1
|
Alonso LL, Slagboom J, Casewell NR, Samanipour S, Kool J. Categorization and Characterization of Snake Venom Variability through Intact Toxin Analysis by Mass Spectrometry. J Proteome Res 2025; 24:1329-1341. [PMID: 40009567 PMCID: PMC11894662 DOI: 10.1021/acs.jproteome.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
The variation in venom between and within snake species has significant implications for snakebite treatment. This highlights the critical importance of studying venom composition and its variations, not only for medical purposes but also from an evolutionary perspective. This study explores analytics for characterizing venom variability, focusing on venom toxin accurate masses, and emphasizes how the complexity of studying snake venom variability can be addressed by using liquid chromatography mass spectrometry (LC-MS) analysis with bioinformatics tools. This was demonstrated by investigating LC-MS data obtained from the venoms of 15 true cobras (Naja spp.), 5 mambas (Dendroaspis spp.) and 28 vipers (Crotalus and Bothrops spp.; total of 20 Elapidae and 28 Viperidae venoms), with newly developed bioinformatics tools. The measured LC-MS data was processed in an automated fashion and sorted based on the monoisotopic accurate masses of all toxins found, their peak intensities, and their retention times in LC. The data was then investigated using bioinformatic tools, before the toxin data available in open-source databases was used to predict the class of a toxin by means of its mass. This study highlights the importance of studying venom variability, which is performed by our combinatorial approach of intact-toxin analysis and toxin grouping by accurate mass.
Collapse
Affiliation(s)
- Luis L. Alonso
- Division
of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam (CASA), The Netherlands, 1012 WP, Amsterdam, The Netherlands
| | - Julien Slagboom
- Division
of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam (CASA), The Netherlands, 1012 WP, Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre
for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, L3 5QA, Pembroke Place, Liverpool, United Kingdom
| | - Saer Samanipour
- Van
‘t Hof Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jeroen Kool
- Division
of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
- Centre
for Analytical Sciences Amsterdam (CASA), The Netherlands, 1012 WP, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Lakušić M, Damm M, Bjelica V, Anđelković M, Tomović L, Bonnet X, Arsovski D, Süssmuth RD, Calvete JJ, Martínez-Freiría F. Ontogeny, not prey availability, underlies allopatric venom variability in insular and mainland populations of Vipera ammodytes. J Proteomics 2025; 310:105320. [PMID: 39306033 DOI: 10.1016/j.jprot.2024.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Allopatric populations living under distinct ecological conditions are excellent systems to infer factors underlying intraspecific venom variation. The venom composition of two populations of Vipera ammodytes, insular with a diet based on ectotherms and mainland with a diet based on ectotherms and endotherms, was compared considering the sex and age of individuals. Ten toxin families, dominated by PLA2, svMP, svSP, and DI, were identified through a bottom-up approach. The venom profiles of adult females and males were similar. Results from 58 individual SDS-PAGE profiles and venom pool analysis revealed significant differences between juveniles compared to subadults and adults. Two venom phenotypes were identified: a juvenile svMP-dominated and KUN-lacking phenotype and an adult PLA2/svMP-balanced and KUN-containing phenotype. Despite differences in prey availability (and, therefore, diet) between populations, no significant differences in venom composition were found. As the populations are geographically isolated, the lack of venom diversification could be explained by insufficient time for natural selection and/or genetic drift to act on the venom composition of island vipers. However, substantial differences in proteomes were observed when compared to venoms from geographically distant populations inhabiting different conditions. These findings highlight the need to consider ecological and evolutionary processes when studying venom variability. SIGNIFICANCE: This study provides the first comprehensive analysis of the venom composition of two allopatric populations of Vipera ammodytes, living under similar abiotic (climate) but distinct biotic (prey availability) conditions. The ontogenetic changes in venom composition, coupled with the lack of differences between sex and between populations, shed light on the main determinants of venom evolution in this medically important snake. Seven new proteomes may facilitate future comparative studies of snake venom evolution. This study highlights the importance of considering ecological and evolutionary factors to understand snake venom variation.
Collapse
Affiliation(s)
- Margareta Lakušić
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany; Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen 35392, Germany; Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Vukašin Bjelica
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Marko Anđelković
- University of Belgrade, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Bulevar despota Stefana 142, 11108 Belgrade, Serbia
| | - Ljiljana Tomović
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Xavier Bonnet
- CEBC, UMR-7372, CNRS Université de La Rochelle, 79360 Villiers en Bois, France
| | - Dragan Arsovski
- Macedonian Ecological Society, Arhimedova 5, 1000 Skopje, North Macedonia
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
3
|
Damm M, Avella I, Merzara R, Lucchini N, Buldain J, Corga F, Bouazza A, Fahd S, Süssmuth RD, Martínez-Freiría F. Venom variation among the three subspecies of the North African mountain viper Vipera monticola Saint Girons 1953. Biochimie 2024; 227:152-160. [PMID: 39029575 DOI: 10.1016/j.biochi.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The North African mountain viper (Vipera monticola) is a medically relevant venomous snake distributed in Morocco, Algeria, and Tunisia. Three subspecies of V. monticola, exhibiting differences in morphotypes and dietary regimes, are currently recognised: V. m. monticola, V. m. atlantica, and V. m. saintgironsi. Through the application of snake venomics, we analysed the venoms of specimens of Moroccan origin belonging to each of the three subspecies. Snake venom metalloproteinases (svMP), snake venom serine proteases (svSP), C-type lectin and C-type lectin-related proteins (CTL), and phospholipases A2 (PLA2) were predominant, with PLA2 being the most abundant toxin family overall. Disintegrins (DI) and cysteine-rich secretory proteins (CRISP) were exclusive to V. m. monticola and V. m. atlantica, while l-amino-acid oxidases (LAAO) were only found in V. m. saintgironsi. The differences detected in the venom profiles, as well as in presence/absence and relative abundances of toxin families, indicate the occurrence of intraspecific venom variation within V. monticola. The identified patterns of venom similarity between subspecies seem to align more with their phylogenetic relationships than with the reported differences in their feeding habits.
