1
|
de Mattos K, Scott-Boyer MP, Droit A, Viger RS, Tremblay JJ. Identification of MEF2A, MEF2C, and MEF2D interactomes in basal and Fsk-stimulated mouse MA-10 Leydig cells. Andrology 2025. [PMID: 40277654 DOI: 10.1111/andr.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Myocyte enhancer factor 2 transcription factors regulate essential transcriptional programs in various cell types. The activity of myocyte enhancer factor 2 factors is modulated through interactions with cofactors, chromatin remodelers, and other regulatory proteins, which are dependent on cell context and physiological state. In steroidogenic Leydig cells, MEF2A, MEF2C, and MEF2D are key regulators of genes involved in steroid hormone synthesis, reproductive function, and oxidative stress defense. However, the specific network of myocyte enhancer factor 2-interacting proteins in Leydig cells remains unknown. OBJECTIVE To identify the interactome of each MEF2 factor present in Leydig cells. MATERIALS AND METHODS TurboID proximity-mediated biotinylation combined with mass spectrometry and bioinformatic analyses were used to identify the protein‒protein interaction networks of MEF2A, MEF2C, and MEF2D in MA-10 Leydig cells under basal and stimulated conditions. RESULTS We identified 109 potential myocyte enhancer factor 2-interacting proteins, including some previously known myocyte enhancer factor 2 partners. The interactome for each myocyte enhancer factor 2 factor is dynamic and exhibits unique and shared interaction networks between basal and stimulated conditions. Further analysis through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment categorized these interactions, revealing involvement in pathways related to cellular metabolism, transcriptional regulation, and steroidogenesis. DISCUSSION AND CONCLUSION These findings suggest that myocyte enhancer factor 2 factors can participate in diverse transcriptional activities, capable of gene activation or repression, depending on different protein‒protein interactions. In addition, the differential interactome for each myocyte enhancer factor 2 factor suggests unique regulatory roles for each factor in modulating Leydig cell function. Overall, this study provides new mechanistic insights into myocyte enhancer factor 2 action in Leydig cells by identifying interacting partners that likely influence their functions.
Collapse
Affiliation(s)
- Karine de Mattos
- Reproduction, Santé de la Mère et de l'enfant, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
| | - Marie-Pier Scott-Boyer
- Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
| | - Arnaud Droit
- Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Robert S Viger
- Reproduction, Santé de la Mère et de l'enfant, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Jacques J Tremblay
- Reproduction, Santé de la Mère et de l'enfant, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
2
|
Kougnassoukou Tchara PE, Loehr J, Lambert JP. Coupling Proximity Biotinylation with Genomic Targeting to Characterize Locus-Specific Changes in Chromatin Environments. J Proteome Res 2025; 24:1845-1860. [PMID: 40054857 PMCID: PMC11976867 DOI: 10.1021/acs.jproteome.4c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
Regulating gene expression involves significant changes in the chromatin environment at the locus level, especially at regulatory sequences. However, their modulation following pharmacological treatments or pathological conditions remain mostly undetermined. Here, we report versatile locus-specific proteomics tools to address this knowledge gap, which combine the targeting ability of the CRISPR/Cas9 system and the protein-labeling capability of the highly reactive biotin ligases TurboID (in CasTurbo) and UltraID (in CasUltra). CasTurbo and CasUltra enabled rapid chromatin protein labeling at repetitive sequences like centromeres and telomeres, as well as nonamplified genes. We applied CasUltra to A375 melanoma cell lines to decipher the protein environment of the MYC promoter and characterize the molecular effects of the bromodomain inhibitor JQ1, which targets bromodomain and extra-terminal (BET) proteins that regulate MYC expression. We quantified the consequences of BET protein displacement from the MYC promoter and found that it was associated with a considerable reorganization of the chromatin composition. Additionally, BET protein retention at the MYC promoter was consistent with a model of increased JQ1 resistance. Thus, through the combination of proximity biotinylation and CRISPR/Cas9 genomic targeting, CasTurbo and CasUltra have successfully demonstrated their utility in profiling the proteome associated with a genomic locus in living cells.
Collapse
Affiliation(s)
- Pata-Eting Kougnassoukou Tchara
- Department
of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC G1V 0A6, Canada
- CHU
de Québec Research Centre, Quebec, QC G1V
4G2, Canada
- PROTEO-Quebec
Network for Research on Protein Function, Engineering, and Applications, 201 Av. du Président-Kennedy, Montréal, QC H2X 3Y7, Canada
| | - Jérémy Loehr
- Department
of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC G1V 0A6, Canada
- CHU
de Québec Research Centre, Quebec, QC G1V
4G2, Canada
- PROTEO-Quebec
Network for Research on Protein Function, Engineering, and Applications, 201 Av. du Président-Kennedy, Montréal, QC H2X 3Y7, Canada
| | - Jean-Philippe Lambert
- Department
of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC G1V 0A6, Canada
- CHU
de Québec Research Centre, Quebec, QC G1V
4G2, Canada
- PROTEO-Quebec
Network for Research on Protein Function, Engineering, and Applications, 201 Av. du Président-Kennedy, Montréal, QC H2X 3Y7, Canada
| |
Collapse
|
3
|
Ho JJ, Cheng E, Wong CJ, St-Germain JR, Dunham WH, Raught B, Gingras AC, Brown GW. The BLM-TOP3A-RMI1-RMI2 proximity map reveals that RAD54L2 suppresses sister chromatid exchanges. EMBO Rep 2025; 26:1290-1314. [PMID: 39870965 PMCID: PMC11894219 DOI: 10.1038/s44319-025-00374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Homologous recombination is a largely error-free DNA repair mechanism conserved across all domains of life and is essential for the maintenance of genome integrity. Not only are the mutations in homologous recombination repair genes probable cancer drivers, some also cause genetic disorders. In particular, mutations in the Bloom (BLM) helicase cause Bloom Syndrome, a rare autosomal recessive disorder characterized by increased sister chromatid exchanges and predisposition to a variety of cancers. The pathology of Bloom Syndrome stems from the impaired activity of the BLM-TOP3A-RMI1-RMI2 (BTRR) complex which suppresses crossover recombination to prevent potentially deleterious genome rearrangements. We provide a comprehensive BTRR proximal proteome, revealing proteins that suppress crossover recombination. We find that RAD54L2, a SNF2-family protein, physically interacts with BLM and suppresses sister chromatid exchanges. RAD54L2 is important for recruitment of BLM to chromatin and requires an intact ATPase domain to promote non-crossover recombination. Thus, the BTRR proximity map identifies a regulator of recombination.
Collapse
Affiliation(s)
- Jung Jennifer Ho
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Edith Cheng
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Jonathan R St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wade H Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
4
|
Orchard SE. What have Data Standards ever done for us? Mol Cell Proteomics 2025:100933. [PMID: 40024375 DOI: 10.1016/j.mcpro.2025.100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
The Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) has been successfully developing guidelines, data formats, and controlled vocabularies for both the field of molecular interaction and that of mass spectrometry for more than 20 years. This review explores some of the ways that the proteomics community has benefitted from the development of community standards and takes a look at some of the tools and resources that have been improved or developed as a result of the work of the HUPO-PSI.
Collapse
Affiliation(s)
- S E Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| |
Collapse
|
5
|
Miura K, Niimi H, Niwa T, Taguchi H, Nakamura H. Intracellular Photocatalytic Proximity Labeling (iPPL) for Dynamic Analysis of Chromatin-Binding Proteins Targeting Histone H3. ACS Chem Biol 2024; 19:2412-2417. [PMID: 39652713 DOI: 10.1021/acschembio.4c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
We demonstrated a novel approach for protein-protein interaction (PPI) profiling of histone H3 using intracellular photocatalytic-proximity labeling (iPPL). This approach identified that the combination of acriflavine as a photocatalyst and 1-methyl-4-arylurazol (MAUra) as a protein labeling agent was the most efficient strategy to proceed the protein proximity labeling reaction. Furthermore, the identification of the labeled amino acids in histone H3 interacting proteins, histone lysine N-methyltransferase EZH2, showed that the amino acid in EZH2 within a few nanometers from histone H3 is labeled by iPPL. This restricted labeling radius allows for more-focused PPI profiling, compared to conventional proximity labeling methods.
Collapse
Affiliation(s)
- Kazuki Miura
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama 226-8501, Japan
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hikaru Niimi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Tatsuya Niwa
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama 226-8501, Japan
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
6
|
Jain K, Kougnassoukou Tchara PE, Mengistalem AB, Holland AP, Bowman CN, Marunde MR, Popova IK, Cooke SW, Krajewski K, Keogh MC, Lambert JP, Strahl BD. Histone H3 N-terminal recognition by the PHD finger of PHRF1 is required for proper DNA damage response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.623956. [PMID: 39605374 PMCID: PMC11601626 DOI: 10.1101/2024.11.20.623956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Plant homeodomain (PHD) fingers are critical effectors of histone post-translational modifications (PTMs), acting as regulators of gene expression and genome integrity, and frequently presenting in human disease. While most PHD fingers recognize unmodified and methylated states of histone H3 lysine 4 (H3K4), the specific functions of many of the over 100 PHD finger-containing proteins in humans remain poorly understood, despite their significant implications in disease processes. In this study, we undertook a comprehensive analysis of one such poorly characterized PHD finger-containing protein, PHRF1. Using biochemical, molecular, and cellular approaches, we show that PHRF1 robustly binds to histone H3, specifically at its N-terminal region. Through RNA-seq and proteomic analyses, we also find that PHRF1 is intricately involved in transcriptional and RNA splicing regulation and plays a significant role in DNA damage response (DDR). Crucially, mutagenesis of proline 221 to leucine (P221L) in the PHD finger of PHRF1 abolishes histone interaction and fails to rescue defective DDR. These findings underscore the importance of PHRF1-H3 interaction in maintaining genome integrity and provide insight into how PHD fingers contribute to chromatin biology.
