1
|
Thorenoor N, Floros J. The Lung Alveolar Cell (LAC) miRNome and Gene Expression Profile of the SP-A-KO Mice After Infection With and Without Rescue With Human Surfactant Protein-A2 (1A0). Front Immunol 2022; 13:854434. [PMID: 35844510 PMCID: PMC9283764 DOI: 10.3389/fimmu.2022.854434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Human surfactant protein (SP)-A1 and SP-A2 exhibit differential qualitative and quantitative effects on the alveolar macrophage (AM), including a differential impact on the AM miRNome. Moreover, SP-A rescue (treatment) of SP-A-knockout (KO) infected mice impoves survival. Here, we studied for the first time the role of exogenous SP-A protein treatment on the regulation of lung alveolar cell (LAC) miRNome, the miRNA-RNA targets, and gene expression of SP-A-KO infected mice of both sexes. Toward this, SP-A-KO mice of both sexes were infected with Klebsiella pneumoniae, and half of them were also treated with SP-A2 (1A0). After 6 h of infection/SP-A treatment, the expression levels and pathways of LAC miRNAs, genes, and target miRNA-mRNAs were studied in both groups. We found 1) significant differences in the LAC miRNome, genes, and miRNA-mRNA targets in terms of sex, infection, and infection plus SP-A2 (1A0) protein rescue; 2) an increase in the majority of miRNA-mRNA targets in both study groups in KO male vs. female mice and involvement of the miRNA-mRNA targets in pathways of inflammation, antiapoptosis, and cell cycle; 3) genes with significant changes to be involved in TP-53, tumor necrosis factor (TNF), and cell cycle signaling nodes; 4) when significant changes in the expression of molecules from all analyses (miRNAs, miRNA-mRNA targets, and genes) were considered, two signaling pathways, the TNF and cell cycle, referred to as “integrated pathways” were shown to be significant; 5) the cell cycle pathway to be present in all comparisons made. Because SP-A could be used therapeutically in pulmonary diseases, it is important to understand the molecules and pathways involved in response to an SP-A acute treatment. The information obtained contributes to this end and may help to gain insight especially in the case of infection.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Obstetrics and Gynecology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
2
|
Phelps DS, Chinchilli VM, Zhang X, Shearer D, Weisz J, Floros J. Comparison of the Toponomes of Alveolar Macrophages From Wild Type and Surfactant Protein A Knockout Mice and Their Response to Infection. Front Immunol 2022; 13:853611. [PMID: 35572576 PMCID: PMC9094576 DOI: 10.3389/fimmu.2022.853611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background Surfactant protein-A (SP-A) plays a critical role in lung innate immunity by regulating alveolar macrophages (AM), expression of inflammatory mediators, and other host defense proteins. The toponome imaging system (TIS), a serial immunostainer, was used to study the AM toponome because it characterizes the localization of multiple markers and identifies marker combinations in each pixel as combinatorial molecular phenotypes (CMPs). We used TIS to study the AM toponome from wild type (WT) and SP-A knockout (KO) mice and changes following Klebsiella pneumoniae exposure. Methods WT or KO mice received intratracheal K. pneumoniae or vehicle and AM were obtained by bronchoalveolar lavage after one hour. AM were attached to slides and underwent TIS analysis. Images were analyzed to characterize all pixels. AM CMPs from WT vehicle (n=3) and infected (n=3) mice were compared to each other and to AM from KO (n=3 vehicle; n=3 infected). Histograms provided us with a tool to summarize the representation of each marker in a set of CMPs. Results Using the histograms and other tools we identified markers of interest and observed that: 1) Both comparisons had conserved (present in all group members) CMPs, only in vehicle AM and only in infected AM, or common to both vehicle and infected AM, (i.e., unaffected by the condition). 2) the CMP number decreased with infection in WT and KO versus vehicle controls. 3) More infection-specific CMPs in WT vs KO AM. 4) When AM from WT and KO vehicle or infected were compared, there were more unique CMPs exclusive to the KO AM. 5) All comparisons showed CMPs shared by both groups. Conclusions The decrease of CMPs exclusive to infected AM in KO mice may underlie the observed susceptibility of KO mice to infection. However, both KO groups had more exclusive CMPs than the corresponding WT groups, perhaps indicating a vigorous effort by KO to overcome deficits in certain proteins and CMPs that are dysregulated by the absence of SP-A. Moreover, the presence of shared CMPs in the compared groups indicates that regulation of these CMPs is not dependent on either infection or the presence or absence of SP-A.
Collapse
Affiliation(s)
- David S Phelps
- Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Vernon M Chinchilli
- Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Xuesheng Zhang
- Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Debra Shearer
- Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Judith Weisz
- Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Joanna Floros
- Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
3
|
Phelps DS, Chinchilli VM, Yang L, Shearer D, Weisz J, Zhang X, Floros J. The alveolar macrophage toponome of female SP-A knockout mice differs from that of males before and after SP-A1 rescue. Sci Rep 2022; 12:5039. [PMID: 35322074 PMCID: PMC8943067 DOI: 10.1038/s41598-022-08114-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/16/2022] [Indexed: 01/05/2023] Open
Abstract
Using the Toponome Imaging System (TIS), a serial immunostainer, we studied the patterns of expression of multiple markers in alveolar macrophages (AM) from female mice lacking surfactant protein A (SP-A knockouts; KO) after "rescue" with exogenous SP-A1. We also used a 7-marker subset to compare with AM from males. AM were harvested 18 h after intrapharyngeal SP-A1 or vehicle, attached to slides, and subjected to serial immunostaining for 12 markers. Expression of the markers in each pixel of the image was analyzed both in the whole image and in individual selected cells. The marker combination in each pixel is referred to as a combinatorial molecular phenotype (CMP). A subset of antibodies was used to compare AM from male mice to the females. We found: (a) extensive AM heterogeneity in females by CMP analysis and by clustering analysis of CMPs in single cells; (b) AM from female KO mice respond to exogenous SP-A1 by increasing CMP phenotypic diversity and perhaps enhancing their potential innate immune capabilities; and (c) comparison of male and female AM responses to SP-A1 revealed that males respond more vigorously than females and clustering analysis was more effective in distinguishing males from females rather than treated from control.
