1
|
Butterfield SP, Sizer RE, Saunders FL, White RJ. Selective Recruitment of a Synthetic Histone Acetyltransferase Can Boost CHO Cell Productivity. Biotechnol J 2024; 19:e202400474. [PMID: 39655408 PMCID: PMC11629143 DOI: 10.1002/biot.202400474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Industrial production of biologics typically involves the integration of transgenes into host cell genomes, most often Chinese hamster ovary (CHO) cells. Epigenetic control of transgene expression is a major determinant of production titers. Although the cytomegalovirus (CMV) promoter has long been used to drive industrial transgene expression, we found that its associated histones are suboptimally acetylated in CHO cells, providing an opportunity to enhance productivity through epigenetic manipulation. Expression of monoclonal antibody mRNAs increased up to 12-fold when a CRISPR-dCas9 system delivered the catalytic domain of a histone acetyltransferase to the CMV promoter. This effect was far stronger than when promoter DNA was selectively demethylated using dCas9 fused to a 5-methylcytosine dioxygenase. Mechanistically, acetylation-mediated transcriptional activation involved heightened phosphorylation and activity of RNA polymerase II, enabling it to escape promoter-proximal pausing at the transgene. This approach almost doubled the titer and specific productivity of antibody-producing CHO cells, demonstrating the potential for biomanufacturing.
Collapse
|
2
|
Li X, Guo W, Chen J, Tan G. The Bioequivalence of Abexinostat (CRA-024781) Tosylate Tablets (20 mg) in Chinese Healthy Subjects Under Fasting Conditions. Clin Pharmacol Drug Dev 2024; 13:1061-1070. [PMID: 39023505 DOI: 10.1002/cpdd.1448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
This study aimed to investigate the pharmacokinetic parameters of single oral administration of postchange and prechange abexinostat (CRA-024781) tosylate tablets in Chinese healthy subjects under fasting conditions, and assess the bioequivalence (BE) of the 2 formulations (Test [T1] and Reference [T2]). This study was a randomized, open-label, 2-formulation, fasting administration, single-dose, 2-sequence, 2-cycle, crossover BE study. Thirty-six subjects were enrolled in the study and 33 subjects completed 2 cycles. The plasma concentrations were determined by liquid chromatography-tandem mass spectrometry. The 90% confidence intervals (CIs) for the Cmax, AUC0-t, and AUC0-∞ of CRA-024781 and its 2 major metabolites (PCI-27789 and PCI-27887, both metabolites are pharmacologically inactive on HDAC1) fell within the acceptable range of 80%-125%. The results suggest that the CRA-024781 test preparation (Test [T1]) is bioequivalent to the reference preparation (Reference [T2]) in healthy Chinese subjects under fasting conditions.
Collapse
Affiliation(s)
- Xiang Li
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
| | - Wenqiang Guo
- Xynomic Pharmaceuticals (Nanjing) Co., Ltd., Nanjing, China
| | - Jian Chen
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Gewen Tan
- Xynomic Pharmaceuticals (Nanjing) Co., Ltd., Nanjing, China
| |
Collapse
|
3
|
Tsoneva DK, Ivanov MN, Vinciguerra M. Liquid Liver Biopsy for Disease Diagnosis and Prognosis. J Clin Transl Hepatol 2023; 11:1520-1541. [PMID: 38161500 PMCID: PMC10752811 DOI: 10.14218/jcth.2023.00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 01/03/2024] Open
Abstract
Liver diseases are a major burden worldwide, the scope of which is expected to further grow in the upcoming years. Clinically relevant liver dysfunction-related blood markers such as alanine aminotransferase and aspartate aminotransferase have limited accuracy. Nowadays, liver biopsy remains the gold standard for several liver-related pathologies, posing a risk of complication due to its invasive nature. Liquid biopsy is a minimally invasive approach, which has shown substantial potential in the diagnosis, prognosis, and monitoring of liver diseases by detecting disease-associated particles such as proteins and RNA molecules in biological fluids. Histones are the core components of the nucleosomes, regulating essential cellular processes, including gene expression and DNA repair. Following cell death or activation of immune cells, histones are released in the extracellular space and can be detected in circulation. Histones are stable in circulation, have a long half-life, and retain their post-translational modifications. Here, we provide an overview of the current research on histone-mediated liquid biopsy methods for liver diseases, with a focus on the most common detection methods.
Collapse
Affiliation(s)
- Desislava K. Tsoneva
- Department of Medical Genetics, Medical University of Varna, Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
| | - Martin N. Ivanov
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute, Medical University of Varna, Varna, Bulgaria
| | - Manlio Vinciguerra
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
4
|
Rajado AT, ALFA Score Consortium, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023. [DOI: https:/doi.org/10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | | | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
5
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P, ALFA Score Consortium. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023; 15:3191-3217. [PMID: 37086262 PMCID: PMC10188329 DOI: 10.18632/aging.204668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/11/2023] [Indexed: 04/23/2023]
Abstract
The World Health Organization predicts that by 2050, 2.1 billion people worldwide will be over 60 years old, a drastic increase from only 1 billion in 2019. Considering these numbers, strategies to ensure an extended "healthspan" or healthy longevity are urgently needed. The present study approaches the promotion of healthspan from an epigenetic perspective. Epigenetic phenomena are modifiable in response to an individual's environmental exposures, and therefore link an individual's environment to their gene expression pattern. Epigenetic studies demonstrate that aging is associated with decondensation of the chromatin, leading to an altered heterochromatin structure, which promotes the accumulation of errors. In this review, we describe how aging impacts epigenetics and how nutrition and physical exercise can positively impact the aging process, from an epigenetic point of view. Canonical histones are replaced by histone variants, concomitant with an increase in histone post-translational modifications. A slight increase in DNA methylation at promoters has been observed, which represses transcription of previously active genes, in parallel with global genome hypomethylation. Aging is also associated with deregulation of gene expression - usually provided by non-coding RNAs - leading to both the repression of previously transcribed genes and to the transcription of previously repressed genes. Age-associated epigenetic events are less common in individuals with a healthy lifestyle, including balanced nutrition, caloric restriction and physical exercise. Healthy aging is associated with more tightly condensed chromatin, fewer PTMs and greater regulation by ncRNAs.