Collapse
Affiliation(s)
- Maik Damm
- Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany; LOEWE-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt Am Main, Germany; Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany; Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Gießen, Germany.
| | - Ignazio Avella
- Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany; LOEWE-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt Am Main, Germany; Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Gießen, Germany
| | - Reema Merzara
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Nahla Lucchini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Jon Buldain
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Frederico Corga
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Abdellah Bouazza
- Equipe de recherche Exploration, Gestion des Ressources naturelles et Environnementales, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Morocco
| | - Soumia Fahd
- Laboratoire Ecologie, Systématique, Conservation de la Biodiversité, LESCB URL-CNRST N°18, FS, Abdelmalek Essaadi University, Tétouan, Morocco
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| |
Collapse
|
4
|
Fernández J, Chaves W, Vargas-Diaz D, Petras D, Lomonte B. Top-down proteomics of venoms from five Micrurus species from Costa Rica: Comparative composition of phospholipase A 2-rich vs three-finger toxin-rich phenotypes. Toxicon 2024; 252:108187. [PMID: 39579878 DOI: 10.1016/j.toxicon.2024.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Coralsnakes of the genus Micrurus include more than 80 species distributed in the American continent. They produce potent neurotoxic venoms acting at the neuromuscular junction and potentially leading to respiratory paralysis and death. The vast majority of proteins in coralsnake venoms belong to the three-finger toxin (3FTx) and the group I phospholipase A2 (PLA2) families. Previous studies using 'bottom-up' proteomic strategies have revealed a compositional dichotomy of toxin expression by which different Micrurus species display a predominance of either 3FTx or PLA2 proteins in their venoms, possibly linked to the phylogeographic structure of the genus radiation. 'Top-down' proteomics (TDP) allows the direct analysis of intact proteins in a high resolution mass spectrometer, circumventing the limitations of the 'peptide-to-protein inference problem' inherent to the bottom-up approach. Here, we analyzed the venoms of five out of the six Micrurus species that inhabit Costa Rica, by using a TDP approach. Results unveil venom proteoforms that are shared between these species, and provide additional insights into the variable compositional complexity of these venoms and relationships to their 3FTx/PLA2 dichotomy.
Collapse
Affiliation(s)
- Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Walter Chaves
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - David Vargas-Diaz
- Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Daniel Petras
- Department of Biochemistry, University of California Riverside, 169 Aberdeen 17 Dr, Riverside, CA, 92507, USA; Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 24, 72076, Tuebingen, Germany
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
5
|
Ivanović SR, Rešetar Maslov D, Rubić I, Mrljak V, Živković I, Borozan N, Grujić-Milanović J, Borozan S. The Venom of Vipera ammodytes ammodytes: Proteomics, Neurotoxic Effect and Neutralization by Antivenom. Vet Sci 2024; 11:605. [PMID: 39728945 DOI: 10.3390/vetsci11120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Deep proteomic analyses identified, in total, 159 master proteins (with 1% FDR and 2 unique peptides) from 26 protein families in the venom of Vipera ammodytes ammodytes (Vaa). Data are available via ProteomeXchange with the identifier PXD056495. The relative abundance of PLA2s is 11.60% of the crude venom, of which 4.35% are neurotoxic Ammodytoxins (Atxs). The neurotoxicity of the venom of Vaa and the neutralizing effect of the antivenom were tested on the neuromuscular preparation of the diaphragm (NPD) of rats. The activity of PLA2 in the venom of Vaa and its neutralization by the antivenom were determined under in vitro conditions. The Vaa venom leads to a progressive decrease in NPD contractions. We administered pre-incubated venom/antivenom mixtures at various ratios of 1:2, 1:10 and 1:20 (w/w) and observed the effects of these mixtures on NPD contractions. The results show that the mean effective time (ET50) for NPD contractions with the 1:20 mixture is highly significantly different (p < 0.001) from the ET50 for the venom and the ET50 for the 1:2 and 1:10 mixture ratios. We also found a highly significant (p < 0.001) reduction in Na+/K+-ATPase activity in the NPD under the influence of the venom. The reduction in the activity of this enzyme was reversible by the antivenom. Under in vitro conditions, we have achieved the complete neutralization of PLA2 by the antivenom. In conclusion, the antivenom abolished the venom-induced progressive decrease in NPD contractions in a concentration-dependent manner. Antivenom with approximately the same mass proportion almost completely restores Na+/K+-ATPase activity in the NPD and completely neutralizes the PLA2 activity of the venom in vitro.