Collapse
Affiliation(s)
- David S. Phelps
- grid.29857.310000 0001 2097 4281Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Vernon M. Chinchilli
- grid.29857.310000 0001 2097 4281Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Lili Yang
- grid.29857.310000 0001 2097 4281Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Debra Shearer
- grid.29857.310000 0001 2097 4281Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Judith Weisz
- grid.29857.310000 0001 2097 4281Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Xuesheng Zhang
- grid.29857.310000 0001 2097 4281Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Joanna Floros
- grid.29857.310000 0001 2097 4281Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| |
Collapse
|
4
|
Floros J, Thorenoor N, Tsotakos N, Phelps DS. Human Surfactant Protein SP-A1 and SP-A2 Variants Differentially Affect the Alveolar Microenvironment, Surfactant Structure, Regulation and Function of the Alveolar Macrophage, and Animal and Human Survival Under Various Conditions. Front Immunol 2021; 12:681639. [PMID: 34484180 PMCID: PMC8415824 DOI: 10.3389/fimmu.2021.681639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The human innate host defense molecules, SP-A1 and SP-A2 variants, differentially affect survival after infection in mice and in lung transplant patients. SP-A interacts with the sentinel innate immune cell in the alveolus, the alveolar macrophage (AM), and modulates its function and regulation. SP-A also plays a role in pulmonary surfactant-related aspects, including surfactant structure and reorganization. For most (if not all) pulmonary diseases there is a dysregulation of host defense and inflammatory processes and/or surfactant dysfunction or deficiency. Because SP-A plays a role in both of these general processes where one or both may become aberrant in pulmonary disease, SP-A stands to be an important molecule in health and disease. In humans (unlike in rodents) SP-A is encoded by two genes (SFTPA1 and SFTPA2) and each has been identified with extensive genetic and epigenetic complexity. In this review, we focus on functional, structural, and regulatory differences between the two SP-A gene-specific products, SP-A1 and SP-A2, and among their corresponding variants. We discuss the differential impact of these variants on the surfactant structure, the alveolar microenvironment, the regulation of epithelial type II miRNome, the regulation and function of the AM, the overall survival of the organism after infection, and others. Although there have been a number of reviews on SP-A, this is the first review that provides such a comprehensive account of the differences between human SP-A1 and SP-A2.
Collapse
Affiliation(s)
- Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics & Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Biochemistry & Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nikolaos Tsotakos
- School of Science, Engineering, and Technology, The Pennsylvania State University, Harrisburg, PA, United States
| | - David S Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
5
|
Imaging NAD(H) Redox Alterations in Cryopreserved Alveolar Macrophages from Ozone-Exposed Mice and the Impact of Nutrient Starvation during Long Lag Times. Antioxidants (Basel) 2021; 10:antiox10050767. [PMID: 34065846 PMCID: PMC8151465 DOI: 10.3390/antiox10050767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022] Open
Abstract
Employing the optical redox imaging technique, we previously identified a significant redox shift of nicotinamide adenine dinucleotide (NAD and the reduced form NADH) in freshly isolated alveolar macrophages (AM) from ozone-exposed mice. The goal here was twofold: (a) to determine the NAD(H) redox shift in cryopreserved AM isolated from ozone-exposed mice and (b) to investigate whether there is a difference in the redox status between cryopreserved and freshly isolated AM. We found: (i) AM from ozone-exposed mice were in a more oxidized redox state compared to that from filtered air (FA)-exposed mice, consistent with the results obtained from freshly isolated mouse AM; (ii) under FA exposure, there was no significant NAD(H) redox difference between fresh AM that had been placed on ice for 2.5 h and cryopreserved AM; however, under ozone exposure, fresh AM were more oxidized than cryopreserved AM; (iii) via the use of nutrient starvation and replenishment and H2O2-induced oxidative stress of an AM cell line, we showed that this redox difference between cryopreserved and freshly isolated AM is likely the result of the double “hit”, i.e., the ozone-induced oxidative stress plus nutrient starvation that prevented freshly isolated AM from a full recovery after being on ice for a prolonged time period. The cryopreservation technique we developed eliminates/minimizes the effects of oxidative stress and nutrient starvation on cells. This method can be adopted to preserve lung macrophages from animal models or clinical patients for further investigations.
Collapse
|
6
|
Can Prophylactic High Flow of Humidified and Warmed Filtered Air Improve Survival from Bacterial Pneumonia and SARS-CoV-2 in Elderly Individuals? The Role of Surfactant Protein A. Antioxidants (Basel) 2021; 10:antiox10050640. [PMID: 33922049 PMCID: PMC8143458 DOI: 10.3390/antiox10050640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
In this opinion article, we discuss a serendipitous observation we made in a study investigating survival in aged mice after bacterial infection. This observation involved a non-invasive ventilation approach that led to variable and higher survival in male and female mice with different genetic backgrounds for the innate immune molecule, surfactant protein A (SP-A). We suggest that employing the best ventilatory modality, whether that be HFNC or another method, may augment the role of other factors such as SP-A genetics and sex in a personalized approach, and may ultimately improve the outcome.
Collapse
|
7
|
Gandhi CK, Chen C, Amatya S, Yang L, Fu C, Zhou S, Wu R, Buendía-Roldan I, Selman M, Pardo A, Floros J. SNP and Haplotype Interaction Models Reveal Association of Surfactant Protein Gene Polymorphisms With Hypersensitivity Pneumonitis of Mexican Population. Front Med (Lausanne) 2021; 7:588404. [PMID: 33469544 PMCID: PMC7813780 DOI: 10.3389/fmed.2020.588404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/07/2020] [Indexed: 01/21/2023] Open
Abstract
Background: Hypersensitivity pneumonitis (HP) is an interstitial lung disease caused by inhalation of common environmental organic particles. Surfactant proteins (SPs) play a role in innate immunity and surfactant function. We hypothesized that single nucleotide polymorphisms (SNPs) or haplotypes of the SP genes associate with HP. Methods: Seventy-five HP patients caused by avian antigen and 258 controls, asymptomatic antigen exposed and non-exposed were enrolled. SNP association was performed using logistic regression analysis and SNP-SNP interaction models. Results: Based on odds ratio, regression analyses showed association of (a) rs7316_G, 1A3 (protective) compared to antigen exposed; (b) male sex, smoking, rs721917_T and rs1130866_T (protective) compared to non-exposed controls with HP; (c) compared to antigen exposed, 25 interactions associated with HP in a three-SNP model; (d) compared to non-exposed, (i) rs1136451 associated with increased, whereas rs1136450 and rs1130866 associated with lower HP risk, (ii) 97 interactions associated with HP in a three-SNP model. The majority of SNP-SNP interactions associated with increased HP risk involved SNPs of the hydrophilic SPs, whereas, the majority of interactions associated with lower HP risk involved SNPs of both hydrophilic and hydrophobic SPs; (e) haplotypes of SP genes associated with HP risk. Conclusions: The complexity of SNPs interactions of the SFTP genes observed indicate that the lung inflammatory response to avian antigens is modulated by a complex gene interplay rather than by single SNPs.
