1
|
Fidelito G, Todorovski I, Cluse L, Vervoort SJ, Taylor RA, Watt MJ. Lipid-metabolism-focused CRISPR screens identify enzymes of the mevalonate pathway as essential for prostate cancer growth. Cell Rep 2025; 44:115470. [PMID: 40146774 DOI: 10.1016/j.celrep.2025.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/22/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Dysregulated lipid metabolism plays an important role in prostate cancer, although the understanding of the essential regulatory processes in tumorigenesis is incomplete. We employ a CRISPR-Cas9 screen using a custom human lipid metabolism knockout library to identify essential genes for prostate cancer survival. Screening in three prostate cancer cell lines reveals 63 shared dependencies, with enrichment in terpenoid backbone synthesis and N-glycan biosynthesis. Independent knockout of key genes of the mevalonate pathway reduces cell proliferation. Further investigation focuses on NUS1, a subunit of cis-prenyltransferase required for dolichol synthesis. NUS1 knockout decreases tumor growth in vivo and viability in patient-derived xenograft (PDX)-derived organoids. Mechanistic studies reveal that loss of NUS1 promotes oxidative stress, lipid peroxidation and ferroptosis sensitivity, endoplasmic reticulum (ER) stress, and G1 cell-cycle arrest, and it dampens androgen receptor (AR) signaling, collectively leading to growth arrest. This study highlights the critical role of the mevalonate-dolichol-N-glycan biosynthesis pathway, particularly NUS1, in prostate cancer survival and growth.
Collapse
Affiliation(s)
- Gio Fidelito
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Izabela Todorovski
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Leonie Cluse
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephin J Vervoort
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Melbourne Urological Research Alliance (MURAL), Monash University, Clayton, VIC 3168, Australia; Cabrini Institute, Cabrini Health, Malvern, VIC 3144, Australia.
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
2
|
Lu Z, Xu J, Li J. The Transcription Factor ATF2 Accelerates Clear Cell Renal Cell Carcinoma Progression Through Activating the PLEKHO1/NUS1 Pathway. Mol Carcinog 2025; 64:617-628. [PMID: 39777695 DOI: 10.1002/mc.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignant cancer with high mortality rate. Activating transcription factor 2 (ATF2) and pleckstrin homology domain containing O1 (PLEKHO1) were reported to participate in numerous cancers. However, their roles and the detailed mechanisms in ccRCC development remain largely unknown. RT-qPCR and western blot were used to measure the levels of PLEKHO1, ATF2, and nuclear undecaprenyl pyrophosphate synthase 1 (NUS1). Cell proliferation, apoptosis, invasion, migration and stemness were evaluated using CCK-8 assay, flow cytometry, transwell invasion assay, wound-healing assay and sphere formation assay, respectively. Dual-luciferase reporter assay was conducted to verify the relationship between ATF2 and PLEKHO1. The interaction between PLEKHO1 and NUS1 was proved by Co-IP assay. Xenograft models were utilized to evaluate the tumorigenic capability of ccRCC cells upon PLEKHO1 knockdown. PLEKHO1, ATF2 and NUS1 expression were significantly elevated in ccRCC, and PLEKHO1 might be a prognosis biomarker for ccRCC. PLEKHO1 depletion significantly inhibited cell proliferation, invasion, migration, stemness, and induced cell apoptosis in ccRCC cells. ATF2 activated PLEKHO1 expression via transcription regulation, and PLEKHO1 overexpression could reverse the suppressive effects of ATF2 knockdown on the malignant behaviors of ccRCC cells. Moreover, PLEKHO1 directly bound to NUS1, and PLEKHO1 depletion markedly restrained ccRCC progression through targeting NUS1 in vitro and in vivo. Our findings suggested that ATF2 transcriptionally activated PLEKHO1 to promote the development of ccRCC via regulating NUS1 expression.
Collapse
Affiliation(s)
- Zheng Lu
- Gravel Center, Nanyang First People's Hospital, Nanyang, China
| | - Jinge Xu
- Department of Urology, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junyu Li
- Department of Urology, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Tsegaye B, Kober P, Mossakowska BJ, Baluszek S, Maksymowicz M, Buchalska B, Kunicki J, Bujko M. DNA hypomethylation-related expression of hsa-miR-184 contributes to invasive growth of gonadotroph neuroendocrine pituitary tumors. J Neuroendocrinol 2025; 37:e13492. [PMID: 39846216 DOI: 10.1111/jne.13492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Gonadotroph neuroendocrine pituitary tumors are among the most common intracranial neoplasms. A notable proportion of these tumors is characterized by invasive growth which hampers the treatment results and worsens prognoses of patients. Increased hsa-miR-184 expression was observed in invasive as compared to non-invasive gonadotroph tumors. This study aimed to determine the role of hsa-miR-184 expression in invasive growth of gonadotroph tumors. QRT-PCR and bisulfite pyrosequencing were used for evaluating hsa-miR-184 expression and MIR184 DNA methylation levels, respectively, in tumors and normal pituitary samples. LβT2 and αT3-1 gonadotroph cells were used to test the effect of miR-184 on cell viability (MTT test), proliferation (BrdU incorporation), and migration (scratch assay). RNA sequencing was applied for transcriptome profiling in miR-184-treated and untreated LβT2 cells. Differential genes expression analysis combined with target prediction served for identification of miR-184 targets. MiRNA-mRNA interaction was subsequently validated with Luciferase reporter assay. Analysis of tissue samples showed that hsa-miR-184 is upregulated in gonadotroph tumors and its expression is higher in invasive than in noninvasive ones. Promoter of MIR184 is demethylated in tumors, and the methylation level is negatively correlated with hsa-miR-184 expression. Transfecting LβT2 and αT3-1 with miR-184 mimic resulted in increased cellular proliferation and viability. Differentially expressed genes were identified when comparing miR-184-treated and untreated cells, including Nus1 as the only predicted miR-184 target. The interaction between miR-184 and 3'UTR of Nus1 was confirmed in vitro in both LβT2 and αT3-1. Overexpression of Nus1 resulted in lowering cell viability in both cell lines and proliferation in LβT2. The expression level of NUS1 was lower in invasive than in noninvasive tumors. Our results indicate that DNA hypomethylation-related increase of hsa-mir-184 expression contributes to invasive growth of gonadotroph pituitary tumors through targeting NUS1, being one of the various molecular mechanisms involved in conferring aggressive growth potential.
Collapse
Affiliation(s)
- Biniyam Tsegaye
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Beata Joanna Mossakowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Szymon Baluszek
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Maksymowicz
- Department of Cancer Pathomorphology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Barbara Buchalska
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
4
|
Pourzand P, Tabasi F, Fayazbakhsh F, Sarhadi S, Bahari G, Mohammadi M, Jomepour S, Nafeli M, Mosayebi F, Heravi M, Taheri M, Hashemi M, Ghavami S. The Reticulon-4 3-bp Deletion/Insertion Polymorphism Is Associated with Structural mRNA Changes and the Risk of Breast Cancer: A Population-Based Case-Control Study with Bioinformatics Analysis. Life (Basel) 2023; 13:1549. [PMID: 37511924 PMCID: PMC10381770 DOI: 10.3390/life13071549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer (BC) is a complex disease caused by molecular events that disrupt cellular survival and death. Discovering novel biomarkers is still required to better understand and treat BC. The reticulon-4 (RTN4) gene, encoding Nogo proteins, plays a critical role in apoptosis and cancer development, with genetic variations affecting its function. We investigated the rs34917480 in RTN4 and its association with BC risk in an Iranian population sample. We also predicted the rs34917480 effect on RTN4 mRNA structure and explored the RTN4's protein-protein interaction network (PPIN) and related pathways. In this case-control study, 437 women (212 BC and 225 healthy) were recruited. The rs34917480 was genotyped using AS-PCR, mRNA secondary structure was predicted with RNAfold, and PPIN was constructed using the STRING database. Our findings revealed that this variant was associated with a decreased risk of BC in heterozygous (p = 0.012), dominant (p = 0.015), over-dominant (p = 0.017), and allelic (p = 0.035) models. Our prediction model showed that this variant could modify RTN4's mRNA thermodynamics and potentially its translation. RTN4's PPIN also revealed a strong association with apoptosis regulation and key signaling pathways highly implicated in BC. Consequently, our findings, for the first time, demonstrate that rs34917480 could be a protective factor against BC in our cohort, probably via preceding mechanisms.