Collapse
Affiliation(s)
- Saša R Ivanović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Dina Rešetar Maslov
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Vladimir Mrljak
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Irena Živković
- Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, 11000 Belgrade, Serbia
| | - Nevena Borozan
- Faculty of Medicine, University of Belgrade, Dr Subotića 1, 11000 Belgrade, Serbia
| | - Jelica Grujić-Milanović
- Department of Cardiovascular Research, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Sunčica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Wang CR, Zenaidee MA, Snel MF, Pukala TL. Exploring Top-Down Mass Spectrometric Approaches To Probe Forest Cobra ( Naja melanoleuca) Venom Proteoforms. J Proteome Res 2024; 23:4601-4613. [PMID: 39231368 DOI: 10.1021/acs.jproteome.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Snake venoms are comprised of bioactive proteins and peptides that facilitate severe snakebite envenomation symptoms. A comprehensive understanding of venom compositions and the subtle heterogeneity therein is important. While bottom-up proteomics has been the well-established approach to catalogue venom compositions, top-down proteomics has emerged as a complementary strategy to characterize venom heterogeneity at the intact protein level. However, top-down proteomics has not been as widely implemented in the snake venom field as bottom-up proteomics, with various emerging top-down methods yet to be developed for venom systems. Here, we have explored three main top-down mass spectrometry methodologies in a proof-of-concept study to characterize selected three-finger toxin and phospholipase A2 proteoforms from the forest cobra (Naja melanoleuca) venom. We demonstrated the utility of a data-independent acquisition mode "MSE" for untargeted fragmentation on a chromatographic time scale and its improvement in protein sequence coverage compared to conventional targeted tandem mass spectrometry analysis. We also showed that protein identification can be further improved using a hybrid fragmentation approach, combining electron-capture dissociation and collision-induced dissociation. Lastly, we reported the promising application of multifunctional cyclic ion mobility separation and post-ion mobility fragmentation on snake venom proteins for the first time.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Muhammad A Zenaidee
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Marten F Snel
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Wang CR, McFarlane LO, Pukala TL. Exploring snake venoms beyond the primary sequence: From proteoforms to protein-protein interactions. Toxicon 2024; 247:107841. [PMID: 38950738 DOI: 10.1016/j.toxicon.2024.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Snakebite envenomation has been a long-standing global issue that is difficult to treat, largely owing to the flawed nature of current immunoglobulin-based antivenom therapy and the complexity of snake venoms as sophisticated mixtures of bioactive proteins and peptides. Comprehensive characterisation of venom compositions is essential to better understanding snake venom toxicity and inform effective and rationally designed antivenoms. Additionally, a greater understanding of snake venom composition will likely unearth novel biologically active proteins and peptides that have promising therapeutic or biotechnological applications. While a bottom-up proteomic workflow has been the main approach for cataloguing snake venom compositions at the toxin family level, it is unable to capture snake venom heterogeneity in the form of protein isoforms and higher-order protein interactions that are important in driving venom toxicity but remain underexplored. This review aims to highlight the importance of understanding snake venom heterogeneity beyond the primary sequence, in the form of post-translational modifications that give rise to different proteoforms and the myriad of higher-order protein complexes in snake venoms. We focus on current top-down proteomic workflows to identify snake venom proteoforms and further discuss alternative or novel separation, instrumentation, and data processing strategies that may improve proteoform identification. The current higher-order structural characterisation techniques implemented for snake venom proteins are also discussed; we emphasise the need for complementary and higher resolution structural bioanalytical techniques such as mass spectrometry-based approaches, X-ray crystallography and cryogenic electron microscopy, to elucidate poorly characterised tertiary and quaternary protein structures. We envisage that the expansion of the snake venom characterisation "toolbox" with top-down proteomics and high-resolution protein structure determination techniques will be pivotal in advancing structural understanding of snake venoms towards the development of improved therapeutic and biotechnology applications.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Lewis O McFarlane
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
8
|
Damm M, Karış M, Petras D, Nalbantsoy A, Göçmen B, Süssmuth RD. Venomics and Peptidomics of Palearctic Vipers: A Clade-Wide Analysis of Seven Taxa of the Genera Vipera, Montivipera, Macrovipera, and Daboia across Türkiye. J Proteome Res 2024; 23:3524-3541. [PMID: 38980134 PMCID: PMC11301686 DOI: 10.1021/acs.jproteome.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Snake venom variations are a crucial factor to understand the consequences of snakebite envenoming worldwide, and therefore it is important to know about toxin composition alterations between taxa. Palearctic vipers of the genera Vipera, Montivipera, Macrovipera, and Daboia have high medical impacts across the Old World. One hotspot for their occurrence and diversity is Türkiye, located on the border between continents, but many of their venoms remain still understudied. Here, we present the venom compositions of seven Turkish viper taxa. By complementary mass spectrometry-based bottom-up and top-down workflows, the venom profiles were investigated on proteomics and peptidomics level. This study includes the first venom descriptions of Vipera berus barani, Vipera darevskii, Montivipera bulgardaghica albizona, and Montivipera xanthina, as well as the first snake venomics profiles of Turkish Macrovipera lebetinus obtusa, and Daboia palaestinae, including an in-depth reanalysis of M. bulgardaghica bulgardaghica venom. Additionally, we identified the modular consensus sequence pEXW(PZ)1-2P(EI)/(KV)PPLE for bradykinin-potentiating peptides in viper venoms. For better insights into variations and potential impacts of medical significance, the venoms were compared against other Palearctic viper proteomes, including the first genus-wide Montivipera venom comparison. This will help the risk assessment of snakebite envenoming by these vipers and aid in predicting the venoms' pathophysiology and clinical treatments.