Collapse
Affiliation(s)
- Chintan K. Gandhi
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chixiang Chen
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Shaili Amatya
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Lili Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenqi Fu
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Shouhao Zhou
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rongling Wu
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Ivette Buendía-Roldan
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Moisés Selman
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Annie Pardo
- Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Obstetrics & Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
8
|
Depicolzuane L, Phelps DS, Floros J. Surfactant Protein-A Function: Knowledge Gained From SP-A Knockout Mice. Front Pediatr 2021; 9:799693. [PMID: 35071140 PMCID: PMC8777267 DOI: 10.3389/fped.2021.799693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023] Open
Abstract
Pulmonary surfactant proteins have many roles in surfactant- related functions and innate immunity. One of these proteins is the surfactant protein A (SP-A) that plays a role in both surfactant-related processes and host defense and is the focus in this review. SP-A interacts with the sentinel host defense cell in the alveolus, the alveolar macrophage (AM), to modulate its function and expression profile under various conditions, as well as other alveolar epithelial cells such as the Type II cell. Via these interactions, SP-A has an impact on the alveolar microenvironment. SP-A is also important for surfactant structure and function. Much of what is understood of the function of SP-A and its various roles in lung health has been learned from SP-A knockout (KO) mouse experiments, as reviewed here. A vast majority of this work has been done with infection models that are bacterial, viral, and fungal in nature. Other models have also been used, including those of bleomycin-induced lung injury and ozone-induced oxidative stress either alone or in combination with an infectious agent, bone marrow transplantation, and other. In addition, models investigating the effects of SP-A on surfactant components or surfactant structure have contributed important information. SP-A also appears to play a role in pathways involved in sex differences in response to infection and/or oxidative stress, as well as at baseline conditions. To date, this is the first review to provide a comprehensive report of the functions of SP-A as learned through KO mice.
Collapse
Affiliation(s)
| | | | - Joanna Floros
- Departments of Pediatrics, Hershey, PA, United States.,Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
9
|
Phelps DS, Chinchilli VM, Weisz J, Yang L, Shearer D, Zhang X, Floros J. Differences in the alveolar macrophage toponome in humanized SP-A1 and SP-A2 transgenic mice. JCI Insight 2020; 5:141410. [PMID: 33141765 PMCID: PMC7819750 DOI: 10.1172/jci.insight.141410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Alveolar macrophages (AMs) are differentially regulated by human surfactant protein-A1 (SP-A1) or SP-A2. However, AMs are very heterogeneous and differences are difficult to characterize in intact cells. Using the Toponome Imaging System (TIS), an imaging technique that uses sequential immunostaining to identify patterns of biomarker expression or combinatorial molecular phenotypes (CMPs), we studied individual single cells and identified subgroups of AMs (n = 168) from SP-A–KO mice and mice expressing either SP-A1 or SP-A2. The effects, as shown by CMPs, of SP-A1 and SP-A2 on AMs were significant and differed. SP-A1 AMs were the most diverse and shared the fewest CMPs with KO and SP-A2. Clustering analysis of each group showed 3 clusters where the CMP-based phenotype was distinct in each cluster. Moreover, a clustering analysis of all 168 AMs revealed 10 clusters, many dominated by 1 group. Some CMP overlap among groups was observed with SP-A2 AMs sharing the most CMPs and SP-A1 AMs the fewest. The CMP-based patterns identified here provide a basis for understanding not only AMs’ diversity, but also most importantly, the molecular basis for the diversity of functional differences in mouse models where the impact of genetics of innate immune molecules on AMs has been studied.
Collapse
Affiliation(s)
- David S Phelps
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics
| | | | - Judith Weisz
- Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Lili Yang
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics
| | - Debra Shearer
- Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Xuesheng Zhang
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics
| | - Joanna Floros
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics.,Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
10
|
Thorenoor N, Phelps DS, Floros J. Differential Sex-Dependent Regulation of the Alveolar Macrophage miRNome of SP-A2 and co-ex (SP-A1/SP-A2) and Sex Differences Attenuation after 18 h of Ozone Exposure. Antioxidants (Basel) 2020; 9:antiox9121190. [PMID: 33260937 PMCID: PMC7768498 DOI: 10.3390/antiox9121190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Human SP-A1 and SP-A2, encoded by SFTPA1 and SFTPA2, and their genetic variants differentially impact alveolar macrophage (AM) functions and regulation, including the miRNome. We investigated whether miRNome differences previously observed between AM from SP-A2 and SP-A1/SP-A2 mice are due to continued qualitative differences or a delayed response of mice carrying a single gene. Methods: Human transgenic (hTG) mice, carrying SP-A2 or both SP-A genes, and SP-A-KO mice were exposed to filtered air (FA) or ozone (O3). AM miRNA levels, target gene expression, and pathways determined 18 h after O3 exposure. RESULTS: We found (a) differences in miRNome due to sex, SP-A genotype, and exposure; (b) miRNome of both sexes was largely downregulated by O3, and co-ex had fewer changed (≥2-fold) miRNAs than either group; (c) the number and direction of the expression of genes with significant changes in males and females in co-ex are almost the opposite of those in SP-A2; (d) the same pathways were found in the studied groups; and (e) O3 exposure attenuated sex differences with a higher number of genotype-dependent and genotype-independent miRNAs common in both sexes after O3 exposure. Conclusion: Qualitative differences between SP-A2 and co-ex persist 18 h post-O3, and O3 attenuates sex differences.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (N.T.); (D.S.P.)
- Department of Biochemistry & Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - David S. Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (N.T.); (D.S.P.)
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (N.T.); (D.S.P.)
- Department of Obstetrics & Gynecology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
11
|
Xu HN, Lin Z, Gandhi CK, Amatya S, Wang Y, Li LZ, Floros J. Sex and SP-A2 Dependent NAD(H) Redox Alterations in Mouse Alveolar Macrophages in Response to Ozone Exposure: Potential Implications for COVID-19. Antioxidants (Basel) 2020; 9:antiox9100915. [PMID: 32992843 PMCID: PMC7601279 DOI: 10.3390/antiox9100915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/19/2020] [Indexed: 12/20/2022] Open
Abstract
Co-enzyme nicotinamide adenine dinucleotide (NAD(H)) redox plays a key role in macrophage function. Surfactant protein (SP-) A modulates the functions of alveolar macrophages (AM) and ozone (O3) exposure in the presence or absence of SP-A and reduces mouse survival in a sex-dependent manner. It is unclear whether and how NAD(H) redox status plays a role in the innate immune response in a sex-dependent manner. We investigated the NAD(H) redox status of AM from SP-A2 and SP-A knockout (KO) mice in response to O3 or filtered air (control) exposure using optical redox imaging technique. We found: (i) In SP-A2 mice, the redox alteration of AM in response to O3 showed sex-dependence with AM from males being significantly more oxidized and having a higher level of mitochondrial reactive oxygen species than females; (ii) AM from KO mice were more oxidized after O3 exposure and showed no sex differences; (iii) AM from female KO mice were more oxidized than female SP-A2 mice; and (iv) Two distinct subpopulations characterized by size and redox status were observed in a mouse AM sample. In conclusions, the NAD(H) redox balance in AM responds to O3 in a sex-dependent manner and the innate immune molecule, SP-A2, contributes to this observed sex-specific redox response.
Collapse
Affiliation(s)
- He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.N.X.); (Z.L.)
| | - Zhenwu Lin
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.N.X.); (Z.L.)
| | - Chintan K. Gandhi
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (C.K.G.); (S.A.); (Y.W.)
| | - Shaili Amatya
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (C.K.G.); (S.A.); (Y.W.)
| | - Yunhua Wang
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (C.K.G.); (S.A.); (Y.W.)