Collapse
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | |
Collapse
|
6
|
Chen LJ, Xu XY, Zhong XD, Liu YJ, Zhu MH, Tao F, Li CY, She QS, Yang GJ, Chen J. The role of lysine-specific demethylase 6A (KDM6A) in tumorigenesis and its therapeutic potentials in cancer therapy. Bioorg Chem 2023; 133:106409. [PMID: 36753963 DOI: 10.1016/j.bioorg.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Histone demethylation is a key post-translational modification of chromatin, and its dysregulation affects a wide array of nuclear activities including the maintenance of genome integrity, transcriptional regulation, and epigenetic inheritance. Lysine specific demethylase 6A (KDM6A, also known as UTX) is an Fe2+- and α-ketoglutarate- dependent oxidase which belongs to KDM6 Jumonji histone demethylase subfamily, and it can remove mono-, di- and tri-methyl groups from methylated lysine 27 of histone H3 (H3K27me1/2/3). Mounting studies indicate that KDM6A is responsible for driving multiple human diseases, particularly cancers and pharmacological inhibition of KDM6A is an effective strategy to treat varieties of KDM6A-amplified cancers in cellulo and in vivo. Although there are several reviews on the roles of KDM6 subfamily in cancer development and therapy, all of them only simply introduce the roles of KDM6A in cancer without systematically summarizing the specific mechanisms of KDM6A in tumorigenesis, which greatly limits the advances on the understanding of roles KDM6A in varieties of cancers, discovering targeting selective KDM6A inhibitors, and exploring the adaptive profiles of KDM6A antagonists. Herein, we present the structure and functions of KDM6A, simply outline the functions of KDM6A in homeostasis and non-cancer diseases, summarize the role of KDM6A and its distinct target genes/ligand proteins in development of varieties of cancers, systematically classify KDM6A inhibitors, sum up the difficulties encountered in the research of KDM6A and the discovery of related drugs, and provide the corresponding solutions, which will contribute to understanding the roles of KDM6A in carcinogenesis and advancing the progression of KDM6A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Li-Juan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xin-Yang Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xiao-Dan Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Qiu-Sheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467044, Henan, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
7
|
Huang N, Liao P, Zuo Y, Zhang L, Jiang R. Design, Synthesis, and Biological Evaluation of a Potent Dual EZH2-BRD4 Inhibitor for the Treatment of Some Solid Tumors. J Med Chem 2023; 66:2646-2662. [PMID: 36774555 DOI: 10.1021/acs.jmedchem.2c01607] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) mediates the trimethylation of histone 3 lysine 27 (H3K27) to promote gene silencing. Inhibition of EZH2 is a viable strategy for cancer treatment; however, only a small subset of hematological malignancies are sensitive to small-molecule EZH2 inhibitors. EZH2 inhibitors cause H3K27 acetylation in most solid tumors, leading to drug resistance. Bromodomain-containing protein 4 (BRD4) inhibitors were reported to enhance the sensitivity of solid tumors to EZH2 inhibitors. Thus, we designed and evaluated a series of dual EZH2-BRD4 inhibitors. ZLD-2, the most promising compound, exhibited potent inhibitory activity against EZH2 and BRD4. Compared to the EZH2 inhibitor GSK126, ZLD-2 displayed potent antiproliferation activity against breast, lung, bladder, and pancreatic cancer cells. In vivo, ZLD-2 exhibited antitumor activity in a BxPC-3 mouse xenograft model, whereas GSK126 promoted tumor growth. Thus, ZLD-2 may be a lead compound for treating solid tumors.
Collapse
Affiliation(s)
- Niannian Huang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Lidan Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
8
|
Zhai LH, Chen KF, Hao BB, Tan MJ. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol Sin 2022; 43:3112-3129. [PMID: 36372853 PMCID: PMC9712763 DOI: 10.1038/s41401-022-01017-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
Abstract
Protein post-translational modifications (PTMs), which are usually enzymatically catalyzed, are major regulators of protein activity and involved in almost all celluar processes. Dysregulation of PTMs is associated with various types of diseases. Therefore, PTM regulatory enzymes represent as an attractive and important class of targets in drug research and development. Inhibitors against kinases, methyltransferases, deacetyltransferases, ubiquitin ligases have achieved remarkable success in clinical application. Mass spectrometry-based proteomics technologies serve as a powerful approach for system-wide characterization of PTMs, which facilitates the identification of drug targets, elucidation of the mechanisms of action of drugs, and discovery of biomakers in personalized therapy. In this review, we summarize recent advances of proteomics-based studies on PTM targeting drugs and discuss how proteomics strategies facilicate drug target identification, mechanism elucidation, and new therapy development in precision medicine.
