1
|
Damm M, Vilcinskas A, Lüddecke T. Mapping the architecture of animal toxin systems by mass spectrometry imaging. Biotechnol Adv 2025; 81:108548. [PMID: 40049423 DOI: 10.1016/j.biotechadv.2025.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/24/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Animal toxins are proteins, peptides or metabolites that cause negative effects against predators, prey or competitors following contact or injection. They work by interacting with enzymes, receptors and other targets causing pain, debilitation or leading even to death. Their biological significance and pharmacological effects in humans make them interesting to researchers, but much remains to be learned about their mechanisms of action, storage, tissue-specific distribution and maturation. Mass spectrometry imaging (MSI), a technique that determines the spatial distribution of molecules based on their molecular mass, is uniquely positioned to answer these key questions and pioneering studies have already confirmed its potential impact on the field of zootoxinology. We provide the first comprehensive review of MSI as a means to study animal toxins, the lessons learned thus far, and potential future applications. This fills an important gap in the literature and will facilitate future work on the structure, function, evolutionary history and medical uses of animal toxins.
Collapse
Affiliation(s)
- Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; Institute of Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| | - Andreas Vilcinskas
- Institute of Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany.
| | - Tim Lüddecke
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
2
|
Schendel V, Hamilton BR, Robinson SD, Green K, Sayre ME, Brown D, Stow JL, Øyen JP, Voje KL, Millard SS, Vetter I, Rash LD, Undheim EAB. Exaptation of an evolutionary constraint enables behavioural control over the composition of secreted venom in a giant centipede. Nat Ecol Evol 2025; 9:73-86. [PMID: 39496866 DOI: 10.1038/s41559-024-02556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/09/2024] [Indexed: 11/06/2024]
Abstract
Venoms are biochemical arsenals that have emerged in numerous animal lineages, where they have co-evolved with morphological and behavioural traits for venom production and delivery. In centipedes, venom evolution is thought to be constrained by the morphological complexity of their venom glands due to physiological limitations on the number of toxins produced by their secretory cells. Here we show that the uneven toxin expression that results from these limitations have enabled Scolopendra morsitans to regulate the composition of their secreted venom despite the lack of gross morphologically complex venom glands. We show that this control is probably achieved by a combination of this heterogenous toxin distribution with a dual mechanism of venom secretion that involves neuromuscular innervation as well as stimulation via neurotransmitters. Our results suggest that behavioural control over venom composition may be an overlooked aspect of venom biology and provide an example of how exaptation can facilitate evolutionary innovation and novelty.
Collapse
Affiliation(s)
- Vanessa Schendel
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Queensland, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland, Australia
| | - Samuel D Robinson
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Kathryn Green
- Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland, Australia
| | - Marcel E Sayre
- Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Darren Brown
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Jan Philip Øyen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetil L Voje
- Natural History Museum, University of Oslo, Oslo, Norway
| | - S Sean Millard
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, Queensland, Australia
| | - Lachlan D Rash
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Eivind A B Undheim
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Lane AN, Nash PD, Ellsworth SA, Nystrom GS, Rokyta DR. The arylsulfatase- and phospholipase-rich venom of the plutoniumid centipede Theatops posticus. Toxicon 2023; 233:107231. [PMID: 37517595 DOI: 10.1016/j.toxicon.2023.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Research on centipede venoms has led to the discovery of a diverse array of novel proteins and peptides, including those with homology to previously discovered toxin families (e.g., phospholipase A2s and pM12a metalloproteases) and novel toxin families not previously detected in venoms (e.g., β-pore forming toxins and scoloptoxins). Most of this research has focused on centipedes in the order Scolopendromorpha, particularly those in the families Scolopendridae, Cryptopidae, and Scolopocryptopidae. To generate the first high-throughput venom characterization for a centipede in the scolopendromorph family Plutoniumidae, we performed venom-gland transcriptomics and venom proteomics on two Theatops posticus. We identified a total of 64 venom toxins, 60 of which were detected in both the venom-gland transcriptome and venom proteome and four of which were only detected transcriptomically. We detected a single highly abundant arylsulfatase B (ARSB) toxin, the first ARSB toxin identified from centipede venoms. As ARSBs have been detected in other venomous species (e.g., scorpions), ARSBs in T. posticus highlights a new case of convergent evolution across venoms. Theatops posticus venom also contained a much higher abundance and diversity of phospholipase A2 toxins compared to other characterized centipede venoms. Conversely, we detected other common centipedes toxins, such as CAPs and scoloptoxins, at relatively low abundances and diversities. Our observation of a diverse set of toxins from T. posticus venom, including those from novel toxin families, emphasizes the importance of studying unexplored centipede taxonomic groups and the continued potential of centipede venoms for novel toxin discovery and unraveling the molecular mechanisms underlying trait evolution.
Collapse
Affiliation(s)
- Aaliyah N Lane
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Pauline D Nash
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
4
|
Hempel BF, Damm M, Petras D, Kazandjian TD, Szentiks CA, Fritsch G, Nebrich G, Casewell NR, Klein O, Süssmuth RD. Spatial Venomics─Cobra Venom System Reveals Spatial Differentiation of Snake Toxins by Mass Spectrometry Imaging. J Proteome Res 2023; 22:26-35. [PMID: 36521429 DOI: 10.1021/acs.jproteome.2c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among venomous animals, toxic secretions have evolved as biochemical weapons associated with various highly specialized delivery systems on many occasions. Despite extensive research, there is still limited knowledge of the functional biology of most animal toxins, including their venom production and storage, as well as the morphological structures within sophisticated venom producing tissues that might underpin venom modulation. Here, we report on the spatial exploration of a snake venom gland system by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), in combination with standard proteotranscriptomic approaches, to enable in situ toxin mapping in spatial intensity maps across a venom gland sourced from the Egyptian cobra (Naja haje). MALDI-MSI toxin visualization on the elapid venom gland reveals a high spatial heterogeneity of different toxin classes at the proteoform level, which may be the result of physiological constraints on venom production and/or storage that reflects the potential for venom modulation under diverse stimuli.