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.N.X.); (Z.L.)
- Correspondence: (L.Z.L.); (J.F.)
| | - Joanna Floros
- Departments of Pediatric and Obstetrics and Gynecology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Correspondence: (L.Z.L.); (J.F.)
| |
Collapse
|
12
|
Tekos F, Skaperda Z, Goutzourelas N, Phelps DS, Floros J, Kouretas D. The Importance of Redox Status in the Frame of Lifestyle Approaches and the Genetics of the Lung Innate Immune Molecules, SP-A1 and SP-A2, on Differential Outcomes of COVID-19 Infection. Antioxidants (Basel) 2020; 9:antiox9090784. [PMID: 32854247 PMCID: PMC7554878 DOI: 10.3390/antiox9090784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The pandemic of COVID-19 is of great concern to the scientific community. This mainly affects the elderly and people with underlying diseases. People with obesity are more likely to experience unpleasant disease symptoms and increased mortality. The severe oxidative environment that occurs in obesity due to chronic inflammation permits viral activation of further inflammation leading to severe lung disease. Lifestyle affects the levels of inflammation and oxidative stress. It has been shown that a careful diet rich in antioxidants, regular exercise, and fasting regimens, each and/or together, can reduce the levels of inflammation and oxidative stress and strengthen the immune system as they lead to weight loss and activate cellular antioxidant mechanisms and reduce oxidative damage. Thus, a lifestyle change based on the three pillars: antioxidants, exercise, and fasting could act as a proactive preventative measure against the adverse effects of COVID-19 by maintaining redox balance and well-functioning immunity. Moreover, because of the observed diversity in the expression of COVID-19 inflammation, the role of genetics of innate immune molecules, surfactant protein A (SP-A)1 and SP-A2, and their differential impact on the local lung microenvironment and host defense is reviewed as genetics may play a major role in the diverse expression of the disease.
Collapse
Affiliation(s)
- Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.); (N.G.)
| | - Zoi Skaperda
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.); (N.G.)
| | - Nikolaos Goutzourelas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.); (N.G.)
| | - David S. Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) and Departments of Pediatrics, Hershey, PA 17033, USA; (D.S.P.); (J.F.)
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) and Departments of Pediatrics, Hershey, PA 17033, USA; (D.S.P.); (J.F.)
- Obstetrics & Gynecology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.); (N.G.)
- Correspondence: ; Tel.: +30-2410-565-277; Fax: +30-2410-565-290
| |
Collapse
|
13
|
Thorenoor N, S. Phelps D, Kala P, Ravi R, Floros Phelps A, M. Umstead T, Zhang X, Floros J. Impact of Surfactant Protein-A Variants on Survival in Aged Mice in Response to Klebsiella pneumoniae Infection and Ozone: Serendipity in Action. Microorganisms 2020; 8:microorganisms8091276. [PMID: 32825654 PMCID: PMC7570056 DOI: 10.3390/microorganisms8091276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 01/10/2023] Open
Abstract
Innate immune molecules, SP-A1 (6A2, 6A4) and SP-A2 (1A0, 1A3), differentially affect young mouse survival after infection. Here, we investigated the impact of SP-A variants on the survival of aged mice. hTG mice carried a different SP-A1 or SP-A2 variant and SP-A-KO were either infected with Klebsiella pneumoniae or exposed to filtered air (FA) or ozone (O3) prior to infection, and their survival monitored over 14 days. In response to infection alone, no gene- or sex-specific (except for 6A2) differences were observed; variant-specific survival was observed (1A0 > 6A4). In response to O3, gene-, sex-, and variant-specific survival was observed with SP-A2 variants showing better survival in males than females, and 1A0 females > 1A3 females. A serendipitous, and perhaps clinically important observation was made; mice exposed to FA prior to infection exhibited significantly better survival than infected alone mice. 1A0 provided an overall better survival in males and/or females indicating a differential role for SP-A genetics. Improved ventilation, as provided by FA, resulted in a survival of significant magnitude in aged mice and perhaps to a lesser extent in young mice. This may have clinical application especially within the context of the current pandemic.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence: (N.T.); (J.F.)
| | - David S. Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Padma Kala
- Independent Consultant, Upper Saddle River, NJ 07458, USA;
| | - Radhika Ravi
- Division of Anesthesia, Department of Surgery, Veterans Affairs New Jersey Health Care System, 385 Tremont Avenue, East Orange, NJ 07018, USA;
| | | | - Todd M. Umstead
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Xuesheng Zhang
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
- Department of Obstetrics & Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence: (N.T.); (J.F.)
| |
Collapse
|
14
|
King SD, Chen SY. Recent progress on surfactant protein A: cellular function in lung and kidney disease development. Am J Physiol Cell Physiol 2020; 319:C316-C320. [PMID: 32639871 DOI: 10.1152/ajpcell.00195.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pulmonary surfactant is a heterogeneous active surface complex made up of lipids and proteins. The major glycoprotein in surfactant is surfactant protein A (SP-A), which is released into the alveolar lumen from cytoplasmic lamellar bodies in type II alveolar epithelial cells. SP-A is involved in phospholipid absorption. SP-A together with other surfactant proteins and phospholipids prevent alveolar collapse during respiration by decreasing the surface tension of the air-liquid interface. Additionally, SP-A interacts with pathogens to prevent their propagation and regulate host immune responses. Studies in human and animal models have shown that deficiencies or mutations in surfactant components result in various lung or kidney pathologies, suggesting a role for SP-A in the development of lung and kidney diseases. In this mini-review, we discuss the current understanding of SP-A functions, recent findings of its dysfunction in specific lung and kidney pathologies, and how SP-A has been used as a biomarker to detect the outcome of lung diseases.