Collapse
Affiliation(s)
- Pouria Pourzand
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Farhad Tabasi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Fariba Fayazbakhsh
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Shamim Sarhadi
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Children and Adolescent Health Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohsen Mohammadi
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Sahar Jomepour
- Department of Cardiology, Cardiovascular Research Center, School of Medicine, Hormozgan University of Medical Science, Bandar Abbas 7916613885, Iran
| | - Mohammad Nafeli
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Fatemeh Mosayebi
- Tehran Heart Center, Tehran University of Medical Science, Tehran 1416634793, Iran
| | - Mehrdad Heravi
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Department of Genetics, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Saeid Ghavami
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
5
|
Liang H, Guo W, He H, Zhang H, Ye Q, Zhang Q, Liao J, Shen Y, Wang J, Xiao Y, Qin C. Decreased soluble Nogo-B in serum as a promising biomarker for Parkinson's disease. Front Neurosci 2022; 16:894454. [PMID: 35958994 PMCID: PMC9360801 DOI: 10.3389/fnins.2022.894454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/05/2022] [Indexed: 12/27/2022] Open
Abstract
BackgroundRecently, the neurite outgrowth inhibitor-B (Nogo-B) receptor has been reported as a novel candidate gene for Parkinson's disease (PD). Nogo-B receptors need to combine with soluble Nogo-B to exert their physiological function. However, little is known about the relationship between serum soluble Nogo-B and PD.MethodsSerum levels of sNogo-B and α-Synuclein (α-Syn) were measured in a cohort of 53 patients with PD and 49 healthy controls with the ELISA kit method.ResultsSerum sNogo-B level is significantly lower in the PD group than that in healthy controls and is negatively correlated with UPDRS-III score (p = 0.049), H&Y stage (p = 0.0108) as well as serum α-Syn level (p = 0.0001). The area under the curve (AUC) of serum sNogo-B in differentiating patients with PD from controls was 0.801 while the AUC of serum α-Syn was 0.93. Combining serum sNogo-B and α-Syn in differentiating patients with PD from HC presented higher discriminatory potential (AUC = 0.9534).ConclusionDecreased serum sNogo-B may be a potential biomarker for PD. Lower Nogo-B level reflects worse motor function and disease progression of PD. Serum sNogo-B is of added value to serum α-Syn panel in distinguishing PD from controls. Future studies are needed to confirm in larger samples and different populations.
Collapse
Affiliation(s)
- Hongming Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Neurology, The First People's Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honghu He
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Rehabilitation Medicine, The First People's Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Qiongyu Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qingxin Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiajia Liao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuefei Shen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Chao Qin
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Yousheng Xiao
| |
Collapse
|
6
|
Fang Z, Sun X, Wang X, Ma J, Palaia T, Rana U, Miao B, Ragolia L, Hu W, Miao QR. NOGOB receptor deficiency increases cerebrovascular permeability and hemorrhage via impairing histone acetylation-mediated CCM1/2 expression. J Clin Invest 2022; 132:e151382. [PMID: 35316220 PMCID: PMC9057619 DOI: 10.1172/jci151382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
The loss function of cerebral cavernous malformation (CCM) genes leads to most CCM lesions characterized by enlarged leaking vascular lesions in the brain. Although we previously showed that NOGOB receptor (NGBR) knockout in endothelial cells (ECs) results in cerebrovascular lesions in the mouse embryo, the molecular mechanism by which NGBR regulates CCM1/2 expression has not been elucidated. Here, we show that genetic depletion of Ngbr in ECs at both postnatal and adult stages results in CCM1/2 expression deficiency and cerebrovascular lesions such as enlarged vessels, blood-brain-barrier hyperpermeability, and cerebral hemorrhage. To reveal the molecular mechanism, we used RNA-sequencing analysis to examine changes in the transcriptome. Surprisingly, we found that the acetyltransferase HBO1 and histone acetylation were downregulated in NGBR-deficient ECs. The mechanistic studies elucidated that NGBR is required for maintaining the expression of CCM1/2 in ECs via HBO1-mediated histone acetylation. ChIP-qPCR data further demonstrated that loss of NGBR impairs the binding of HBO1 and acetylated histone H4K5 and H4K12 on the promotor of the CCM1 and CCM2 genes. Our findings on epigenetic regulation of CCM1 and CCM2 that is modulated by NGBR and HBO1-mediated histone H4 acetylation provide a perspective on the pathogenesis of sporadic CCMs.
Collapse
Affiliation(s)
- Zhi Fang
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xiaoran Sun
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Xiang Wang
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ji Ma
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Thomas Palaia
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Ujala Rana
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin Miao
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Louis Ragolia
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Wenquan Hu
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Qing Robert Miao
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Xu X, Jin C, Zhang K, Cao Y, Liu J, Zhang Y, Ran H, Jin Y. Activatable “Matryoshka” nanosystem delivery NgBR siRNA and control drug release for stepwise therapy and evaluate drug resistance cancer. Mater Today Bio 2022; 14:100245. [PMID: 35345559 PMCID: PMC8956824 DOI: 10.1016/j.mtbio.2022.100245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 12/03/2022] Open
Abstract
Drug resistance is always a challenge in conquering breast cancer clinically. Recognition of drug resistance and enhancing the sensitivity of the tumor to chemotherapy is urgent. Herein, a dual-responsive multi-function “Matryoshka" nanosystem is designed, it activates in the tumor microenvironment, decomposes layer by layer, and release gene and drug in sequence. The cell is re-educated by NgBR siRNA first to regain the chemosensitivity through regulating the Akt pathway and inhibit ERα activation, then the drugs loaded in the core are controlled released to killing cells. Carbonized polymer dots are loaded into the nanosystem as an efficient bioimaging probe, due to the GE11 modification, the nanosystem can be a seeker to recognize and evaluate drug-resistance tumors by photoacoustic imaging. In the tumor-bearing mouse, the novel nanosystem firstly enhances the sensitivity to chemotherapy by knockdown NgBR, inducing a much higher reduction in NgBR up to 52.09%, then effectively inhibiting tumor growth by chemotherapy, tumor growth in nude mouse was inhibited by 70.22%. The nanosystem also can inhibit metastasis, prolong survival time, and evaluate tumor drug resistance by real-time imaging. Overall, based on regulating the key molecules of drug resistance, we created visualization nanotechnology and formatted new comprehensive plans with high bio-safety for tumor diagnosis and treatment, providing a personalized strategy to overcome drug resistance clinically. Knockdown NgBR regulate the Akt pathway and inhibit ERα activate, enhance the sensitivity of chemotherapy. Knockdown of NgBR inhibits metastasis and prolongs survival. Nanosystem can evaluate drug resistance and kill tumors at the same time.