Collapse
Affiliation(s)
- Kanishk Jain
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Pata-Eting Kougnassoukou Tchara
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec City, QC, Canada; CHU de Québec Research Center, Quebec City, QC, Canada
| | - Amanuel B. Mengistalem
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aidan P. Holland
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher N. Bowman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Spencer W. Cooke
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec City, QC, Canada; CHU de Québec Research Center, Quebec City, QC, Canada
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Hebchen DM, Schader T, Spaeth M, Müller N, Graumann J, Schröder K. NoxO1 regulates EGFR signaling by its interaction with Erbin. Redox Biol 2024; 77:103396. [PMID: 39426288 PMCID: PMC11536020 DOI: 10.1016/j.redox.2024.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
NADPH oxidase organizer 1 (NoxO1) is a scaffold cytoplasmic subunit of the reactive oxygen species (ROS) forming Nox1 complex and involved in angiogenesis, differentiation, and atherosclerosis. We found that overexpression of NoxO1 without simultaneous overexpression of any other component of the active Nox1 complex inhibited EGF-induced wound closure and signaling, while NoxO1 KO yielded the opposite effect. Accordingly, we hypothesize NoxO1 to exert Nox1 independent functions. Using the BioID technique, we identified ErbB2 interacting protein (Erbin) as novel interaction partner of NoxO1. Colocalization of NoxO1 with EGFR, as well as with Erbin validated this finding. EGF treatment interrupted colocalization of NoxO1 and EGFR. EGF mediated kinase activation was delayed in NoxO1 overexpressing cells, while knockout of NoxO1 had the opposite effect. In conclusion, Erbin was identified as a novel NoxO1 interacting protein. Through the subsequent interaction of NoxO1 and EGFR, NoxO1 interferes with EGF signaling. The results of this study suggest a potential role of NoxO1 as an adaptor protein with functions beyond the well-established enabling of Nox1 mediated ROS formation.
Collapse
Affiliation(s)
| | - Tim Schader
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany
| | - Manuela Spaeth
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany
| | - Niklas Müller
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-Universität Marburg, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany.
| |
Collapse
|
8
|
Eroglu M, Zocher T, McAuley J, Webster R, Xiao MZX, Yu B, Mok C, Derry WB. Noncanonical inheritance of phenotypic information by protein amyloids. Nat Cell Biol 2024; 26:1712-1724. [PMID: 39223373 DOI: 10.1038/s41556-024-01494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
All known heritable phenotypic information in animals is transmitted by direct inheritance of nucleic acids, their covalent modifications or histone modifications that modulate expression of associated genomic regions. Nonetheless, numerous familial traits and disorders cannot be attributed to known heritable molecular factors. Here we identify amyloid-like protein structures that are stably inherited in wild-type animals and influence traits. Their perturbation by genetic, environmental or pharmacological treatments leads to developmental phenotypes that can be epigenetically passed onto progeny. Injection of amyloids isolated from different phenotypic backgrounds into naive animals recapitulates the associated phenotype in offspring. Genetic and proteomic analyses reveal that the 26S proteasome and its conserved regulators maintain heritable amyloids across generations, which enables proper germ cell sex differentiation. We propose that inheritance of a proteinaceous epigenetic memory coordinates developmental timing and patterning with the environment to confer adaptive fitness.
Collapse
Affiliation(s)
- Matthew Eroglu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Tanner Zocher
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jacob McAuley
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rachel Webster
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maggie Z X Xiao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Calvin Mok
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Sankar DS, Kaeser-Pebernard S, Vionnet C, Favre S, de Oliveira Marchioro L, Pillet B, Zhou J, Stumpe M, Kovacs WJ, Kressler D, Antonioli M, Fimia GM, Dengjel J. The ULK1 effector BAG2 regulates autophagy initiation by modulating AMBRA1 localization. Cell Rep 2024; 43:114689. [PMID: 39207901 DOI: 10.1016/j.celrep.2024.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Autophagy initiation is regulated by the ULK1 kinase complex. To gain insights into functions of the holo-complex, we generated a deep interactome by combining affinity purification- and proximity labeling-mass spectrometry of all four complex members: ULK1, ATG13, ATG101, and RB1CC1/FIP200. Under starvation conditions, the ULK1 complex interacts with several protein and lipid kinases and phosphatases, implying the formation of a signalosome. Interestingly, several selective autophagy receptors also interact with ULK1, indicating the activation of selective autophagy pathways by nutrient starvation. One effector of the ULK1 complex is the HSC/HSP70 co-chaperone BAG2, which regulates the subcellular localization of the VPS34 lipid kinase complex member AMBRA1. Depending on the nutritional status, BAG2 has opposing roles. In growth conditions, the unphosphorylated form of BAG2 sequesters AMBRA1, attenuating autophagy induction. In starvation conditions, ULK1 phosphorylates BAG2 on Ser31, which supports the recruitment of AMBRA1 to the ER membrane, positively affecting autophagy.
Collapse
Affiliation(s)
| | | | - Christine Vionnet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Sebastian Favre
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Lais de Oliveira Marchioro
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo CEP 05508-000, Brazil
| | - Benjamin Pillet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jianwen Zhou
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Werner Josef Kovacs
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Manuela Antonioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Molecular Medicine, University of Rome "Sapienza", 00185 Rome, Italy
| | - Jӧrn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
10
|
Yao W, Hu X, Wang X. Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases. Signal Transduct Target Ther 2024; 9:232. [PMID: 39278916 PMCID: PMC11403012 DOI: 10.1038/s41392-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 09/18/2024] Open
Abstract
Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases. This review defines nine novel histone modifications: lactylation, citrullination, crotonylation, succinylation, SUMOylation, propionylation, butyrylation, 2-hydroxyisobutyrylation, and 2-hydroxybutyrylation. It comprehensively introduces the modification processes of these nine novel HPTMs, their roles in transcription, replication, DNA repair and recombination, metabolism, and chromatin structure, as well as their involvement in promoting the occurrence and development of various diseases and their clinical applications as therapeutic targets and potential biomarkers. Moreover, this review provides a detailed overview of novel HPTM inhibitors targeting various targets and their emerging strategies in the treatment of multiple diseases while offering insights into their future development prospects and challenges. Additionally, we briefly introduce novel epigenetic research techniques and their applications in the field of novel HPTM research.
Collapse
Affiliation(s)
- Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
11
|
Ray S, DeSilva C, Dasgupta I, Mana-Capelli S, Cruz-Calderon N, McCollum D. The ability of the LIMD1 and TRIP6 LIM domains to bind strained f-actin is critical for their tension dependent localization to adherens junctions and association with the Hippo pathway kinase LATS1. Cytoskeleton (Hoboken) 2024; 81:436-447. [PMID: 38426816 PMCID: PMC11366040 DOI: 10.1002/cm.21847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
A key step in regulation of Hippo pathway signaling in response to mechanical tension is recruitment of the LIM domain proteins TRIP6 and LIMD1 to adherens junctions. Mechanical tension also triggers TRIP6 and LIMD1 to bind and inhibit the Hippo pathway kinase LATS1. How TRIP6 and LIMD1 are recruited to adherens junctions in response to tension is not clear, but previous studies suggested that they could be regulated by the known mechanosensory proteins α-catenin and vinculin at adherens junctions. We found that the three LIM domains of TRIP6 and LIMD1 are necessary and sufficient for tension-dependent localization to adherens junctions. The LIM domains of TRIP6, LIMD1, and certain other LIM domain proteins have been shown to bind to actin networks under strain/tension. Consistent with this, we show that TRIP6 and LIMD1 colocalize with the ends of actin fibers at adherens junctions. Point mutations in a key conserved residue in each LIM domain that are predicted to impair binding to f-actin under strain inhibits TRIP6 and LIMD1 localization to adherens junctions and their ability to bind to and recruit LATS1 to adherens junctions. Together these results show that the ability of TRIP6 and LIMD1 to bind to strained actin underlies their ability to localize to adherens junctions and regulate LATS1 in response to mechanical tension.
Collapse
Affiliation(s)
- Samriddha Ray
- Department of Biochemistry & Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, 01605
| | - Chamika DeSilva
- Department of Biochemistry & Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, 01605
| | - Ishani Dasgupta
- Department of Biochemistry & Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, 01605
| | - Sebastian Mana-Capelli
- Department of Biochemistry & Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, 01605
| | - Natasha Cruz-Calderon
- Department of Biochemistry & Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, 01605
| | - Dannel McCollum
- Department of Biochemistry & Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, 01605
| |
Collapse
|
12
|
Stockhammer A, Spalt C, Klemt A, Benz LS, Harel S, Natalia V, Wiench L, Freund C, Kuropka B, Bottanelli F. When less is more - a fast TurboID knock-in approach for high-sensitivity endogenous interactome mapping. J Cell Sci 2024; 137:jcs261952. [PMID: 39056144 PMCID: PMC11385326 DOI: 10.1242/jcs.261952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, proximity labeling has established itself as an unbiased and powerful approach to map the interactome of specific proteins. Although physiological expression of labeling enzymes is beneficial for the mapping of interactors, generation of the desired cell lines remains time-consuming and challenging. Using our established pipeline for rapid generation of C- and N-terminal CRISPR-Cas9 knock-ins (KIs) based on antibiotic selection, we were able to compare the performance of commonly used labeling enzymes when endogenously expressed. Endogenous tagging of the µ subunit of the adaptor protein (AP)-1 complex with TurboID allowed identification of known interactors and cargo proteins that simple overexpression of a labeling enzyme fusion protein could not reveal. We used the KI strategy to compare the interactome of the different AP complexes and clathrin and were able to assemble lists of potential interactors and cargo proteins that are specific for each sorting pathway. Our approach greatly simplifies the execution of proximity labeling experiments for proteins in their native cellular environment and allows going from CRISPR transfection to mass spectrometry analysis and interactome data in just over a month.
Collapse
Affiliation(s)
- Alexander Stockhammer
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Carissa Spalt
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Antonia Klemt
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Laila S Benz
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Shelly Harel
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Vini Natalia
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Lukas Wiench
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Benno Kuropka
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Francesca Bottanelli
- Membrane Trafficking Laboratory, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| |
Collapse
|
13
|
Zhou C, Wagner S, Liang FS. Induced proximity labeling and editing for epigenetic research. Cell Chem Biol 2024; 31:1118-1131. [PMID: 38866004 PMCID: PMC11193966 DOI: 10.1016/j.chembiol.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Epigenetic regulation plays a pivotal role in various biological and disease processes. Two key lines of investigation have been pursued that aim to unravel endogenous epigenetic events at particular genes (probing) and artificially manipulate the epigenetic landscape (editing). The concept of induced proximity has inspired the development of powerful tools for epigenetic research. Induced proximity strategies involve bringing molecular effectors into spatial proximity with specific genomic regions to achieve the probing or manipulation of local epigenetic environments with increased proximity. In this review, we detail the development of induced proximity methods and applications in shedding light on the intricacies of epigenetic regulation.
Collapse
Affiliation(s)
- Chenwei Zhou
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Sarah Wagner
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Fu-Sen Liang
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA.
| |
Collapse
|
14
|
Chandrasekharan G, Unnikrishnan M. High throughput methods to study protein-protein interactions during host-pathogen interactions. Eur J Cell Biol 2024; 103:151393. [PMID: 38306772 DOI: 10.1016/j.ejcb.2024.151393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
The ability of a pathogen to survive and cause an infection is often determined by specific interactions between the host and pathogen proteins. Such interactions can be both intra- and extracellular and may define the outcome of an infection. There are a range of innovative biochemical, biophysical and bioinformatic techniques currently available to identify protein-protein interactions (PPI) between the host and the pathogen. However, the complexity and the diversity of host-pathogen PPIs has led to the development of several high throughput (HT) techniques that enable the study of multiple interactions at once and/or screen multiple samples at the same time, in an unbiased manner. We review here the major HT laboratory-based technologies employed for host-bacterial interaction studies.