Collapse
Affiliation(s)
- Skylar D King
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Shi-You Chen
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri.,Department of Molecular Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
15
|
Thorenoor N, Kawasawa YI, Gandhi CK, Floros J. Sex-Specific Regulation of Gene Expression Networks by Surfactant Protein A (SP-A) Variants in Alveolar Macrophages in Response to Klebsiella pneumoniae. Front Immunol 2020; 11:1290. [PMID: 32670284 PMCID: PMC7326812 DOI: 10.3389/fimmu.2020.01290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023] Open
Abstract
Surfactant protein A (SP-A) in addition to its surfactant-related functions interacts with alveolar macrophages (AM), the guardian cells of innate immunity in the lungs, and regulates many of its functions under basal condition and in response to various pressures, such as infection and oxidative stress. The human SP-A locus consists of two functional genes, SFTPA1 and SFTPA2, and one pseudogene. The functional genes encode human SP-A1 and SP-A2 proteins, respectively, and each has been identified with several genetic variants. SP-A variants differ in their ability to regulate lung function mechanics and survival in response to bacterial infection. Here, we investigated the effect of hSP-A variants on the AM gene expression profile in response to Klebsiella pneumoniae infection. We used four humanized transgenic (hTG) mice that each carried SP-A1 (6A2, 6A4) or SP-A2 (1A0, 1A3), and KO. AM gene expression profiling was performed after 6 h post-infection. We found: (a) significant sex differences in the expression of AM genes; (b) in response to infection, 858 (KO), 196 (6A2), 494 (6A4), 276 (1A0), and 397 (1A3) genes were identified (P < 0.05) and some of these were differentially expressed with ≥2 fold, specific to either males or females; (c) significant SP-A1 and SP-A2 variant-specific differences in AM gene expression; (d) via Ingenuity Pathway Analysis (IPA), key pathways and molecules were identified that had direct interaction with TP53, TNF, and cell cycle signaling nodes; (e) of the three pathways (TNF, TP-53, and cell cycle signaling nodes) studied here, all variants except SP-A2 (1A3) female, showed significance for at least 2 of these pathways, and KO male showed significance for all three pathways; (f) validation of key molecules exhibited variant-specific significant differences in the expression between sexes and a similarity in gene expression profile was observed between KO and SP-A1. These results reveal for the first time a large number of biologically relevant functional pathways influenced in a sex-specific manner by SP-A variants in response to infection. These data may assist in studying molecular mechanisms of SP-A-mediated AM gene regulation and potentially identify novel therapeutic targets for K. pneumoniae infection.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Biochemistry & Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Pharmacology & Biochemistry & Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chintan K Gandhi
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Obstetrics & Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
16
|
Phelps DS, Chinchilli VM, Weisz J, Shearer D, Zhang X, Floros J. Using toponomics to characterize phenotypic diversity in alveolar macrophages from male mice treated with exogenous SP-A1. Biomark Res 2020; 8:5. [PMID: 32082572 PMCID: PMC7020580 DOI: 10.1186/s40364-019-0181-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/30/2019] [Indexed: 01/12/2023] Open
Abstract
Background We used the Toponome Imaging System (TIS) to identify “patterns of marker expression”, referred to here as combinatorial molecular phenotypes (CMPs) in alveolar macrophages (AM) in response to the innate immune molecule, SP-A1. Methods We compared 114 AM from male SP-A deficient mice. One group (n = 3) was treated with exogenous human surfactant protein A1 (hSP-A1) and the other with vehicle (n = 3). AM obtained by bronchoalveolar lavage were plated onto slides and analyzed using TIS to study the AM toponome, the spatial network of proteins within intact cells. With TIS, each slide is sequentially immunostained with multiple FITC-conjugated antibodies. Images are analyzed pixel-by-pixel identifying all of the proteins within each pixel, which are then designated as CMPs. CMPs represent organized protein clusters postulated to contribute to specific functions. Results 1) We compared identical CMPs in KO and SP-A1 cells and found them to differ significantly (p = 0.0007). Similarities between pairs of markers in the two populations also differed significantly (p < 0.0001). 2) Focusing on the 20 most abundant CMPs for each cell, we developed a method to generate CMP “signatures” that characterized various groups of cells. Phenotypes were defined as cells exhibiting similar signatures of CMPs. i) AM were extremely diverse and each group contained cells with multiple phenotypes. ii) Among the 114 AM analyzed, no two cells were identical. iii) However, CMP signatures could distinguish among cell subpopulations within and between groups. iv) Some cell populations were enriched with SP-A1 treatment, some were more common without SP-A1, and some seemed not to be influenced by the presence of SP-A1. v) We also found that AM were more diverse in mice treated with SP-A1 compared to those treated with vehicle. Conclusions AM diversity is far more extensive than originally thought. The increased diversity of SP-A1-treated mice points to the possibility that SP-A1 enhances or activates several pathways in the AM to better prepare it for its innate immune functions and other functions shown previously to be affected by SP-A treatment. Future studies may identify key protein(s) responsible for CMP integrity and consequently for a given function, and target it for therapeutic purposes.
Collapse
Affiliation(s)
- David S Phelps
- 1Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Vernon M Chinchilli
- 2Public Health Sciences; and Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Judith Weisz
- 3Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Debra Shearer
- 3Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Xuesheng Zhang
- 1Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Joanna Floros
- 1Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA.,3Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| |
Collapse
|
17
|
Nalian A, Umstead TM, Yang CH, Silveyra P, Thomas NJ, Floros J, McCormack FX, Chroneos ZC. Structural and Functional Determinants of Rodent and Human Surfactant Protein A: A Synthesis of Binding and Computational Data. Front Immunol 2019; 10:2613. [PMID: 31781112 PMCID: PMC6856657 DOI: 10.3389/fimmu.2019.02613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/21/2019] [Indexed: 11/23/2022] Open
Abstract
Surfactant protein A (SP-A) provides surfactant stability, first line host defense, and lung homeostasis by binding surfactant phospholipids, pathogens, alveolar macrophages (AMs), and epithelial cells. Non-primates express one SP-A protein whereas humans express two: SP-A1 and SP-A2 with core intra- and inter-species differences in the collagen-like domain. Here, we used macrophages and solid phase binding assays to discern structural correlates of rat (r) and human (h) SP-A function. Binding assays using recombinant rSP-A expressed in insect cells showed that lack of proline hydroxylation, truncations of amino-terminal oligomerization domains, and site-directed serine (S) or alanine (A) mutagenesis of cysteine 6 (C6S), glutamate 195 (E195A), and glutamate 171 (E171A) in the carbohydrate recognition domain (CRD) all impaired SP-A binding. Replacement of arginine 197 with alanine found in hSP-A (R197A), however, restored the binding of hydroxyproline-deficient rSP-A to the SP-A receptor SP-R210 similar to native rat and human SP-A. In silico calculation of Ca++ coordination bond length and solvent accessibility surface area revealed that the “humanized” R197A substitution alters topology and solvent accessibility of the Ca++ coordination residues of the CRD domain. Binding assays in mouse AMs that were exposed to either endogenous SP-A or hSP-A1 (6A2) and hSP-A2 (1A0) isoforms in vivo revealed that mouse SP-A is a functional hybrid of hSP-A1 and hSP-A2 in regulating SP-A receptor occupancy and binding affinity. Binding assays using neonatal and adult human AMs indicates that the interaction of SP-A1 and SP-A2 with AMs is developmentally regulated. Furthermore, our data indicate that the auxiliary ion coordination loop encompassing the conserved E171 residue may comprise a conserved site of interaction with macrophages, and SP-R210 specifically, that merits further investigation to discern conserved and divergent SP-A functions between species. In summary, our findings support the notion that complex structural adaptation of SP-A regulate conserved and species specific AM functions in vertebrates.
