensors are summarized.
Collapse
|
19
|
Rapid colorimetric detection of mercury using biosynthesized gold nanoparticles. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
|
21
|
|
22
|
Kuznetzova KG, Kazlas EV, Torkhovskaya TI, Karalkin PA, Vachrushev IV, Zakharova TS, Sanzhakov MA, Moshkovskiy SA, Ipatova OM. [The influence of doxorubicin incorporated in phospholipid drug delivery nanosystem on HEPG2 cells proteome]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015. [PMID: 26215411 DOI: 10.18097/pbmc20156103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A phospholipid drug delivery nanosystem with particle size up to 30 nm elaborated at the Institute of Biomedical Chemistry has been used earlier for incorporation of doxorubicin (Doxolip). This system demonstrated higher antitumor effect in vivo as compared with free doxorubicin. In this study the effect of this nanosystem containing doxorubicin on HepG2 cell proteome has been investigated. Cells were incubated in a medium containing phospholipid nanoparticles (0.5 mg/ml doxorubicin, 10 mg/mL phosphatidylcholine). After incubation for 48 h their survival represented 10% as compared with untreated cells. Cell proteins were analyzed by quantitative two-dimensional gel electrophoresis followed by identification of differentially expressed proteins with MALDI-TOF mass spectrometry. The phospholipid transport nanosystem itself insignificantly influenced the cell proteome thus confirming previous data on its safety. Doxorubicin, as both free substance and Doxolip (i.e. included into phospholipid nanoparticles) induced changes in expression of 28 proteins. Among these proteins only four of them demonstrated different in response to the effect of the free drug substance and Doxolip. Doxolip exhibited a more pronounced effect on expression of certain proteins; the latter indirectly implies increased penetration of the drug substance (included into nanoparticles) into the tumor cells. Increased antitumor activity of doxorubicin included into phospholipid nanoparticles may be associated with more active increase of specific protein expression.
Collapse
Affiliation(s)
| | - E V Kazlas
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - P A Karalkin
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | | | | - O M Ipatova
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
23
|
Choi JW, Kim GJ, Lee S, Kim J, deMello AJ, Chang SI. A droplet-based fluorescence polarization immunoassay (dFPIA) platform for rapid and quantitative analysis of biomarkers. Biosens Bioelectron 2015; 67:497-502. [DOI: 10.1016/j.bios.2014.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 02/05/2023]
|
24
|
Sharma TK, Ramanathan R, Rakwal R, Agrawal GK, Bansal V. Moving forward in plant food safety and security through NanoBioSensors: Adopt or adapt biomedical technologies? Proteomics 2015; 15:1680-92. [PMID: 25727733 DOI: 10.1002/pmic.201400503] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/11/2015] [Accepted: 02/23/2015] [Indexed: 11/07/2022]
Abstract
Plant-based foods are integral part of our day-to-day diet. Increasing world population has put forth an ever increasing demand for plant-based foods, and food security remains a major concern. Similarly, biological, chemical, and physical threats to our food and increasing regulatory demands to control the presence of foreign species in food products have made food safety a growing issue. Nanotechnology has already established its roots in diverse disciplines. However, the food industry is yet to harness the full potential of the unique capabilities offered by this next-generation technology. While there might be safety concerns in regards to integration of nanoproducts with our food products, an aspect of nanotechnology that can make remarkable contribution to different elements of the food chain is the use of nanobiosensors and diagnostic platforms for monitoring food traceability, quality, safety, and nutritional value. This brings us to an important question that whether existing diagnostic platforms that have already been well developed for biomedical and clinical application are suitable for food industry or whether the demands of the food industry are altogether different that may not allow adoption/adaptation of the existing technology. This review is an effort to raise this important "uncomfortable" yet "timely" question.