Collapse
Affiliation(s)
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
15
|
Lü Y, Cho T, Mukherjee S, Suarez CF, Gonzalez-Foutel NS, Malik A, Martinez S, Dervovic D, Oh RH, Langille E, Al-Zahrani KN, Hoeg L, Lin ZY, Tsai R, Mbamalu G, Rotter V, Ashton-Prolla P, Moffat J, Chemes LB, Gingras AC, Oren M, Durocher D, Schramek D. Genome-wide CRISPR screens identify novel regulators of wild-type and mutant p53 stability. Mol Syst Biol 2024; 20:719-740. [PMID: 38580884 PMCID: PMC11148184 DOI: 10.1038/s44320-024-00032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024] Open
Abstract
Tumor suppressor p53 (TP53) is frequently mutated in cancer, often resulting not only in loss of its tumor-suppressive function but also acquisition of dominant-negative and even oncogenic gain-of-function traits. While wild-type p53 levels are tightly regulated, mutants are typically stabilized in tumors, which is crucial for their oncogenic properties. Here, we systematically profiled the factors that regulate protein stability of wild-type and mutant p53 using marker-based genome-wide CRISPR screens. Most regulators of wild-type p53 also regulate p53 mutants, except for p53 R337H regulators, which are largely private to this mutant. Mechanistically, FBXO42 emerged as a positive regulator for a subset of p53 mutants, working with CCDC6 to control USP28-mediated mutant p53 stabilization. Additionally, C16orf72/HAPSTR1 negatively regulates both wild-type p53 and all tested mutants. C16orf72/HAPSTR1 is commonly amplified in breast cancer, and its overexpression reduces p53 levels in mouse mammary epithelium leading to accelerated breast cancer. This study offers a network perspective on p53 stability regulation, potentially guiding strategies to reinforce wild-type p53 or target mutant p53 in cancer.
Collapse
Affiliation(s)
- YiQing Lü
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Department of Biology, Suffolk University, Boston, MA, 02108, USA
| | - Tiffany Cho
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Carmen Florencia Suarez
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Nicolas S Gonzalez-Foutel
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Ahmad Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Sebastien Martinez
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Dzana Dervovic
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Robin Hyunseo Oh
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ellen Langille
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Khalid N Al-Zahrani
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Lisa Hoeg
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Zhen Yuan Lin
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Geraldine Mbamalu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Patricia Ashton-Prolla
- Departamento de Genética, Universidade Federal do Rio Grande do Sul and Serviço de Genetica Médica HCPA, Porto Alegre, Brasil
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S3G9, Canada
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Lucia Beatriz Chemes
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Anne-Claude Gingras
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Durocher
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
16
|
Liang Z, Damianou A, Vendrell I, Jenkins E, Lassen FH, Washer SJ, Grigoriou A, Liu G, Yi G, Lou H, Cao F, Zheng X, Fernandes RA, Dong T, Tate EW, Di Daniel E, Kessler BM. Proximity proteomics reveals UCH-L1 as an essential regulator of NLRP3-mediated IL-1β production in human macrophages and microglia. Cell Rep 2024; 43:114152. [PMID: 38669140 DOI: 10.1016/j.celrep.2024.114152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Activation of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome complex is an essential innate immune signaling mechanism. To reveal how human NLRP3 inflammasome assembly and activation are controlled, in particular by components of the ubiquitin system, proximity labeling, affinity purification, and RNAi screening approaches were performed. Our study provides an intricate time-resolved molecular map of different phases of NLRP3 inflammasome activation. Also, we show that ubiquitin C-terminal hydrolase 1 (UCH-L1) interacts with the NACHT domain of NLRP3. Downregulation of UCH-L1 decreases pro-interleukin-1β (IL-1β) levels. UCH-L1 chemical inhibition with small molecules interfered with NLRP3 puncta formation and ASC oligomerization, leading to altered IL-1β cleavage and secretion, particularly in microglia cells, which exhibited elevated UCH-L1 expression as compared to monocytes/macrophages. Altogether, we profiled NLRP3 inflammasome activation dynamics and highlight UCH-L1 as an important modulator of NLRP3-mediated IL-1β production, suggesting that a pharmacological inhibitor of UCH-L1 may decrease inflammation-associated pathologies.
Collapse
Affiliation(s)
- Zhu Liang
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| | - Andreas Damianou
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Iolanda Vendrell
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Edward Jenkins
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Frederik H Lassen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Sam J Washer
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Athina Grigoriou
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Guihai Liu
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Gangshun Yi
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Hantao Lou
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Fangyuan Cao
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Xiaonan Zheng
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Ricardo A Fernandes
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Tao Dong
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Elena Di Daniel
- Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Benedikt M Kessler
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| |
Collapse
|
17
|
Fox S, Gaudreau-LaPierre A, Reshke R, Podinic I, Gibbings DJ, Trinkle-Mulcahy L, Copeland JW. Identification of an FMNL2 Interactome by Quantitative Mass Spectrometry. Int J Mol Sci 2024; 25:5686. [PMID: 38891874 PMCID: PMC11171801 DOI: 10.3390/ijms25115686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Formin Homology Proteins (Formins) are a highly conserved family of cytoskeletal regulatory proteins that participate in a diverse range of cellular processes. FMNL2 is a member of the Diaphanous-Related Formin sub-group, and previous reports suggest FMNL2's role in filopodia assembly, force generation at lamellipodia, subcellular trafficking, cell-cell junction assembly, and focal adhesion formation. How FMNL2 is recruited to these sites of action is not well understood. To shed light on how FMNL2 activity is partitioned between subcellular locations, we used biotin proximity labeling and proteomic analysis to identify an FMNL2 interactome. The interactome identified known and new FMNL2 interacting proteins with functions related to previously described FMNL2 activities. In addition, our interactome predicts a novel connection between FMNL2 and extracellular vesicle assembly. We show directly that FMNL2 protein is present in exosomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John W. Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.F.)
| |
Collapse
|
18
|
Liu X, Abad L, Chatterjee L, Cristea IM, Varjosalo M. Mapping protein-protein interactions by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21887. [PMID: 38742660 PMCID: PMC11561166 DOI: 10.1002/mas.21887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Protein-protein interactions (PPIs) are essential for numerous biological activities, including signal transduction, transcription control, and metabolism. They play a pivotal role in the organization and function of the proteome, and their perturbation is associated with various diseases, such as cancer, neurodegeneration, and infectious diseases. Recent advances in mass spectrometry (MS)-based protein interactomics have significantly expanded our understanding of the PPIs in cells, with techniques that continue to improve in terms of sensitivity, and specificity providing new opportunities for the study of PPIs in diverse biological systems. These techniques differ depending on the type of interaction being studied, with each approach having its set of advantages, disadvantages, and applicability. This review highlights recent advances in enrichment methodologies for interactomes before MS analysis and compares their unique features and specifications. It emphasizes prospects for further improvement and their potential applications in advancing our knowledge of PPIs in various biological contexts.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lawrence Abad
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Lopamudra Chatterjee
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Coulombe B, Durcan TM, Bernard G, Moursli A, Poitras C, Faubert D, Pinard M. The 37TrillionCells initiative for improving global healthcare via cell-based interception and precision medicine: focus on neurodegenerative diseases. Mol Brain 2024; 17:18. [PMID: 38605409 PMCID: PMC11007934 DOI: 10.1186/s13041-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
One of the main burdens in the treatment of diseases is imputable to the delay between the appearance of molecular dysfunctions in the first affected disease cells and their presence in sufficient number for detection in specific tissues or organs. This delay obviously plays in favor of disease progression to an extent that makes efficient treatments difficult, as they arrive too late. The development of a novel medical strategy, termed cell-based interception and precision medicine, seeks to identify dysfunctional cells early, when tissue damages are not apparent and symptoms not yet present, and develop therapies to treat diseases early. Central to this strategy is the use of single-cell technologies that allow detection of molecular changes in cells at the time of phenotypical bifurcation from health to disease. In this article we describe a general procedure to support such an approach applied to neurodegenerative disorders. This procedure combines four components directed towards highly complementary objectives: 1) a high-performance single-cell proteomics (SCP) method (Detect), 2) the development of disease experimental cell models and predictive computational models of cell trajectories (Understand), 3) the discovery of specific targets and personalized therapies (Cure), and 4) the creation of a community of collaborating laboratories to accelerate the development of this novel medical paradigm (Collaborate). A global initiative named 37TrillionCells (37TC) was launched to advance the development of cell-based interception and precision medicine.
Collapse
Affiliation(s)
- Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W 1R7, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Canada
- Department Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Asmae Moursli
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W 1R7, Canada
| | - Christian Poitras
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W 1R7, Canada
| | - Denis Faubert
- Mass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W1R7, Canada
| | - Maxime Pinard
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W 1R7, Canada
| |
Collapse
|
20
|
Zhang H, Li S, Zhou R, Dong T, Zhang X, Yu M, Lin J, Shi M, Geng E, Li J, Wang M, Huang L, Yang XP, Sun S. SRCAP complex promotes lung cancer progression by reprograming the oncogenic transcription of Hippo-YAP/TAZ signaling pathway. Cancer Lett 2024; 585:216667. [PMID: 38280479 DOI: 10.1016/j.canlet.2024.216667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
The activation of YAP/TAZ, a pair of paralogs of transcriptional coactivators, initiates a dysregulated transcription program, which is a key feature of human cancer cells. However, it is not fully understood how YAP/TAZ promote dysregulated transcription for tumor progression. In this study, we employed the BioID method to identify the interactome of YAP/TAZ and discovered that YAP/TAZ interact with multiple components of SRCAP complex, a finding that was further validated through endogenous and exogenous co-immunoprecipitation, as well as immunofluorescence experiments. CUT&Tag analysis revealed that SRCAP complex facilitates the deposition of histone variant H2A.Z at target promoters. The depletion of SRCAP complex resulted in a decrease in H2A.Z occupancy and the oncogenic transcription of YAP/TAZ target genes. Additionally, the blockade of SRCAP complex suppressed YAP-driven tumor growth. In a genetically engineered lung adenocarcinoma mouse model and non-small cell lung cancer patients, SRCAP complex and H2A.Z deposition were found to be upregulated. This upregulation was statistically correlated with YAP expression, pathological stages, and poor survival in lung cancer patients. Together, our study uncovers that SRCAP complex plays a critical role in YAP/TAZ oncogenic transcription by coordinating H2A.Z deposition during cancer progression, providing potential targets for cancer diagnosis and prevention.