Collapse
Affiliation(s)
- Armen Nalian
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX, United States.,The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Todd M Umstead
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Ching-Hui Yang
- The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Patricia Silveyra
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Neal J Thomas
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Department of Public Health Sciences, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Center of Host Defense and Inflammatory Disease Research, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| | - Francis X McCormack
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Zissis C Chroneos
- The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX, United States.,Department of Pediatrics, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States.,Department of Microbiology and Immunology, Pennsylvania State University College of Medicine and PennState Health Children's Hospital, Hershey, PA, United States
| |
Collapse
|
18
|
Thorenoor N, Kawasawa YI, Gandhi CK, Zhang X, Floros J. Differential Impact of Co-expressed SP-A1/SP-A2 Protein on AM miRNome; Sex Differences. Front Immunol 2019; 10:1960. [PMID: 31475015 PMCID: PMC6707024 DOI: 10.3389/fimmu.2019.01960] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/02/2019] [Indexed: 12/04/2022] Open
Abstract
In humans there are two surfactant protein A (SP-A) functional genes SFTPA1 and SFTPA2 encoding innate immune molecules, SP-A1 and SP-A2, respectively, with numerous genetic variants each. SP-A interacts and regulates many of the functions of alveolar macrophages (AM). It is shown that SP-A variants differ in their ability to regulate the AM miRNome in response to oxidative stress (OxS). Because humans have both SP-A gene products, we were interested to determine the combined effect of co-expressed SP-A1/SP-A2 (co-ex) in response to ozone (O3) induced OxS on AM miRNome. Human transgenic (hTG) mice, carrying both SP-A1/SP-A2 (6A2/1A0, co-ex) and SP-A- KO were utilized. The hTG and KO mice were exposed to filtered air (FA) or O3 and miRNA levels were measured after AM isolation with or without normalization to KO. We found: (i) The AM miRNome of co-ex males and females in response to OxS to be largely downregulated after normalization to KO, but after Bonferroni multiple comparison analysis only in females the AM miRNome remained significantly different compared to control (FA); (ii) The targets of the significantly changed miRNAs were downregulated in females and upregulated in males; (iii) Several of the validated mRNA targets were involved in pro-inflammatory response, anti-apoptosis, cell cycle, cellular growth and proliferation; (iv) The AM of SP-A2 male, shown, previously to have major effect on the male AM miRNome in response to OxS, shared similarities with the co-ex, namely in pathways involved in the pro-inflammatory response and anti-apoptosis but also exhibited differences with the cell-cycle, growth, and proliferation pathway being involved in co-ex and ROS homeostasis in SP-A2 male. We speculate that the presence of both gene products vs. single gene products differentially impact the AM responses in males and females in response to OxS.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chintan K Gandhi
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Xuesheng Zhang
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
19
|
Noutsios GT, Thorenoor N, Zhang X, Phelps DS, Umstead TM, Durrani F, Floros J. Major Effect of Oxidative Stress on the Male, but Not Female, SP-A1 Type II Cell miRNome. Front Immunol 2019; 10:1514. [PMID: 31354704 PMCID: PMC6635478 DOI: 10.3389/fimmu.2019.01514] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/17/2019] [Indexed: 11/15/2022] Open
Abstract
Pulmonary surfactant protein A (SP-A) plays an important role in surfactant metabolism and lung innate immunity. In humans there are two proteins, SP-A1 and SP-A2, encoded by SFTPA1 and SFTPA2, respectively, which are produced by the alveolar type II cells (T2C). We sought to investigate the differential influence of SP-A1 and SP-A2 in T2C miRNome under oxidative stress (OxS). SP-A knock out (KO) and hTG male and female mice expressing SP-A1 or SP-A2 as well as gonadectomized (Gx) mice were exposed to O3-induced oxidative stress (OxS) or filtered air (FA). Expression of miRNAs and mRNAs was measured in the T2C of experimental animals. (a) In SP-A1 males after normalizing to KO males, significant changes were observed in the miRNome in terms of sex-OxS effects, with 24 miRNAs being differentially expressed under OxS. (b) The mRNA targets of the dysregulated miRNAs included Ago2, Ddx20, Plcg2, Irs1, Elf2, Jak2, Map2k4, Bcl2, Ccnd1, and Vhl. We validated the expression levels of these transcripts, and observed that the mRNA levels of all of these targets were unaffected in SP-A1 T2C but six of these were significantly upregulated in the KO (except Bcl2 that was downregulated). (c) Gondadectomy had a major effect on the expression of miRNAs and in three of the mRNA targets (Irs1, Bcl2, and Vhl). Ccnd1 was upregulated in KO regardless of Gx. (d) The targets of the significantly changed miRNAs are involved in several pathways including MAPK signaling pathway, cell cycle, anti-apoptosis, and other. In conclusion, in response to OxS, SP-A1 and male hormones appear to have a major effect in the T2C miRNome.
Collapse
Affiliation(s)
- George T Noutsios
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Xuesheng Zhang
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - David S Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Todd M Umstead
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Faryal Durrani
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, United States.,Department of Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
20
|
Wang G, Umstead TM, Hu S, Mikerov AN, Phelps DS, Floros J. Differential Effects of Human SP-A1 and SP-A2 on the BAL Proteome and Signaling Pathways in Response to Klebsiella pneumoniae and Ozone Exposure. Front Immunol 2019; 10:561. [PMID: 30972061 PMCID: PMC6443908 DOI: 10.3389/fimmu.2019.00561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 12/29/2022] Open
Abstract
Surfactant protein A (SP-A) plays critical roles in host defense, regulation of inflammation and surfactant metabolism in the lung. The human SP-A locus consists of two functional genes, SFTPA1 and SFTPA2 encoding surfactant proteins SP-A1 and SP-A2, respectively. Structural and functional differences exist between SP-A1 and SP-A2 in vitro and in vivo. Ozone is a major air pollutant with a negative impact on many biological processes. In this study we used humanized transgenic (hTG) SP-A1 and SP-A2 mice, and SP-A KO mice to study in vivo effects of SP-A1 and SP-A2 on the bronchoalveolar lavage (BAL) proteomic profile and associated signaling pathways in response to ozone or filtered air (FA) exposure and Klebsiella pneumoniae infection. The BAL samples were harvested 24 h after ozone (2 ppm for 3 h) or FA exposure and infection and analyzed by two-dimensional difference gel electrophoresis (2D-DIGE) and MALDI-ToF/ToF. We found: that (1) Ozone exposure, but not infection, is a major factor for increases in total BAL protein content. (2) A total of 36 proteins were identified, accounting for 89.62% of the BAL proteins resolved by the 2D-DIGE system. (3) The number of proteins in which levels were altered more than 25% following infection and FA exposure was: SP-A2 > SP-A1 > KO for male mice, and SP-A2 ≈ SP-A1 > KO for female mice. (4) The number of proteins with more than 25% increase/decrease after ozone exposure and infection was: SP-A2 > SP-A1 ≈ KO, with the majority being increases in male mice and decreases in female mice. (5) Eleven out of the 36 proteins, including annexin A5, glutathione S-transferase A4, SP-A1/SP-A2, and 14-3-3 zeta protein, exhibited significant differences among SP-A genotypes. The acute phase response (APR) that includes the NF-kB signaling pathway plays a critical role, followed by Nrf2-mediated oxidative response, and others. These associated with SP-A genotype, sex, and ozone-induced oxidative stress in response to infection. We concluded that human SP-A2 and SP-A1 exhibit differential genotype-and sex-dependent innate immune responses to microbial pathogens and/or ozone-induced oxidative stress by modulating proteomic patterns and signaling pathways in the lung.
