1
|
Yong MY, Tan KY, Tan CH. A genus-wide study on venom proteome variation and phospholipase A 2 inhibition in Asian lance-headed pit vipers (genus: Trimeresurus). Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110077. [PMID: 39579840 DOI: 10.1016/j.cbpc.2024.110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
High molecular weight proteins are present abundantly in viperid venoms. The amino acid sequence can be highly variable, contributing to the structure and function diversity of snake venom protein. However, this variability remains poorly understood in many species. The study investigated the venom protein variability in a distinct clade of Asian pit vipers (Trimeresurus species complex) through comparative proteomics, applying gel electrophoresis (SDS-PAGE), liquid chromatography-tandem mass spectrometry (LCMS/MS), and bioinformatic approaches. The proteomes revealed a number of conserved protein families, within each are variably expressed protein paralogs that are unrelated to the snake phylogeny and geographic origin. The expression levels of two major enzymes, i.e., snake venom serine proteinase and metalloproteinase, correlate weakly with procoagulant and hemorrhagic activities, implying co-expression of other functionally versatile toxins in the venom. The phospholipase A2 (PLA2) abundance correlates strongly with its enzymatic activity, and a unique phenotype was discovered in two species expressing extremely little PLA2. The commercial mono-specific antivenom effectively neutralized the venoms' procoagulant and hemorrhagic effects but failed to inhibit the PLA2 activities. Instead, the PLA2 activities of all venoms were effectively inhibited by the small molecule inhibitor varespladib, suggesting its potential to be repurposed as a highly potent adjuvant therapeutic in snakebite envenoming.
Collapse
Affiliation(s)
- Mun Yee Yong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan; Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Castro-Amorim J, Pinto AV, Mukherjee AK, Ramos MJ, Fernandes PA. Beyond Fang's fury: a computational study of the enzyme-membrane interaction and catalytic pathway of the snake venom phospholipase A 2 toxin. Chem Sci 2025; 16:1974-1985. [PMID: 39759936 PMCID: PMC11694569 DOI: 10.1039/d4sc06511e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Snake venom-secreted phospholipases A2 (svPLA2s) are critical, highly toxic enzymes present in almost all snake venoms. Upon snakebite envenomation, svPLA2s hydrolyze cell membrane phospholipids and induce pathological effects such as paralysis, myonecrosis, inflammation, or pain. Despite its central importance in envenomation, the chemical mechanism of svPLA2s is poorly understood, with detrimental consequences for the design of small-molecule snakebite antidotes, which is highly undesirable given the gravity of the epidemiological data that ranks snakebite as the deadliest neglected tropical disease. We study a member of the svPLA2 family, the Myotoxin-I, which is part of the venom of the Central American pit viper terciopelo (Bothrops asper), a ubiquitous but highly aggressive and dangerous species responsible for the most problematic snakebites in its habitat. Furthermore, PLA2 enzymes are a paradigm of interfacial enzymology, as the complex membrane-enzyme interaction is as important as is crucial for its catalytic process. Here, we explore the detailed interaction between svPLA2 and a 1 : 1 POPC/POPS membrane, and how enzyme binding affects membrane structure and dynamics. We further investigated the two most widely accepted reaction mechanisms for svPLA2s: the 'single-water mechanism' and the 'assisted-water mechanism', using umbrella sampling simulations at the PBE/MM level of theory. We demonstrate that both pathways are catalytically viable. While both pathways occur in two steps, the single-water mechanism yielded a lower activation free energy barrier (20.14 kcal mol-1) for POPC hydrolysis, consistent with experimental and computational values obtained for human PLA2. The reaction mechanisms are similar, albeit not identical, and can be generalized to svPLA2 from most viper species. Furthermore, our findings demonstrate that the sole small molecule inhibitor currently undergoing clinical trials for snakebite is a perfect transition state analog. Thus, understanding snake venom sPLA2 chemistry will help find new, effective small molecule inhibitors with anti-snake venom efficacy.