Collapse
|
8
|
Ueda S, Hashimoto K, Miyabe S, Hasegawa S, Goto M, Shimizu D, Oh-Iwa I, Shimozato K, Nagao T, Nomoto S. Salivary NUS1 and RCN1 Levels as Biomarkers for Oral Squamous Cell Carcinoma Diagnosis. In Vivo 2021; 34:2353-2361. [PMID: 32871760 DOI: 10.21873/invivo.12048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM Oral cancer may become advanced because of delay in diagnosis. In order to promote oral cancer screening, simple and highly reliable screening methods that can be implemented at general dental clinics are required. Herein we investigated differential salivary gene expression between oral squamous cell carcinoma (OSCC) patients and healthy volunteers (HV) to identify new biomarkers for OSCC detection. MATERIALS AND METHODS Candidate genes were selected by microarrays, nuclear undecaprenyl pyrophosphate synthase 1 (NUS1) and reticulocalbin 1 (RCN1) were selected for further investigation. We used real-time quantitative reverse transcription PCR (qRT-PCR) to determine NUS1 and RCN1 expression levels in saliva and tissues. RESULTS qRT-PCR analysis of clinical samples revealed that OSCC patients had significantly higher expression of salivary NUS1 and RCN1 than HV. CONCLUSION A combination of NUS1 and RCN1 accurately distinguished patients from controls, and this combination can be implemented as a screening test for OSCC.
Collapse
Affiliation(s)
- Sei Ueda
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan.,Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Kengo Hashimoto
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan.,Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Miyabe
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Hasegawa
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuo Goto
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan.,Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ichiro Oh-Iwa
- Department of Maxillofacial Surgery, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Kazuo Shimozato
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Toru Nagao
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Nomoto
- Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
9
|
Pronobis MI, Zheng S, Singh SP, Goldman JA, Poss KD. In vivo proximity labeling identifies cardiomyocyte protein networks during zebrafish heart regeneration. eLife 2021; 10:e66079. [PMID: 33764296 PMCID: PMC8034980 DOI: 10.7554/elife.66079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
Strategies have not been available until recently to uncover interacting protein networks specific to key cell types, their subcellular compartments, and their major regulators during complex in vivo events. Here, we apply BioID2 proximity labeling to capture protein networks acting within cardiomyocytes during a key model of innate heart regeneration in zebrafish. Transgenic zebrafish expressing a promiscuous BirA2 localized to the entire myocardial cell or membrane compartment were generated, each identifying distinct proteomes in adult cardiomyocytes that became altered during regeneration. BioID2 profiling for interactors with ErbB2, a co-receptor for the cardiomyocyte mitogen Nrg1, implicated Rho A as a target of ErbB2 signaling in cardiomyocytes. Blockade of Rho A during heart regeneration, or during cardiogenic stimulation by the mitogenic influences Nrg1, Vegfaa, or vitamin D, disrupted muscle creation. Our findings reveal proximity labeling as a useful resource to interrogate cell proteomes and signaling networks during tissue regeneration in zebrafish.
Collapse
Affiliation(s)
- Mira I Pronobis
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
- Regeneration Next, Duke UniversityDurhamUnited States
| | - Susan Zheng
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | | | - Joseph A Goldman
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical CenterColumbusUnited States
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
- Regeneration Next, Duke UniversityDurhamUnited States
| |
Collapse
|
10
|
He W, Huang X, Berges BK, Wang Y, An N, Su R, Lu Y. Artesunate Regulates Neurite Outgrowth Inhibitor Protein B Receptor to Overcome Resistance to Sorafenib in Hepatocellular Carcinoma Cells. Front Pharmacol 2021; 12:615889. [PMID: 33716742 PMCID: PMC7946852 DOI: 10.3389/fphar.2021.615889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
The multireceptor tyrosine kinase inhibitor sorafenib is a Food and Drug Administration-approved first-line drug for the treatment of advanced liver cancer that can reportedly extend overall survival in patients with advanced hepatocellular carcinoma (HCC). Primary and acquired resistance to sorafenib are gradually increasing however, leading to failure of HCC treatment with sorafenib. It is therefore crucial to study the potential mechanism of sorafenib resistance. The results of the current study indicate that neurite outgrowth inhibitor protein B receptor (NgBR) is overexpressed in cultured sorafenib-resistant cells, and that its expression is negatively correlated with the sensitivity of liver cancer cells to sorafenib. Artesunate can inhibit the expression of NgBR, and it may block sorafenib resistance. Herein we report that sorafenib treatment in combination with artesunate overcomes HCC resistance to sorafenib alone in a cell culture model.
Collapse
Affiliation(s)
- Wubin He
- Key laboratory of surgery of Liaoning Province of The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Xiaoxu Huang
- Key Laboratory of Molecular Cell Biology and New Drug Development of Jinzhou Medical University, Liaoning, Jinzhou, China
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology of Brigham Young University, Provo, UT, United States
| | - Yue Wang
- Department of Pathlogy of The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Ni An
- Key Laboratory of Molecular Cell Biology and New Drug Development of Jinzhou Medical University, Liaoning, Jinzhou, China
| | - Rongjian Su
- Key Laboratory of Molecular Cell Biology and New Drug Development of Jinzhou Medical University, Liaoning, Jinzhou, China
| | - Yanyan Lu
- Department of Orthopedic Spine Surgery of The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| |
Collapse
|
11
|
Hu W, Liu Z, Salato V, North PE, Bischoff J, Kumar SN, Fang Z, Rajan S, Hussain MM, Miao QR. NOGOB receptor-mediated RAS signaling pathway is a target for suppressing proliferating hemangioma. JCI Insight 2021; 6:142299. [PMID: 33400686 PMCID: PMC7934876 DOI: 10.1172/jci.insight.142299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/23/2020] [Indexed: 12/30/2022] Open
Abstract
Infantile hemangioma is a vascular tumor characterized by the rapid growth of disorganized blood vessels followed by slow spontaneous involution. The underlying molecular mechanisms that regulate hemangioma proliferation and involution still are not well elucidated. Our previous studies reported that NOGOB receptor (NGBR), a transmembrane protein, is required for the translocation of prenylated RAS from the cytosol to the plasma membrane and promotes RAS activation. Here, we show that NGBR was highly expressed in the proliferating phase of infantile hemangioma, but its expression decreased in the involuting phase, suggesting that NGBR may have been involved in regulating the growth of proliferating hemangioma. Moreover, we demonstrate that NGBR knockdown in hemangioma stem cells (HemSCs) attenuated growth factor-stimulated RAS activation and diminished the migration and proliferation of HemSCs, which is consistent with the effects of RAS knockdown in HemSCs. In vivo differentiation assay further shows that NGBR knockdown inhibited blood vessel formation and adipocyte differentiation of HemSCs in immunodeficient mice. Our data suggest that NGBR served as a RAS modulator in controlling the growth and differentiation of HemSCs.