Collapse
Affiliation(s)
- Lin-Hui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China
| | - Kai-Feng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China.
| |
Collapse
|
9
|
Gao X, Chen Q, Yao H, Tan J, Liu Z, Zhou Y, Zou Z. Epigenetics in Alzheimer's Disease. Front Aging Neurosci 2022; 14:911635. [PMID: 35813941 PMCID: PMC9260511 DOI: 10.3389/fnagi.2022.911635] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with unknown pathogenesis and complex pathological manifestations. At present, a large number of studies on targeted drugs for the typical pathological phenomenon of AD (Aβ) have ended in failure. Although there are some drugs on the market that indirectly act on AD, their efficacy is very low and the side effects are substantial, so there is an urgent need to develop a new strategy for the treatment of AD. An increasing number of studies have confirmed epigenetic changes in AD. Although it is not clear whether these epigenetic changes are the cause or result of AD, they provide a new avenue of treatment for medical researchers worldwide. This article summarizes various epigenetic changes in AD, including DNA methylation, histone modification and miRNA, and concludes that epigenetics has great potential as a new target for the treatment of AD.
Collapse
Affiliation(s)
- Xiaodie Gao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Qiang Chen
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Hua Yao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Jie Tan
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Zheng Liu
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- *Correspondence: Zheng Liu,
| | - Yan Zhou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Yan Zhou,
| | - Zhenyou Zou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
- Zhenyou Zou,
| |
Collapse
|
10
|
The Synergistic Anti-Tumor Activity of EZH2 Inhibitor SHR2554 and HDAC Inhibitor Chidamide through ORC1 Reduction of DNA Replication Process in Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13174249. [PMID: 34503063 PMCID: PMC8428225 DOI: 10.3390/cancers13174249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The EZH2-targeted drugs have demonstrated notable therapeutic effects in EZH2 mutant B-cell lymphoma patients. In this study, we demonstrated that the combination of EZH2 inhibitor SHR2554 and HDAC inhibitor HBI8000 exert synergistic anti-proliferative activity in both EZH2 wide-type and mutation B-cell lymphoma. More importantly, gene expression profile analysis revealed simultaneous treatment with these agents led to dramatic inhibition of DNA replication initiator protein ORC1, which might contribute to great efficacy of combination strategy. The combination of EZH2 inhibitor and HDAC inhibitor could provide a potential therapeutic treatment for both EZH2 wide-type and mutation B-cell lymphoma patients. Abstract Background: Upregulation of H3K27me3 induced by EZH2 overexpression or somatic heterozygous mutations were implicated in lymphomagenesis. It has been demonstrated that several EZH2-target agents have notable therapeutic effects in EZH2-mutant B-cell lymphoma patients. Here we present a novel highly selective EZH2 inhibitor SHR2554 and possible combination strategy in diffuse large B-cell lymphoma (DLBCL). Methods: Cell proliferation, cell cycle and apoptosis were analyzed by CellTiter-Glo Luminescent Cell Viability Assay and flow cytometry. Western Blot was used to detect the expression of related proteins. The gene expression profiling post combination treatment was analyzed by RNA-Seq. Finally, CDX and PDX models were used to evaluate the synergistic anti-tumor effects of the combination treatment in vivo. Results: The novel EZH2 inhibitor SHR2554 inhibited proliferation and induced G1 phase arrest in EZH2-mutant DLBCL cell lines. The combination of EZH2 inhibitor SHR2554 with histone deacetylase (HDAC) inhibitor chidamide (hereafter referred to as HBI8000) exerted synergistic anti-proliferative activity in vitro and in vivo. Gene expression profile analysis revealed dramatic inhibition of the DNA replication process in combined treatment. Conclusions: SHR2554, a potent, highly selective small molecule inhibitor of EZH2, inhibited EZH2-mutant DLBCL more significantly in vitro and in vivo. The combination of HDAC inhibitor HBI8000 with EZH2 inhibitor SHR2554 exhibited dramatic anti-tumor activity in both mutant and wild-type DLBCL, which may become a potential therapeutic modality for the treatment of DLBCL patients.
Collapse
|
11
|
Romanelli A, Stazi G, Fioravanti R, Zwergel C, Di Bello E, Pomella S, Perrone C, Battistelli C, Strippoli R, Tripodi M, del Bufalo D, Rota R, Trisciuoglio D, Mai A, Valente S. Design of First-in-Class Dual EZH2/HDAC Inhibitor: Biochemical Activity and Biological Evaluation in Cancer Cells. ACS Med Chem Lett 2020; 11:977-983. [PMID: 32435414 DOI: 10.1021/acsmedchemlett.0c00014] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Since the histone modifying enzymes EZH2 and HDACs control a number of epigenetic-dependent carcinogenic pathways, we designed the first-in-class dual EZH2/HDAC inhibitor 5 displaying (sub)micromolar inhibition against both targets. When tested in several cancer cell lines, the hybrid 5 impaired cell viability at low micromolar level and in leukemia U937 and rhabdomyosarcoma RH4 cells provided G1 arrest, apoptotic induction, and increased differentiation, associated with an increase of acetyl-H3 and acetyl-α-tubulin and a decrease of H3K27me3 levels. In glioblastoma U87 cells, 5 hampered epithelial to mesenchymal transition by increasing the E-cadherin expression, thus proposing itself as a useful candidate for anticancer therapy.