Collapse
Affiliation(s)
- Juliana Castro-Amorim
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Alexandre V Pinto
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Ashis K Mukherjee
- Institute of Advanced Study in Science and Technology Vigyan Path Garchuk, Paschim Boragaon Guwahati-781035 Assam India
| | - Maria J Ramos
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Pedro A Fernandes
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| |
Collapse
|
3
|
Ding SM, Yap MKK. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024; 250:108120. [PMID: 39393539 DOI: 10.1016/j.toxicon.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Snakebite envenomation (SBE) is a neglected tropical disease (NTD) with an approximate 1.8 million cases annually. The tremendous figure is concerning, and the currently available treatment for snakebite envenomation is antivenom. However, the current antivenom has limited cross-neutralisation activity due to the variations in snake venom composition across species and geographical locations. The proteomics of medically important venomous species is essential as they study the venom compositions within and among different species. The advancement of sophisticated proteomic approaches allows intensive investigation of snake venoms. Nevertheless, there is a need to consolidate the venom proteomics profiles and distribution analysis to examine their variability patterns. This review systematically analysed the proteomics and toxicity profiles of medically important venomous species from Asia across different geographical locations. An interactive dashboard - Asiatic Proteomics Interactive Datasets was curated to consolidate the distribution patterns of the venom compositions, serve as a comprehensive directory for large-scale comparative meta-analyses. The population proteomics demonstrate higher diversities in the predominant venom toxins. Besides, inter-regional differences were also observed in Bungarus sp., Naja sp., Calliophis sp., and Ophiophagus hannah venoms. The elapid venoms are predominated with three-finger toxins (3FTXs) and phospholipase A2 (PLA2). Intra-regional variation is only significantly observed in Naja naja venoms. Proteomics diversity is more prominent in viper venoms, with widespread dominance observed in snake venom metalloproteinase (SVMP) and snake venom serine protease (SVSP). Correlations exist between the proteomics profiles and the toxicity (LD50) of the medically important venomous species. Additionally, the predominant toxins, alongside their pathophysiological effects, were highlighted and discussed as well. The insights of interactive toxico-proteomics datasets provide comprehensive frameworks of venom dynamics and contribute to developing antivenoms for snakebite envenomation. This could reduce misdiagnosis of SBE and accelerate the researchers' data mining process.
Collapse
Affiliation(s)
- Sher Min Ding
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
4
|
Liu CC, Lin CC, Liou MH, Hsiao YC, Chu LJ, Wang PJ, Liu CH, Wang CY, Chen CH, Yu JS. Development of antibody-detection ELISA based on beta-bungarotoxin for evaluation of the neutralization potency of equine plasma against Bungarus multicinctus in Taiwan. Int J Biol Macromol 2024; 262:130080. [PMID: 38354918 DOI: 10.1016/j.ijbiomac.2024.130080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Animal testing has been the primary approach to assess the neutralization potency of antivenom for decades. However, the necessity to sacrifice large numbers of experimental animals during this process has recently raised substantial welfare concerns. Furthermore, the laborious and expensive nature of animal testing highlights the critical need to develop alternative in vitro assays. Here, we developed an antibody-detection enzyme-linked immunosorbent assay (ELISA) technique as an alternative approach to evaluate the neutralization potency of hyperimmunized equine plasma against B. multicinctus, a medically important venomous snake in Taiwan. Firstly, five major protein components of B. multicinctus venom, specifically, α-BTX, β-BTX, γ-BTX, MTX, and NTL, were isolated. To rank their relative medical significance, a toxicity score system was utilized. Among the proteins tested, β-BTX presenting the highest score was regarded as the major toxic component. Subsequently, antibody-detection ELISA was established based on the five major proteins and used to evaluate 55 hyperimmunized equine plasma samples with known neutralization potency. ELISA based on β-BTX, the most lethal protein according to the toxicity score, exhibited the best sensitivity (75.6 %) and specificity (100 %) in discriminating between high-potency and low-potency plasma, supporting the hypothesis that highly toxic proteins offer better discriminatory power for potency evaluation. Additionally, a phospholipase A2 (PLA2) competition process was implemented to eliminate the antibodies targeting toxicologically irrelevant domains. This optimization greatly enhanced the performance of our assay, resulting in sensitivity of 97.6 % and specificity of 92.9 %. The newly developed antibody-detection ELISA presents a promising alternative to in vivo assays to determine the neutralization potency of antisera against B. multicinctus during the process of antivenom production.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Ming-Han Liou
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Po-Jung Wang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chien-Hsin Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan
| | - Cyong-Yi Wang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan
| | - Chao-Hung Chen
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan..
| |
Collapse
|
5
|
Sampat GH, Hiremath K, Dodakallanavar J, Patil VS, Harish DR, Biradar P, Mahadevamurthy RK, Barvaliya M, Roy S. Unraveling snake venom phospholipase A 2: an overview of its structure, pharmacology, and inhibitors. Pharmacol Rep 2023; 75:1454-1473. [PMID: 37926795 DOI: 10.1007/s43440-023-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.