Collapse
Affiliation(s)
- Wenquan Hu
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA.,Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Zhong Liu
- Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Valerie Salato
- Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paula E North
- Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Suresh N Kumar
- Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Zhi Fang
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA.,Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sujith Rajan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Qing R Miao
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA.,Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Wu D, Zhao B, Song Y, Chi X, Fu H, Guan T, Zhang L, Yang X, Hu K, Huang R, Jin X, Miao QR, Shao S. Nogo-B receptor is required for stabilizing TGF-β type I receptor and promotes the TGF-β1-induced epithelial-to-mesenchymal transition of non-small cell lung cancer. J Cancer 2021; 12:717-725. [PMID: 33403029 PMCID: PMC7778533 DOI: 10.7150/jca.50483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/01/2020] [Indexed: 01/06/2023] Open
Abstract
Background and Objective: Metastasis is the leading cause of death in patients with advanced non-small cell lung cancer (NSCLC), and epithelial-mesenchymal transition (EMT) is a crucial event in the metastasis of NSCLC. Our previous works demonstrated that NgBR promoted EMT in NSCLC. However, the molecular mechanism was unclear. Methods: TGF-β1 was used to induce EMT process of NSCLC cells. The biological functions of NgBR in promoting TGF-β1-induced NSCLC metastasis were studied by gain- and loss-of-function assays both in vitro and in vivo. The underlying mechanisms were studied using molecular biology assays. Results: We found that knockdown of NgBR inhibited TGF-β1-induced cell migration and invasion in NSCLC cells. In contrast, NgBR overexpression promoted TGF-β1-induced EMT of A549 cells. Mechanically, we found that knockdown of NgBR facilitated ubiquitination and degradation of TβRI, leading to downregulation of TβRI expression in NSCLC cells. Moreover, we confirmed a positive correlation between NgBR and TβRI in NSCLC tissues. Conclusions: Our findings provide a novel role of NgBR in modulating TGF-β1-induced EMT and propose NgBR as a new therapeutic target for treating NSCLC patients.
Collapse
Affiliation(s)
- Donghua Wu
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese. Academy of Sciences, Dalian 116023, China
| | - Yang Song
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Xinming Chi
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Hailu Fu
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Tiantong Guan
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Liyuan Zhang
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Xueguang Yang
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Ke Hu
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Rong Huang
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Xiaomeng Jin
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Shujuan Shao
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
13
|
Zhang R, Tang BS, Guo JF. Research advances on neurite outgrowth inhibitor B receptor. J Cell Mol Med 2020; 24:7697-7705. [PMID: 32542927 PMCID: PMC7348171 DOI: 10.1111/jcmm.15391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Neurite outgrowth inhibitor‐B (Nogo‐B) is a membrane protein which is extensively expressed in multiple organs, especially in endothelial cells and vascular smooth muscle cells of blood vessels and belongs to the reticulon protein family. Notably, its specific receptor, Nogo‐B receptor (NgBR), encoded by NUS1, has been implicated in many crucial cellular processes, such as cholesterol trafficking, lipid metabolism, dolichol synthesis, protein N‐glycosylation, vascular remodelling, angiogenesis, tumorigenesis and neurodevelopment. In recent years, accumulating studies have demonstrated the statistically significant changes of NgBR expression levels in human diseases, including Niemann‐Pick type C disease, fatty liver, congenital disorders of glycosylation, persistent pulmonary hypertension of the newborn, invasive ductal breast carcinoma, malignant melanoma, non‐small cell lung carcinoma, paediatric epilepsy and Parkinson's disease. Besides, both the in vitro and in vivo studies have shown that NgBR overexpression or knockdown contribute to the alteration of various pathophysiological processes. Thus, there is a broad development potential in therapeutic strategies by modifying the expression levels of NgBR.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
14
|
Silvestrini VC, Lanfredi GP, Masson AP, Poersch A, Ferreira GA, Thomé CH, Faça VM. A proteomics outlook towards the elucidation of epithelial-mesenchymal transition molecular events. Mol Omics 2020; 15:316-330. [PMID: 31429845 DOI: 10.1039/c9mo00095j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The main cause of death in cancer is the spread, or metastasis, of cancer cells to distant organs with consequent tumor formation. Additionally, metastasis is a process that demands special attention, as the cellular transformations make cancer at this stage very difficult or occasionally even impossible to be cured. The main process that converts epithelial tumor cells to mesenchymal-like metastatic cells is the Epithelial to Mesenchymal Transition (EMT). This process allows stationary and polarized epithelial cells, which are connected laterally to several types of junctions as well as the basement membrane, to undergo multiple biochemical changes that enable disruption of cell-cell adherence and apical-basal polarity. Moreover, the cells undergo important reprogramming to remodel the cytoskeleton and acquire mesenchymal characteristics such as enhanced migratory capacity, invasiveness, elevated resistance to apoptosis and a large increase in the production of ECM components. As expected, the alterations of the protein complement are extensive and complex, and thus exploring this by proteomic approaches is of particular interest. Here we review the overall findings of proteome modifications during EMT, mainly focusing on molecular signatures observed in multiple proteomic studies as well as coordinated pathways, cellular processes and their clinical relevance for altered proteins. As a result, an interesting set of proteins is highlighted as potential targets to be further investigated in the context of EMT, metastasis and cancer progression.
Collapse
Affiliation(s)
- Virgínia Campos Silvestrini
- Department of Biochemistry and Immunology - FMRP - University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
15
|
Cordani M, Strippoli R, Somoza Á. Nanomaterials as Inhibitors of Epithelial Mesenchymal Transition in Cancer Treatment. Cancers (Basel) 2019; 12:E25. [PMID: 31861725 PMCID: PMC7017008 DOI: 10.3390/cancers12010025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract: Epithelial-mesenchymal transition (EMT) has emerged as a key regulator of cell invasion and metastasis in cancers. Besides the acquisition of migratory/invasive abilities, the EMT process is tightly connected with the generation of cancer stem cells (CSCs), thus contributing to chemoresistance. However, although EMT represents a relevant therapeutic target for cancer treatment, its application in the clinic is still limited due to various reasons, including tumor-stage heterogeneity, molecular-cellular target specificity, and appropriate drug delivery. Concerning this last point, different nanomaterials may be used to counteract EMT induction, providing novel therapeutic tools against many different cancers. In this review, (1) we discuss the application of various nanomaterials for EMT-based therapies in cancer, (2) we summarize the therapeutic relevance of some of the proposed EMT targets, and (3) we review the potential benefits and weaknesses of each approach.
Collapse
Affiliation(s)
- Marco Cordani
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., 00149 Rome, Italy
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
- CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad de Nanobiotecnología”, 28049 Madrid, Spain
| |
Collapse
|
16
|
Nogo receptor-vimentin interaction: a novel mechanism for the invasive activity of glioblastoma multiforme. Exp Mol Med 2019; 51:1-15. [PMID: 31649250 PMCID: PMC6813361 DOI: 10.1038/s12276-019-0332-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
Nogo receptor (NgR) has been shown to inhibit the migration and invasion of human glioma cells. However, little is known regarding the regulatory mechanisms of NgR in glioblastoma multiforme (GBM). In this study, we propose a novel mechanism that regulates the maturation process of NgR through an interaction with vimentin. The inhibition of TGFβ1 activity by LY2109761 attenuated the migration/invasion of GBM cells by upregulating cell-surface NgR. Conversely, the treatment of GBM cells with TGFβ1 suppressed NgR maturation. We showed that NgR and vimentin interact, which could be a possible mechanism for the suppression of NgR maturation. The knockdown of vimentin suppressed the migration/invasion of GBM cells through the increased maturation of NgR. Finally, TCGA (The Cancer Genome Atlas) analysis also supported the association of NgR and vimentin. The maturation of NgR is regulated by the interaction of vimentin and NgR, which attenuates the invasive activity of GBM, and might be a potential therapeutic target for brain cancer. A mechanism that prevents the maturation of a protective cell surface protein during the spread of brain cancer could be a therapeutic target. Aggressive glioblastoma multiforme tumors spread quickly, lowering survival chances. The transforming growth factor-beta 1 (TGFβ1) protein is implicated in the rapid spread of cancer cells through the brain’s white matter fibers. However, cancer spread can be limited by the mature form of a protein receptor called nogo receptor (NgR), which is expressed on white matter cell surfaces. Using human glioblastoma cell cultures, Seung-Hoon Lee and Myung-Shin Lee at Eulji University School of Medicine, Daejeon, South Korea, and co-workers demonstrated how the interaction between NgR and another protein enhances TGFβ1 pathway activity and prevents NgR maturing. When the team inhibited TGFβ1, the interaction was disrupted, allowing NgR maturation and preventing tumor spread.