Collapse
Affiliation(s)
- Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany.,Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | - Maik Damm
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Universität Tübingen, 72076 Tübingen, Germany
| | - Taline D Kazandjian
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
| | - Claudia A Szentiks
- Department of Wildlife Diseases and Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., 10315 Berlin, Germany
| | - Guido Fritsch
- Department of Wildlife Diseases and Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., 10315 Berlin, Germany
| | - Grit Nebrich
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
| | - Oliver Klein
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | |
Collapse
|
5
|
Lüddecke T, Paas A, Harris RJ, Talmann L, Kirchhoff KN, Billion A, Hardes K, Steinbrink A, Gerlach D, Fry BG, Vilcinskas A. Venom biotechnology: casting light on nature's deadliest weapons using synthetic biology. Front Bioeng Biotechnol 2023; 11:1166601. [PMID: 37207126 PMCID: PMC10188951 DOI: 10.3389/fbioe.2023.1166601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Venoms are complex chemical arsenals that have evolved independently many times in the animal kingdom. Venoms have attracted the interest of researchers because they are an important innovation that has contributed greatly to the evolutionary success of many animals, and their medical relevance offers significant potential for drug discovery. During the last decade, venom research has been revolutionized by the application of systems biology, giving rise to a novel field known as venomics. More recently, biotechnology has also made an increasing impact in this field. Its methods provide the means to disentangle and study venom systems across all levels of biological organization and, given their tremendous impact on the life sciences, these pivotal tools greatly facilitate the coherent understanding of venom system organization, development, biochemistry, and therapeutic activity. Even so, we lack a comprehensive overview of major advances achieved by applying biotechnology to venom systems. This review therefore considers the methods, insights, and potential future developments of biotechnological applications in the field of venom research. We follow the levels of biological organization and structure, starting with the methods used to study the genomic blueprint and genetic machinery of venoms, followed gene products and their functional phenotypes. We argue that biotechnology can answer some of the most urgent questions in venom research, particularly when multiple approaches are combined together, and with other venomics technologies.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- *Correspondence: Tim Lüddecke,
| | - Anne Paas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Richard J. Harris
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Lea Talmann
- Syngenta Crop Protection, Stein, Switzerland
| | - Kim N. Kirchhoff
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - André Billion
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Giessen, Germany
| | - Antje Steinbrink
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| | - Doreen Gerlach
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
6
|
Kazandjian TD, Hamilton BR, Robinson SD, Hall SR, Bartlett KE, Rowley P, Wilkinson MC, Casewell NR, Undheim EAB. Physiological constraints dictate toxin spatial heterogeneity in snake venom glands. BMC Biol 2022; 20:148. [PMID: 35761243 PMCID: PMC9238143 DOI: 10.1186/s12915-022-01350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Venoms are ecological innovations that have evolved numerous times, on each occasion accompanied by the co-evolution of specialised morphological and behavioural characters for venom production and delivery. The close evolutionary interdependence between these characters is exemplified by animals that control the composition of their secreted venom. This ability depends in part on the production of different toxins in different locations of the venom gland, which was recently documented in venomous snakes. Here, we test the hypothesis that the distinct spatial distributions of toxins in snake venom glands are an adaptation that enables the secretion of venoms with distinct ecological functions. RESULTS We show that the main defensive and predatory peptide toxins are produced in distinct regions of the venom glands of the black-necked spitting cobra (Naja nigricollis), but these distributions likely reflect developmental effects. Indeed, we detected no significant differences in venom collected via defensive 'spitting' or predatory 'biting' events from the same specimens representing multiple lineages of spitting cobra. We also found the same spatial distribution of toxins in a non-spitting cobra and show that heterogeneous toxin distribution is a feature shared with a viper with primarily predatory venom. CONCLUSIONS Our findings suggest that heterogeneous distributions of toxins are not an adaptation to controlling venom composition in snakes. Instead, it likely reflects physiological constraints on toxin production by the venom glands, opening avenues for future research on the mechanisms of functional differentiation of populations of protein-secreting cells within adaptive contexts.
Collapse
Affiliation(s)
- Taline D Kazandjian
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Brett R Hamilton
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD, 4072, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Samuel D Robinson
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD, 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Steven R Hall
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Keirah E Bartlett
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Paul Rowley
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Mark C Wilkinson
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD, 4072, Australia.
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia.
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316, Oslo, Norway.
| |
Collapse
|
7
|
Verdes A, Taboada S, Hamilton BR, Undheim EAB, Sonoda GG, Andrade SCS, Morato E, Isabel Marina A, Cárdenas CA, Riesgo A. Evolution, expression patterns and distribution of novel ribbon worm predatory and defensive toxins. Mol Biol Evol 2022; 39:6580756. [PMID: 35512366 PMCID: PMC9132205 DOI: 10.1093/molbev/msac096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ribbon worms are active predators that use an eversible proboscis to inject venom into their prey and defend themselves with toxic epidermal secretions. Previous work on nemertean venom has largely focused on just a few species and has not investigated the different predatory and defensive secretions in detail. Consequently, our understanding of the composition and evolution of ribbon worm venoms is still very limited. Here, we present a comparative study of nemertean venom combining RNA-seq differential gene expression analyses of venom-producing tissues, tandem mass spectrometry-based proteomics of toxic secretions, and mass spectrometry imaging of proboscis sections, to shed light onto the composition and evolution of predatory and defensive toxic secretions in Antarctonemertes valida. Our analyses reveal a wide diversity of putative defensive and predatory toxins with tissue-specific gene expression patterns and restricted distributions to the mucus and proboscis proteomes respectively, suggesting that ribbon worms produce distinct toxin cocktails for predation and defense. Our results also highlight the presence of numerous lineage-specific toxins, indicating that venom evolution is highly divergent across nemerteans, producing toxin cocktails that might be finely tuned to subdue different prey. Our data also suggest that the hoplonemertean proboscis is a highly specialized predatory organ that seems to be involved in a variety of biological functions besides predation, including secretion and sensory perception. Overall, our results advance our knowledge into the diversity and evolution of nemertean venoms and highlight the importance of combining different types of data to characterize toxin composition in understudied venomous organisms.