Collapse
Affiliation(s)
- Guirong Wang
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Todd M Umstead
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Sanmei Hu
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Anatoly N Mikerov
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - David S Phelps
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
21
|
Thorenoor N, Umstead TM, Zhang X, Phelps DS, Floros J. Survival of Surfactant Protein-A1 and SP-A2 Transgenic Mice After Klebsiella pneumoniae Infection, Exhibits Sex-, Gene-, and Variant Specific Differences; Treatment With Surfactant Protein Improves Survival. Front Immunol 2018; 9:2404. [PMID: 30459763 PMCID: PMC6232836 DOI: 10.3389/fimmu.2018.02404] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/28/2018] [Indexed: 01/23/2023] Open
Abstract
Surfactant protein A (SP-A) is involved in lung innate host defense and surfactant-related functions. The human SFTPA1 and SFTPA2 genes encode SP-A1 and SP-2 proteins, and each gene has been identified with numerous genetic variants. SP-A1 and SP-A2 differentially enhance bacterial phagocytosis. Sex differences have been observed in pulmonary disease and in survival of wild type and SP-A knockout (KO) mice. The impact of human SP-A variants on survival after infection is unknown. In this study, we determined whether SP-A variants differentially affect survival of male and female mice infected with Klebsiella pneumoniae. Transgenic (TG) mice, where each carries a different human (h) SP-A1 (6A2, 6A4), SP-A2 (1A0, 1A3) variant or both variants SP-A1/SP-A2 (6A2/1A0, co-ex), and SP-A- KO, were utilized. The hTG and KO mice were infected intratracheally with K. pneumoniae bacteria, and groups of KO mice were treated with SP-A1 or SP-A2 either prior to and/or at the time of infection and survival for both experimental groups was monitored over 14 days. The binding of purified SP-A1 and SP-A2 proteins to phagocytic and non-phagocytic cells and expression of cell surface proteins in alveolar macrophages (AM) from SP-A1 and SP-A2 mice was examined. We observed gene-, variant-, and sex-specific (except for co-ex) differences with females showing better survival: (a) Gene-specific differences: co-ex = SP-A2 > SP-A1 > KO (both sexes); (b) Variant-specific survival co-ex (6A2/1A0) = 1A0 > 1A3 = 6A2 > 6A4 (both sexes); (c) KO mice treated with SPs (SP-A1 or SP-A2) proteins exhibit significantly (p < 0.05) better survival; (d) SP-A1 and SP-A2 differentially bind to phagocytic, but not to non-phagocytic cells, and AM from SP-A1 and SP-A2 hTG mice exhibit differential expression of cell surface proteins. Our results indicate that sex and SP-A genetics differentially affect survival after infection and that exogenous SP-A1/SP-A2 treatment significantly improves survival. We postulate that the differential SP-A1/SP-A2 binding to the phagocytic cells and the differential expression of cell surface proteins that bind SP-A by AM from SP-A1 and SP-A2 mice play a role in this process. These findings provide insight into the importance of sex and innate immunity genetics in survival following infection.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Todd M Umstead
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Xuesheng Zhang
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - David S Phelps
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Joanna Floros
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics & Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
22
|
Noutsios GT, Thorenoor N, Zhang X, Phelps DS, Umstead TM, Durrani F, Floros J. SP-A2 contributes to miRNA-mediated sex differences in response to oxidative stress: pro-inflammatory, anti-apoptotic, and anti-oxidant pathways are involved. Biol Sex Differ 2017; 8:37. [PMID: 29202868 PMCID: PMC5716385 DOI: 10.1186/s13293-017-0158-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Human innate host defense molecules, surfactant protein A1 (SP-A1), and SP-A2 differentially affect the function and proteome of the alveolar macrophage (AM). We hypothesized that SP-A genes differentially regulate the AM miRNome. METHODS Humanized transgenic mice expressing SP-A1 and SP-A2 were subjected to O3-induced oxidative stress (OxS) or filtered air (FA), AMs were isolated, and miRNA levels were measured. RESULTS In SP-A2 males, we found significant changes in miRNome in terms of sex and sex-OxS effects, with 11 miRNAs differentially expressed under OxS. Their mRNA targets included BCL2, CAT, FOXO1, IL6, NF-kB, SOD2, and STAT3. We followed the expression of these transcripts as well as key cytokines, and we found that (a) the STAT3 mRNA significantly increased at 4 h post OxS and returned to baseline at 18 h post OxS. (b) The anti-oxidant protein SOD2 level significantly increased, but the CAT level did not change after 4 h post OxS compared to control. (c) The anti-apoptotic BCL2 mRNA increased significantly (18 h post OxS), but the levels of the other transcripts were decreased. The presence of the SP-A2 gene had a protective role in apoptosis of AMs under OxS compared to mice lacking SP-A (knockout, KO). (d) Pro-inflammatory cytokine IL-6 protein levels were significantly increased in SP-A2 mice compared to KO (4 and 18 h post OxS), which signifies the role of SP-A2 in pro-inflammatory protein expression. (e) SOD2 and CAT mRNAs changed significantly in OxS indicating a plausible role of SP-A2 in the homeostasis of reactive oxygen species. (f) Gonadectomy of transgenic mice showed that sex hormones contribute to significant changes of the miRNome expression. CONCLUSIONS We conclude that SP-A2 influences the miRNA-mediated sex-specific differences in response to OxS. In males, these differences pertain to inflammatory, anti-apoptotic, and anti-oxidant pathways.
Collapse
Affiliation(s)
- George T Noutsios
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA
| | - Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA
| | - Xuesheng Zhang
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA
| | - David S Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA
| | - Todd M Umstead
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA
| | - Faryal Durrani
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA.
- Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA.
| |
Collapse
|
23
|
Lopez-Rodriguez E, Pascual A, Arroyo R, Floros J, Perez-Gil J. Human Pulmonary Surfactant Protein SP-A1 Provides Maximal Efficiency of Lung Interfacial Films. Biophys J 2017; 111:524-536. [PMID: 27508436 DOI: 10.1016/j.bpj.2016.06.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022] Open
Abstract
Pulmonary surfactant is a lipoprotein complex that reduces surface tension to prevent alveolar collapse and contributes to the protection of the respiratory surface from the entry of pathogens. Surfactant protein A (SP-A) is a hydrophilic glycoprotein of the collectin family, and its main function is related to host defense. However, previous studies have shown that SP-A also aids in the formation and biophysical properties of pulmonary surfactant films at the air-water interface. Humans, unlike rodents, have two genes, SFTPA1 and SFTPA2. The encoded proteins, SP-A1 and SP-A2, differ quantitatively or qualitatively in function. It has been shown that both gene products are necessary for tubular myelin formation, an extracellular structural form of lung surfactant. The goal of this study was to investigate potential differences in the biophysical properties of surfactants containing human SP-A1, SP-A2, or both. For this purpose, we have studied for the first time, to our knowledge, the biophysical properties of pulmonary surfactant from individual humanized transgenic mice expressing human SP-A1, SP-A2, or both SP-A1 and SP-A2, in the captive bubble surfactometer. We observed that pulmonary surfactant containing SP-A1 reaches lower surface tension after postexpansion interfacial adsorption than surfactants containing no SP-A or only SP-A2. Under interfacial compression-expansion cycling conditions, surfactant films containing SP-A1 also performed better, particularly with respect to the reorganization of the films that takes place during compression. On the other hand, addition of recombinant SP-A1 to a surfactant preparation reconstituted from the hydrophobic fraction of a porcine surfactant made it more resistant to inhibition by serum than the addition of equivalent amounts of SP-A2. We conclude that the presence of SP-A1 allows pulmonary surfactant to adopt a particularly favorable structure with optimal biophysical properties.