Collapse
|
17
|
Liu M, Zhao D, Wu X, Guo S, Yan L, Zhao S, Li H, Wang Y, Rong F. miR-466 and NUS1 Regulate the AKT/Nuclear Factor kappa B (NFκB) Signaling Pathway in Intrauterine Adhesions in a Rat Model. Med Sci Monit 2019; 25:4094-4103. [PMID: 31154456 PMCID: PMC6561142 DOI: 10.12659/msm.914202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Intrauterine adhesions (IUAs) are one of the most common reproductive system diseases in women worldwide. Emerging evidence has demonstrated that the upregulation or downregulation of genes plays an important role in IUAs. The aim of this study was to evaluate the role of NUS1 in IUAs in a rat model. MATERIAL AND METHODS The expression of miR-466 in intrauterine adhesions tissues was detected by using RT-qPCR assay. RT-qPCR, IHC, and Western blot were used to investigate mRNA and proteins expression, respectively, of NUS1. MTT and colony-formation assays were used to evaluate cell growth. Transwell assays were used to detect cell migration and invasion. To investigate miR-466 and NUS1 functions in vivo, we established a rat model. The level of epithelial-to-mesenchymal transition (EMT)-related markers was analyzed by Western blot assay. RESULTS NUS1 was upregulated in IUAs tissues, and the high expression level of NUS1 was positively correlated with the severity of IUAs. NUS1 promoted cell proliferation in vitro. NUS1 overexpression on cell migration and invasion promoted the EMT process in vitro and in vivo. NUS1 acted as a target of miR-466 and played the stimulative role by regulating AKT/NFkappaB pathway. CONCLUSIONS Our data suggest that miR-466 and NUS1 regulate proliferation and the EMT process through the AKT/NFkappaB pathway in IUAs in a rat model.
Collapse
Affiliation(s)
- Min Liu
- School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Dapeng Zhao
- Department of Neurology, Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Xingguo Wu
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Song Guo
- Department of Obstetrics and Gynecology, Affiliated Qianfoshan Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Li Yan
- Department of Obstetrics and Gynecology, Affiliated Qianfoshan Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Shan Zhao
- Department of Obstetrics and Gynecology, Affiliated Qianfoshan Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Hua Li
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Yongmei Wang
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Fengnian Rong
- Department of Obstetrics and Gynecology, Affiliated Qianfoshan Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
18
|
Gao P, Wang X, Jin Y, Hu W, Duan Y, Shi A, Du Y, Song D, Yang M, Li S, Han B, Zhao G, Zhang H, Fan Z, Miao QR. Nogo-B receptor increases the resistance to tamoxifen in estrogen receptor-positive breast cancer cells. Breast Cancer Res 2018; 20:112. [PMID: 30208932 PMCID: PMC6134690 DOI: 10.1186/s13058-018-1028-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/19/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUNDS Tamoxifen is typically used to treat patients with estrogen receptor alpha (ERα)-positive breast cancer. However, 30% of these patients gain acquired resistance to tamoxifen during or after tamoxifen treatment. As a Ras modulator, Nogo-B receptor (NgBR) is required for tumorigenesis through the signaling crosstalk with epidermal growth factor (EGF) receptor (EGFR)-mediated pathways. NgBR is highly expressed in many types of cancer cells and regulates the sensitivity of hepatocellular carcinoma to chemotherapy. In this study, we found the expression of NgBR is increased in tamoxifen-resistant ERα-positive breast cancer cells. METHODS Tamoxifen-resistant ERα-positive MCF-7 and T47D breast cancer cell lines were established by culturing with gradually increased concentration of 4-hydroxytamoxifen (4-OHT). The effects of NgBR on tamoxifen resistance was determined by depleting NgBR in these cell lines using previously validated small interfering RNA (siRNA). The effects of 4-OHT on cell viability and apoptosis were determined using well-accepted methods such as clonogenic survival assay and Annexin V/propidium iodide staining. The alteration of EGF-stimulated signaling and gene expression was determined by western blot analysis and real-time PCR, respectively. RESULTS NgBR knockdown with siRNA attenuates EGF-induced phosphorylation of ERα and restores the sensitivity to tamoxifen in ERα-positive breast cancer cells. Mechanistically, our data demonstrated that NgBR knockdown increases the protein levels of p53 and decreases survivin, which is an apoptosis inhibitor. CONCLUSIONS These results suggested that NgBR is a potential therapeutic target for increasing the sensitivity of ERα-positive breast cancer to tamoxifen.