Collapse
Affiliation(s)
- Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain.,Department of Life Sciences, Natural History Museum, London, UK
| | - Sergi Taboada
- Department of Life Sciences, Natural History Museum, London, UK.,Departament of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, Madrid, Spain
| | - Brett R Hamilton
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gabriel G Sonoda
- Departmento de Genética e Biología Evolutiva, University of Sao Paulo, Sao Paulo, Brazil
| | - Sonia C S Andrade
- Departmento de Genética e Biología Evolutiva, University of Sao Paulo, Sao Paulo, Brazil
| | - Esperanza Morato
- CBMSO Protein Chemistry Facility, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Isabel Marina
- CBMSO Protein Chemistry Facility, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain.,Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
8
|
De Lucca Caetano LH, Nishiyama-Jr MY, de Carvalho Lins Fernandes Távora B, de Oliveira UC, de Loiola Meirelles Junqueira-de-Azevedo I, Faquim-Mauro EL, Magalhães GS. Recombinant Production and Characterization of a New Toxin from Cryptops iheringi Centipede Venom Revealed by Proteome and Transcriptome Analysis. Toxins (Basel) 2021; 13:858. [PMID: 34941696 PMCID: PMC8704451 DOI: 10.3390/toxins13120858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Among the Chilopoda class of centipede, the Cryptops genus is one of the most associated with envenomation in humans in the metropolitan region of the state of São Paulo. To date, there is no study in the literature about the toxins present in its venom. Thus, in this work, a transcriptomic characterization of the Cryptops iheringi venom gland, as well as a proteomic analysis of its venom, were performed to obtain a toxin profile of this species. These methods indicated that 57.9% of the sequences showed to be putative toxins unknown in public databases; among them, we pointed out a novel putative toxin named Cryptoxin-1. The recombinant form of this new toxin was able to promote edema in mice footpads with massive neutrophils infiltration, linking this toxin to envenomation symptoms observed in accidents with humans. Our findings may elucidate the role of this toxin in the venom, as well as the possibility to explore other proteins found in this work.
Collapse
Affiliation(s)
- Lhiri Hanna De Lucca Caetano
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (L.H.D.L.C.); (B.d.C.L.F.T.); (E.L.F.-M.)
| | - Milton Yutaka Nishiyama-Jr
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil; (M.Y.N.-J.); (U.C.d.O.); (I.d.L.M.J.-d.-A.)
| | | | - Ursula Castro de Oliveira
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil; (M.Y.N.-J.); (U.C.d.O.); (I.d.L.M.J.-d.-A.)
| | | | - Eliana L. Faquim-Mauro
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (L.H.D.L.C.); (B.d.C.L.F.T.); (E.L.F.-M.)
| | - Geraldo Santana Magalhães
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (L.H.D.L.C.); (B.d.C.L.F.T.); (E.L.F.-M.)
| |
Collapse
|
9
|
Walker AA, Robinson SD, Hamilton BF, Undheim EAB, King GF. Deadly Proteomes: A Practical Guide to Proteotranscriptomics of Animal Venoms. Proteomics 2020; 20:e1900324. [PMID: 32820606 DOI: 10.1002/pmic.201900324] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/07/2020] [Indexed: 11/11/2022]
Abstract
Animal venoms are renowned for their toxicity, biochemical complexity, and as a source of compounds with potential applications in medicine, agriculture, and industry. Polypeptides underlie much of the pharmacology of animal venoms, and elucidating these arsenals of polypeptide toxins-known as the venom proteome or venome-is an important step in venom research. Proteomics is used for the identification of venom toxins, determination of their primary structure including post-translational modifications, as well as investigations into the physiology underlying their production and delivery. Advances in proteomics and adjacent technologies has led to a recent upsurge in publications reporting venom proteomes. Improved mass spectrometers, better proteomic workflows, and the integration of next-generation sequencing of venom-gland transcriptomes and venomous animal genomes allow quicker and more accurate profiling of venom proteomes with greatly reduced starting material. Technologies such as imaging mass spectrometry are revealing additional insights into the mechanism, location, and kinetics of venom toxin production. However, these numerous new developments may be overwhelming for researchers designing venom proteome studies. Here, the field of venom proteomics is reviewed and some practical solutions for simplifying mass spectrometry workflows to study animal venoms are offered.
Collapse
Affiliation(s)
- Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Brett F Hamilton
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland, 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland, 4072, Australia.,Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, 7491, Norway.,Department of Bioscience, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindern, Oslo, 0316, Norway
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
10
|
Ashwood LM, Norton RS, Undheim EAB, Hurwood DA, Prentis PJ. Characterising Functional Venom Profiles of Anthozoans and Medusozoans within Their Ecological Context. Mar Drugs 2020; 18:E202. [PMID: 32283847 PMCID: PMC7230708 DOI: 10.3390/md18040202] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
This review examines the current state of knowledge regarding toxins from anthozoans (sea anemones, coral, zoanthids, corallimorphs, sea pens and tube anemones). We provide an overview of venom from phylum Cnidaria and review the diversity of venom composition between the two major clades (Medusozoa and Anthozoa). We highlight that the functional and ecological context of venom has implications for the temporal and spatial expression of protein and peptide toxins within class Anthozoa. Understanding the nuances in the regulation of venom arsenals has been made possible by recent advances in analytical technologies that allow characterisation of the spatial distributions of toxins. Furthermore, anthozoans are unique in that ecological roles can be assigned using tissue expression data, thereby circumventing some of the challenges related to pharmacological screening.
Collapse
Affiliation(s)
- Lauren M. Ashwood
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Eivind A. B. Undheim
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
| | - David A. Hurwood
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Peter J. Prentis
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
11
|
Hempel BF, Damm M, Mrinalini, Göçmen B, Karış M, Nalbantsoy A, Kini RM, Süssmuth RD. Extended Snake Venomics by Top-Down In-Source Decay: Investigating the Newly Discovered Anatolian Meadow Viper Subspecies, Vipera anatolica senliki. J Proteome Res 2020; 19:1731-1749. [PMID: 32073270 DOI: 10.1021/acs.jproteome.9b00869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report on the venom proteome of Vipera anatolica senliki, a recently discovered and hitherto unexplored subspecies of the critically endangered Anatolian meadow viper endemic to the Antalya Province of Turkey. Integrative venomics, including venom gland transcriptomics as well as complementary bottom-up and top-down proteomics analyses, were applied to fully characterize the venom of V. a. senliki. Furthermore, the classical top-down venomics approach was extended to elucidate the venom proteome by an alternative in-source decay (ISD) proteomics workflow using the reducing matrix 1,5-diaminonaphthalene. Top-down ISD proteomics allows for disulfide bond counting and effective de novo sequencing-based identification of high-molecular-weight venom constituents, both of which are difficult to achieve by commonly established top-down approaches. Venom gland transcriptome analysis identified 96 toxin transcript annotations from 18 toxin families. Relative quantitative snake venomics revealed snake venom metalloproteinases (42.9%) as the most abundant protein family, followed by several less dominant toxin families. Online mass profiling and top-down venomics provide a detailed insight into the venom proteome of V. a. senliki and facilitate a comparative analysis of venom variability for the closely related subspecies, Vipera anatolica anatolica.