Collapse
Affiliation(s)
- Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Prakash Biradar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | | | - Manish Barvaliya
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
6
|
Niu X, Lu H, Shi M, Wang S, Zhou Y, Liu H. Genome assembly and annotation of the Brown-Spotted Pit viper Protobothrops mucrosquamatus. GIGABYTE 2023; 2023:gigabyte97. [PMID: 38023064 PMCID: PMC10644238 DOI: 10.46471/gigabyte.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The Brown-Spotted Pit viper (Protobothrops mucrosquamatus), also known as the Chinese habu, is a widespread and highly venomous snake distributed from Northeastern India to Eastern China. Genomics research can contribute to our understanding of venom components and natural selection in vipers. Here, we collected, sequenced and assembled the genome of a male P. mucrosquamatus individual from China. We generated a highly continuous reference genome, with a length of 1.53 Gb and 41.18% of repeat elements content. Using this genome, we identified 24,799 genes, 97.97% of which could be annotated. We verified the validity of our genome assembly and annotation process by generating a phylogenetic tree based on the nuclear genome single-copy genes of six other reptile species. The results of our research will contribute to future studies on Protobothrops biology and the genetic basis of snake venom.
Collapse
Affiliation(s)
- Xiaotong Niu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- School of Ecology, Sun Yat-sen University, Shenzhen, 510275, China
| | - Haorong Lu
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Minhui Shi
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiqing Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yajie Zhou
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| |
Collapse
|
7
|
Castro-Amorim J, Oliveira A, Mukherjee AK, Ramos MJ, Fernandes PA. Unraveling the Reaction Mechanism of Russell's Viper Venom Factor X Activator: A Paradigm for the Reactivity of Zinc Metalloproteinases? J Chem Inf Model 2023; 63:4056-4069. [PMID: 37092784 PMCID: PMC10336966 DOI: 10.1021/acs.jcim.2c01156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 04/25/2023]
Abstract
Snake venom metalloproteinases (SVMPs) are important drug targets against snakebite envenoming, the neglected tropical disease with the highest mortality worldwide. Here, we focus on Russell's viper (Daboia russelii), one of the "big four" snakes of the Indian subcontinent that, together, are responsible for ca. 50,000 fatalities annually. The "Russell's viper venom factor X activator" (RVV-X), a highly toxic metalloproteinase, activates the blood coagulation factor X (FX), leading to the prey's abnormal blood clotting and death. Given its tremendous public health impact, the WHO recognized an urgent need to develop efficient, heat-stable, and affordable-for-all small-molecule inhibitors, for which a deep understanding of the mechanisms of action of snake's principal toxins is fundamental. In this study, we determine the catalytic mechanism of RVV-X by using a density functional theory/molecular mechanics (DFT:MM) methodology to calculate its free energy profile. The results showed that the catalytic process takes place via two steps. The first step involves a nucleophilic attack by an in situ generated hydroxide ion on the substrate carbonyl, yielding an activation barrier of 17.7 kcal·mol-1, while the second step corresponds to protonation of the peptide nitrogen and peptide bond cleavage with an energy barrier of 23.1 kcal·mol-1. Our study shows a unique role played by Zn2+ in catalysis by lowering the pKa of the Zn2+-bound water molecule, enough to permit the swift formation of the hydroxide nucleophile through barrierless deprotonation by the formally much less basic Glu140. Without the Zn2+ cofactor, this step would be rate-limiting.