Collapse
Affiliation(s)
- Pin Gao
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Division of Pediatric Pathology, Department of Pathology, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
| | - Xiang Wang
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Division of Pediatric Pathology, Department of Pathology, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Division of Pediatric Pathology, Department of Pathology, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
| | - Wenquan Hu
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Division of Pediatric Pathology, Department of Pathology, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
| | - Yajun Duan
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Division of Pediatric Pathology, Department of Pathology, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
| | - Ye Du
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
| | - Dong Song
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
| | - Ming Yang
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
| | - Bing Han
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
| | - Gang Zhao
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
| | - Hongquan Zhang
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Division of Pediatric Pathology, Department of Pathology, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| |
Collapse
|
19
|
Wang B, Ding Y, Zhao X, Han X, Yang N, Zhang Y, Zhao Y, Zhao X, Taleb M, Miao QR, Nie G. Delivery of small interfering RNA against Nogo-B receptor via tumor-acidity responsive nanoparticles for tumor vessel normalization and metastasis suppression. Biomaterials 2018; 175:110-122. [DOI: 10.1016/j.biomaterials.2018.05.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 02/04/2023]
|
20
|
Dong C, Liu Y, Jiang K, Wang H, Qu W, Zhang C, Liang R, Gao Z, Zhao B, Miao Q, Shao S, Wang L. The Nogo-B receptor promotes human hepatocellular carcinoma cell growth via the Akt signal pathway. J Cell Biochem 2018; 119:7738-7746. [PMID: 29904947 DOI: 10.1002/jcb.27125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
Nogo-B receptor (NgBR) is a type I receptor with a single transmembrane domain and specifically binds to ligand Nogo-B. A previous study demonstrated that NgBR was highly expressed in human breast invasive ductal carcinoma and promoted epithelial-mesenchymal transition in breast tumor cells. Our recent work found that NgBR expression was associated with a poor prognosis in human patients with hepatocellular carcinoma (HCC). Here, we elucidate that the increased expression of NgBR contributes toward the increased cell growth of human HCC cells both in vitro and in vivo. Cell viability and clonogenic survival analysis results demonstrated that knockdown of NgBR inhibits the cell growth in human HCC cells, which correlates with a reduction in the phosphorylation of Akt levels. Furthermore, overexpression of NgBR by the cotransfected pIRES-NgBR plasmid together with NgBR siRNA in human HCC cells can rescue impaired phosphorylation of Akt levels in NgBR knockdown human HCC cells. In addition, cell viability analyses showed that NgBR overexpression can rescue the cell growth inhibition presented in human HCC NgBR knockdown cells. Taken together, our results suggest that NgBR potentially acts as an oncogene in HCC by increasing Akt activity. Thus, NgBR may represent a new potential diagnostic and therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Chengyong Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Key Laboratory of Proteomics, Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Keqiu Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haibo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weikun Qu
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chi Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rui Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenming Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Baofeng Zhao
- Key Lab of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Qing Miao
- Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shujuan Shao
- Key Laboratory of Proteomics, Dalian Medical University, Dalian, China
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
21
|
Lin CY, He JY, Zeng CW, Loo MR, Chang WY, Zhang PH, Tsai HJ. microRNA-206 modulates an Rtn4a/Cxcr4a/Thbs3a axis in newly forming somites to maintain and stabilize the somite boundary formation of zebrafish embryos. Open Biol 2018; 7:rsob.170009. [PMID: 28701377 PMCID: PMC5541343 DOI: 10.1098/rsob.170009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
Although microRNA-206 (miR-206) is known to regulate proliferation and differentiation of muscle fibroblasts, the role of miR-206 in early-stage somite development is still unknown. During somitogenesis of zebrafish embryos, reticulon4a (rtn4a) is specifically repressed by miR-206. The somite boundary was defective, and actin filaments were crossing over the boundary in either miR-206-knockdown or rtn4a-overexpressed embryos. In these treated embryos, C-X-C motif chemokine receptor 4a (cxcr4a) was reduced, while thrombospondin 3a (thbs3a) was increased. The defective boundary was phenocopied in either cxcr4a-knockdown or thbs3a-overexpressed embryos. Repression of thbs3a expression by cxcr4a reduced the occurrence of the boundary defect. We demonstrated that cxcr4a is an upstream regulator of thbs3a and that defective boundary cells could not process epithelialization in the absence of intracellular accumulation of the phosphorylated focal adhesion kinase (p-FAK) in boundary cells. Therefore, in the newly forming somites, miR-206-mediated downregulation of rtn4a increases cxcr4a. This activity largely decreases thbs3a expression in the epithelial cells of the somite boundary, which causes epithelialization of boundary cells through mesenchymal-epithelial transition (MET) and eventually leads to somite boundary formation. Collectively, we suggest that miR-206 mediates a novel pathway, the Rtn4a/Cxcr4a/Thbs3a axis, that allows boundary cells to undergo MET and form somite boundaries in the newly forming somites of zebrafish embryos.
Collapse
Affiliation(s)
- Cheng-Yung Lin
- Institute of Biomedical Sciences, Mackay Medical College, No. 46, Section 3 Zhongzhen Road, Sanzhi Dist., New Taipei City 252, Taiwan, Republic of China
| | - Jun-Yu He
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan, Republic of China
| | - Chih-Wei Zeng
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan, Republic of China
| | - Moo-Rumg Loo
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan, Republic of China
| | - Wen-Yen Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan, Republic of China
| | - Po-Hsiang Zhang
- Institute of Biomedical Sciences, Mackay Medical College, No. 46, Section 3 Zhongzhen Road, Sanzhi Dist., New Taipei City 252, Taiwan, Republic of China
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, Mackay Medical College, No. 46, Section 3 Zhongzhen Road, Sanzhi Dist., New Taipei City 252, Taiwan, Republic of China
| |
Collapse
|
22
|
Cui L, Cheng S, Liu X, Messadi D, Yang Y, Hu S. Syntenin-1 is a promoter and prognostic marker of head and neck squamous cell carcinoma invasion and metastasis. Oncotarget 2018; 7:82634-82647. [PMID: 27811365 PMCID: PMC5347720 DOI: 10.18632/oncotarget.13020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022] Open
Abstract
Metastasis represents a key factor associated with poor prognosis of head and neck squamous cell carcinoma (HNSC). However, the underlying molecular mechanisms remain largely unknown. In this study, our liquid chromatography with tandem mass spectrometry analysis revealed a number of significantly differentially expressed membrane/membrane-associated proteins between high invasive UM1 and low invasive UM2 cells. One of the identified membrane proteins, Syntenin-1, was remarkably up-regulated in HNSC tissues and cell lines when compared to the controls, and also over-expressed in recurrent HNSC and high invasive UM1 cells. Syntenin-1 over-expression was found to be significantly associated with lymph node metastasis and disease recurrence. HNSC patients with higher syntenin-1 expression had significantly poorer long term overall survival and similar results were found in many other types of cancers based on analysis of The Cancer Genome Atlas data. Finally, knockdown of syntenin-1 inhibited the proliferation, migration and invasion of HNSC cells, and opposite findings were observed when syntenin-1 was over-expressed. Collectively, our studies indicate that syntenin-1 promotes invasion and progression of HNSC. It may serve as a valuable biomarker for lymph node metastasis or a potential target for therapeutic intervention in HNSC.
Collapse
Affiliation(s)
- Li Cui
- University of California at Los Angeles, School of Dentistry, Los Angeles, CA 90095, USA.,University of California at Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Siliangyu Cheng
- University of California at Los Angeles, School of Dentistry, Los Angeles, CA 90095, USA.,University of California at Los Angeles, Department of Statistics, Los Angeles, CA 90095, USA
| | - Xiaojun Liu
- University of California at Los Angeles, School of Dentistry, Los Angeles, CA 90095, USA
| | - Diana Messadi
- University of California at Los Angeles, School of Dentistry, Los Angeles, CA 90095, USA.,University of California at Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Yan Yang
- University of California at Los Angeles, School of Dentistry, Los Angeles, CA 90095, USA.,Department of Stomatology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Shen Hu
- University of California at Los Angeles, School of Dentistry, Los Angeles, CA 90095, USA.,University of California at Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Jin Y, Hu W, Liu T, Rana U, Aguilera-Barrantes I, Kong A, Kumar SN, Wang B, Gao P, Wang X, Duan Y, Shi A, Song D, Yang M, Li S, Han B, Zhao G, Fan Z, Miao QR. Nogo-B receptor increases the resistance of estrogen receptor positive breast cancer to paclitaxel. Cancer Lett 2018; 419:233-244. [PMID: 29373839 DOI: 10.1016/j.canlet.2018.01.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/20/2017] [Accepted: 01/19/2018] [Indexed: 12/28/2022]
Abstract
Intrinsic or acquired chemoresistance is a hurdle in oncology. Only 7%-16% of estrogen receptor α (ERα) positive breast cancer cases achieve a pathological complete response (pCR) after neo-adjuvant chemotherapy. Nogo-B receptor (NgBR) is a cell surface receptor that binds farnesylated Ras and promotes Ras translocation to the plasma membrane. Here, we demonstrate NgBR as a potential therapeutic target for ERα positive breast cancer patients to attenuate paclitaxel resistance. NgBR knockdown enhanced paclitaxel-induced cell apoptosis by modulating expression of p53 and survivin in ERα positive breast cancer cells via NgBR-mediated PI3K/Akt and MAPK/ERK signaling pathways. NgBR knockdown attenuated either 17β-estradiol or epidermal growth factor stimulated phosphorylation of ERα at Serine 118 residue. The ChIP-PCR assay further demonstrated that NgBR knockdown decreased ERα binding to the estrogen response element (ERE) of the ERα target gene and increased the binding of p53 to the promoter region of survivin to attenuate survivin transcription. In summary, our data suggest that NgBR expression is essential to promoting ERα positive breast cancer cell resistance to paclitaxel. Findings from this study implicate a novel therapeutic target for treating ERα positive breast cancer in neo-adjuvant/adjuvant chemotherapy.