Collapse
Affiliation(s)
- Benjamin-Florian Hempel
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Mrinalini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Bayram Göçmen
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, 35100 Izmir, Turkey
| | - Mert Karış
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, 35100 Izmir, Turkey
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Bornova, Turkey
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16, Medical Drive, Singapore 117600
| | - Roderich D Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
12
|
Chen X, Leahy D, Van Haeften J, Hartfield P, Prentis PJ, van der Burg CA, Surm JM, Pavasovic A, Madio B, Hamilton BR, King GF, Undheim EAB, Brattsand M, Harris JM. A Versatile and Robust Serine Protease Inhibitor Scaffold from Actinia tenebrosa. Mar Drugs 2019; 17:E701. [PMID: 31842369 PMCID: PMC6950308 DOI: 10.3390/md17120701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Serine proteases play pivotal roles in normal physiology and a spectrum of patho-physiological processes. Accordingly, there is considerable interest in the discovery and design of potent serine protease inhibitors for therapeutic applications. This led to concerted efforts to discover versatile and robust molecular scaffolds for inhibitor design. This investigation is a bioprospecting study that aims to isolate and identify protease inhibitors from the cnidarian Actinia tenebrosa. The study isolated two Kunitz-type protease inhibitors with very similar sequences but quite divergent inhibitory potencies when assayed against bovine trypsin, chymostrypsin, and a selection of human sequence-related peptidases. Homology modeling and molecular dynamics simulations of these inhibitors in complex with their targets were carried out and, collectively, these methodologies enabled the definition of a versatile scaffold for inhibitor design. Thermal denaturation studies showed that the inhibitors were remarkably robust. To gain a fine-grained map of the residues responsible for this stability, we conducted in silico alanine scanning and quantified individual residue contributions to the inhibitor's stability. Sequences of these inhibitors were then used to search for Kunitz homologs in an A. tenebrosa transcriptome library, resulting in the discovery of a further 14 related sequences. Consensus analysis of these variants identified a rich molecular diversity of Kunitz domains and expanded the palette of potential residue substitutions for rational inhibitor design using this domain.
Collapse
Affiliation(s)
- Xingchen Chen
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Darren Leahy
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Jessica Van Haeften
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Perry Hartfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Peter J. Prentis
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia;
- Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Chloé A. van der Burg
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Joachim M. Surm
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Ana Pavasovic
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Bruno Madio
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia; (B.M.); (G.F.K.)
| | - Brett R. Hamilton
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia; (B.R.H.); (E.A.B.U.)
| | - Glenn F. King
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia; (B.M.); (G.F.K.)
| | - Eivind A. B. Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia; (B.R.H.); (E.A.B.U.)
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
| | - Maria Brattsand
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden;
| | - Jonathan M. Harris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| |
Collapse
|
13
|
Jenner RA, von Reumont BM, Campbell LI, Undheim EAB. Parallel Evolution of Complex Centipede Venoms Revealed by Comparative Proteotranscriptomic Analyses. Mol Biol Evol 2019; 36:2748-2763. [PMID: 31396628 PMCID: PMC6878950 DOI: 10.1093/molbev/msz181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Centipedes are among the most ancient groups of venomous predatory arthropods. Extant species belong to five orders, but our understanding of the composition and evolution of centipede venoms is based almost exclusively on one order, Scolopendromorpha. To gain a broader and less biased understanding we performed a comparative proteotranscriptomic analysis of centipede venoms from all five orders, including the first venom profiles for the orders Lithobiomorpha, Craterostigmomorpha, and Geophilomorpha. Our results reveal an astonishing structural diversity of venom components, with 93 phylogenetically distinct protein and peptide families. Proteomically-annotated gene trees of these putative toxin families show that centipede venom composition is highly dynamic across macroevolutionary timescales, with numerous gene duplications as well as functional recruitments and losses of toxin gene families. Strikingly, not a single family is found in the venoms of representatives of all five orders, with 67 families being unique for single orders. Ancestral state reconstructions reveal that centipede venom originated as a simple cocktail comprising just four toxin families, with very little compositional evolution happening during the approximately 50 My before the living orders had diverged. Venom complexity then increased in parallel within the orders, with scolopendromorphs evolving particularly complex venoms. Our results show that even venoms composed of toxins evolving under the strong constraint of negative selection can have striking evolutionary plasticity on the compositional level. We show that the functional recruitments and losses of toxin families that shape centipede venom arsenals are not concentrated early in their evolutionary history, but happen frequently throughout.
Collapse
Affiliation(s)
- Ronald A Jenner
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Bjoern M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Institute for Insect Biotechnology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Animal Venomics, Giessen, Germany
| | - Lahcen I Campbell
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, Hinxton, United Kingdom
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
- Centre for Ecology and Evolutionary Synthesis, Department of Bioscience, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Walker AA, Robinson SD, Undheim EAB, Jin J, Han X, Fry BG, Vetter I, King GF. Missiles of Mass Disruption: Composition and Glandular Origin of Venom Used as a Projectile Defensive Weapon by the Assassin Bug Platymeris rhadamanthus. Toxins (Basel) 2019; 11:toxins11110673. [PMID: 31752210 PMCID: PMC6891600 DOI: 10.3390/toxins11110673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/02/2022] Open
Abstract
Assassin bugs (Reduviidae) produce venoms that are insecticidal, and which induce pain in predators, but the composition and function of their individual venom components is poorly understood. We report findings on the venom system of the red-spotted assassin bug Platymeris rhadamanthus, a large species of African origin that is unique in propelling venom as a projectile weapon when threatened. We performed RNA sequencing experiments on venom glands (separate transcriptomes of the posterior main gland, PMG, and the anterior main gland, AMG), and proteomic experiments on venom that was either defensively propelled or collected from the proboscis in response to electrostimulation. We resolved a venom proteome comprising 166 polypeptides. Both defensively propelled venom and most venom samples collected in response to electrostimulation show a protein profile similar to the predicted secretory products of the PMG, with a smaller contribution from the AMG. Pooled venom samples induce calcium influx via membrane lysis when applied to mammalian neuronal cells, consistent with their ability to cause pain when propelled into the eyes or mucus membranes of potential predators. The same venom induces rapid paralysis and death when injected into fruit flies. These data suggest that the cytolytic, insecticidal venom used by reduviids to capture prey is also a highly effective defensive weapon when propelled at predators.
Collapse
Affiliation(s)
- Andrew A. Walker
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia or or (E.A.B.U.); (J.J.); (X.H.)
- Correspondence: (A.A.W.); (G.F.K.)
| | - Samuel D. Robinson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia or or (E.A.B.U.); (J.J.); (X.H.)
| | - Eivind A. B. Undheim
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia or or (E.A.B.U.); (J.J.); (X.H.)
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jiayi Jin
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia or or (E.A.B.U.); (J.J.); (X.H.)
| | - Xiao Han
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia or or (E.A.B.U.); (J.J.); (X.H.)