Collapse
Affiliation(s)
- Annalisa Romanelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Giulia Stazi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
- Department of Medicine of Precision, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy
| | - Clara Perrone
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense 292, 00149 Rome, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense 292, 00149 Rome, Italy
| | - Donatella del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Viale Regina Elena 291,295, 00100 Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy
| | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Viale Regina Elena 291,295, 00100 Rome, Italy
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Via Degli Apuli 4, Rome 00185, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Li Y, Yuan F, Wu T, Lu L, Liu J, Feng W, Chen SY. Sulforaphane protects against ethanol-induced apoptosis in neural crest cells through restoring epithelial-mesenchymal transition by epigenetically modulating the expression of Snail1. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2586-2594. [PMID: 31295528 DOI: 10.1016/j.bbadis.2019.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 12/15/2022]
Abstract
Ethanol-induced apoptosis in neural crest cells (NCCs), a multipotent progenitor cell population, is implicated in the Fetal Alcohol Spectrum Disorders (FASD). Studies have demonstrated that sulforaphane (SFN) can prevent ethanol-induced apoptosis in NCCs. The objective of this study is to investigate whether ethanol exposure can induce apoptosis in NCCs by inhibiting epithelial-mesenchymal transition (EMT) and whether SFN can prevent ethanol-induced apoptosis by epigenetically modulating the expression of Snail1, a key transcriptional factor that promotes EMT. We found that ethanol exposure resulted in a significant increase in apoptosis in NCCs. Co-treatment with SFN significantly reduced ethanol-induced apoptosis. Treatment with SFN also dramatically diminished ethanol-induced changes in the expression of E-cadherin and vimentin, and restored EMT in ethanol-exposed NCCs. In addition, ethanol exposure reduced the levels of trimethylation of histone H3 lysine 4 (H3K4me3) at the promoters of Snail1. SFN treatment diminished the ethanol-induced reduction of H3K4me3 at the promoter regions of the Snail1 gene, restored the expression of Snail1 and down-regulated Snail1 target gene E-cadherin. Knockdown of Snail1 significantly reduced the protective effects of SFN on ethanol-induced apoptosis. These results demonstrate that SFN can protect against ethanol-induced apoptosis by preventing ethanol-induced reduction in the levels of H3K4me3 at the promoters of Snail1, restoring the expression of Snail1 and EMT in ethanol-exposed NCCs.
Collapse
Affiliation(s)
- Yihong Li
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40202, USA; University of Louisville Alcohol Research Center, Louisville, KY 40202, USA.
| | - Fuqiang Yuan
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40202, USA; University of Louisville Alcohol Research Center, Louisville, KY 40202, USA.
| | - Ting Wu
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40202, USA; University of Louisville Alcohol Research Center, Louisville, KY 40202, USA
| | - Lanhai Lu
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40202, USA; University of Louisville Alcohol Research Center, Louisville, KY 40202, USA.
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40202, USA; University of Louisville Alcohol Research Center, Louisville, KY 40202, USA.
| | - Wenke Feng
- University of Louisville Alcohol Research Center, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, Louisville, KY 40292, USA.
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40202, USA; University of Louisville Alcohol Research Center, Louisville, KY 40202, USA.
| |
Collapse
|
13
|
Basilicata MF, Bruel AL, Semplicio G, Valsecchi CIK, Aktaş T, Duffourd Y, Rumpf T, Morton J, Bache I, Szymanski WG, Gilissen C, Vanakker O, Õunap K, Mittler G, van der Burgt I, El Chehadeh S, Cho MT, Pfundt R, Tan TY, Kirchhoff M, Menten B, Vergult S, Lindstrom K, Reis A, Johnson DS, Fryer A, McKay V, Fisher RB, Thauvin-Robinet C, Francis D, Roscioli T, Pajusalu S, Radtke K, Ganesh J, Brunner HG, Wilson M, Faivre L, Kalscheuer VM, Thevenon J, Akhtar A. De novo mutations in MSL3 cause an X-linked syndrome marked by impaired histone H4 lysine 16 acetylation. Nat Genet 2018; 50:1442-1451. [PMID: 30224647 PMCID: PMC7398719 DOI: 10.1038/s41588-018-0220-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
The etiological spectrum of ultra-rare developmental disorders remains to be fully defined. Chromatin regulatory mechanisms maintain cellular identity and function, where misregulation may lead to developmental defects. Here, we report pathogenic variations in MSL3, which encodes a member of the chromatin-associated male-specific lethal (MSL) complex responsible for bulk histone H4 lysine 16 acetylation (H4K16ac) in flies and mammals. These variants cause an X-linked syndrome affecting both sexes. Clinical features of the syndrome include global developmental delay, progressive gait disturbance, and recognizable facial dysmorphism. MSL3 mutations affect MSL complex assembly and activity, accompanied by a pronounced loss of H4K16ac levels in vivo. Patient-derived cells display global transcriptome alterations of pathways involved in morphogenesis and cell migration. Finally, we use histone deacetylase inhibitors to rebalance acetylation levels, alleviating some of the molecular and cellular phenotypes of patient cells. Taken together, we characterize a syndrome that allowed us to decipher the developmental importance of MSL3 in humans.
Collapse
Affiliation(s)
- M Felicia Basilicata
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Ange-Line Bruel
- Inserm UMR 1231 GAD, Genetics of Developmental disorders and Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs FHU TRANSLAD, Université de Bourgogne-Franche Comté, Dijon, France
| | - Giuseppe Semplicio
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | | | - Tuğçe Aktaş
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Yannis Duffourd
- Inserm UMR 1231 GAD, Genetics of Developmental disorders and Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs FHU TRANSLAD, Université de Bourgogne-Franche Comté, Dijon, France
| | - Tobias Rumpf
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's Hospital NHS Foundation Trust, Birmingham, UK
| | - Iben Bache
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Witold G Szymanski
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital and Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Ineke van der Burgt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Salima El Chehadeh
- Inserm UMR 1231 GAD, Genetics of Developmental disorders and Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs FHU TRANSLAD, Université de Bourgogne-Franche Comté, Dijon, France
- Service de Génétique Médicale, Hôpital de Hautepierre, Strasbourg, France
| | | | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne Department of Paediatrics, Parkville, VIC, Australia
| | - Maria Kirchhoff
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Diana S Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Alan Fryer
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Victoria McKay
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Richard B Fisher
- Northern Genetics Service, Teesside Genetics Unit, The James Cook University Hospital, Middlesbrough, UK
| | - Christel Thauvin-Robinet
- Inserm UMR 1231 GAD, Genetics of Developmental disorders and Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs FHU TRANSLAD, Université de Bourgogne-Franche Comté, Dijon, France
| | - David Francis
- Cytogenetic Laboratory, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Tony Roscioli
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Department of Medical Genetics, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital and Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Kelly Radtke
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, CA, USA
| | - Jaya Ganesh
- Division of Genetics, Cooper University Hospital and Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Laurence Faivre
- Inserm UMR 1231 GAD, Genetics of Developmental disorders and Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs FHU TRANSLAD, Université de Bourgogne-Franche Comté, Dijon, France
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Julien Thevenon
- Inserm UMR 1231 GAD, Genetics of Developmental disorders and Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs FHU TRANSLAD, Université de Bourgogne-Franche Comté, Dijon, France.