Collapse
Affiliation(s)
- Maik Damm
- Institut
für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
- LOEWE-Centre
for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Institute
for Insect Biotechnology, Justus-Liebig
University Giessen, Heinrich-Buff-Ring
26-32, 35392 Gießen, Germany
| | - Mert Karış
- Program
of Laboratory Technology, Department of Chemistry and Chemical Process
Technologies, Acıgöl Vocational School of Technical Sciences, Nevşehir Hacı Bektaş Veli University, Acıgöl, 50140 Nevşehir, Türkiye
| | - Daniel Petras
- Department
of Biochemistry, University of California
Riverside, 169 Aberdeen
Dr, Riverside, California 92507, United States
- Interfaculty
Institute of Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany
| | - Ayse Nalbantsoy
- Department
of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Bayram Göçmen
- Zoology
Section, Department of Biology, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Roderich D. Süssmuth
- Institut
für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
9
|
Wang CR, Harlington AC, Snel MF, Pukala TL. Characterisation of the forest cobra (Naja melanoleuca) venom using a multifaceted mass spectrometric-based approach. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140992. [PMID: 38158032 DOI: 10.1016/j.bbapap.2023.140992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Snake venoms consist of highly biologically active proteins and peptides that are responsible for the lethal physiological effects of snakebite envenomation. In order to guide the development of targeted antivenom strategies, comprehensive understanding of venom compositions and in-depth characterisation of various proteoforms, often not captured by traditional bottom-up proteomic workflows, is necessary. Here, we employ an integrated 'omics' and intact mass spectrometry (MS)-based approach to profile the heterogeneity within the venom of the forest cobra (Naja melanoleuca), adopting different analytical strategies to accommodate for the dynamic molecular mass range of venom proteins present. The venom proteome of N. melanoleuca was catalogued using a venom gland transcriptome-guided bottom-up proteomics approach, revealing a venom consisting of six toxin superfamilies. The subtle diversity present in the venom components was further explored using reversed phase-ultra performance liquid chromatography (RP-UPLC) coupled to intact MS. This approach showed a significant increase in the number of venom proteoforms within various toxin families that were not captured in previous studies. Furthermore, we probed at the higher-order structures of the larger venom proteins using a combination of native MS and mass photometry and revealed significant structural heterogeneity along with extensive post-translational modifications in the form of glycosylation in these larger toxins. Here, we show the diverse structural heterogeneity of snake venom proteins in the venom of N. melanoleuca using an integrated workflow that incorporates analytical strategies that profile snake venom at the proteoform level, complementing traditional venom characterisation approaches.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Alix C Harlington
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Marten F Snel
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide 5005, Australia; Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
10
|
Amorim FG, Redureau D, Crasset T, Freuville L, Baiwir D, Mazzucchelli G, Menzies SK, Casewell NR, Quinton L. Next-Generation Sequencing for Venomics: Application of Multi-Enzymatic Limited Digestion for Inventorying the Snake Venom Arsenal. Toxins (Basel) 2023; 15:357. [PMID: 37368658 DOI: 10.3390/toxins15060357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
To improve the characterization of snake venom protein profiles, we report the application of a new generation of proteomic methodology to deeply characterize complex protein mixtures. The new approach, combining a synergic multi-enzymatic and a time-limited digestion (MELD), is a versatile and straightforward protocol previously developed by our group. The higher number of overlapping peptides generated during MELD increases the quality of downstream peptide sequencing and of protein identification. In this context, this work aims at applying the MELD strategy to a venomics purpose for the first time, and especially for the characterization of snake venoms. We used four venoms as the test models for this proof of concept: two Elapidae (Dendroaspis polylepis and Naja naja) and two Viperidae (Bitis arietans and Echis ocellatus). Each venom was reduced and alkylated before being submitted to two different protocols: the classical bottom-up proteomics strategy including a digestion step with trypsin only, or MELD, which combines the activities of trypsin, Glu-C and chymotrypsin with a limited digestion approach. The resulting samples were then injected on an M-Class chromatographic system, and hyphenated to a Q-Exactive Mass Spectrometer. Toxins and protein identification were performed by Peaks Studio X+. The results show that MELD considerably improves the number of sequenced (de novo) peptides and identified peptides from protein databases, leading to the unambiguous identification of a greater number of toxins and proteins. For each venom, MELD was successful, not only in terms of the identification of the major toxins (increasing of sequence coverage), but also concerning the less abundant cellular components (identification of new groups of proteins). In light of these results, MELD represents a credible methodology to be applied as the next generation of proteomics approaches dedicated to venomic analysis. It may open new perspectives for the sequencing and inventorying of the venom arsenal and should expand global knowledge about venom composition.
Collapse
Affiliation(s)
- Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Damien Redureau
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Thomas Crasset
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liège, 4000 Liège, Belgium
| | - Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Stefanie K Menzies
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
11
|
Hempel BF, Damm M, Petras D, Kazandjian TD, Szentiks CA, Fritsch G, Nebrich G, Casewell NR, Klein O, Süssmuth RD. Spatial Venomics─Cobra Venom System Reveals Spatial Differentiation of Snake Toxins by Mass Spectrometry Imaging. J Proteome Res 2023; 22:26-35. [PMID: 36521429 DOI: 10.1021/acs.jproteome.2c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among venomous animals, toxic secretions have evolved as biochemical weapons associated with various highly specialized delivery systems on many occasions. Despite extensive research, there is still limited knowledge of the functional biology of most animal toxins, including their venom production and storage, as well as the morphological structures within sophisticated venom producing tissues that might underpin venom modulation. Here, we report on the spatial exploration of a snake venom gland system by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), in combination with standard proteotranscriptomic approaches, to enable in situ toxin mapping in spatial intensity maps across a venom gland sourced from the Egyptian cobra (Naja haje). MALDI-MSI toxin visualization on the elapid venom gland reveals a high spatial heterogeneity of different toxin classes at the proteoform level, which may be the result of physiological constraints on venom production and/or storage that reflects the potential for venom modulation under diverse stimuli.