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia or or (E.A.B.U.); (J.J.); (X.H.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia or or (E.A.B.U.); (J.J.); (X.H.)
- Correspondence: (A.A.W.); (G.F.K.)
| |
Collapse
|
15
|
Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. Toxins (Basel) 2019; 11:toxins11100611. [PMID: 31652611 PMCID: PMC6832493 DOI: 10.3390/toxins11100611] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
This review gives an overview on the development of research on spider venoms with a focus on structure and function of venom components and techniques of analysis. Major venom component groups are small molecular mass compounds, antimicrobial (also called cytolytic, or cationic) peptides (only in some spider families), cysteine-rich (neurotoxic) peptides, and enzymes and proteins. Cysteine-rich peptides are reviewed with respect to various structural motifs, their targets (ion channels, membrane receptors), nomenclature, and molecular binding. We further describe the latest findings concerning the maturation of antimicrobial, and cysteine-rich peptides that are in most known cases expressed as propeptide-containing precursors. Today, venom research, increasingly employs transcriptomic and mass spectrometric techniques. Pros and cons of venom gland transcriptome analysis with Sanger, 454, and Illumina sequencing are discussed and an overview on so far published transcriptome studies is given. In this respect, we also discuss the only recently described cross contamination arising from multiplexing in Illumina sequencing and its possible impacts on venom studies. High throughput mass spectrometric analysis of venom proteomes (bottom-up, top-down) are reviewed.
Collapse
|
16
|
Convergent recruitment of adamalysin-like metalloproteases in the venom of the red bark centipede (Scolopocryptops sexspinosus). Toxicon 2019; 168:1-15. [PMID: 31229627 DOI: 10.1016/j.toxicon.2019.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
Abstract
Many venom proteins have presumably been convergently recruited by taxa from diverse venomous lineages. These toxic proteins have characteristics that allow them to remain stable in solution and have a high propensity for toxic effects on prey and/or potential predators. Despite this well-established convergent toxin recruitment, some toxins seem to be lineage specific. To further investigate the toxic proteins found throughout venomous lineages, venom proteomics and venom-gland transcriptomics were performed on two individual red bark centipedes (Scolopocryptops sexspinosus). Combining the protein phenotype with the transcript genotype resulted in the first in-depth venom characterization of S. sexspinosus, including 72 venom components that were identified in both the transcriptome and proteome and 1468 nontoxin transcripts identified in the transcriptome. Ten different toxin families were represented in the venom and venom gland with the majority of the toxins belonging to metalloproteases, CAPS (cysteine-rich secretory protein, antigen 5, and pathogenesis-related 1 proteins), and β-pore-forming toxins. Nine of these toxin families shared a similar proteomic structure to venom proteins previously identified from other centipedes. However, the most highly expressed toxin family, the adamalysin-like metalloproteases, has until now only been observed in the venom of snakes. We confirmed adamalysin-like metalloprotease activity by means of in vivo functional assays. The recruitment of an adamalysin-like metalloprotease into centipede venom represents a striking case of convergent evolution.
Collapse
|
17
|
Surm JM, Smith HL, Madio B, Undheim EA, King GF, Hamilton BR, Burg CA, Pavasovic A, Prentis PJ. A process of convergent amplification and tissue‐specific expression dominates the evolution of toxin and toxin‐like genes in sea anemones. Mol Ecol 2019; 28:2272-2289. [DOI: 10.1111/mec.15084] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/09/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Joachim M. Surm
- Faculty of Health, School of Biomedical Sciences Queensland University of Technology Kelvin Grove Queensland Australia
- Institute of Health and Biomedical Innovation Queensland University of Technology Kelvin Grove Queensland Australia
| | - Hayden L. Smith
- Science and Engineering Faculty, School of Earth, Environmental and Biological Sciences Queensland University of Technology Brisbane Queensland Australia
- Institute for Future Environments Queensland University of Technology Brisbane Queensland Australia
| | - Bruno Madio
- Institute for Molecular Bioscience University of Queensland Brisbane Queensland Australia
| | - Eivind A.B. Undheim
- Centre for Advanced Imaging University of Queensland Saint Lucia Queensland Australia
| | - Glenn F. King
- Institute for Molecular Bioscience University of Queensland Brisbane Queensland Australia
| | - Brett R. Hamilton
- Centre for Advanced Imaging University of Queensland Saint Lucia Queensland Australia
- Centre for Microscopy and Microanalysis University of Queensland Saint Lucia Queensland Australia
| | - Chloé A. Burg
- Faculty of Health, School of Biomedical Sciences Queensland University of Technology Kelvin Grove Queensland Australia
- Institute of Health and Biomedical Innovation Queensland University of Technology Kelvin Grove Queensland Australia
| | - Ana Pavasovic
- Faculty of Health, School of Biomedical Sciences Queensland University of Technology Kelvin Grove Queensland Australia
| | - Peter J. Prentis
- Science and Engineering Faculty, School of Earth, Environmental and Biological Sciences Queensland University of Technology Brisbane Queensland Australia
- Institute for Future Environments Queensland University of Technology Brisbane Queensland Australia
| |
Collapse
|
18
|
Arthropod venoms: Biochemistry, ecology and evolution. Toxicon 2018; 158:84-103. [PMID: 30529476 DOI: 10.1016/j.toxicon.2018.11.433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
Abstract
Comprising of over a million described species of highly diverse invertebrates, Arthropoda is amongst the most successful animal lineages to have colonized aerial, terrestrial, and aquatic domains. Venom, one of the many fascinating traits to have evolved in various members of this phylum, has underpinned their adaptation to diverse habitats. Over millions of years of evolution, arthropods have evolved ingenious ways of delivering venom in their targets for self-defence and predation. The morphological diversity of venom delivery apparatus in arthropods is astounding, and includes extensively modified pedipalps, tail (telson), mouth parts (hypostome), fangs, appendages (maxillulae), proboscis, ovipositor (stinger), and hair (urticating bristles). Recent investigations have also unravelled an astonishing venom biocomplexity with molecular scaffolds being recruited from a multitude of protein families. Venoms are a remarkable bioresource for discovering lead compounds in targeted therapeutics. Several components with prospective applications in the development of advanced lifesaving drugs and environment friendly bio-insecticides have been discovered from arthropod venoms. Despite these fascinating features, the composition, bioactivity, and molecular evolution of venom in several arthropod lineages remains largely understudied. This review highlights the prevalence of venom, its mode of toxic action, and the evolutionary dynamics of venom in Arthropoda, the most speciose phylum in the animal kingdom.