Collapse
Affiliation(s)
- Huixia Zhang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Shasha Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Runxin Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Tianqi Dong
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xiao Zhang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Man Yu
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Jiaming Lin
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Mingjun Shi
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Ershuo Geng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Juebei Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Mingwei Wang
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Shuguo Sun
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China; Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
21
|
Binet R, Lambert JP, Tomkova M, Tischfield S, Baggiolini A, Picaud S, Sarkar S, Louphrasitthiphol P, Dias D, Carreira S, Humphrey TC, Fillipakopoulos P, White R, Goding CR. DNA damage remodels the MITF interactome to increase melanoma genomic instability. Genes Dev 2024; 38:70-94. [PMID: 38316520 PMCID: PMC10903946 DOI: 10.1101/gad.350740.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Using melanoma as a model, we show here that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a nontranscriptional role in shaping the DDR. On exposure to DNA-damaging agents, MITF is phosphorylated at S325, and its interactome is dramatically remodeled; most transcription cofactors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement with this, high MITF levels are associated with increased single-nucleotide and copy number variant burdens in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of DNA-PKcs-phosphorylated MITF. Our data suggest that a nontranscriptional function of a lineage-restricted transcription factor contributes to a tissue-specialized modulation of the DDR that can impact cancer initiation.
Collapse
Affiliation(s)
- Romuald Binet
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center, Université Laval, Québec City, Québec G1V 4G2, Canada
- Endocrinology-Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec City, Québec G1V 4G2, Canada
| | - Marketa Tomkova
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, USA
| | - Samuel Tischfield
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Arianna Baggiolini
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Sovan Sarkar
- Cancer Research UK, Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Diogo Dias
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Suzanne Carreira
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Timothy C Humphrey
- Cancer Research UK, Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Panagis Fillipakopoulos
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Richard White
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom;
| |
Collapse
|
22
|
Liu D, Dredge BK, Bert AG, Pillman KA, Toubia J, Guo W, Dyakov BA, Migault MM, Conn VM, Conn S, Gregory PA, Gingras AC, Patel D, Wu B, Goodall G. ESRP1 controls biogenesis and function of a large abundant multiexon circRNA. Nucleic Acids Res 2024; 52:1387-1403. [PMID: 38015468 PMCID: PMC10853802 DOI: 10.1093/nar/gkad1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
While the majority of circRNAs are formed from infrequent back-splicing of exons from protein coding genes, some can be produced at quite high level and in a regulated manner. We describe the regulation, biogenesis and function of circDOCK1(2-27), a large, abundant circular RNA that is highly regulated during epithelial-mesenchymal transition (EMT) and whose formation depends on the epithelial splicing regulator ESRP1. CircDOCK1(2-27) synthesis in epithelial cells represses cell motility both by diverting transcripts from DOCK1 mRNA production to circRNA formation and by direct inhibition of migration by the circRNA. HITS-CLIP analysis and CRISPR-mediated deletions indicate ESRP1 controls circDOCK1(2-27) biosynthesis by binding a GGU-containing repeat region in intron 1 and detaining its splicing until Pol II completes its 157 kb journey to exon 27. Proximity-dependent biotinylation (BioID) assay suggests ESRP1 may modify the RNP landscape of intron 1 in a way that disfavours communication of exon 1 with exon 2, rather than physically bridging exon 2 to exon 27. The X-ray crystal structure of RNA-bound ESRP1 qRRM2 domain reveals it binds to GGU motifs, with the guanines embedded in clamp-like aromatic pockets in the protein.
Collapse
Affiliation(s)
- Dawei Liu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, SA 5000, Australia
| | - Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Boris J A Dyakov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Melodie M Migault
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Vanessa M Conn
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Simon J Conn
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dinshaw Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
23
|
LaPak KM, Saeidi S, Bok I, Wamsley NT, Plutzer IB, Bhatt DP, Luo J, Ashrafi G, Major MB. Proximity proteomic analysis of the NRF family reveals the Parkinson's disease protein ZNF746/PARIS as a co-complexed repressor of NRF2. Sci Signal 2023; 16:eadi9018. [PMID: 38085818 PMCID: PMC10760916 DOI: 10.1126/scisignal.adi9018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor activates cytoprotective and metabolic gene expression in response to various electrophilic stressors. Constitutive NRF2 activity promotes cancer progression, whereas decreased NRF2 function contributes to neurodegenerative diseases. We used proximity proteomic analysis to define protein networks for NRF2 and its family members NRF1, NRF3, and the NRF2 heterodimer MAFG. A functional screen of co-complexed proteins revealed previously uncharacterized regulators of NRF2 transcriptional activity. We found that ZNF746 (also known as PARIS), a zinc finger transcription factor implicated in Parkinson's disease, physically associated with NRF2 and MAFG, resulting in suppression of NRF2-driven transcription. ZNF746 overexpression increased oxidative stress and apoptosis in a neuronal cell model of Parkinson's disease, phenotypes that were reversed by chemical and genetic hyperactivation of NRF2. This study presents a functionally annotated proximity network for NRF2 and suggests a link between ZNF746 overexpression in Parkinson's disease and inhibition of NRF2-driven neuroprotection.
Collapse
Affiliation(s)
- Kyle M. LaPak
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Soma Saeidi
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Ilah Bok
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Nathan T. Wamsley
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Isaac B. Plutzer
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Dhaval P. Bhatt
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, WUSM and Siteman Cancer Center Biostatistics and Qualitative Research Shared Resource, Washington University; St. Louis, MO, 63110, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
- Department of Genetics, Washington University; St. Louis, MO, 63110, USA
| | - M. Ben Major
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| |
Collapse
|
24
|
Roth JF, Braunschweig U, Wu M, Li JD, Lin ZY, Larsen B, Weatheritt RJ, Gingras AC, Blencowe BJ. Systematic analysis of alternative exon-dependent interactome remodeling reveals multitasking functions of gene regulatory factors. Mol Cell 2023; 83:4222-4238.e10. [PMID: 38065061 DOI: 10.1016/j.molcel.2023.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Alternative splicing significantly expands biological complexity, particularly in the vertebrate nervous system. Increasing evidence indicates that developmental and tissue-dependent alternative exons often control protein-protein interactions; yet, only a minor fraction of these events have been characterized. Using affinity purification-mass spectrometry (AP-MS), we show that approximately 60% of analyzed neural-differential exons in proteins previously implicated in transcriptional regulation result in the gain or loss of interaction partners, which in some cases form unexpected links with coupled processes. Notably, a neural exon in Chtop regulates its interaction with the Prmt1 methyltransferase and DExD-Box helicases Ddx39b/a, affecting its methylation and activity in promoting RNA export. Additionally, a neural exon in Sap30bp affects interactions with RNA processing factors, modulating a critical function of Sap30bp in promoting the splicing of <100 nt "mini-introns" that control nuclear RNA levels. AP-MS is thus a powerful approach for elucidating the multifaceted functions of proteins imparted by context-dependent alternative exons.
Collapse
Affiliation(s)
- Jonathan F Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Mingkun Wu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jack Daiyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Robert J Weatheritt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
25
|
Sandeep P, Sharma P, Luhach K, Dhiman N, Kharkwal H, Sharma B. Neuron navigators: A novel frontier with physiological and pathological implications. Mol Cell Neurosci 2023; 127:103905. [PMID: 37972804 DOI: 10.1016/j.mcn.2023.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuron navigators are microtubule plus-end tracking proteins containing basic and serine rich regions which are encoded by neuron navigator genes (NAVs). Neuron navigator proteins are essential for neurite outgrowth, neuronal migration, and overall neurodevelopment along with some other functions as well. The navigator proteins are substantially expressed in the developing brain and have been reported to be differentially expressed in various tissues at different ages. Over the years, the research has found neuron navigators to be implicated in a spectrum of pathological conditions such as developmental anomalies, neurodegenerative disorders, neuropathic pain, anxiety, cancers, and certain inflammatory conditions. The existing knowledge about neuron navigators remains sparse owing to their differential functions, undiscovered modulators, and unknown molecular mechanisms. Investigating the possible role of neuron navigators in various physiological processes and pathological conditions pose as a novel field that requires extensive research and might provide novel mechanistic insights and understanding of these aspects.
Collapse
Affiliation(s)
- Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India.
| |
Collapse
|
26
|
Raval S, Douglas P, Laurent D, Khan MF, Lees-Miller SP, Schriemer DC. High-Efficiency Enrichment by Saturating Nanoliters of Protein Affinity Media. Anal Chem 2023; 95:15884-15892. [PMID: 37851921 PMCID: PMC11234515 DOI: 10.1021/acs.analchem.3c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Affinity-purification mass spectrometry (AP-MS) is an established technique for identifying protein-protein interactions (PPIs). The basic technology involves immobilizing a high-specificity ligand to a solid-phase support (e.g., an agarose or magnetic bead) to pull down protein(s) of interest from cell lysates. Although these supports are engineered to minimize interactions with background protein, the conventional method recovers mostly nonspecific binders. The law of mass action for dilute solutions has taught us to use an excess of beads to capture all target proteins, especially weakly interacting ones. However, modern microbead technology presents a binding environment that is much different from a dilute solution. We describe a fluidic platform that captures and processes ultralow nanoliter quantities of magnetic particles, simultaneously increasing the efficiency of PPI detection and strongly suppressing nonspecific binding. We demonstrate the concept with synthetic mixtures of tagged protein and illustrate performance with a variety of AP-MS experiment types. These include a BioID experiment targeting lamin-A interactors from HeLa cells and pulldowns using GFP-tagged proteins associated with a double-strand DNA repair mechanism. We show that efficient extraction requires saturation of the solid-phase support and that <10 nL of beads is sufficient to generate comprehensive protein interaction maps.