Collapse
Affiliation(s)
- Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany.,Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | - Maik Damm
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Universität Tübingen, 72076 Tübingen, Germany
| | - Taline D Kazandjian
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
| | - Claudia A Szentiks
- Department of Wildlife Diseases and Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., 10315 Berlin, Germany
| | - Guido Fritsch
- Department of Wildlife Diseases and Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., 10315 Berlin, Germany
| | - Grit Nebrich
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, U.K
| | - Oliver Klein
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | |
Collapse
|
12
|
Sofyantoro F, Yudha DS, Lischer K, Nuringtyas TR, Putri WA, Kusuma WA, Purwestri YA, Swasono RT. Bibliometric Analysis of Literature in Snake Venom-Related Research Worldwide (1933-2022). Animals (Basel) 2022; 12:2058. [PMID: 36009648 PMCID: PMC9405337 DOI: 10.3390/ani12162058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Snake envenomation is a severe economic and health concern affecting countries worldwide. Snake venom carries a wide variety of small peptides and proteins with various immunological and pharmacological properties. A few key research areas related to snake venom, including its applications in treating cancer and eradicating antibiotic-resistant bacteria, have been gaining significant attention in recent years. The goal of the current study was to analyze the global profile of literature in snake venom research. This study presents a bibliometric review of snake venom-related research documents indexed in the Scopus database between 1933 and 2022. The overall number of documents published on a global scale was 2999, with an average annual production of 34 documents. Brazil produced the highest number of documents (n = 729), followed by the United States (n = 548), Australia (n = 240), and Costa Rica (n = 235). Since 1963, the number of publications has been steadily increasing globally. At a worldwide level, antivenom, proteomics, and transcriptomics are growing hot issues for research in this field. The current research provides a unique overview of snake venom research at global level from 1933 through 2022, and it may be beneficial in guiding future research.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Donan Satria Yudha
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Kenny Lischer
- Faculty of Engineering, University of Indonesia, Jakarta 16424, Indonesia
| | - Tri Rini Nuringtyas
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | | - Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Yekti Asih Purwestri
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
13
|
Brás-Costa C, Chaves AFA, Cajado-Carvalho D, da Silva Pires D, Andrade-Silva D, Serrano SMT. Profilings of subproteomes of lectin-binding proteins of nine Bothrops venoms reveal variability driven by different glycan types. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140795. [PMID: 35662639 DOI: 10.1016/j.bbapap.2022.140795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Snake venom proteomes have long been investigated to explore a multitude of biologically active components that are used for prey capture and defense, and are involved in the pathological effects observed upon mammalian envenomation. Glycosylation is a major protein post-translational modification in venoms and contributes to the diversification of proteomes. We have shown that Bothrops venoms are markedly defined by their content of glycoproteins, and that most N-glycan structures of eight Bothrops venoms contain sialic acid, while bisected N-acetylglucosamine was identified in Bothrops cotiara venom. To further investigate the mechanisms involved in the generation of different venoms by related snakes, here the glycoproteomes of nine Bothrops venoms (Bothrops atrox, B. cotiara, Bothrops erythromelas, Bothrops fonsecai, B. insularis, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni and Bothrops neuwiedi) were comparatively analyzed by enrichment with three lectins of different specificities, recognizing bisecting N-acetylglucosamine- and sialic acid-containing glycoproteins, and mass spectrometry. The lectin capture strategy generated venom fractions enriched with several glycoproteins, including metalloprotease, serine protease, and L- amino acid oxidase, in addition to various types of low abundant enzymes. The different contents of lectin-enriched proteins underscore novel aspects of the variability of the glycoprotein subproteomes of Bothrops venoms and point to the role of distinct types of glycan chains in generating different venoms by closely related snake species.
Collapse
Affiliation(s)
- Carolina Brás-Costa
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Alison Felipe Alencar Chaves
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Daniela Cajado-Carvalho
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - David da Silva Pires
- Laboratory of Cell Cycle, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Débora Andrade-Silva
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
14
|
von Reumont BM, Anderluh G, Antunes A, Ayvazyan N, Beis D, Caliskan F, Crnković A, Damm M, Dutertre S, Ellgaard L, Gajski G, German H, Halassy B, Hempel BF, Hucho T, Igci N, Ikonomopoulou MP, Karbat I, Klapa MI, Koludarov I, Kool J, Lüddecke T, Ben Mansour R, Vittoria Modica M, Moran Y, Nalbantsoy A, Ibáñez MEP, Panagiotopoulos A, Reuveny E, Céspedes JS, Sombke A, Surm JM, Undheim EAB, Verdes A, Zancolli G. Modern venomics-Current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 2022; 11:giac048. [PMID: 35640874 PMCID: PMC9155608 DOI: 10.1093/gigascience/giac048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.