Collapse
|
19
|
Madio B, Peigneur S, Chin YKY, Hamilton BR, Henriques ST, Smith JJ, Cristofori-Armstrong B, Dekan Z, Boughton BA, Alewood PF, Tytgat J, King GF, Undheim EAB. PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold. Cell Mol Life Sci 2018; 75:4511-4524. [PMID: 30109357 PMCID: PMC11105382 DOI: 10.1007/s00018-018-2897-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
Sea anemone venoms have long been recognized as a rich source of peptides with interesting pharmacological and structural properties, but they still contain many uncharacterized bioactive compounds. Here we report the discovery, three-dimensional structure, activity, tissue localization, and putative function of a novel sea anemone peptide toxin that constitutes a new, sixth type of voltage-gated potassium channel (KV) toxin from sea anemones. Comprised of just 17 residues, κ-actitoxin-Ate1a (Ate1a) is the shortest sea anemone toxin reported to date, and it adopts a novel three-dimensional structure that we have named the Proline-Hinged Asymmetric β-hairpin (PHAB) fold. Mass spectrometry imaging and bioassays suggest that Ate1a serves a primarily predatory function by immobilising prey, and we show this is achieved through inhibition of Shaker-type KV channels. Ate1a is encoded as a multi-domain precursor protein that yields multiple identical mature peptides, which likely evolved by multiple domain duplication events in an actinioidean ancestor. Despite this ancient evolutionary history, the PHAB-encoding gene family exhibits remarkable sequence conservation in the mature peptide domains. We demonstrate that this conservation is likely due to intra-gene concerted evolution, which has to our knowledge not previously been reported for toxin genes. We propose that the concerted evolution of toxin domains provides a hitherto unrecognised way to circumvent the effects of the costly evolutionary arms race considered to drive toxin gene evolution by ensuring efficient secretion of ecologically important predatory toxins.
Collapse
Affiliation(s)
- Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven, 3000, Belgium
| | - Yanni K Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jennifer J Smith
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben Cristofori-Armstrong
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Berin A Boughton
- Metabolomics Australia, School of Biosciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven, 3000, Belgium
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
20
|
Mitchell ML, Hamilton BR, Madio B, Morales RAV, Tonkin-Hill GQ, Papenfuss AT, Purcell AW, King GF, Undheim EAB, Norton RS. The Use of Imaging Mass Spectrometry to Study Peptide Toxin Distribution in Australian Sea Anemones. Aust J Chem 2017. [DOI: 10.1071/ch17228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Spatial Metabolite Profiling by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:291-321. [DOI: 10.1007/978-3-319-47656-8_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Abstract
INTRODUCTION Centipedes are one of the oldest and most successful lineages of venomous terrestrial predators. Despite their use for centuries in traditional medicine, centipede venoms remain poorly studied. However, recent work indicates that centipede venoms are highly complex chemical arsenals that are rich in disulfide-constrained peptides that have novel pharmacology and three-dimensional structure. Areas covered: This review summarizes what is currently known about centipede venom proteins, with a focus on disulfide-rich peptides that have novel or unexpected pharmacology that might be useful from a therapeutic perspective. The authors also highlight the remarkable diversity of constrained three-dimensional peptide scaffolds present in these venoms that might be useful for bioengineering of drug leads. Expert opinion: Like most arthropod predators, centipede venoms are rich in peptides that target neuronal ion channels and receptors, but it is also becoming increasingly apparent that many of these peptides have novel or unexpected pharmacological properties with potential applications in drug discovery and development.
Collapse
Affiliation(s)
- Eivind A B Undheim
- a Institute for Molecular Bioscience , The University of Queensland , St Lucia , Australia.,b Centre for Advanced Imaging , The University of Queensland , St Lucia , Australia
| | - Ronald A Jenner
- c Department of Life Sciences , Natural History Museum , London , UK
| | - Glenn F King
- a Institute for Molecular Bioscience , The University of Queensland , St Lucia , Australia
| |
Collapse
|
23
|
Zhong J, Zeng XC, Zeng X, Nie Y, Zhang L, Wu S, Bao A. Transcriptomic analysis of the venom glands from the scorpion Hadogenes troglodytes revealed unique and extremely high diversity of the venom peptides. J Proteomics 2016; 150:40-62. [PMID: 27519694 DOI: 10.1016/j.jprot.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/25/2016] [Accepted: 08/06/2016] [Indexed: 12/14/2022]
Abstract
Hadogenes is a genus of large African scorpions with 18 described species. However, little is known about the venom peptide composition of any species from Hadogenes so far. Here, we fully explored the composition of venom gland peptides from Hadogenes troglodytes using transcriptomic approach. We discovered 121 novel peptides from the scorpion, including 20 new-type peptides cross-linked with one, two, three, four or seven disulfide bridges, respectively, 11 novel K+-channel toxin-like peptides, 2 novel ryanodine receptors-specific toxin-like peptides, a unique peptide containing the cysteine knots of spider toxins, 15 novel La1-like toxins, 3 novel TIL domain-containing peptides, 5 novel peptides with atypical cysteine patterns, 19 novel antimicrobial peptides, 6 novel cysteine-free peptides and 39 new-type cysteine-free peptides. Among them, the new-type peptides are largely dominant; this highlights the unique diversity of the venom gland peptides from H. troglodytes. Some of the new peptides would serve as new molecular probes for the investigations of cellular ion channels and other receptors, or offer new templates for the development of therapeutic drugs for the treatment of ion channel-associated diseases, and infections caused by antibiotics-resistant pathogens. BIOLOGICAL SIGNIFICANCE In this study, we fully explored the composition of venom gland peptides from the scorpion Hadogenes troglodytes using transcriptomic approach. We discovered a total of 121 novel peptides from the venom glands of the scorpion, of which new-type peptides are largely dominant. These data highlight the unique diversity of the venom gland peptides from the scorpion H. troglodytes, gain insights into new mechanisms for the scorpion to subdue its prey and predators, and enlarge the protein database of scorpion venom glands. The discovery of a lot of novel peptides provides new templates for the development of therapeutic drugs, and offers new molecular materials for the basic researches of various cellular receptors, and for the evolutionary investigations of scorpion toxins.