Collapse
Affiliation(s)
- Tarun K Sharma
- Centre for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Rajesh Ramanathan
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Randeep Rakwal
- Organization for Educational Initiatives, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Anatomy I, School of Medicine, Showa University, Shinagawa, Tokyo, Japan
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal
- GRADE Academy Private Limited, Birgunj, Nepal
| | - Ganesh K Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal
- GRADE Academy Private Limited, Birgunj, Nepal
| | - Vipul Bansal
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Martins JT, Ramos ÓL, Pinheiro AC, Bourbon AI, Silva HD, Rivera MC, Cerqueira MA, Pastrana L, Malcata FX, González-Fernández Á, Vicente AA. Edible Bio-Based Nanostructures: Delivery, Absorption and Potential Toxicity. FOOD ENGINEERING REVIEWS 2015. [DOI: 10.1007/s12393-015-9116-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Righetti PG, Esteve C, D'Amato A, Fasoli E, Luisa Marina M, Concepción García M. A sarabande of tropical fruit proteomics: Avocado, banana, and mango. Proteomics 2015; 15:1639-45. [DOI: 10.1002/pmic.201400325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/17/2014] [Accepted: 12/01/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Pier Giorgio Righetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| | - Clara Esteve
- Department of Analytical Chemistry; Faculty of Chemistry, University of Alcalá; Madrid Spain
| | - Alfonsina D'Amato
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| | - María Luisa Marina
- Department of Analytical Chemistry; Faculty of Chemistry, University of Alcalá; Madrid Spain
| | - María Concepción García
- Department of Analytical Chemistry; Faculty of Chemistry, University of Alcalá; Madrid Spain
| |
Collapse
|
27
|
Abdelhamid HN, Wu HF. Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.09.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Vijaykrishnaraj M, Prabhasankar P. Marine protein hydrolysates: their present and future perspectives in food chemistry – a review. RSC Adv 2015. [DOI: 10.1039/c4ra17205a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Marine protein hydrolysates are usually prepared by the enzymatic digestion with different proteases at controlled pH and temperature.
Collapse
Affiliation(s)
- M. Vijaykrishnaraj
- Flour Milling Baking and Confectionery Technology Department
- CSIR-Central Food Technological Research Institute
- Mysore – 570 020
- India
| | - P. Prabhasankar
- Flour Milling Baking and Confectionery Technology Department
- CSIR-Central Food Technological Research Institute
- Mysore – 570 020
- India
| |
Collapse
|
29
|
Singh N, Jain N, Kumar R, Jain A, Singh NK, Rai V. A comparative method for protein extraction and 2-D gel electrophoresis from different tissues of Cajanus cajan. FRONTIERS IN PLANT SCIENCE 2015; 6:606. [PMID: 26300903 PMCID: PMC4528993 DOI: 10.3389/fpls.2015.00606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/23/2015] [Indexed: 05/14/2023]
Abstract
Pigeonpea is an important legume crop with high protein content. However, it is often subjected to various abiotic and biotic stresses. Proteomics is a state-of-the-art technique used to analyze the protein profiling of a tissue for deciphering the molecular entities that could be manipulated for developing crops resistant to these stresses. In this context, developing a comprehensive proteome profile from different vegetative and reproductive tissues has become mandatory. Although several protein extraction protocols from different tissues of diverse plant species have been reported, there is no report for pigeonpea. Here, we report tissue-specific protein extraction protocols representing vegetative (young leaves), and reproductive (flowers and seeds) organs and their subsequent analysis on 2-dimensional gel electrophoresis. The study explicitly demonstrated that the efficacy of a particular protein extraction protocol is dependent on the different tissues, such as leaves, flowers and seeds that differ in their structure and metabolic constituents. For instance, phenol-based protocol showed an efficacy toward higher protein yield, better spot resolution and a minimal streaking on 2-DE gel for both leaves and flowers. Protein extraction from seeds was best achieved by employing phosphate-TCA-acetone protocol.