- CNRS UMR 5309, INSERM, U1209, Institute of Advanced Biosciences, Université Grenoble-Alpes CHU Grenoble, Grenoble, France.
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
14
|
Lillico R, Lawrence CK, Lakowski TM. Selective DOT1L, LSD1, and HDAC Class I Inhibitors Reduce HOXA9 Expression in MLL-AF9 Rearranged Leukemia Cells, But Dysregulate the Expression of Many Histone-Modifying Enzymes. J Proteome Res 2018; 17:2657-2667. [PMID: 29972300 DOI: 10.1021/acs.jproteome.8b00118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mixed lineage leukemia results from chromosomal rearrangements of the gene mixed lineage leukemia (MLL). MLL-AF9 is one such rearrangement that recruits the lysine methyltransferase, human disruptor of telomere silencing 1-like (DOT1L) and lysine specific demethylase 1 (LSD1), resulting in elevated expression of the Homeobox protein A9 (HOXA9), and leukemia. Inhibitors of LSD1 or DOT1L reduce HOXA9 expression, kill MLL-rearranged cells, and may treat leukemia. To quantify their effects on histone modifying enzyme activity and expression in MLL-rearranged leukemia, we tested inhibitors of DOT1L (EPZ-5676), LSD1 (GSK2879552), and HDAC (mocetinostat), in the MLL-AF9 cell line MOLM-13. All inhibitors reduced MOLM-13 viability but only mocetinostat induced apoptosis. EPZ-5676 increased total histone lysine dimethylation, which was attributed to a reduction in LSD1 expression, and was indistinguishable from direct LSD1 inhibition by GSK2879552. All compounds directly inhibit, or reduce the expression of, HOXA9, DOT1L and LSD1 by qPCR, increase total histone lysine methylation and acetylation by LC-MS/MS, and specifically reduce H3K79Me2 and increase H3K14Ac. Each inhibitor altered the expression of many histone modifying enzymes which may precipitate additional changes in expression. To the extent that this decreases HOXA9 expression it benefits mixed lineage leukemia treatment, all other expression changes are off-target effects.
Collapse
Affiliation(s)
- Ryan Lillico
- Rady Faculty of Health Science, College of Pharmacy, Pharmaceutical Analysis Laboratory , University of Manitoba , 750 McDermot Avenue , Winnipeg , Manitoba Canada , R3E 0T5
| | - Courtney K Lawrence
- Rady Faculty of Health Science, College of Pharmacy, Pharmaceutical Analysis Laboratory , University of Manitoba , 750 McDermot Avenue , Winnipeg , Manitoba Canada , R3E 0T5
| | - Ted M Lakowski
- Rady Faculty of Health Science, College of Pharmacy, Pharmaceutical Analysis Laboratory , University of Manitoba , 750 McDermot Avenue , Winnipeg , Manitoba Canada , R3E 0T5
| |
Collapse
|
15
|
Tomono T, Machida T, Kamioka H, Shibasaki Y, Yano K, Ogihara T. Entinostat reverses P-glycoprotein activation in snail-overexpressing adenocarcinoma HCC827 cells. PLoS One 2018; 13:e0200015. [PMID: 29979729 PMCID: PMC6034804 DOI: 10.1371/journal.pone.0200015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) in cancer cells facilitates tumor progression by promoting invasion and metastasis. Snail is a transcriptional factor that induces EMT, while P-glycoprotein (P-gp) is an efflux transporter involved in anticancer drug resistance, and P-gp efflux activity is stimulated in Snail-overexpressing lung cancer cells with EMT characteristics. Since the histone deacetylase (HDAC) inhibitor entinostat (Ent) reverses EMT features, our aim in this study was to determine whether Ent also suppresses P-gp activation in Snail-induced cells. First, we confirmed that Ent treatment reduced migration activity, downregulated E-cadherin and upregulated vimentin at the mRNA level in Snail-overexpressing cells, thus inhibiting EMT. Efflux and uptake assays using rhodamine123 (Rho123), a fluorescent P-gp substrate, showed that Ent also inhibited Snail-induced activation of P-gp. Moreover, P-gp activity was more strongly inhibited by Ent in Snail-overexpressing cells than in Mock cells. When we evaluated the uptakes of Rho123 by LLC-PK1 cells and P-gp-overexpressing LLC-GA5COL150 cells, Rho123 accumulation in LLC-GA5COL150 cells was significantly decreased compared with that in LLC-PK1 cells. Coincubation with Ent had no effect on Rho123 accumulation in either of the cell lines. Thus, Ent appears to be an inhibitor, but not a substrate, of P-gp at low concentration. Our results suggest that Ent treatment might suppress not only Snail-induced cancer malignant alteration, but also P-gp-mediated multidrug resistance.