Collapse
Affiliation(s)
- Jie Zhong
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Xian-Chun Zeng
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Xin Zeng
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yao Nie
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Lei Zhang
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Shifen Wu
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Aorigele Bao
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
24
|
Whitelaw BL, Strugnell JM, Faou P, da Fonseca RR, Hall NE, Norman M, Finn J, Cooke IR. Combined Transcriptomic and Proteomic Analysis of the Posterior Salivary Gland from the Southern Blue-Ringed Octopus and the Southern Sand Octopus. J Proteome Res 2016; 15:3284-97. [PMID: 27427999 DOI: 10.1021/acs.jproteome.6b00452] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study provides comprehensive proteomic profiles from the venom producing posterior salivary glands of octopus (superorder Octopodiformes) species. A combined transcriptomic and proteomic approach was used to identify 1703 proteins from the posterior salivary gland of the southern blue-ringed octopus, Hapalochlaena maculosa and 1300 proteins from the posterior salivary gland of the southern sand octopus, Octopus kaurna. The two proteomes were broadly similar; clustering of proteins into orthogroups revealed 937 that were shared between species. Serine proteases were particularly diverse and abundant in both species. Other abundant proteins included a large number of secreted proteins, many of which had no known conserved domains, or homology to proteins with known function. On the basis of homology to known venom proteins, 23 putative toxins were identified in H. maculosa and 24 in O. kaurna. These toxins span nine protein families: CAP (cysteine rich secretory proteins, antigen 5, parthenogenesis related), chitinase, carboxylesterase, DNase, hyaluronidase, metalloprotease, phospholipase, serine protease and tachykinin. Serine proteases were responsible for 70.9% and 86.3% of putative toxin expression in H. maculosa and O. kaurna, respectively, as determined using intensity based absolute quantification (iBAQ) measurements. Phylogenetic analysis of the putative toxin serine proteases revealed a similar suite of diverse proteins present in both species. Posterior salivary gland composition of H. maculosa and O. kaurna differ in several key aspects. While O. kaurna expressed the proteinaceous neurotoxin, tachykinin, this was absent from H. maculosa, perhaps reflecting the acquisition of a potent nonproteinaceous neurotoxin, tetrodotoxin (TTX) produced by bacteria in the salivary glands of that species. The dispersal factor, hyaluronidase was particularly abundant in H. maculosa. Chitinase was abundant in both species and is believed to facilitate envenomation in chitinous prey such as crustaceans. Cephalopods represent a largely unexplored source of novel proteins distinct from all other venomous taxa and are of interest for further inquiry, as novel proteinaceous toxins derived from venoms may contribute to pharmaceutical design.
Collapse
Affiliation(s)
- Brooke L Whitelaw
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University , Melbourne, Victoria 3086, Australia.,Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative , Carlton, Victoria 3053, Australia
| | - Jan M Strugnell
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Pierre Faou
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Rute R da Fonseca
- The Bioinformatics Centre, Department of Biology, University of Copenhagen , Ole Maaløes Vej 5, 2200 København N, Denmark
| | - Nathan E Hall
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia.,Sciences, Museum Victoria , Carlton, Victoria 3053, Australia
| | - Mark Norman
- Sciences, Museum Victoria , Carlton, Victoria 3053, Australia
| | - Julian Finn
- Sciences, Museum Victoria , Carlton, Victoria 3053, Australia
| | - Ira R Cooke
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia.,Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University , Townsville, Queensland 4811, Australia
| |
Collapse
|
25
|
Oldrati V, Arrell M, Violette A, Perret F, Sprüngli X, Wolfender JL, Stöcklin R. Advances in venomics. MOLECULAR BIOSYSTEMS 2016; 12:3530-3543. [DOI: 10.1039/c6mb00516k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The term “venomics” was coined to describe the global study of venom and venom glands, targeting comprehensive characterization of the whole toxin profile of a venomous animal by means of proteomics, transcriptomics, genomics and bioinformatics studies.
Collapse
Affiliation(s)
- Vera Oldrati
- Atheris SA
- Geneva
- Switzerland
- School of Pharmaceutical Sciences
- EPGL
| | | | - Aude Violette
- Alphabiotoxine Laboratory Sprl
- Montroeul-au-Bois B-7911
- Belgium
| | | | | | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences
- EPGL
- University of Geneva
- University of Lausanne
- CMU
| | | |
Collapse
|
26
|
A new Kunitz-type plasmin inhibitor from scorpion venom. Toxicon 2015; 106:7-13. [DOI: 10.1016/j.toxicon.2015.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 11/24/2022]
|
27
|
Sunagar K, Moran Y. The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals. PLoS Genet 2015; 11:e1005596. [PMID: 26492532 PMCID: PMC4619613 DOI: 10.1371/journal.pgen.1005596] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023] Open
Abstract
Animal venoms are theorized to evolve under the significant influence of positive Darwinian selection in a chemical arms race scenario, where the evolution of venom resistance in prey and the invention of potent venom in the secreting animal exert reciprocal selection pressures. Venom research to date has mainly focused on evolutionarily younger lineages, such as snakes and cone snails, while mostly neglecting ancient clades (e.g., cnidarians, coleoids, spiders and centipedes). By examining genome, venom-gland transcriptome and sequences from the public repositories, we report the molecular evolutionary regimes of several centipede and spider toxin families, which surprisingly accumulated low-levels of sequence variations, despite their long evolutionary histories. Molecular evolutionary assessment of over 3500 nucleotide sequences from 85 toxin families spanning the breadth of the animal kingdom has unraveled a contrasting evolutionary strategy employed by ancient and evolutionarily young clades. We show that the venoms of ancient lineages remarkably evolve under the heavy constraints of negative selection, while toxin families in lineages that originated relatively recently rapidly diversify under the influence of positive selection. We propose that animal venoms mostly employ a ‘two-speed’ mode of evolution, where the major influence of diversifying selection accompanies the earlier stages of ecological specialization (e.g., diet and range expansion) in the evolutionary history of the species–the period of expansion, resulting in the rapid diversification of the venom arsenal, followed by longer periods of purifying selection that preserve the potent toxin pharmacopeia–the period of purification and fixation. However, species in the period of purification may re-enter the period of expansion upon experiencing a major shift in ecology or environment. Thus, we highlight for the first time the significant roles of purifying and episodic selections in shaping animal venoms. While the influence of positive selection in diversifying animal venoms is widely recognized, the role of purifying selection that conserves the amino acid sequence of venom components such as peptide toxins has never been considered. In addition to unraveling the unique strategies of evolution of toxin gene families in centipedes and spiders, which are amongst the first terrestrial venomous lineages, we highlight the significant role of purifying selection in shaping the composition of animal venoms. Analysis of numerous toxin families, spanning the breadth of the animal kingdom, has revealed a striking contrast between the evolution of venom in ancient and evolutionarily young animal groups. Our findings enable the postulation of a new theory of venom evolution. The proposed ‘two-speed’ mode of evolution of venom captures the fascinating evolutionary history and the dynamics of this complex biochemical cocktail.