Collapse
Affiliation(s)
- Shaunak Raval
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada, T2N-4N1
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N-4N1
| | - Pauline Douglas
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada, T2N-4N1
| | - Danny Laurent
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada, T2N-4N1
| | - Morgan F. Khan
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada, T2N-4N1
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada, T2N-4N1
| | - David C. Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada, T2N-4N1
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N-4N1
| |
Collapse
|
27
|
Min YQ, Huang M, Feng K, Jia Y, Sun X, Ning YJ. A New Cellular Interactome of SARS-CoV-2 Nucleocapsid Protein and Its Biological Implications. Mol Cell Proteomics 2023; 22:100579. [PMID: 37211047 PMCID: PMC10198743 DOI: 10.1016/j.mcpro.2023.100579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023] Open
Abstract
There is still much to uncover regarding the molecular details of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. As the most abundant protein, coronavirus nucleocapsid (N) protein encapsidates viral RNAs, serving as the structural component of ribonucleoprotein and virion, and participates in transcription, replication, and host regulations. Virus-host interaction might give clues to better understand how the virus affects or is affected by its host during infection and identify promising therapeutic candidates. Considering the critical roles of N, we here established a new cellular interactome of SARS-CoV-2 N by using a high-specific affinity purification (S-pulldown) assay coupled with quantitative mass spectrometry and immunoblotting validations, uncovering many N-interacting host proteins unreported previously. Bioinformatics analysis revealed that these host factors are mainly involved in translation regulations, viral transcription, RNA processes, stress responses, protein folding and modification, and inflammatory/immune signaling pathways, in line with the supposed actions of N in viral infection. Existing pharmacological cellular targets and the directing drugs were then mined, generating a drug-host protein network. Accordingly, we experimentally identified several small-molecule compounds as novel inhibitors against SARS-CoV-2 replication. Furthermore, a newly identified host factor, DDX1, was verified to interact and colocalize with N mainly by binding to the N-terminal domain of the viral protein. Importantly, loss/gain/reconstitution-of-function experiments showed that DDX1 acts as a potent anti-SARS-CoV-2 host factor, inhibiting the viral replication and protein expression. The N-targeting and anti-SARS-CoV-2 abilities of DDX1 are consistently independent of its ATPase/helicase activity. Further mechanism studies revealed that DDX1 impedes multiple activities of N, including the N-N interaction, N oligomerization, and N-viral RNA binding, thus likely inhibiting viral propagation. These data provide new clues to better depiction of the N-cell interactions and SARS-CoV-2 infection and may help inform the development of new therapeutic candidates.
Collapse
Affiliation(s)
- Yuan-Qin Min
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Mengzhuo Huang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Kuan Feng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yajie Jia
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiulian Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| | - Yun-Jia Ning
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China.
| |
Collapse
|
28
|
Abstract
Proteins are workhorses in the cell; they form stable and more often dynamic, transient protein-protein interactions, assemblies, and networks and have an intimate interplay with DNA and RNA. These network interactions underlie fundamental biological processes and play essential roles in cellular function. The proximity-dependent biotinylation labeling approach combined with mass spectrometry (PL-MS) has recently emerged as a powerful technique to dissect the complex cellular network at the molecular level. In PL-MS, by fusing a genetically encoded proximity-labeling (PL) enzyme to a protein or a localization signal peptide, the enzyme is targeted to a protein complex of interest or to an organelle, allowing labeling of proximity proteins within a zoom radius. These biotinylated proteins can then be captured by streptavidin beads and identified and quantified by mass spectrometry. Recently engineered PL enzymes such as TurboID have a much-improved enzymatic activity, enabling spatiotemporal mapping with a dramatically increased signal-to-noise ratio. PL-MS has revolutionized the way we perform proteomics by overcoming several hurdles imposed by traditional technology, such as biochemical fractionation and affinity purification mass spectrometry. In this review, we focus on biotin ligase-based PL-MS applications that have been, or are likely to be, adopted by the plant field. We discuss the experimental designs and review the different choices for engineered biotin ligases, enrichment, and quantification strategies. Lastly, we review the validation and discuss future perspectives.
Collapse
Affiliation(s)
- Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
| | - Sumudu S Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
| | - Pei-Qiao Xie
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
29
|
Binet R, Lambert JP, Tomkova M, Tischfield S, Baggiolini A, Picaud S, Sarkar S, Louphrasitthiphol P, Dias D, Carreira S, Humphrey T, Fillipakopoulos P, White R, Goding CR. DNA damage-induced interaction between a lineage addiction oncogenic transcription factor and the MRN complex shapes a tissue-specific DNA Damage Response and cancer predisposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537819. [PMID: 37131595 PMCID: PMC10153263 DOI: 10.1101/2023.04.21.537819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA Damage Response (DDR) programs. However, some cells, in skin for example, are normally exposed to high levels of DNA damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Here we show, using melanoma as a model, that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a non-transcriptional role in shaping the DDR. On exposure to DNA damaging agents, MITF is phosphorylated by ATM/DNA-PKcs, and unexpectedly its interactome is dramatically remodelled; most transcription (co)factors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks, and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement, high MITF levels are associated with increased SNV burden in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of ATM/DNA-PKcs-phosphorylated MITF. Our data suggest that a non-transcriptional function of a lineage-restricted transcription factor contributes to a tissue-specialised modulation of the DDR that can impact cancer initiation.
Collapse
Affiliation(s)
- Romuald Binet
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; Endocrinology – Nephrology Axis, CHU de Québec – Université Laval Research Center, Quebec City, QC, Canada, G1V 4G2
| | - Marketa Tomkova
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Biochemistry and Molecular Medicine, University of California, Davis, USA
| | - Samuel Tischfield
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arianna Baggiolini
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Sovan Sarkar
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Diogo Dias
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Suzanne Carreira
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Timothy Humphrey
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Panagis Fillipakopoulos
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Richard White
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| |
Collapse
|
30
|
Moparthi L, Koch S. FOX transcription factors are common regulators of Wnt/β-catenin-dependent gene transcription. J Biol Chem 2023; 299:104667. [PMID: 37011861 DOI: 10.1016/j.jbc.2023.104667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The Wnt/β-catenin pathway is a critical regulator of development and stem cell maintenance. Mounting evidence suggests that the outcome of Wnt signaling is determined by the collaborative action of multiple transcription factors, including members of the highly conserved forkhead box (FOX) protein family. However, the contribution of FOX transcription factors to Wnt signaling has not been investigated in a systematic manner. Here, we performed complementary screens of all 44 human FOX proteins to identify new Wnt pathway regulators. By combining β-catenin reporter assays with Wnt pathway-focused qPCR arrays and proximity proteomics of selected candidates, we determine that most FOX proteins are involved in the regulation of Wnt pathway activity. As proof-of-principle, we additionally characterize class D and I FOX transcription factors as physiologically relevant regulators of Wnt/β-catenin signaling. We conclude that FOX proteins are common regulators of the Wnt/β-catenin-dependent gene transcription that may control Wnt pathway activity in a tissue-specific manner.
Collapse
|
31
|
Segal D, Maier S, Mastromarco GJ, Qian WW, Nabeel-Shah S, Lee H, Moore G, Lacoste J, Larsen B, Lin ZY, Selvabaskaran A, Liu K, Smibert C, Zhang Z, Greenblatt J, Peng J, Lee HO, Gingras AC, Taipale M. A central chaperone-like role for 14-3-3 proteins in human cells. Mol Cell 2023; 83:974-993.e15. [PMID: 36931259 DOI: 10.1016/j.molcel.2023.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
14-3-3 proteins are highly conserved regulatory proteins that interact with hundreds of structurally diverse clients and act as central hubs of signaling networks. However, how 14-3-3 paralogs differ in specificity and how they regulate client protein function are not known for most clients. Here, we map the interactomes of all human 14-3-3 paralogs and systematically characterize the effect of disrupting these interactions on client localization. The loss of 14-3-3 binding leads to the coalescence of a large fraction of clients into discrete foci in a client-specific manner, suggesting a central chaperone-like function for 14-3-3 proteins. Congruently, the engraftment of 14-3-3 binding motifs to nonclients can suppress their aggregation or phase separation. Finally, we show that 14-3-3s negatively regulate the localization of the RNA-binding protein SAMD4A to cytoplasmic granules and inhibit its activity as a translational repressor. Our work suggests that 14-3-3s have a more prominent role as chaperone-like molecules than previously thought.
Collapse
Affiliation(s)
- Dmitri Segal
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Stefan Maier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | | | - Wesley Wei Qian
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Hyunmin Lee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessica Lacoste
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Abeeshan Selvabaskaran
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Karen Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Craig Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhaolei Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
32
|
Khazaei S, Chen CCL, Andrade AF, Kabir N, Azarafshar P, Morcos SM, França JA, Lopes M, Lund PJ, Danieau G, Worme S, Adnani L, Nzirorera N, Chen X, Yogarajah G, Russo C, Zeinieh M, Wong CJ, Bryant L, Hébert S, Tong B, Sihota TS, Faury D, Puligandla E, Jawhar W, Sandy V, Cowan M, Nakada EM, Jerome-Majewska LA, Ellezam B, Gomes CC, Denecke J, Lessel D, McDonald MT, Pizoli CE, Taylor K, Cocanougher BT, Bhoj EJ, Gingras AC, Garcia BA, Lu C, Campos EI, Kleinman CL, Garzia L, Jabado N. Single substitution in H3.3G34 alters DNMT3A recruitment to cause progressive neurodegeneration. Cell 2023; 186:1162-1178.e20. [PMID: 36931244 PMCID: PMC10112048 DOI: 10.1016/j.cell.2023.02.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/04/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Germline histone H3.3 amino acid substitutions, including H3.3G34R/V, cause severe neurodevelopmental syndromes. To understand how these mutations impact brain development, we generated H3.3G34R/V/W knock-in mice and identified strikingly distinct developmental defects for each mutation. H3.3G34R-mutants exhibited progressive microcephaly and neurodegeneration, with abnormal accumulation of disease-associated microglia and concurrent neuronal depletion. G34R severely decreased H3K36me2 on the mutant H3.3 tail, impairing recruitment of DNA methyltransferase DNMT3A and its redistribution on chromatin. These changes were concurrent with sustained expression of complement and other innate immune genes possibly through loss of non-CG (CH) methylation and silencing of neuronal gene promoters through aberrant CG methylation. Complement expression in G34R brains may lead to neuroinflammation possibly accounting for progressive neurodegeneration. Our study reveals that H3.3G34-substitutions have differential impact on the epigenome, which underlie the diverse phenotypes observed, and uncovers potential roles for H3K36me2 and DNMT3A-dependent CH-methylation in modulating synaptic pruning and neuroinflammation in post-natal brains.