Collapse
Affiliation(s)
| | | | | | | | | | - Vandna Rai
- *Correspondence: Vandna Rai, Functional Genomics, Genomics, National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi-110012, India,
| |
Collapse
|
30
|
Righetti PG, Boschetti E. Sample treatment methods involving combinatorial peptide ligand libraries for improved proteomes analyses. Methods Mol Biol 2015; 1243:55-82. [PMID: 25384740 DOI: 10.1007/978-1-4939-1872-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
If used in an optimized manner, the technology of combinatorial peptide solid-phase libraries can easily improve the analytical determinations of proteomes by several factors. The discovery of novel species and of early stage biomarkers becomes thus reachable with a simple sample treatment. This report describes the most important point to consider (overloading and full recovery) along with a minimum scientific background and gives then detailed recipes to laboratory technicians. Orientations for optional routes are also given according to the objective of the experimental investigations. This covers different approaches to capture proteins of very low abundance. Total protein harvestings to prevent partial losses are also described such as single exhaustive desorption and fractionated elutions for more detailed analyses. Documented results are also reported demonstrating the capability of the technology well beyond what is the common assumption.
Collapse
Affiliation(s)
- Pier Giorgio Righetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milan, 20131, Italy
| | | |
Collapse
|
31
|
Shankar S, Soni SK, Daima HK, Selvakannan PR, Khire JM, Bhargava SK, Bansal V. Charge-switchable gold nanoparticles for enhanced enzymatic thermostability. Phys Chem Chem Phys 2015. [DOI: 10.1039/c5cp03021h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Zwitterionic amino acids allow the synthesis of charge-switchable metal nanoparticles, which support efficient immobilization of enzymes on nanoparticles, leading to high thermal stability and enzymatic efficiency.
Collapse
Affiliation(s)
- Shiv Shankar
- Ian Potter NanoBiosening Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Applied Sciences
- RMIT University
- Melbourne
| | - Sarvesh K. Soni
- Center for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - Hemant K. Daima
- Ian Potter NanoBiosening Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Applied Sciences
- RMIT University
- Melbourne
| | - P. R. Selvakannan
- Center for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - Jayant M. Khire
- National Collection of Industrial Microorganisms
- National Chemical Laboratory
- Pune 411008
- India
| | - Suresh K. Bhargava
- Center for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - Vipul Bansal
- Ian Potter NanoBiosening Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Applied Sciences
- RMIT University
- Melbourne
| |
Collapse
|
32
|
Weerathunge P, Ramanathan R, Shukla R, Sharma TK, Bansal V. Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal Chem 2014; 86:11937-41. [PMID: 25340286 DOI: 10.1021/ac5028726] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This study addresses the need for rapid pesticide (acetamiprid) detection by reporting a new colorimetric biosensing assay. Our approach combines the inherent peroxidase-like nanozyme activity of gold nanoparticles (GNPs) with high affinity and specificity of an acetamiprid-specific S-18 aptamer to detect this neurotoxic pesticide in a highly rapid, specific, and sensitive manner. It is shown that the nanozyme activity of GNPs can be inhibited by its surface passivation with target-specific aptamer molecules. Similar to an enzymatic competitive inhibition process, in the presence of a cognate target, these aptamer molecules leave the GNP surface in a target concentration-dependent manner, reactivating GNP nanozyme activity. This reversible inhibition of the GNP nanozyme activity can either be directly visualized in the form of color change of the peroxidase reaction product or can be quantified using UV-visible absorbance spectroscopy. This approach allowed detection of 0.1 ppm acetamiprid within an assay time of 10 min. This reversible nanozyme activation/inhibition strategy may in principle be universally applicable for the detection of a range of environmental or biomedical molecules of interest.