Collapse
Affiliation(s)
- Kartik Sunagar
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute for Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (KS); (YM)
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute for Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (KS); (YM)
| |
Collapse
|
28
|
Sunagar K, Morgenstern D, Reitzel AM, Moran Y. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom. J Proteomics 2015; 135:62-72. [PMID: 26385003 DOI: 10.1016/j.jprot.2015.09.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023]
Abstract
Animal venom is a complex cocktail of bioactive chemicals that traditionally drew interest mostly from biochemists and pharmacologists. However, in recent years the evolutionary and ecological importance of venom is realized as this trait has direct and strong influence on interactions between species. Moreover, venom content can be modulated by environmental factors. Like many other fields of biology, venom research has been revolutionized in recent years by the introduction of systems biology approaches, i.e., genomics, transcriptomics and proteomics. The employment of these methods in venom research is known as 'venomics'. In this review we describe the history and recent advancements of venomics and discuss how they are employed in studying venom in general and in particular in the context of evolutionary ecology. We also discuss the pitfalls and challenges of venomics and what the future may hold for this emerging scientific field.
Collapse
Affiliation(s)
- Kartik Sunagar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Morgenstern
- Proteomics Resource Center, Langone Medical Center, New York University, New York, USA.
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
29
|
Cooper AM, Kelln WJ, Hayes WK. Venom regeneration in the centipede Scolopendra polymorpha: evidence for asynchronous venom component synthesis. ZOOLOGY 2015; 117:398-414. [PMID: 25456977 DOI: 10.1016/j.zool.2014.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/21/2014] [Accepted: 06/27/2014] [Indexed: 01/15/2023]
Abstract
Venom regeneration comprises a vital process in animals that rely on venom for prey capture and defense. Venom regeneration in scolopendromorph centipedes likely influences their ability to subdue prey and defend themselves, and may influence the quantity and quality of venom extracted by researchers investigating the venom's biochemistry. We investigated venom volume and total protein regeneration during the 14-day period subsequent to venom extraction in the North American centipede Scolopendra polymorpha. We further tested the hypothesis that venom protein components, separated by reversed-phase fast protein liquid chromatography (RP-FPLC), undergo asynchronous (non-parallel) synthesis. During the first 48 h, volume and protein mass increased linearly. Protein regeneration lagged behind volume regeneration, with 65–86% of venom volume and 29–47% of protein mass regenerated during the first 2 days. No additional regeneration occurred over the subsequent 12 days, and neither volume nor protein mass reached initial levels 7 months later (93% and 76%, respectively). Centipede body length was negatively associated with rate of venom regeneration. Analysis of chromatograms of individual venom samples revealed that 5 of 10 chromatographic regions and 12 of 28 peaks demonstrated changes in percent of total peak area (i.e., percent of total protein) among milking intervals, indicating that venom proteins are regenerated asynchronously. Moreover, specimens from Arizona and California differed in relative amounts of some venom components. The considerable regeneration of venom occurring within the first 48 h, despite the reduced protein content, suggests that predatory and defensive capacities are minimally constrained by the timing of venom replacement.
Collapse
|
30
|
Production and packaging of a biological arsenal: evolution of centipede venoms under morphological constraint. Proc Natl Acad Sci U S A 2015; 112:4026-31. [PMID: 25775536 DOI: 10.1073/pnas.1424068112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Venom represents one of the most extreme manifestations of a chemical arms race. Venoms are complex biochemical arsenals, often containing hundreds to thousands of unique protein toxins. Despite their utility for prey capture, venoms are energetically expensive commodities, and consequently it is hypothesized that venom complexity is inversely related to the capacity of a venomous animal to physically subdue prey. Centipedes, one of the oldest yet least-studied venomous lineages, appear to defy this rule. Although scutigeromorph centipedes produce less complex venom than those secreted by scolopendrid centipedes, they appear to rely heavily on venom for prey capture. We show that the venom glands are large and well developed in both scutigerid and scolopendrid species, but that scutigerid forcipules lack the adaptations that allow scolopendrids to inflict physical damage on prey and predators. Moreover, we reveal that scolopendrid venom glands have evolved to accommodate a much larger number of secretory cells and, by using imaging mass spectrometry, we demonstrate that toxin production is heterogeneous across these secretory units. We propose that the differences in venom complexity between centipede orders are largely a result of morphological restrictions of the venom gland, and consequently there is a strong correlation between the morphological and biochemical complexity of this unique venom system. The current data add to the growing body of evidence that toxins are not expressed in a spatially homogenous manner within venom glands, and they suggest that the link between ecology and toxin evolution is more complex than previously thought.
Collapse
|
31
|
Undheim EAB, Fry BG, King GF. Centipede venom: recent discoveries and current state of knowledge. Toxins (Basel) 2015; 7:679-704. [PMID: 25723324 PMCID: PMC4379518 DOI: 10.3390/toxins7030679] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/27/2022] Open
Abstract
Centipedes are among the oldest extant venomous predators on the planet. Armed with a pair of modified, venom-bearing limbs, they are an important group of predatory arthropods and are infamous for their ability to deliver painful stings. Despite this, very little is known about centipede venom and its composition. Advances in analytical tools, however, have recently provided the first detailed insights into the composition and evolution of centipede venoms. This has revealed that centipede venom proteins are highly diverse, with 61 phylogenetically distinct venom protein and peptide families. A number of these have been convergently recruited into the venoms of other animals, providing valuable information on potential underlying causes of the occasionally serious complications arising from human centipede envenomations. However, the majority of venom protein and peptide families bear no resemblance to any characterised protein or peptide family, highlighting the novelty of centipede venoms. This review highlights recent discoveries and summarises the current state of knowledge on the fascinating venom system of centipedes.
Collapse
Affiliation(s)
- Eivind A B Undheim
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Bryan G Fry
- School of Biological Sciences, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Glenn F King
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
32
|
von Reumont BM, Campbell LI, Jenner RA. Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins (Basel) 2014; 6:3488-551. [PMID: 25533518 PMCID: PMC4280546 DOI: 10.3390/toxins6123488] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 01/22/2023] Open
Abstract
Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms.
Collapse
Affiliation(s)
| | - Lahcen I Campbell
- Department of Life Sciences, the Natural History Museum, Cromwell Road, SW7 5BD London, UK.
| | - Ronald A Jenner
- Department of Life Sciences, the Natural History Museum, Cromwell Road, SW7 5BD London, UK.
| |
Collapse
|