Collapse
Affiliation(s)
- Sima Khazaei
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | | | - Nisha Kabir
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Pariya Azarafshar
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Shahir M Morcos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Josiane Alves França
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Lopes
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Peder J Lund
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Geoffroy Danieau
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Orthopedic Surgery, Faculty of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Samantha Worme
- Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Lata Adnani
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Nadine Nzirorera
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Marine College, Shandong University, Weihai 264209, China
| | - Gayathri Yogarajah
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Caterina Russo
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Michele Zeinieh
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Laura Bryant
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Steven Hébert
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Bethany Tong
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Tianna S Sihota
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Damien Faury
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Evan Puligandla
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Wajih Jawhar
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Child Health and Human Development, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Veronica Sandy
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Mitra Cowan
- McGill Integrated Core for Animal Modeling (MICAM), McGill University, Montreal, QC, Canada
| | - Emily M Nakada
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Loydie A Jerome-Majewska
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Carolina Cavalieri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Marie T McDonald
- Division of Medical Genetics, Duke University Hospital, Durham, NC, USA
| | - Carolyn E Pizoli
- Division of Pediatric Neurology, Duke University Hospital, Durham, NC, USA
| | - Kathryn Taylor
- Division of Medical Genetics, Duke University Hospital, Durham, NC, USA
| | | | | | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Eric I Campos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Livia Garzia
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Orthopedic Surgery, Faculty of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
33
|
Cormier KW, Larsen B, Gingras AC, Woodgett JR. Interactomes of Glycogen Synthase Kinase-3 Isoforms. J Proteome Res 2023; 22:977-989. [PMID: 36779422 PMCID: PMC9990120 DOI: 10.1021/acs.jproteome.2c00825] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Functional differentiation of the two isoforms of the protein-serine/threonine kinase, glycogen synthase kinase-3 (GSK-3), is an unsettled area of research. The isoforms are highly similar in structure and are largely redundant, though there is also evidence for specific roles. Identification of isoform-specific protein interactors may elucidate the differences in function and provide insight into isoform-selective regulation. We therefore sought to identify novel GSK-3 interaction partners and to examine differences in the interactomes of the two isoforms using both affinity purification and proximity-dependent biotinylation (BioID) mass spectrometry methods. While the interactomes of the two isomers are highly similar in HEK293 cells, BioID in HeLa cells yielded a variety of preys that are preferentially associated with one of the two isoforms. DCP1B, which favored GSK-3α, and MISP, which favored GSK-3β, were evaluated for reciprocal interactions. The differences in interactions between isoforms may help in understanding the distinct functions and regulation of the two isoforms as well as offer avenues for the development of isoform-specific strategies.
Collapse
Affiliation(s)
- Kevin W Cormier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
34
|
Gaudreau-Lapierre A, Klonisch T, Nicolas H, Thanasupawat T, Trinkle-Mulcahy L, Hombach-Klonisch S. Nuclear High Mobility Group A2 (HMGA2) Interactome Revealed by Biotin Proximity Labeling. Int J Mol Sci 2023; 24:ijms24044246. [PMID: 36835656 PMCID: PMC9966875 DOI: 10.3390/ijms24044246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The non-histone chromatin binding protein High Mobility Group AT-hook protein 2 (HMGA2) has important functions in chromatin remodeling, and genome maintenance and protection. Expression of HMGA2 is highest in embryonic stem cells, declines during cell differentiation and cell aging, but it is re-expressed in some cancers, where high HMGA2 expression frequently coincides with a poor prognosis. The nuclear functions of HMGA2 cannot be explained by binding to chromatin alone but involve complex interactions with other proteins that are incompletely understood. The present study used biotin proximity labeling, followed by proteomic analysis, to identify the nuclear interaction partners of HMGA2. We tested two different biotin ligase HMGA2 constructs (BioID2 and miniTurbo) with similar results, and identified known and new HMGA2 interaction partners, with functionalities mainly in chromatin biology. These HMGA2 biotin ligase fusion constructs offer exciting new possibilities for interactome discovery research, enabling the monitoring of nuclear HMGA2 interactomes during drug treatments.
Collapse
Affiliation(s)
- Antoine Gaudreau-Lapierre
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hannah Nicolas
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: ; Tel.: +1-204-789-3982; Fax: +1-204-789-3920
| |
Collapse
|
35
|
Rodriguez-Calado S, Van Damme P, Avilés FX, Candiota AP, Tanco S, Lorenzo J. Proximity Mapping of CCP6 Reveals Its Association with Centrosome Organization and Cilium Assembly. Int J Mol Sci 2023; 24:ijms24021273. [PMID: 36674791 PMCID: PMC9867282 DOI: 10.3390/ijms24021273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
The cytosolic carboxypeptidase 6 (CCP6) catalyzes the deglutamylation of polyglutamate side chains, a post-translational modification that affects proteins such as tubulins or nucleosome assembly proteins. CCP6 is involved in several cell processes, such as spermatogenesis, antiviral activity, embryonic development, and pathologies like renal adenocarcinoma. In the present work, the cellular role of CCP6 has been assessed by BioID, a proximity labeling approach for mapping physiologically relevant protein-protein interactions (PPIs) and bait proximal proteins by mass spectrometry. We used HEK 293 cells stably expressing CCP6-BirA* to identify 37 putative interactors of this enzyme. This list of CCP6 proximal proteins displayed enrichment of proteins associated with the centrosome and centriolar satellites, indicating that CCP6 could be present in the pericentriolar material. In addition, we identified cilium assembly-related proteins as putative interactors of CCP6. In addition, the CCP6 proximal partner list included five proteins associated with the Joubert syndrome, a ciliopathy linked to defects in polyglutamylation. Using the proximity ligation assay (PLA), we show that PCM1, PIBF1, and NudC are true CCP6 physical interactors. Therefore, the BioID methodology confirms the location and possible functional role of CCP6 in centrosomes and centrioles, as well as in the formation and maintenance of primary cilia.
Collapse
Affiliation(s)
- Sergi Rodriguez-Calado
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Francesc Xavier Avilés
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Sebastian Tanco
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Correspondence: (S.T.); (J.L.); Tel.: +34-93-586-8938 (S.T.); +34-93-586-8957 (J.L.)
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Correspondence: (S.T.); (J.L.); Tel.: +34-93-586-8938 (S.T.); +34-93-586-8957 (J.L.)
| |
Collapse
|
36
|
Agbo L, Loehr J, Kougnassoukou Tchara PE, Lambert JP. Characterization of the Functional Interplay between the BRD7 and BRD9 Homologues in mSWI/SNF Complexes. J Proteome Res 2023; 22:78-90. [PMID: 36484504 DOI: 10.1021/acs.jproteome.2c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bromodomains (BRDs) are a family of evolutionarily conserved domains that are the main readers of acetylated lysine (Kac) residues on proteins. Recently, numerous BRD-containing proteins have been proven essential for transcriptional regulation in numerous contexts. This is exemplified by the multi-subunit mSWI/SNF chromatin remodeling complexes, which incorporate up to 10 BRDs within five distinct subunits, allowing for extensive integration of Kac signaling to inform transcriptional regulation. As dysregulated transcription promotes oncogenesis, we sought to characterize how BRD-containing subunits contribute molecularly to mSWI/SNF functions. By combining genome editing, functional proteomics, and cellular biology, we found that loss of any single BRD-containing mSWI/SNF subunit altered but did not fully disrupt the various mSWI/SNF complexes. In addition, we report that the downregulation of BRD7 is common in invasive lobular carcinoma and modulates the interactome of its homologue, BRD9. We show that these alterations exacerbate sensitivities to inhibitors targeting epigenetic regulators─notably, inhibitors targeting the BRDs of non-mSWI/SNF proteins. Our results highlight the interconnections between distinct mSWI/SNF complexes and their far-reaching impacts on transcriptional regulation in human health and disease. The mass spectrometry data generated have been deposited to MassIVE and ProteomeXchange and assigned the identifiers MSV000089357, MSV000089362, and PXD033572.
Collapse
Affiliation(s)
- Lynda Agbo
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada.,Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| | - Jérémy Loehr
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada.,Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| | - Pata-Eting Kougnassoukou Tchara
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada.,Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada.,Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| |
Collapse
|
37
|
Moschonas GD, De Meyer M, De Sutter D, Timmerman E, Van Damme P, Eyckerman S. Virotrap: Trapping Protein Complexes in Virus-Like Particles. Methods Mol Biol 2023; 2718:53-71. [PMID: 37665454 DOI: 10.1007/978-1-0716-3457-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The discovery of protein-protein interactions can provide crucial information on protein function by linking proteins into known pathways or complexes within the cell. Mass spectrometry (MS)-based methods, such as affinity purification (AP)-MS and proximity-dependent biotin identification (BioID), allowed for a vast increase in the number of reported protein complexes. As a more recent addition to the arsenal of MS-based methods, Virotrap represents a unique technology that benefits from the specific properties of the human immunodeficiency virus-1 (HIV-1) Gag polyprotein. More specifically, Virotrap captures protein complexes in virus-like particles budded from human embryonic kidney (HEK293T) cells, bypassing the need for cell lysis and thus supporting identification of their content using MS. Being intrinsically different to its two main predecessors, affinity purification MS (AP-MS) and biotin-dependent identification (BioID), Virotrap was shown to complement data obtained with the existing MS-based toolkit. The proven complementarity of these MS-based strategies underlines the importance of using different techniques to enable comprehensive mapping of protein-protein interactions (PPIs). In this chapter, we provide a detailed overview of the Virotrap protocol to screen for PPIs using a bait protein of interest.
Collapse
Affiliation(s)
- George D Moschonas
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Margaux De Meyer
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- iRIP Unit, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Delphine De Sutter
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- iRIP Unit, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
38
|
Impact of inherent biases built into proteomic techniques: Proximity labeling and affinity capture compared. J Biol Chem 2022; 299:102726. [PMID: 36410438 PMCID: PMC9791439 DOI: 10.1016/j.jbc.2022.102726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 11/20/2022] Open
Abstract
The characterization of protein-protein interactions (PPIs) is of high value for understanding protein function. Two strategies are popular for identification of PPIs direct from the cellular environment: affinity capture (pulldown) isolates the protein of interest with an immobilized matrix that specifically captures the target and potential partners, whereas in BioID, genetic fusion of biotin ligase facilitates proximity biotinylation, and labeled proteins are isolated with streptavidin. Whilst both methods provide valuable insights, they can reveal distinct PPIs, but the basis for these differences is less obvious. Here, we compare both methods using four different trypanosome proteins as baits: poly(A)-binding proteins PABP1 and PABP2, mRNA export receptor MEX67, and the nucleoporin NUP158. With BioID, we found that the population of candidate interacting proteins decreases with more confined bait protein localization, but the candidate population is less variable with affinity capture. BioID returned more likely false positives, in particular for proteins with less confined localization, and identified low molecular weight proteins less efficiently. Surprisingly, BioID for MEX67 identified exclusively proteins lining the inner channel of the nuclear pore complex (NPC), consistent with the function of MEX67, whereas the entire NPC was isolated by pulldown. Similarly, for NUP158, BioID returned surprisingly few PPIs within NPC outer rings that were by contrast detected with pulldown but instead returned a larger cohort of nuclear proteins. These rather significant differences highlight a clear issue with reliance on a single method to identify PPIs and suggest that BioID and affinity capture are complementary rather than alternative approaches.