Collapse
Affiliation(s)
- Elena Lopez-Rodriguez
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Department of Biochemistry, Faculty of Biology, and Hospital 12 Octubre Research Institute, Complutense University of Madrid, Madrid, Spain
| | - Alicia Pascual
- Department of Biochemistry, Faculty of Biology, and Hospital 12 Octubre Research Institute, Complutense University of Madrid, Madrid, Spain
| | - Raquel Arroyo
- Department of Biochemistry, Faculty of Biology, and Hospital 12 Octubre Research Institute, Complutense University of Madrid, Madrid, Spain
| | | | - Jesus Perez-Gil
- Department of Biochemistry, Faculty of Biology, and Hospital 12 Octubre Research Institute, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
24
|
Tsotakos N, Phelps DS, Yengo CM, Chinchilli VM, Floros J. Single-cell analysis reveals differential regulation of the alveolar macrophage actin cytoskeleton by surfactant proteins A1 and A2: implications of sex and aging. Biol Sex Differ 2016; 7:18. [PMID: 26998217 PMCID: PMC4797174 DOI: 10.1186/s13293-016-0071-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/11/2016] [Indexed: 01/02/2023] Open
Abstract
Background Surfactant protein A (SP-A) contributes to lung immunity by regulating inflammation and responses to microorganisms invading the lung. The huge genetic variability of SP-A in humans implies that this protein is highly important in tightly regulating the lung immune response. Proteomic studies have demonstrated that there are differential responses of the macrophages to SP-A1 and SP-A2 and that there are sex differences implicated in these responses. Methods Purified SP-A variants were used for administration to alveolar macrophages from SP-A knockout (KO) mice for in vitro studies, and alveolar macrophages from humanized SP-A transgenic mice were isolated for ex vivo studies. The actin cytoskeleton was examined by fluorescence and confocal microscopy, and the macrophages were categorized according to the distribution of polymerized actin. Results In accordance with previous data, we report that there are sex differences in the response of alveolar macrophages to SP-A1 and SP-A2. The cell size and F-actin content of the alveolar macrophages are sex- and age-dependent. Importantly, there are different subpopulations of cells with differential distribution of polymerized actin. In vitro, SP-A2 destabilizes actin in female, but not male, mice, and the same tendency is observed by SP-A1 in cells from male mice. Similarly, there are differences in the distribution of AM subpopulations isolated from SP-A transgenic mice depending on sex and age. Conclusions There are marked sex- and age-related differences in the alveolar macrophage phenotype as illustrated by F-actin staining between SP-A1 and SP-A2. Importantly, the phenotypic switch caused by the different SP-A variants is subtle, and pertains to the frequency of the observed subpopulations, demonstrating the need for single-cell analysis approaches. The differential responses of alveolar macrophages to SP-A1 and SP-A2 highlight the importance of genotype in immune regulation and the susceptibility to lung disease and the need for development of individualized treatment options.
Collapse
Affiliation(s)
- Nikolaos Tsotakos
- Center for Host Defense, Inflammation and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Rm. C4752, H085, 500 University Drive, PO Box 850, Hershey, PA 17033-0850 USA
| | - David S Phelps
- Center for Host Defense, Inflammation and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Rm. C4752, H085, 500 University Drive, PO Box 850, Hershey, PA 17033-0850 USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA USA
| | - Vernon M Chinchilli
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA USA
| | - Joanna Floros
- Center for Host Defense, Inflammation and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Rm. C4752, H085, 500 University Drive, PO Box 850, Hershey, PA 17033-0850 USA ; Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA USA
| |
Collapse
|
25
|
Noutsios GT, Ghattas P, Bennett S, Floros J. 14-3-3 isoforms bind directly exon B of the 5'-UTR of human surfactant protein A2 mRNA. Am J Physiol Lung Cell Mol Physiol 2015; 309:L147-57. [PMID: 26001776 DOI: 10.1152/ajplung.00088.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/16/2015] [Indexed: 12/26/2022] Open
Abstract
Human surfactant protein (SP) A (SP-A), an innate immunity molecule, is encoded by two genes, SFTPA1 and SFTPA2. The 5'-untranslated splice variant of SP-A2 (ABD), but not SP-A1 (AD), contains exon B (eB). eB is an enhancer for transcription and translation and contains cis-regulatory elements. Specific trans-acting factors, including 14-3-3, bind eB. The 14-3-3 protein family contains seven isoforms that have been found by mass spectrometry in eB electromobility shift assays (Noutsios et al. Am J Physiol Lung Cell Mol Physiol 304: L722-L735, 2013). We used four different approaches to investigate whether 14-3-3 isoforms bind directly to eB. 1) eB RNA pulldown assays showed that 14-3-3 isoforms specifically bind eB. 2) RNA electromobility shift assay complexes were formed using purified 14-3-3 isoforms β, γ, ε, η, σ, and τ, but not isoform ζ, with wild-type eB RNA. 3 and 4) RNA affinity chromatography assays and surface plasmon resonance analysis showed that 14-3-3 isoforms β, γ, ε, η, σ, and τ, but not isoform ζ, specifically and directly bind eB. Inhibition of 14-3-3 isoforms γ, ε, η, and τ/θ with shRNAs in NCI-H441 cells resulted in downregulation of SP-A2 levels but did not affect SP-A1 levels. However, inhibition of 14-3-3 isoform σ was correlated with lower levels of SP-A1 and SP-A2. Inhibition of 14-3-3 isoform ζ/δ, which does not bind eB, had no effect on expression levels of SP-A1 and SP-A2. In conclusion, the 14-3-3 protein family affects differential regulation of SP-A1 and SP-A2 by binding directly to SP-A2 5'-UTR mRNA.
Collapse
Affiliation(s)
- Georgios T Noutsios
- Center for Host Defense, Inflammation, and Lung Disease (CHILD), Research Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania; and
| | - Paul Ghattas
- Center for Host Defense, Inflammation, and Lung Disease (CHILD), Research Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania; and
| | - Stephanie Bennett
- Center for Host Defense, Inflammation, and Lung Disease (CHILD), Research Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania; and
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD), Research Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania; and Department of Obstetrics and Gynecology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|