Collapse
Affiliation(s)
- Takumi Tomono
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan
| | - Tatsuya Machida
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan
| | - Hiroki Kamioka
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan
| | - Yumi Shibasaki
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan
| | - Kentaro Yano
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan
| | - Takuo Ogihara
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan
- * E-mail:
| |
Collapse
|
16
|
Dubey H, Gulati K, Ray A. Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: focus on epigenetic factors and histone deacetylase. Rev Neurosci 2018; 29:241-260. [DOI: 10.1515/revneuro-2017-0049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/28/2017] [Indexed: 01/06/2023]
Abstract
AbstractAlzheimer’s disease (AD) is one of the most common neurodegenerative disorders mainly affecting elderly people. It is characterized by progressive loss of memory and cognitive function. More than 95% of AD cases are related to sporadic or late-onset AD (LOAD). The etiology of LOAD is still unclear. It has been reported that environmental factors and epigenetic alterations play a significant role in AD pathogenesis. Furthermore, recently, genome-wide association studies (GWAS) identified 10 novel risk genes:ABCA7,APOE,BIN1,CD2AP,CD33,CLU,CR1,MS4A6A,MS4A4E, andPICALM, which play an important role for LOAD. In this review, the therapeutic approaches of AD by epigenetic modifications have been discussed. Nowadays, HDAC inhibitors have clinically proven its activity for epigenetic modifications. Furthermore, we try to establish the relationship between HDAC inhibitors and above mentioned LOAD risk genes. Finally, we are hoping that this review may open new area of research for AD treatment.
Collapse
|
17
|
Backe MB, Andersson JL, Bacos K, Christensen DP, Hansen JB, Dorosz JJ, Gajhede M, Dahlby T, Bysani M, Kristensen LH, Ling C, Olsen L, Mandrup-Poulsen T. Lysine demethylase inhibition protects pancreatic β cells from apoptosis and improves β-cell function. Mol Cell Endocrinol 2018; 460:47-56. [PMID: 28684291 DOI: 10.1016/j.mce.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 01/04/2023]
Abstract
Transcriptional changes control β-cell survival in response to inflammatory stress. Posttranslational modifications of histone and non-histone transcriptional regulators activate or repress gene transcription, but the link to cell-fate signaling is unclear. Inhibition of lysine deacetylases (KDACs) protects β cells from cytokine-induced apoptosis and reduces type 1 diabetes incidence in animals. We hypothesized that also lysine demethylases (KDMs) regulate β-cell fate in response to inflammatory stress. Expression of the demethylase Kdm6B was upregulated by proinflammatory cytokines suggesting a possible role in inflammation-induced β-cell destruction. Inhibition of KDM6 demethylases using the selective inhibitor GSK-J4 protected insulin-producing cells and human and mouse islets from cytokine-induced apoptosis by blunting nuclear factor (NF)-κB signaling and endoplasmic reticulum (ER) stress response gene expression. GSK-J4 furthermore increased expression of insulin gene and glucose-stimulated insulin secretion. Expression of genes regulating purinergic and cytokine ligand-receptor interactions was downregulated following GSK-J4 exposure, while expression of genes involved in cell maintenance and survival was upregulated. These data suggest that KDMs are important regulators of inflammation-induced β-cell dysfunction and death.
Collapse
Affiliation(s)
- Marie Balslev Backe
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Jan Legaard Andersson
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Karl Bacos
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmö, Sweden
| | - Dan Ploug Christensen
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Jakob Bondo Hansen
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Jerzy Jòzef Dorosz
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Michael Gajhede
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Tina Dahlby
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Madhusudhan Bysani
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmö, Sweden
| | - Line Hyltoft Kristensen
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Charlotte Ling
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmö, Sweden
| | - Lars Olsen
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
18
|
Lillico R, Zhou T, Khorshid Ahmad T, Stesco N, Gozda K, Truong J, Kong J, Lakowski TM, Namaka M. Increased Post-Translational Lysine Acetylation of Myelin Basic Protein Is Associated with Peak Neurological Disability in a Mouse Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. J Proteome Res 2018; 17:55-62. [PMID: 29111742 DOI: 10.1021/acs.jproteome.7b00270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Citrullination of arginine residues is a post-translational modification (PTM) found on myelin basic protein (MBP), which neutralizes MBPs positive charge, and is implicated in myelin damage and multiple sclerosis (MS). Here we identify lysine acetylation as another neutralizing PTM to MBP that may be involved in myelin damage. We quantify changes in lysine and arginine PTMs on MBP derived from mice induced with an experimental autoimmune encephalomyelitis (EAE) model of MS using liquid chromatography tandem mass spectrometry. The changes in PTMs are correlated to changes in neurological disability scoring (NDS), as a marker of myelin damage. We found that lysine acetylation increased by 2-fold on MBP during peak NDS post-EAE induction. We also found that mono- and dimethyl-lysine, as well as asymmetric dimethyl-arginine residues on MBP were elevated at peak EAE disability. These findings suggest that the acetylation and methylation of lysine on MBP are PTMs associated with the neurological disability produced by EAE. Since histone deacetylase (HDAC) inhibitors have been previously shown to improve neurological disability, we also show that treatment with trichostatin A (a HDAC inhibitor) improves the NDS of EAE mice but does not change MBP acetylation.