Collapse
Affiliation(s)
- Bjoern M von Reumont
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Department for Applied Bioinformatics, 60438 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Naira Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Orbeli ave. 22, 0028 Yerevan, Armenia
| | - Dimitris Beis
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Figen Caliskan
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Ana Crnković
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Maik Damm
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Hannah German
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Trg Republike Hrvatske 14, 10000 Zagreb, Croatia
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nasit Igci
- Nevsehir Haci Bektas Veli University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 50300 Nevsehir, Turkey
| | - Maria P Ikonomopoulou
- Madrid Institute for Advanced Studies in Food, Madrid,E28049, Spain
- The University of Queensland, St Lucia, QLD 4072, Australia
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
| | - Ivan Koludarov
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Gießen, Germany
| | - Riadh Ben Mansour
- Department of Life Sciences, Faculty of Sciences, Gafsa University, Campus Universitaire Siidi Ahmed Zarrouk, 2112 Gafsa, Tunisia
| | - Maria Vittoria Modica
- Dept. of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Via Po 25c, I-00198 Roma, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - María Eugenia Pachón Ibáñez
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexios Panagiotopoulos
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
- Animal Biology Division, Department of Biology, University of Patras, Patras, GR-26500, Greece
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Javier Sánchez Céspedes
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Andy Sombke
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eivind A B Undheim
- University of Oslo, Centre for Ecological and Evolutionary Synthesis, Postboks 1066 Blindern 0316 Oslo, Norway
| | - Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
15
|
|
16
|
Tasoulis T, Pukala TL, Isbister GK. Investigating Toxin Diversity and Abundance in Snake Venom Proteomes. Front Pharmacol 2022; 12:768015. [PMID: 35095489 PMCID: PMC8795951 DOI: 10.3389/fphar.2021.768015] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding snake venom proteomes is becoming increasingly important to understand snake venom biology, evolution and especially clinical effects of venoms and approaches to antivenom development. To explore the current state of snake venom proteomics and transcriptomics we investigated venom proteomic methods, associations between methodological and biological variability and the diversity and abundance of protein families. We reviewed available studies on snake venom proteomes from September 2017 to April 2021. This included 81 studies characterising venom proteomes of 79 snake species, providing data on relative toxin abundance for 70 species and toxin diversity (number of different toxins) for 37 species. Methodologies utilised in these studies were summarised and compared. Several comparative studies showed that preliminary decomplexation of crude venom by chromatography leads to increased protein identification, as does the use of transcriptomics. Combining different methodological strategies in venomic approaches appears to maximize proteome coverage. 48% of studies used the RP-HPLC →1D SDS-PAGE →in-gel trypsin digestion → ESI -LC-MS/MS pathway. Protein quantification by MS1-based spectral intensity was used twice as commonly as MS2-based spectral counting (33–15 studies). Total toxin diversity was 25–225 toxins/species, with a median of 48. The relative mean abundance of the four dominant protein families was for elapids; 3FTx–52%, PLA2–27%, SVMP–2.8%, and SVSP–0.1%, and for vipers: 3FTx–0.5%, PLA2–24%, SVMP–27%, and SVSP–12%. Viper venoms were compositionally more complex than elapid venoms in terms of number of protein families making up most of the venom, in contrast, elapid venoms were made up of fewer, but more toxin diverse, protein families. No relationship was observed between relative toxin diversity and abundance. For equivalent comparisons to be made between studies, there is a need to clarify the differences between methodological approaches and for acceptance of a standardised protein classification, nomenclature and reporting procedure. Correctly measuring and comparing toxin diversity and abundance is essential for understanding biological, clinical and evolutionary implications of snake venom composition.
Collapse
Affiliation(s)
- Theo Tasoulis
- Clinical Toxicology Research Group, University of Newcastle, Callaghan, NSW, Australia
| | - Tara L Pukala
- Department of Chemistry, University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
17
|
Calvete JJ, Pla D, Els J, Carranza S, Damm M, Hempel BF, John EBO, Petras D, Heiss P, Nalbantsoy A, Göçmen B, Süssmuth RD, Calderón-Celis F, Nosti AJ, Encinar JR. Combined Molecular and Elemental Mass Spectrometry Approaches for Absolute Quantification of Proteomes: Application to the Venomics Characterization of the Two Species of Desert Black Cobras, Walterinnesia aegyptia and Walterinnesia morgani. J Proteome Res 2021; 20:5064-5078. [PMID: 34606723 PMCID: PMC8576837 DOI: 10.1021/acs.jproteome.1c00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
We report a novel hybrid, molecular
and elemental mass spectrometry
(MS) setup for the absolute quantification of snake venom proteomes
shown here for two desert black cobra species within the genus Walterinnesia, Walterinnesia aegyptia and Walterinnesia morgani. The experimental
design includes the decomplexation of the venom samples by reverse-phase
chromatography independently coupled to four mass spectrometry systems:
the combined bottom-up and top-down molecular MS for protein identification
and a parallel reverse-phase microbore high-performance liquid chromatograph
(RP-μHPLC) on-line to inductively coupled plasma (ICP-MS/MS)
elemental mass spectrometry and electrospray ionization quadrupole
time-of-flight mass spectrometry (ESI-QToF MS). This allows to continuously
record the absolute sulfur concentration throughout the chromatogram
and assign it to the parent venom proteins separated in the RP-μHPLC-ESI-QToF
parallel run via mass profiling. The results provide a locus-resolved
and quantitative insight into the three desert black cobra venom proteome
samples. They also validate the units of measure of our snake venomics
strategy for the relative quantification of snake venom proteomes
as % of total venom peptide bonds as a proxy for the % by weight of
the venom toxins/toxin families. In a more general context, our work
may pave the way for broader applications of hybrid elemental/molecular
MS setups in diverse areas of proteomics.
Collapse
Affiliation(s)
- Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslational, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| | - Davinia Pla
- Laboratorio de Venómica Evolutiva y Traslational, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| | - Johannes Els
- Environment and Protected Areas Authority, 82828 Sharjah, United Arab Emirates
| | - Salvador Carranza
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Maik Damm
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Benjamin-Florian Hempel
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.,BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Elisa B O John
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Túbingen, 72076 Tübingen, Germany
| | - Paul Heiss
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - Bayram Göçmen
- Zoology Section, Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Roderich D Süssmuth
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Alicia Jiménez Nosti
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
18
|
Rügen N, Jenkins TP, Wielsch N, Vogel H, Hempel BF, Süssmuth RD, Ainsworth S, Cabezas-Cruz A, Vilcinskas A, Tonk M. Hexapod Assassins' Potion: Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris iracundus. Biomedicines 2021; 9:biomedicines9070819. [PMID: 34356883 PMCID: PMC8301361 DOI: 10.3390/biomedicines9070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications.