Collapse
Affiliation(s)
- Pabudi Weerathunge
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Applied Science, RMIT University , GPO Box 2476 V, Melbourne Victoria 3001, Australia
| | | | | | | | | |
Collapse
|
33
|
Kandjani AE, Mohammadtaheri M, Thakkar A, Bhargava SK, Bansal V. Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable 'hot-spots' for highly reproducible molecular sensing. J Colloid Interface Sci 2014; 436:251-7. [PMID: 25278363 DOI: 10.1016/j.jcis.2014.09.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/30/2022]
Abstract
HYPOTHESIS The reproducible surface enhanced Raman scattering (SERS)-based sensing of an analyte relies on high quality SERS substrates that offer uniformity over large areas. Uniform ZnO nanoarrays are expected to offer an appropriate platform for SERS sensing. Moreover, since ZnO has good photocatalytic properties, controllable decoration of silver nanoparticles on ZnO nanoarrays may offer an additional opportunity to clean up SERS substrates after each sensing event. EXPERIMENTS This study employs a facile soft chemical synthesis strategy to fabricate Raman-active and recyclable ZnO/Ag nanorod arrays as reproducible SERS substrates. Arrays of ZnO nanorods were synthesized using hydrothermal method, which was followed by controllable decoration of ZnO with silver nanoparticles (AgNPs) using an electroless plating technique. FINDINGS The uniform density of SERS-active 'hot-spots' on ZnO nanoarrays could be controlled on a large 1×1 cm(2) substrate. These ZnO/Ag nanoarrays showed high reproducibility (0.132 RSD) towards acquiring SERS spectra of rhodamine B (RB) at 30 random locations on a single substrate. The photocatalytic nature of ZnO/Ag semiconductor/metal hybrid endowed these substrates with reusability characteristics. By controlling metal loading on a semiconductor surface, photocatalytic activity and high SERS performance can be integrated within a single package to obtain high quality, reproducible, stable and recyclable SERS substrates.
Collapse
Affiliation(s)
- Ahmad Esmaielzadeh Kandjani
- Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Laboratory (NBRL), School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, VIC 3001, Australia; Centre for Advanced Materials and Industrial Chemistry, School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, VIC 3001, Australia.
| | - Mahsa Mohammadtaheri
- Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Laboratory (NBRL), School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, VIC 3001, Australia.
| | - Akshi Thakkar
- Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Laboratory (NBRL), School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, VIC 3001, Australia.
| | - Suresh Kumar Bhargava
- Centre for Advanced Materials and Industrial Chemistry, School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, VIC 3001, Australia.
| | - Vipul Bansal
- Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Laboratory (NBRL), School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, VIC 3001, Australia.
| |
Collapse
|
34
|
da Costa JP, Oliveira-Silva R, Daniel-da-Silva AL, Vitorino R. Bionanoconjugation for Proteomics applications — An overview. Biotechnol Adv 2014; 32:952-70. [DOI: 10.1016/j.biotechadv.2014.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/15/2014] [Accepted: 04/26/2014] [Indexed: 12/29/2022]
|
35
|
Righetti PG, Fasoli E, D'Amato A, Boschetti E. The "Dark Side" of Food Stuff Proteomics: The CPLL-Marshals Investigate. Foods 2014; 3:217-237. [PMID: 28234315 PMCID: PMC5302364 DOI: 10.3390/foods3020217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 11/17/2022] Open
Abstract
The present review deals with analysis of the proteome of animal and plant-derived food stuff, as well as of non-alcoholic and alcoholic beverages. The survey is limited to those systems investigated with the help of combinatorial peptide ligand libraries, a most powerful technique allowing access to low- to very-low-abundance proteins, i.e., to those proteins that might characterize univocally a given biological system and, in the case of commercial food preparations, attest their genuineness or adulteration. Among animal foods the analysis of cow's and donkey's milk is reported, together with the proteomic composition of egg white and yolk, as well as of honey, considered as a hybrid between floral and animal origin. In terms of plant and fruits, a survey is offered of spinach, artichoke, banana, avocado, mango and lemon proteomics, considered as recalcitrant tissues in that small amounts of proteins are dispersed into a large body of plant polymers and metabolites. As examples of non-alcoholic beverages, ginger ale, coconut milk, a cola drink, almond milk and orgeat syrup are analyzed. Finally, the trace proteome of white and red wines, beer and aperitifs is reported, with the aim of tracing the industrial manipulations and herbal usage prior to their commercialization.
Collapse
Affiliation(s)
- Pier Giorgio Righetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy.