Collapse
|
39
|
Systematic proximal mapping of the classical RAD51 paralogs unravel functionally and clinically relevant interactors for genome stability. PLoS Genet 2022; 18:e1010495. [DOI: 10.1371/journal.pgen.1010495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022] Open
Abstract
Homologous recombination (HR) plays an essential role in the maintenance of genome stability by promoting the repair of cytotoxic DNA double strand breaks (DSBs). More recently, the HR pathway has emerged as a core component of the response to replication stress, in part by protecting stalled replication forks from nucleolytic degradation. In that regard, the mammalian RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have been involved in both HR-mediated DNA repair and collapsed replication fork resolution. Still, it remains largely obscure how they participate in both processes, thereby maintaining genome stability and preventing cancer development. To gain better insight into their contribution in cellulo, we mapped the proximal interactome of the classical RAD51 paralogs using the BioID approach. Aside from identifying the well-established BCDX2 and CX3 sub-complexes, the spliceosome machinery emerged as an integral component of our proximal mapping, suggesting a crosstalk between this pathway and the RAD51 paralogs. Furthermore, we noticed that factors involved RNA metabolic pathways are significantly modulated within the BioID of the classical RAD51 paralogs upon exposure to hydroxyurea (HU), pointing towards a direct contribution of RNA processing during replication stress. Importantly, several members of these pathways have prognostic potential in breast cancer (BC), where their RNA expression correlates with poorer patient outcome. Collectively, this study uncovers novel functionally relevant partners of the different RAD51 paralogs in the maintenance of genome stability that could be used as biomarkers for the prognosis of BC.
Collapse
|
40
|
Vickridge E, Faraco CCF, Tehrani PS, Ramdzan ZM, Djerir B, Rahimian H, Leduy L, Maréchal A, Gingras AC, Nepveu A. The DNA repair function of BCL11A suppresses senescence and promotes continued proliferation of triple-negative breast cancer cells. NAR Cancer 2022; 4:zcac028. [PMID: 36186110 PMCID: PMC9516615 DOI: 10.1093/narcan/zcac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
We identified the BCL11A protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1. In vitro, DNA repair assays demonstrate that both BCL11A and a small recombinant BCL11A160-520 protein that is devoid of DNA binding and transcription regulatory domains can stimulate the enzymatic activities of two base excision repair enzymes: NTHL1 and DNA Pol β. Increased DNA repair efficiency, in particular of the base excision repair pathway, is essential for many cancer cells to proliferate in the presence of elevated reactive oxygen species (ROS) produced by cancer-associated metabolic changes. BCL11A is highly expressed in triple-negative breast cancers (TNBC) where its knockdown was reported to reduce clonogenicity and cause tumour regression. We show that BCL11A knockdown in TNBC cells delays repair of oxidative DNA damage, increases the number of oxidized bases and abasic sites in genomic DNA, slows down proliferation and induces cellular senescence. These phenotypes are rescued by ectopic expression of the short BCL11A160-520 protein. We further show that the BCL11A160-520 protein accelerates the repair of oxidative DNA damage and cooperates with RAS in cell transformation assays, thereby enabling cells to avoid senescence and continue to proliferate in the presence of high ROS levels.
Collapse
Affiliation(s)
- Elise Vickridge
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Camila C F Faraco
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Payman S Tehrani
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zubaidah M Ramdzan
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Billel Djerir
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Hedyeh Rahimian
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Alexandre Maréchal
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alain Nepveu
- To whom correspondence should be addressed. Tel: +1 514 398 5839; Fax: +1 514 398 6769;
| |
Collapse
|
41
|
Siddaway R, Milos S, Coyaud É, Yun HY, Morcos SM, Pajovic S, Campos EI, Raught B, Hawkins C. The in vivo Interaction Landscape of Histones H3.1 and H3.3. Mol Cell Proteomics 2022; 21:100411. [PMID: 36089195 PMCID: PMC9540345 DOI: 10.1016/j.mcpro.2022.100411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 01/18/2023] Open
Abstract
Chromatin structure, transcription, DNA replication, and repair are regulated via locus-specific incorporation of histone variants and posttranslational modifications that guide effector chromatin-binding proteins. Here we report unbiased, quantitative interactomes for the replication-coupled (H3.1) and replication-independent (H3.3) histone H3 variants based on BioID proximity labeling, which allows interactions in intact, living cells to be detected. Along with a significant proportion of previously reported interactions detected by affinity purification followed by mass spectrometry, three quarters of the 608 histone-associated proteins that we identified are new, uncharacterized histone associations. The data reveal important biological nuances not captured by traditional biochemical means. For example, we found that the chromatin assembly factor-1 histone chaperone not only deposits the replication-coupled H3.1 histone variant during S-phase but also associates with H3.3 throughout the cell cycle in vivo. We also identified other variant-specific associations, such as with transcription factors, chromatin regulators, and with the mitotic machinery. Our proximity-based analysis is thus a rich resource that extends the H3 interactome and reveals new sets of variant-specific associations.
Collapse
Affiliation(s)
- Robert Siddaway
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada,Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Scott Milos
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada,Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Université de Lille, Lille, France
| | - Hwa Young Yun
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shahir M. Morcos
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sanja Pajovic
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric I. Campos
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada,Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada,For correspondence: Cynthia Hawkins
| |
Collapse
|
42
|
Langouët M, Jolicoeur C, Javed A, Mattar P, Gearhart MD, Daiger SP, Bertelsen M, Tranebjærg L, Rendtorff ND, Grønskov K, Jespersgaard C, Chen R, Sun Z, Li H, Alirezaie N, Majewski J, Bardwell VJ, Sui R, Koenekoop RK, Cayouette M. Mutations in BCOR, a co-repressor of CRX/OTX2, are associated with early-onset retinal degeneration. SCIENCE ADVANCES 2022; 8:eabh2868. [PMID: 36070393 PMCID: PMC9451151 DOI: 10.1126/sciadv.abh2868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/21/2022] [Indexed: 06/10/2023]
Abstract
Many transcription factors regulating the production, survival, and function of photoreceptor cells have been identified, but little is known about transcriptional co-regulators in retinal health and disease. Here, we show that BCL6 co-repressor (BCOR), a Polycomb repressive complex 1 factor mutated in various cancers, is involved in photoreceptor degenerative diseases. Using proteomics and transcription assays, we report that BCOR interacts with the transcription factors CRX and OTX2 and reduces their ability to activate the promoters of photoreceptor-specific genes. CUT&RUN sequencing further shows that BCOR shares genome-wide binding profiles with CRX/OTX2, consistent with a general co-repression activity. We also identify missense mutations in human BCOR in five families that have no evidence of cancer but present severe early-onset X-linked retinal degeneration. Last, we show that the human BCOR mutants cause degeneration when expressed in the mouse retina and have enhanced repressive activity on OTX2. These results uncover a role for BCOR in photoreceptors in both health and disease.
Collapse
Affiliation(s)
- Maéva Langouët
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Christine Jolicoeur
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Awais Javed
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Micah D. Gearhart
- Department of Genetics, Cell Biology and Development, Development Biology Center, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen P. Daiger
- EHGED Department, Human Genetics Center, School of Public Health, University of Texas HSC, Houston, TX 77030, USA
| | - Mette Bertelsen
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet, The Kennedy Centre, Glostrup, Denmark
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Denmark
| | - Nanna D. Rendtorff
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
| | - Catherine Jespersgaard
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zixi Sun
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hui Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Najmeh Alirezaie
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Vivian J. Bardwell
- Department of Genetics, Cell Biology and Development, Development Biology Center, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Robert K. Koenekoop
- Departments of Pediatric Surgery, Human Genetics, Adult Ophthalmology and the McGill Ocular Genetics Laboratory, McGill University Health Center Research Institute, Montreal, QC, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
43
|
Pardal AJ, Bowman AJ. A specific role for importin-5 and NASP in the import and nuclear hand-off of monomeric H3. eLife 2022; 11:e81755. [PMID: 36066346 PMCID: PMC9560165 DOI: 10.7554/elife.81755] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/04/2022] [Indexed: 12/04/2022] Open
Abstract
Core histones package chromosomal DNA and regulate genomic transactions, with their nuclear import and deposition involving importin-β proteins and a dedicated repertoire of histone chaperones. Previously, a histone H3-H4 dimer has been isolated bound to importin-4 (Imp4) and the chaperone ASF1, suggesting that H3 and H4 fold together in the cytoplasm before nuclear import. However, other studies have shown the existence of monomeric H3 in the nucleus, indicating a post-import folding pathway. Here, we report that the predominant importin associated with cytoplasmic H3 is importin-5 (Imp5), which hands off its monomeric cargo to nuclear sNASP. Imp5, in contrast to Imp4, binds to both H3 and H4 containing constitutively monomeric mutations and binds to newly synthesised, monomeric H3 tethered in the cytoplasm. Constitutively monomeric H3 retains its interaction with NASP, whereas monomeric H4 retains interactions specifically with HAT1 and RBBP7. High-resolution separation of NASP interactors shows the 's' isoform but not the 't' isoform associates with monomeric H3, whilst both isoforms associate with H3-H4 dimers in at least three discrete multi-chaperoning complexes. In vitro binding experiments show mutual exclusivity between sNASP and Imp5 in binding H3, suggesting direct competition for interaction sites, with the GTP-bound form of Ran required for histone transfer. Finally, using pulse-chase analysis, we show that cytoplasm-tethered histones do not interact with endogenous NASP until they reach the nucleus, whereupon they bind rapidly. We propose an Imp5-specific import pathway for monomeric H3 that hands off to sNASP in the nucleus, with a parallel H4 pathway involving Imp5 and the HAT1-RBBP7 complex, followed by nuclear folding and hand-off to deposition factors.
Collapse
Affiliation(s)
- Alonso Javier Pardal
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Andrew James Bowman
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| |
Collapse
|
44
|
Han H, Best AJ, Braunschweig U, Mikolajewicz N, Li JD, Roth J, Chowdhury F, Mantica F, Nabeel-Shah S, Parada G, Brown KR, O'Hanlon D, Wei J, Yao Y, Zid AA, Comsa LC, Jen M, Wang J, Datti A, Gonatopoulos-Pournatzis T, Weatheritt RJ, Greenblatt JF, Wrana JL, Irimia M, Gingras AC, Moffat J, Blencowe BJ. Systematic exploration of dynamic splicing networks reveals conserved multistage regulators of neurogenesis. Mol Cell 2022; 82:2982-2999.e14. [PMID: 35914530 PMCID: PMC10686216 DOI: 10.1016/j.molcel.2022.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/16/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
Abstract
Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.