Collapse
Affiliation(s)
- Nicolai Rügen
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (N.R.); (A.V.)
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany;
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany;
| | - Benjamin-Florian Hempel
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; (B.-F.H.); (R.D.S.)
- BIH Center for Regenerative Therapies BCRT, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; (B.-F.H.); (R.D.S.)
| | - Stuart Ainsworth
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, F-94700 Maisons-Alfort, France;
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (N.R.); (A.V.)
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Miray Tonk
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
19
|
Calvete JJ, Lomonte B, Saviola AJ, Bonilla F, Sasa M, Williams DJ, Undheim EA, Sunagar K, Jackson TN. Mutual enlightenment: A toolbox of concepts and methods for integrating evolutionary and clinical toxinology via snake venomics and the contextual stance. Toxicon X 2021; 9-10:100070. [PMID: 34195606 PMCID: PMC8234350 DOI: 10.1016/j.toxcx.2021.100070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease that may claim over 100,000 human lives annually worldwide. Snakebite occurs as the result of an interaction between a human and a snake that elicits either a defensive response from the snake or, more rarely, a feeding response as the result of mistaken identity. Snakebite envenoming is therefore a biological and, more specifically, an ecological problem. Snake venom itself is often described as a "cocktail", as it is a heterogenous mixture of molecules including the toxins (which are typically proteinaceous) responsible for the pathophysiological consequences of envenoming. The primary function of venom in snake ecology is pre-subjugation, with defensive deployment of the secretion typically considered a secondary function. The particular composition of any given venom cocktail is shaped by evolutionary forces that include phylogenetic constraints associated with the snake's lineage and adaptive responses to the snake's ecological context, including the taxa it preys upon and by which it is predated upon. In the present article, we describe how conceptual frameworks from ecology and evolutionary biology can enter into a mutually enlightening relationship with clinical toxinology by enabling the consideration of snakebite envenoming from an "ecological stance". We detail the insights that may emerge from such a perspective and highlight the ways in which the high-fidelity descriptive knowledge emerging from applications of -omics era technologies - "venomics" and "antivenomics" - can combine with evolutionary explanations to deliver a detailed understanding of this multifactorial health crisis.
Collapse
Affiliation(s)
- Juan J. Calvete
- Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Unidad de Proteómica, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fabián Bonilla
- Laboratorio de Investigación en Animales Peligrosos (LIAP), Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mahmood Sasa
- Laboratorio de Investigación en Animales Peligrosos (LIAP), Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Museo de Zoología, Centro de Investigaciones en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, Costa Rica
| | | | - Eivind A.B. Undheim
- Centre for Biodiversity Dynamics, Department of Biology, NTNU, Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Timothy N.W. Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Damm M, Hempel BF, Süssmuth RD. Old World Vipers-A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins (Basel) 2021; 13:toxins13060427. [PMID: 34204565 PMCID: PMC8235416 DOI: 10.3390/toxins13060427] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics technologies, so-called ‘venomics’. A tremendous upsurge reporting on snake venom proteomes could be observed. Within this review we focus on the highly venomous and widely distributed subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was performed (2003–2020) and we extensively reviewed all compositional venom studies of the so-called Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are dominated by four major, four secondary, six minor and several rare toxin families and peptides, respectively. The multitude of different venomics approaches complicates the comparison of venom composition datasets and therefore we differentiated between non-quantitative and three groups of quantitative workflows. The resulting direct comparisons within these groups show remarkable differences on the intra- and interspecies level across genera with a focus on regional differences. In summary, the present compilation is the first comprehensive up-to-date database on Viperinae venom proteomes and differentiating between analytical methods and workflows.