Collapse
Affiliation(s)
- Ryan Lillico
- The Rady Faculty of Health Sciences, College of Pharmacy, Pharmaceutical Analysis Laboratory, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Ting Zhou
- The Rady Faculty of Health Sciences, College of Pharmacy, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Tina Khorshid Ahmad
- The Rady Faculty of Health Sciences, College of Pharmacy, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Nicholas Stesco
- The Rady Faculty of Health Sciences, College of Pharmacy, Pharmaceutical Analysis Laboratory, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Kiana Gozda
- The Rady Faculty of Health Sciences, College of Pharmacy, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Jessica Truong
- The Rady Faculty of Health Sciences, College of Pharmacy, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Ted M Lakowski
- The Rady Faculty of Health Sciences, College of Pharmacy, Pharmaceutical Analysis Laboratory, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Michael Namaka
- The Rady Faculty of Health Sciences, College of Pharmacy, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
- Department of Rehabilitation Medicine, Health Sciences Centre (HSC) , Winnipeg, Manitoba R3A 1R9, Canada
| |
Collapse
|
19
|
Li J, Hao D, Wang L, Wang H, Wang Y, Zhao Z, Li P, Deng C, Di LJ. Epigenetic targeting drugs potentiate chemotherapeutic effects in solid tumor therapy. Sci Rep 2017. [PMID: 28642588 PMCID: PMC5481380 DOI: 10.1038/s41598-017-04406-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epigenetic therapy is a novel tumor therapeutic method and refers to the targeting of the aberrant epigenetic modifications presumably at cancer-related genes by chemicals which are epigenetic targeting drugs (ETDs). Not like in treating hematopoietic cancer, the clinical trials investigating the potential use of ETDs in the solid tumor is not encouraging. Instead, the curative effects of ETD delivered together with DNA targeting chemo drugs (DTDs) are quite promising according to our meta-analysis. To investigate the synergistic mechanism of ETD and DTD drug combination, the therapeutic effect was studied using both cell lines and mouse engrafted tumors. Mechanically we show that HDAC inhibitors and DNMT inhibitors are capable of increasing the chromatin accessibility to cisplatin (CP) and doxorubicin (Dox) through chromatin decompaction globally. Consequently, the combination of ETD and DTD enhances the DTD induced DNA damage and cell death. Engrafted tumors in SCID mice also show increased sensitivity to irradiation (IR) or CP when the tumors were pretreated by ETDs. Given the limited therapeutic effect of ETD alone, these results strongly suggest that the combination of DTD, including irradiation, and ETD treatment is a very promising choice in clinical solid tumor therapy.
Collapse
Affiliation(s)
- Jingjing Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Dapeng Hao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Li Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China.,Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Haitao Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yuan Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhiqiang Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Peipei Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Chuxia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Li-Jun Di
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
20
|
Hatch SB, Yapp C, Montenegro RC, Savitsky P, Gamble V, Tumber A, Ruda GF, Bavetsias V, Fedorov O, Atrash B, Raynaud F, Lanigan R, Carmichael L, Tomlin K, Burke R, Westaway SM, Brown JA, Prinjha RK, Martinez ED, Oppermann U, Schofield CJ, Bountra C, Kawamura A, Blagg J, Brennan PE, Rossanese O, Müller S. Assessing histone demethylase inhibitors in cells: lessons learned. Epigenetics Chromatin 2017; 10:9. [PMID: 28265301 PMCID: PMC5333395 DOI: 10.1186/s13072-017-0116-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/21/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Histone lysine demethylases (KDMs) are of interest as drug targets due to their regulatory roles in chromatin organization and their tight associations with diseases including cancer and mental disorders. The first KDM inhibitors for KDM1 have entered clinical trials, and efforts are ongoing to develop potent, selective and cell-active 'probe' molecules for this target class. Robust cellular assays to assess the specific engagement of KDM inhibitors in cells as well as their cellular selectivity are a prerequisite for the development of high-quality inhibitors. Here we describe the use of a high-content cellular immunofluorescence assay as a method for demonstrating target engagement in cells. RESULTS A panel of assays for the Jumonji C subfamily of KDMs was developed to encompass all major branches of the JmjC phylogenetic tree. These assays compare compound activity against wild-type KDM proteins to a catalytically inactive version of the KDM, in which residues involved in the active-site iron coordination are mutated to inactivate the enzyme activity. These mutants are critical for assessing the specific effect of KDM inhibitors and for revealing indirect effects on histone methylation status. The reported assays make use of ectopically expressed demethylases, and we demonstrate their use to profile several recently identified classes of KDM inhibitors and their structurally matched inactive controls. The generated data correlate well with assay results assessing endogenous KDM inhibition and confirm the selectivity observed in biochemical assays with isolated enzymes. We find that both cellular permeability and competition with 2-oxoglutarate affect the translation of biochemical activity to cellular inhibition. CONCLUSIONS High-content-based immunofluorescence assays have been established for eight KDM members of the 2-oxoglutarate-dependent oxygenases covering all major branches of the JmjC-KDM phylogenetic tree. The usage of both full-length, wild-type and catalytically inactive mutant ectopically expressed protein, as well as structure-matched inactive control compounds, allowed for detection of nonspecific effects causing changes in histone methylation as a result of compound toxicity. The developed assays offer a histone lysine demethylase family-wide tool for assessing KDM inhibitors for cell activity and on-target efficacy. In addition, the presented data may inform further studies to assess the cell-based activity of histone lysine methylation inhibitors.