Collapse
Affiliation(s)
- Hong Han
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Andrew J Best
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | | | - Jack Daiyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fuad Chowdhury
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona 08003, Spain
| | - Syed Nabeel-Shah
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Guillermo Parada
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kevin R Brown
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Dave O'Hanlon
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jiarun Wei
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yuxi Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abdelrahman Abou Zid
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Lim Caden Comsa
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Mark Jen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jenny Wang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Alessandro Datti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Thomas Gonatopoulos-Pournatzis
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Center for Cancer Research National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey L Wrana
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
45
|
Zhang S, Larsen B, Colwill K, Wong CJ, Youn JY, Gingras AC. Mapping Protein-Protein Interactions Using Data-Dependent Acquisition without Dynamic Exclusion. Anal Chem 2022; 94:10579-10583. [PMID: 35848333 DOI: 10.1021/acs.analchem.2c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systematic analysis of affinity-purified samples by liquid chromatography coupled to mass spectrometry (LC-MS) requires high coverage, reproducibility, and sensitivity. While data-independent acquisition (DIA) approaches improve the reproducibility of protein-protein interaction detection as compared to standard data-dependent acquisition approaches, the need for library generation reduces their throughput, and analysis pipelines are still being optimized. In this study, we report the development of a simple and robust approach, termed turboDDA, to improve interactome analysis using spectral counting and data-dependent acquisition (DDA) by eliminating the dynamic exclusion (DE) step and optimizing the acquisition parameters. Using representative interaction and proximity proteomics samples, we detected increases in identified interactors of 18-71% compared to all samples analyzed by standard DDA with dynamic exclusion and for most samples analyzed by DIA with the MSPLIT-DIA spectral counting approach. In summary, turboDDA provides better sensitivity and identifies more high-confident interactors than the optimized DDA with DE and comparable or better sensitivity than DIA spectral counting approaches.
Collapse
Affiliation(s)
- Shen Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Ji-Young Youn
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| |
Collapse
|
46
|
Hemming ML, Benson MR, Loycano MA, Anderson JA, Andersen JL, Taddei ML, Krivtsov AV, Aubrey BJ, Cutler JA, Hatton C, Sicinska E, Armstrong SA. MOZ and Menin-MLL Complexes Are Complementary Regulators of Chromatin Association and Transcriptional Output in Gastrointestinal Stromal Tumor. Cancer Discov 2022; 12:1804-1823. [PMID: 35499757 PMCID: PMC9453853 DOI: 10.1158/2159-8290.cd-21-0646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/23/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is commonly characterized by activating mutations in the receptor tyrosine kinase KIT. Tyrosine kinase inhibitors are the only approved therapy for GIST, and complementary treatment strategies are urgently needed. As GIST lacks oncogene amplification and relies upon an established network of transcription factors, we hypothesized that unique chromatin-modifying enzymes are essential in orchestrating the GIST epigenome. We identified through genome-scale CRISPR screening that MOZ and Menin-MLL chromatin regulatory complexes are cooperative and unique dependencies in GIST. These complexes were enriched at GIST-relevant genes and regulated their transcription. Inhibition of MOZ and Menin-MLL complexes decreased GIST cell proliferation by disrupting interactions with transcriptional/chromatin regulators, such as DOT1L. MOZ and Menin inhibition caused significant reductions in tumor burden in vivo, with superior effects observed with combined Menin and KIT inhibition. These results define unique chromatin regulatory dependencies in GIST and identify potential therapeutic strategies for clinical application. SIGNIFICANCE Although many malignancies rely on oncogene amplification, GIST instead depends upon epigenetic regulation of KIT and other essential genes. Utilizing genome-scale CRISPR dependency screens, we identified complementary chromatin-modifying complexes essential to GIST and characterize the consequences of their disruption, elucidating a novel therapeutic approach to this disease. This article is highlighted in the In This Issue feature, p. 1599.
Collapse
Affiliation(s)
- Matthew L. Hemming
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Morgan R. Benson
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael A. Loycano
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Justin A. Anderson
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica L. Andersen
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Madeleine L. Taddei
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrei V. Krivtsov
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon J. Aubrey
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jevon A. Cutler
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charlie Hatton
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott A. Armstrong
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Geoghegan V, Mottram JC, Jones NG. Tag Thy Neighbour: Nanometre-Scale Insights Into Kinetoplastid Parasites With Proximity Dependent Biotinylation. Front Cell Infect Microbiol 2022; 12:894213. [PMID: 35601102 PMCID: PMC9120650 DOI: 10.3389/fcimb.2022.894213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Proximity labelling is a powerful and rapidly developing technology for exploring the interaction space and molecular environment of a protein of interest at the nanometre scale. In proximity labelling, a promiscuous biotinylating enzyme is genetically fused to the protein of interest, initiation of labelling then results in the biotinylating enzyme generating reactive biotin which covalently 'tags' nearby molecules. Importantly, this labelling takes place in vivo whilst the protein of interest continues to perform its normal functions in the cell. Due to its unique advantageous characteristics, proximity labelling is driving discoveries in an ever increasing range of organisms. Here, we highlight the applications of proximity labelling to the study of kinetoplastids, a group of eukaryotic protozoa that includes trypanosomes and Leishmania which can cause serious disease in humans and livestock. We first provide a general overview of the proximity labelling experimental workflow including key labelling enzymes used, proper experimental design with appropriate controls and robust statistical analysis to maximise the amount of reliable spatial information that is generated. We discuss studies employing proximity labelling in kinetoplastid parasites to illustrate how these key principles of experimental design are applied. Finally, we highlight emerging trends in the development of proximity labelling methodology.
Collapse
Affiliation(s)
- Vincent Geoghegan
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | | | | |
Collapse
|
48
|
Proximity labeling methods for proteomic analysis of membrane proteins. J Proteomics 2022; 264:104620. [DOI: 10.1016/j.jprot.2022.104620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
|
49
|
Mattola S, Salokas K, Aho V, Mäntylä E, Salminen S, Hakanen S, Niskanen EA, Svirskaite J, Ihalainen TO, Airenne KJ, Kaikkonen-Määttä M, Parrish CR, Varjosalo M, Vihinen-Ranta M. Parvovirus nonstructural protein 2 interacts with chromatin-regulating cellular proteins. PLoS Pathog 2022; 18:e1010353. [PMID: 35395063 PMCID: PMC9020740 DOI: 10.1371/journal.ppat.1010353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/20/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Autonomous parvoviruses encode at least two nonstructural proteins, NS1 and NS2. While NS1 is linked to important nuclear processes required for viral replication, much less is known about the role of NS2. Specifically, the function of canine parvovirus (CPV) NS2 has remained undefined. Here we have used proximity-dependent biotin identification (BioID) to screen for nuclear proteins that associate with CPV NS2. Many of these associations were seen both in noninfected and infected cells, however, the major type of interacting proteins shifted from nuclear envelope proteins to chromatin-associated proteins in infected cells. BioID interactions revealed a potential role for NS2 in DNA remodeling and damage response. Studies of mutant viral genomes with truncated forms of the NS2 protein suggested a change in host chromatin accessibility. Moreover, further studies with NS2 mutants indicated that NS2 performs functions that affect the quantity and distribution of proteins linked to DNA damage response. Notably, mutation in the splice donor site of the NS2 led to a preferred formation of small viral replication center foci instead of the large coalescent centers seen in wild-type infection. Collectively, our results provide insights into potential roles of CPV NS2 in controlling chromatin remodeling and DNA damage response during parvoviral replication. Parvoviruses are small, nonenveloped DNA viruses, that besides being noteworthy pathogens in many animal species, including humans, are also being developed as vectors for gene and cancer therapy. Canine parvovirus is an autonomously replicating parvovirus that encodes two nonstructural proteins, NS1 and NS2. NS1 is required for viral DNA replication and packaging, as well as gene expression. However, very little is known about the function of NS2. Our studies indicate that NS2 serves a previously undefined important function in chromatin modification and DNA damage responses. Therefore, it appears that although both NS1 and NS2 are needed for a productive infection they play very different roles in the process.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Einari A. Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Julija Svirskaite
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kari J. Airenne
- Kuopio Center for Gene and Cell Therapy (KCT), Kuopio, Finland
| | | | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, University of Cornell, Ithaca, New York, United States of America
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- * E-mail:
| |
Collapse
|
50
|
Loehr J, Kougnassoukou Tchara PE, Gonthier K, Noufi C, Linteau N, Audet-Walsh É, Lambert JP. A Nutrient-Based Cellular Model to Characterize Acetylation-Dependent Protein-Protein Interactions. Front Mol Biosci 2022; 9:831758. [PMID: 35402505 PMCID: PMC8984119 DOI: 10.3389/fmolb.2022.831758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
Cellular homeostasis requires the orderly expression of thousands of transcripts. Gene expression is regulated by numerous proteins that recognize post-translational modifications—in particular, the acetylation of lysine residues (Kac) on histones. In addition to affecting the general condensation state of the chromatin, acetylated histones act as anchor points for bromodomain (BRD)-containing adapter proteins. BRDs are the primary Kac reader domains in humans, and proteins containing them act as chromatin scaffolds that organize large networks of interactions to regulate transcription. To characterize BRD-dependent interaction networks, we established cell lines in which histone acetylation is dependent on acetate supplementation. To do this, we used genome editing to knock out ATP citrate lyase (ACLY), the enzyme responsible for converting citrate to oxaloacetate and acetyl-CoA in the cytoplasm and nucleus. In our cellular model, removing acetate from the culture medium resulted in the rapid catabolism of acetylated histones to restore the nucleocytoplasmic acetyl-CoA pool. Here we report the use of our new model in functional proteomics studies to characterize BRD-dependent interaction networks on the chromatin.
Collapse
Affiliation(s)
- Jérémy Loehr
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec, QC, Canada
- CHU de Québec Research Center, Quebec, QC, Canada
| | - Pata-Eting Kougnassoukou Tchara
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec, QC, Canada
- CHU de Québec Research Center, Quebec, QC, Canada
- Big Data Research Center, Université Laval, Quebec, QC, Canada
| | - Kevin Gonthier
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec, QC, Canada
- CHU de Québec Research Center, Quebec, QC, Canada
| | - Chahinez Noufi
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec, QC, Canada
- CHU de Québec Research Center, Quebec, QC, Canada
| | - Naomie Linteau
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec, QC, Canada
- CHU de Québec Research Center, Quebec, QC, Canada
| | - Étienne Audet-Walsh
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec, QC, Canada
- CHU de Québec Research Center, Quebec, QC, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec, QC, Canada
- CHU de Québec Research Center, Quebec, QC, Canada
- Big Data Research Center, Université Laval, Quebec, QC, Canada
- *Correspondence: Jean-Philippe Lambert,
| |
Collapse
|