Collapse
Affiliation(s)
- Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China; Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Wenquan Hu
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Tong Liu
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, Jilin, 130033, China
| | - Ujala Rana
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Irene Aguilera-Barrantes
- Department of Pathology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Amanda Kong
- Department of Surgery, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Suresh N Kumar
- Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Pin Gao
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China; Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Xiang Wang
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Yajun Duan
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Dong Song
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Ming Yang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Bing Han
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Gang Zhao
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
24
|
Wu D, Zhao B, Qi X, Peng F, Fu H, Chi X, Miao QR, Shao S. Nogo-B receptor promotes epithelial-mesenchymal transition in non-small cell lung cancer cells through the Ras/ERK/Snail1 pathway. Cancer Lett 2018; 418:135-146. [PMID: 29331415 DOI: 10.1016/j.canlet.2018.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022]
Abstract
Nogo-B receptor (NgBR) is a specific receptor of Nogo-B that regulates vascular remodeling and angiogenesis. Previously, we found that NgBR promotes the membrane translocation and activation of Ras in breast cancer cells and enhances the chemoresistance of hepatocellular carcinoma cells to 5-fluorouracil. However, the role of NgBR in lung cancer has not yet been elucidated. In the present study, we found that NgBR knockdown inhibited epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC) cells in vitro and metastasis of NSCLC cells in vivo. In contrast, NgBR overexpression promoted EMT in and lung metastasis of NSCLC cells. At the molecular level, NgBR modulated the expression of EMT-related proteins and enhanced the protein expression of Snail1, a crucial transcription factor that represses epithelial cell protein marker E-cadherin. Moreover, we found that NgBR overexpression promoted the membrane localization of Ras and activation of downstream MEK/ERK signaling pathway and that NgBR knockdown by using a specific shRNA inversely affected the expression of EMT-related proteins in NSCLC cells. Thus, our results provide novel insights on the regulatory role of NgBR in the metastasis of NSCLC that should be investigated further for developing a therapeutic strategy for treating patients with NSCLC.
Collapse
Affiliation(s)
- Donghua Wu
- Key Laboratory of Proteomics, Dalian Medical University, Dalian 116044, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyu Qi
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Fang Peng
- Key Laboratory of Proteomics, Dalian Medical University, Dalian 116044, China
| | - Hailu Fu
- Key Laboratory of Proteomics, Dalian Medical University, Dalian 116044, China
| | - Xinming Chi
- Key Laboratory of Proteomics, Dalian Medical University, Dalian 116044, China
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Shujuan Shao
- Key Laboratory of Proteomics, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
25
|
Long SL, Li YK, Xie YJ, Long ZF, Shi JF, Mo ZC. Neurite Outgrowth Inhibitor B Receptor: A Versatile Receptor with Multiple Functions and Actions. DNA Cell Biol 2017; 36:1142-1150. [PMID: 29058484 DOI: 10.1089/dna.2017.3813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Members of the reticulon protein family are predominantly distributed within the endoplasmic reticulum. The neurite outgrowth inhibitor (Nogo) has three subtypes, including Nogo-A (200 kDa), Nogo-B (55 kDa), and Nogo-C (25 kDa). Nogo-A and Nogo-C are potent Nogos that are predominantly expressed in the central nervous system. Nogo-B, the splice variant of reticulon-4, is expressed widely in multiple human organ systems, including the liver, lung, kidney, blood vessels, and inflammatory cells. Moreover, the Nogo-B receptor (NgBR) can interact with Nogo-B and can independently affect nervous system regeneration, the chemotaxis of endothelial cells, proliferation, and apoptosis. In recent years, it has been demonstrated that NgBR plays an important role in human pathophysiological processes, including lipid metabolism, angiogenesis, N-glycosylation, cell apoptosis, chemoresistance in human hepatocellular carcinoma, and epithelial-mesenchymal transition. The pathophysiologic effects of NgBR have garnered increased attention, and the detection and enhancement of NgBR expression may be a novel approach to monitor the development and to improve the prognosis of relevant human clinical diseases.
Collapse
Affiliation(s)
- Shuang-Lian Long
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Yu-Kun Li
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Yuan-Jie Xie
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Zhi-Feng Long
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Jin-Feng Shi
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Zhong-Cheng Mo
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| |
Collapse
|
26
|
Zeng L, Zhong J, He G, Li F, Li J, Zhou W, Liu W, Zhang Y, Huang S, Liu Z, Deng X. Identification of Nucleobindin-2 as a Potential Biomarker for Breast Cancer Metastasis Using iTRAQ-based Quantitative Proteomic Analysis. J Cancer 2017; 8:3062-3069. [PMID: 28928897 PMCID: PMC5604457 DOI: 10.7150/jca.19619] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Abstract
Metastasis is a lethal step in the progression of breast cancer. None of the metastasis-associated biomarkers identified up to now has a definite prognostic value in breast cancer patients. This study was designed to identify biomarkers for breast cancer metastasis and predictors of the prognosis of breast cancer patients. The differentially expressed proteins between 23 paired primary breast tumor and metastatic lymph nodes were identified by quantitative iTRAQ proteomic analysis. Immunohistochemistry was applied to locate and assess the expression of NUCB2 in paired primary breast tumor and metastatic lymph node tissues (n = 106). The relationship between NUCB2 expression and the clinicopathological characteristics of breast cancer patients (n = 189) were analyzed by χ2 test. Kaplan-Meier analysis and Cox hazard regression analysis were utilized to investigate the relationship between its expression and prognosis of breast cancer patients. The iTRAQ proteomic results showed that 4,837 confidential proteins were identified, 643 of which were differentially expressed in the primary breast cancer tissues and the paired metastatic lymph nodes. NUCB2 protein was found decreased in paired metastatic lymph nodes (P = 0.000), with the positive expression rate being 82% in primary breast cancer tissues and 47% in paired metastatic lymph nodes, respectively. According to Kaplan-Meier analysis, the overall survival time of patients with positive expression of NUCB2 protein were shorter than those with negative NUCB2 expression (P = 0.004). Cox regression model suggested that NUCB2 was a risk factor of breast cancer patients (P = 0.045, RR = 1.854). We conclude that NUCB2 can be used as a potential biomarker for breast cancer metastasis and a prognostic predictor of breast cancer patients.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.,Department of Pathology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Jingmin Zhong
- Department of Pathology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Guangchun He
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan 410013, China
| | - Fangjun Li
- Department of Social Medicine, Hunan Provincial People's Hospital & The Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, China
| | - Jing Li
- Department of Breast Internal Medicine, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wen Zhou
- Key Laboratory of Cancer of the Ministry of Health, Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 4100078, China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yun Zhang
- Department of Pathology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Sanqian Huang
- Department of Pathology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Zhihong Liu
- Department of Pathology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xiyun Deng
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan 410013, China
| |
Collapse
|
27
|
Dong C, Zhao B, Long F, Liu Y, Liu Z, Li S, Yang X, Sun D, Wang H, Liu Q, Liang R, Li Y, Gao Z, Shao S, Miao QR, Wang L. Nogo-B receptor promotes the chemoresistance of human hepatocellular carcinoma via the ubiquitination of p53 protein. Oncotarget 2017; 7:8850-65. [PMID: 26840457 PMCID: PMC4891009 DOI: 10.18632/oncotarget.7091] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/17/2016] [Indexed: 02/07/2023] Open
Abstract
Nogo-B receptor (NgBR), a type I single transmembrane domain receptor is the specific receptor for Nogo-B. Our previous work demonstrated that NgBR is highly expressed in breast cancer cells, where it promotes epithelial mesenchymal transition (EMT), an important step in metastasis. Here, we show that both in vitro and in vivo increased expression of NgBR contributes to the increased chemoresistance of Bel7402/5FU cells, a stable 5-FU (5-Fluorouracil) resistant cell line related Bel7402 cells. NgBR knockdown abrogates S-phase arrest in Bel7402/5FU cells, which correlates with a reduction in G1/S phase checkpoint proteins p53 and p21. In addition, NgBR suppresses p53 protein levels through activation of the PI3K/Akt/MDM2 pathway, which promotes p53 degradation via the ubiquitin proteasome pathway and thus increases the resistance of human hepatocellular cancer cells to 5-FU. Furthermore, we found that NgBR expression is associated with a poor prognosis of human hepatocellular carcinoma (HCC) patients. These results suggest that targeting NgBR in combination with chemotherapeutic drugs, such as 5-FU, could improve the efficacy of current anticancer treatments.