Collapse
Affiliation(s)
- Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, (BCRT), 10117 Berlin, Germany;
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: ; Tel.: +49-(0)30-314-24205
| |
Collapse
|
21
|
Chowdhury A, Zdenek CN, Lewin MR, Carter R, Jagar T, Ostanek E, Harjen H, Aldridge M, Soria R, Haw G, Fry BG. Venom-Induced Blood Disturbances by Palearctic Viperid Snakes, and Their Relative Neutralization by Antivenoms and Enzyme-Inhibitors. Front Immunol 2021; 12:688802. [PMID: 34177943 PMCID: PMC8222980 DOI: 10.3389/fimmu.2021.688802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Palearctic vipers are medically significant snakes in the genera Daboia, Macrovipera, Montivipera, and Vipera which occur throughout Europe, Central Asia, Near and Middle East. While the ancestral condition is that of a small-bodied, lowland species, extensive diversification has occurred in body size, and niche specialization. Using 27 venom samples and a panel of in vitro coagulation assays, we evaluated the relative coagulotoxic potency of Palearctic viper venoms and compared their neutralization by three antivenoms (Insoserp Europe, VIPERFAV and ViperaTAb) and two metalloprotease inhibitors (prinomastat and DMPS). We show that variation in morphology parallels variation in the Factor X activating procoagulant toxicity, with the three convergent evolutions of larger body sizes (Daboia genus, Macrovipera genus, and Vipera ammodytes uniquely within the Vipera genus) were each accompanied by a significant increase in procoagulant potency. In contrast, the two convergent evolutions of high altitude specialization (the Montivipera genus and Vipera latastei uniquely within the Vipera genus) were each accompanied by a shift away from procoagulant action, with the Montivipera species being particularly potently anticoagulant. Inoserp Europe and VIPERFAV antivenoms were both effective against a broad range of Vipera species, with Inoserp able to neutralize additional species relative to VIPERFAV, reflective of its more complex antivenom immunization mixture. In contrast, ViperaTAb was extremely potent in neutralizing V. berus but, reflective of this being a monovalent antivenom, it was not effective against other Vipera species. The enzyme inhibitor prinomastat efficiently neutralized the metalloprotease-driven Factor X activation of the procoagulant venoms. In contrast, DMPS (2,3-dimercapto-1-propanesulfonic acid), which as been suggested as another potential treatment option in the absence of antivenom, DMPS failed against all venoms tested. Overall, our results highlight the evolutionary variations within Palearctic vipers and help to inform clinical management of viper envenomation.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
| | - Matthew R. Lewin
- California Academy of Sciences, San Francisco, CA, United States
- Ophirex, Inc., Corte Madera, CA, United States
| | | | | | | | - Hannah Harjen
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Grace Haw
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
22
|
Barati M, Javanmardi F, Mousavi Jazayeri SMH, Jabbari M, Rahmani J, Barati F, Nickho H, Davoodi SH, Roshanravan N, Mousavi Khaneghah A. Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Compr Rev Food Sci Food Saf 2020; 19:1488-1520. [PMID: 33337080 DOI: 10.1111/1541-4337.12578] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Due to the digestible refractory and absorbable structures of bioactive peptides (BPs), they could induce notable biological impacts on the living organism. In this regard, the current study was devoted to providing an overview regarding the available methods for BPs generation by the aid of a systematic review conducted on the published articles up to April 2019. In this context, the PubMed and Scopus databases were screened to retrieve the related publications. According to the results, although the characterization of BPs mainly has been performed using enzymatic and microbial in-vitro methods, they cannot be considered as suitable techniques for further stimulation of digestion in the gastrointestinal tract. Therefore, new approaches for both in-vivo and in-silico methods for BPs identification should be developed to overcome the obstacles that belonged to the current methods. The purpose of this review was to compile the recent analytical methods applied for studying various aspects of food-derived biopeptides, and emphasizing generation at in vitro, in vivo, and in silico.
Collapse
Affiliation(s)
- Meisam Barati
- Student Research Committee, Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Jabbari
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Rahmani
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Barati
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Department of Clinical Nutrition and Dietetic, National Institute and Faculty of Nutrition and Food Technology; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
23
|
Casewell NR, Jackson TNW, Laustsen AH, Sunagar K. Causes and Consequences of Snake Venom Variation. Trends Pharmacol Sci 2020; 41:570-581. [PMID: 32564899 PMCID: PMC7116101 DOI: 10.1016/j.tips.2020.05.006] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 11/30/2022]
Abstract
Snake venoms are mixtures of toxins that vary extensively between and within snake species. This variability has serious consequences for the management of the world’s 1.8 million annual snakebite victims. Advances in ‘omic’ technologies have empowered toxinologists to comprehensively characterize snake venom compositions, unravel the molecular mechanisms that underpin venom variation, and elucidate the ensuing functional consequences. In this review, we describe how such mechanistic processes have resulted in suites of toxin isoforms that cause diverse pathologies in human snakebite victims and we detail how variation in venom composition can result in treatment failure. Finally, we outline current therapeutic approaches designed to circumvent venom variation and deliver next-generation treatments for the world’s most lethal neglected tropical disease.
Collapse
Affiliation(s)
- Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Timothy N W Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Kartik Sunagar
- Evolutionary Venomics Laboratory, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
24
|
Hempel BF, Damm M, Mrinalini, Göçmen B, Karış M, Nalbantsoy A, Kini RM, Süssmuth RD. Extended Snake Venomics by Top-Down In-Source Decay: Investigating the Newly Discovered Anatolian Meadow Viper Subspecies, Vipera anatolica senliki. J Proteome Res 2020; 19:1731-1749. [PMID: 32073270 DOI: 10.1021/acs.jproteome.9b00869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report on the venom proteome of Vipera anatolica senliki, a recently discovered and hitherto unexplored subspecies of the critically endangered Anatolian meadow viper endemic to the Antalya Province of Turkey. Integrative venomics, including venom gland transcriptomics as well as complementary bottom-up and top-down proteomics analyses, were applied to fully characterize the venom of V. a. senliki. Furthermore, the classical top-down venomics approach was extended to elucidate the venom proteome by an alternative in-source decay (ISD) proteomics workflow using the reducing matrix 1,5-diaminonaphthalene. Top-down ISD proteomics allows for disulfide bond counting and effective de novo sequencing-based identification of high-molecular-weight venom constituents, both of which are difficult to achieve by commonly established top-down approaches. Venom gland transcriptome analysis identified 96 toxin transcript annotations from 18 toxin families. Relative quantitative snake venomics revealed snake venom metalloproteinases (42.9%) as the most abundant protein family, followed by several less dominant toxin families. Online mass profiling and top-down venomics provide a detailed insight into the venom proteome of V. a. senliki and facilitate a comparative analysis of venom variability for the closely related subspecies, Vipera anatolica anatolica.
Collapse
Affiliation(s)
- Benjamin-Florian Hempel
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Mrinalini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Bayram Göçmen
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, 35100 Izmir, Turkey
| | - Mert Karış
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, 35100 Izmir, Turkey
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Bornova, Turkey
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16, Medical Drive, Singapore 117600
| | - Roderich D Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|