Collapse
Affiliation(s)
- Stephanie B. Hatch
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ UK
| | - Clarence Yapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ UK
| | - Raquel C. Montenegro
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ UK
- Medical Faculty, Research and Drug Development Center, Federal University of Ceará, Rua Cel. Nunes de Melo n.1000—Rodolfo Teófilo, 60, Fortaleza, CE 430-270 Brazil
| | - Pavel Savitsky
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Vicki Gamble
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ UK
| | - Anthony Tumber
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ UK
| | - Gian Filippo Ruda
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ UK
| | - Vassilios Bavetsias
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG UK
| | - Oleg Fedorov
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ UK
| | - Butrus Atrash
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG UK
| | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG UK
| | - Rachel Lanigan
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG UK
| | - LeAnne Carmichael
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG UK
| | - Kathy Tomlin
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG UK
| | - Susan M. Westaway
- Epigenetics Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, SG1 2NY UK
| | - Jack A. Brown
- Epigenetics Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, SG1 2NY UK
| | - Rab K. Prinjha
- Epigenetics Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, SG1 2NY UK
| | - Elisabeth D. Martinez
- Hamon Center for Therapeutic Oncology Research, and Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Udo Oppermann
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, OX3 7LD UK
| | | | - Chas Bountra
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ UK
| | - Akane Kawamura
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG UK
| | - Paul E. Brennan
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ UK
| | - Olivia Rossanese
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG UK
| | - Susanne Müller
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ UK
- Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
21
|
Xiaoling Y, Li Z, ShuQiang L, Shengchao M, Anning Y, Ning D, Nan L, Yuexia J, Xiaoming Y, Guizhong L, Yideng J. Hyperhomocysteinemia in ApoE-/- Mice Leads to Overexpression of Enhancer of Zeste Homolog 2 via miR-92a Regulation. PLoS One 2016; 11:e0167744. [PMID: 27936205 PMCID: PMC5147974 DOI: 10.1371/journal.pone.0167744] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/19/2016] [Indexed: 12/11/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular diseases, such as atherosclerosis. HHcy promotes atherogenesis by modifying the histone methylation patterns and miRNA regulation. In this study, we investigated the effects of homocysteine (Hcy) on the expression of enhancer of zeste homolog 2 (EZH2), and tested our hypothesis that Hcy-induced atherosclerosis is mediated by increased EZH2 expression, which is regulated by miR-92a. The levels of EZH2 and H3K27me3 were increased in the aorta of ApoE-/- mice fed a high-methionine diet for 16 weeks, whereas miR-92a expression was decreased. Over-expression of EZH2 increased H3K27me3 level and the accumulation of total cholesterol and triglycerides in the foam cells. Furthermore, upregulation of miR-92a reduced EZH2 expression in the foam cells. These data suggested that EZH2 plays a key role in Hcy-mediated lipid metabolism disorders, and that miR-92a may be a novel therapeutic target in Hcy-related atherosclerosis.
Collapse
Affiliation(s)
- Yang Xiaoling
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
- Institution of Medical Science of Ningxia, Yinchuan, Ningxia, China
| | - Zhao Li
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li ShuQiang
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ma Shengchao
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yang Anning
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ding Ning
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li Nan
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jia Yuexia
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yang Xiaoming
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li Guizhong
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiang Yideng
- Basic Medical School, Ningxia Medical University, Key Laboratory of Cardio-Cerebro-Vascular Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
- * E-mail:
| |
Collapse
|
22
|
Lillico R, Stesco N, Khorshid Amhad T, Cortes C, Namaka MP, Lakowski TM. Inhibitors of enzymes catalyzing modifications to histone lysine residues: structure, function and activity. Future Med Chem 2016; 8:879-97. [PMID: 27173004 DOI: 10.4155/fmc-2016-0021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gene expression is partly controlled by epigenetic mechanisms including histone-modifying enzymes. Some diseases are caused by changes in gene expression that can be mitigated by inhibiting histone-modifying enzymes. This review covers the enzyme inhibitors targeting histone lysine modifications. We summarize the enzymatic mechanisms of histone lysine acetylation, deacetylation, methylation and demethylation and discuss the biochemical roles of these modifications in gene expression and in disease. We discuss inhibitors of lysine acetylation, deacetylation, methylation and demethylation defining their structure-activity relationships and their potential mechanisms. We show that there are potentially indiscriminant off-target effects on gene expression even with the use of selective epigenetic enzyme inhibitors.
Collapse
Affiliation(s)
- Ryan Lillico
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nicholas Stesco
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tina Khorshid Amhad
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Rehabilitation Medicine, Health Sciences Centre (HSC), Winnipeg, MB, Canada
| | - Claudia Cortes
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Rehabilitation Medicine, Health Sciences Centre (HSC), Winnipeg, MB, Canada
| | - Mike P Namaka
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Rehabilitation Medicine, Health Sciences Centre (HSC), Winnipeg, MB, Canada
| | - Ted M Lakowski
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
23
|
Zahnow C, Topper M, Stone M, Murray-Stewart T, Li H, Baylin S, Casero R. Inhibitors of DNA Methylation, Histone Deacetylation, and Histone Demethylation: A Perfect Combination for Cancer Therapy. Adv Cancer Res 2016; 130:55-111. [PMID: 27037751 DOI: 10.1016/bs.acr.2016.01.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigenetic silencing and inappropriate activation of gene expression are frequent events during the initiation and progression of cancer. These events involve a complex interplay between the hypermethylation of CpG dinucleotides within gene promoter and enhancer regions, the recruitment of transcriptional corepressors and the deacetylation and/or methylation of histone tails. These epigenetic regulators act in concert to block transcription or interfere with the maintenance of chromatin boundary regions. However, DNA/histone methylation and histone acetylation states are reversible, enzyme-mediated processes and as such, have emerged as promising targets for cancer therapy. This review will focus on the potential benefits and synergistic/additive effects of combining DNA-demethylating agents and histone deacetylase inhibitors or lysine-specific demethylase inhibitors together in epigenetic therapy for solid tumors and will highlight what is known regarding the mechanisms of action that contribute to the antitumor response.
Collapse
|