Collapse
Affiliation(s)
- Chengyong Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiiated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Baofeng Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fei Long
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiiated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Liu
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhenzhen Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiiated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Song Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiiated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xuejun Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiiated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Deguang Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiiated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Haibo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiiated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qinlong Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiiated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Rui Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiiated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yan Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhenming Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiiated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shujuan Shao
- Key Laboratory of Proteomics, Dalian Medical University, Dalian, China
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiiated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
28
|
Zhao B, Hu W, Kumar S, Gonyo P, Rana U, Liu Z, Wang B, Duong WQ, Yang Z, Williams CL, Miao QR. The Nogo-B receptor promotes Ras plasma membrane localization and activation. Oncogene 2017; 36:3406-3416. [PMID: 28068323 PMCID: PMC5472485 DOI: 10.1038/onc.2016.484] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
The localization of prenylated Ras at the plasma membrane promotes activation of Ras by receptor tyrosine kinases and stimulates oncogenic signaling by mutant Ras. The Nogo-B receptor (NgBR) is a transmembrane receptor that contains a conserved hydrophobic pocket. Here, we demonstrate that the NgBR promotes the membrane accumulation of Ras by directly binding prenylated Ras at the plasma membrane. We show that NgBR knockdown diminishes the membrane localization of Ras in multiple cell types. NgBR overexpression in NIH-3T3 fibroblasts increases membrane-associated Ras, induces the transformed phenotype in vitro, and promotes the formation of fibrosarcoma in nude mice. NgBR knockdown in human breast cancer cells reduces Ras membrane localization, inhibits EGF-stimulated Ras signaling, and diminishes tumorigenesis of xenografts in nude mice. Our data demonstrate that NgBR is a unique receptor that promotes accumulation of prenylated Ras at the plasma membrane and promotes EGF pathways.
Collapse
Affiliation(s)
- B Zhao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Key Laboratory of Separation Science, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - W Hu
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S Kumar
- Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - P Gonyo
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - U Rana
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Z Liu
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - B Wang
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - W Q Duong
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Z Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - C L Williams
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Q R Miao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
29
|
Hu W, Zhang W, Chen Y, Rana U, Teng RJ, Duan Y, Liu Z, Zhao B, Foeckler J, Weiler H, Kallinger RE, Thomas MJ, Zhang K, Han J, Miao QR. Nogo-B receptor deficiency increases liver X receptor alpha nuclear translocation and hepatic lipogenesis through an adenosine monophosphate-activated protein kinase alpha-dependent pathway. Hepatology 2016; 64:1559-1576. [PMID: 27480224 PMCID: PMC5074877 DOI: 10.1002/hep.28747] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 06/30/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Nogo-B receptor (NgBR) was identified as a specific receptor for binding Nogo-B and is essential for the stability of Niemann-Pick type C2 protein (NPC2) and NPC2-dependent cholesterol trafficking. Here, we report that NgBR expression levels decrease in the fatty liver and that NgBR plays previously unrecognized roles in regulating hepatic lipogenesis through NPC2-independent pathways. To further elucidate the pathophysiological role of NgBR in mammals, we generated NgBR liver-specific knockout mice and investigated the roles of NgBR in hepatic lipid homeostasis. The results showed that NgBR knockout in mouse liver did not decrease NPC2 levels or increase NPC2-dependent intracellular cholesterol levels. However, NgBR deficiency still resulted in remarkable cellular lipid accumulation that was associated with increased free fatty acids and triglycerides in hepatocytes in vitro and in mouse livers in vivo. Mechanistically, NgBR deficiency specifically promotes the nuclear translocation of the liver X receptor alpha (LXRα) and increases the expression of LXRα-targeted lipogenic genes. LXRα knockout attenuates the accumulation of free fatty acids and triglycerides caused by NgBR deficiency. In addition, we elucidated the mechanisms by which NgBR bridges the adenosine monophosphate-activated protein kinase alpha signaling pathway with LXRα nuclear translocation and LXRα-mediated lipogenesis. CONCLUSION NgBR is a specific negative regulator for LXRα-dependent hepatic lipogenesis. Loss of NgBR may be a potential trigger for inducing hepatic steatosis. (Hepatology 2016;64:1559-1576).
Collapse
Affiliation(s)
- Wenquan Hu
- Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Wenwen Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yuanli Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ujala Rana
- Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI
| | - Ru-Jeng Teng
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI
| | - Yajun Duan
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Zhong Liu
- Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI
| | - Baofeng Zhao
- Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI
| | | | | | - Rachel E Kallinger
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Jihong Han
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China.
| | - Qing Robert Miao
- Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
30
|
Bottoni P, Isgrò MA, Scatena R. The epithelial-mesenchymal transition in cancer: a potential critical topic for translational proteomic research. Expert Rev Proteomics 2015; 13:115-33. [PMID: 26567562 DOI: 10.1586/14789450.2016.1112742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a morphogenetic process that results in a loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. First described in embryogenesis, the EMT has been recently implicated in carcinogenesis and tumor progression. In addition, recent evidence has shown that stem-like cancer cells present the hallmarks of the EMT. Some of the molecular mechanisms related to the interrelationships between cancer pathophysiology and the EMT are well-defined. Nevertheless, the precise molecular mechanism by which epithelial cancer cells acquire the mesenchymal phenotype remains largely unknown. This review focuses on various proteomic strategies with the goal of better understanding the physiological and pathological mechanisms of the EMT process.
Collapse
Affiliation(s)
- Patrizia Bottoni
- a Institute of Biochemistry and Clinical Biochemistry , School of Medicine - Catholic University , Rome , Italy
| | - Maria Antonietta Isgrò
- b Department of Diagnostic and Molecular Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Roberto Scatena
- a Institute of Biochemistry and Clinical Biochemistry , School of Medicine - Catholic University , Rome , Italy
| |
Collapse
|