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy.
| | - Alfonsina D'Amato
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy.
| | | |
Collapse
|
36
|
Agrawal GK, Job D, Kieselbach T, Barkla BJ, Chen S, Deswal R, Lüthje S, Amalraj RS, Tanou G, Ndimba BK, Cramer R, Weckwerth W, Wienkoop S, Dunn MJ, Kim ST, Fukao Y, Yonekura M, Zolla L, Rohila JS, Waditee-Sirisattha R, Masi A, Wang T, Sarkar A, Agrawal R, Renaut J, Rakwal R. INPPO Actions and Recognition as a Driving Force for Progress in Plant Proteomics: Change of Guard, INPPO Update, and Upcoming Activities. Proteomics 2013. [DOI: 10.1002/pmic.201370174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu Nepal
- GRADE Academy Private Limited; Adarsh Nagar Birgunj Nepal
| | - Dominique Job
- CNRS/UCBL/INSA/Bayer CropScience Joint Laboratory; UMR 5240, Bayer CropScience Lyon France
| | | | - Bronwyn J. Barkla
- Instituto de Biotecnologia; Universidad Nacional Autonoma de Mexico; Morelos Mexico
| | - Sixue Chen
- Department of Biology; Interdisciplinary Center for Biotechnology Research (ICBR); Cancer & Genetics Research Complex, University of Florida; Gainesville FL USA
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory; Department of Botany; University of Delhi; Delhi India
| | - Sabine Lüthje
- Oxidative Stress and Plant Proteomics Group; University of Hamburg; Biocenter Klein Flottbek Hamburg Germany
| | - Ramesh Sundar Amalraj
- Plant Pathology Section, Sugarcane Breeding Institute; Indian Council of Agricultural Research; Tamil Nadu India
| | - Georgia Tanou
- Faculty of Agriculture; Aristotle University of Thessalonki; Thessaloniki Greece
| | - Bongani Kaiser Ndimba
- Proteomics Research and Services Unit; Agricultural Research Council; Infruitec-Nietvoorbij Campus; Stellenbosch South Africa
- Proteomics Research Group; Department of Biotechnology, University of the Western Cape; Bellville South Africa
| | - Rainer Cramer
- Department of Chemistry; University of Reading; Reading United Kingdom
| | | | | | - Michael J. Dunn
- UCD Conway Institute of Biomolecular and Biomedical Research; School of Medicine and Medical Science; University College Dublin; Dublin Ireland
| | - Sun Tae Kim
- Department of Plant Bioscience; Pusan National University; Miryang South Korea
| | - Yochiro Fukao
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Ikoma Japan
- Plant Global Educational Project; Nara Institute of Science and Technology; Ikoma Japan
| | - Masami Yonekura
- Laboratory of Molecular Food Functionality; College of Agriculture; Ami Ibaraki Japan
| | - Lello Zolla
- Department of Ecology and Biology; University Tuscia; Piazzale Universita; Viterbo Italy
| | - Jai Singh Rohila
- Department of Biology and Microbiology; South Dakota State University; Brookings SD USA
| | | | | | - Tai Wang
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Xiangshan Haidianqu Beijing China
| | - Abhijit Sarkar
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu Nepal
- GRADE Academy Private Limited; Adarsh Nagar Birgunj Nepal
- International Plant Proteomics Organization (INPPO www.inppo.com)
- Institute of Genetic Medicine and Genomic Science (IGMGS); Badu Kolkata West Bengal India
| | - Raj Agrawal
- International Plant Proteomics Organization (INPPO www.inppo.com)
| | - Jenny Renaut
- Centre de Recherche Public-Gabriel Lippman; Department of Environment and Agrobiotechnologies (EVA); Belvaux GD Luxembourg
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu Nepal
- GRADE Academy Private Limited; Adarsh Nagar Birgunj Nepal
- Department of Anatomy I; School of Medicine; Showa University; Shinagawa Tokyo Japan
- Organization for Educational Initiatives; University of Tsukuba; Tsukuba Japan
| |
Collapse
|
37
|
Optimized sample treatment protocol by solid-phase peptide libraries to enrich for protein traces. Amino Acids 2013; 45:1431-42. [DOI: 10.1007/s00726-013-1596-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/12/2013] [Indexed: 12/11/2022]
|