Collapse
Affiliation(s)
- Juliana Castro-Amorim
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Ana Oliveira
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Ashis K. Mukherjee
- Institute
of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India
| | - Maria J. Ramos
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Pedro A. Fernandes
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| |
Collapse
|
8
|
Zhao HY, He N, Sun Y, Wang YC, Zhang HB, Chen HH, Zhang YQ, Gao JF. Phylogeny-Related Variations in Venomics: A Test in a Subset of Habu Snakes ( Protobothrops). Toxins (Basel) 2023; 15:toxins15050350. [PMID: 37235384 DOI: 10.3390/toxins15050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
We conducted a comparative analysis to unveil the divergence among venoms from a subset of Old World habu snakes (Protobothrops) in terms of venomic profiles and toxicological and enzymatic activities. A total of 14 protein families were identified in the venoms from these habu snakes, and 11 of them were shared among these venoms. The venoms of five adult habu snakes were overwhelmingly dominated by SVMP (32.56 ± 13.94%), PLA2 (22.93 ± 9.26%), and SVSP (16.27 ± 4.79%), with a total abundance of over 65%, while the subadult P. mangshanensis had an extremely low abundance of PLA2 (1.23%) but a high abundance of CTL (51.47%), followed by SVMP (22.06%) and SVSP (10.90%). Apparent interspecific variations in lethality and enzymatic activities were also explored in habu snake venoms, but no variations in myotoxicity were found. Except for SVSP, the resemblance of the relatives within Protobothrops in other venom traits was estimated to deviate from Brownian motion evolution based on phylogenetic signals. A comparative analysis further validated that the degree of covariation between phylogeny and venom variation is evolutionarily labile and varies among clades of closely related snakes. Our findings indicate a high level of interspecific variation in the venom proteomes of habu snakes, both in the presence or absence and the relative abundance of venom protein families, and that these venoms might have evolved under a combination of adaptive and neutral mechanisms.
Collapse
Affiliation(s)
- Hong-Yan Zhao
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Na He
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan Sun
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yong-Chen Wang
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao-Bing Zhang
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hui-Hui Chen
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ya-Qi Zhang
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jian-Fang Gao
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
9
|
Chen FC, Ismail AK, Mao YC, Hsu CH, Chiang LC, Shih CC, Tzeng YS, Lin CS, Liu SH, Ho CH. Application of Sonographic Assessments of the Rate of Proximal Progression to Monitor Protobothrops mucrosquamatus Bite-Related Local Envenomation: A Prospective Observational Study. Trop Med Infect Dis 2023; 8:tropicalmed8050246. [PMID: 37235294 DOI: 10.3390/tropicalmed8050246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Patients bitten by Protobothrops mucrosquamatus typically experience significant pain, substantial swelling, and potentially blister formation. The appropriate dosage and efficacy of FHAV for alleviating local tissue injury remain uncertain. Between 2017 and 2022, 29 snakebite patients were identified as being bitten by P. mucrosquamatus. These patients underwent point-of-care ultrasound (POCUS) assessments at hourly intervals to measure the extent of edema and evaluate the rate of proximal progression (RPP, cm/hour). Based on Blaylock's classification, seven patients (24%) were classified as Group I (minimal), while 22 (76%) were classified as Group II (mild to severe). In comparison to Group I patients, Group II patients received more FHAV (median of 9.5 vials vs. two vials, p-value < 0.0001) and experienced longer median complete remission times (10 days vs. 2 days, p-value < 0.001). We divided the Group II patients into two subgroups based on their clinical management. Clinicians opted not to administer antivenom treatment to patients in Group IIA if their RPP decelerated. In contrast, for patients in Group IIB, clinicians increased the volume of antivenom in the hope of reducing the severity of swelling or blister formation. Patients in Group IIB received a significantly higher median volume of antivenom (12 vials vs. six vials; p-value < 0.001) than those in Group IIA. However, there was no significant difference in outcomes (disposition, wound necrosis, and complete remission times) between subgroups IIA and IIB. Our study found that FHAV does not appear to prevent local tissue injuries, such as swelling progression and blister formation, immediately after administration. When administering FHAV to patients bitten by P. mucrosquamatus, the deceleration of RPP may serve as an objective parameter to help clinicians decide whether to withhold FHAV administration.
Collapse
Affiliation(s)
- Feng-Chen Chen
- Department of Emergency Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11402, Taiwan
| | - Ahmad Khaldun Ismail
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Chih-Hsiung Hsu
- Health Service and Readiness Section, Armed Forces Taoyuan General Hospital, Taoyuan 325, Taiwan
| | - Liao-Chun Chiang
- National Tsing Hua University, College of Life Sciences, Hsinchu 300044, Taiwan
| | - Chang-Chih Shih
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11402, Taiwan
| | - Yuan-Sheng Tzeng
- Division of Plastic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11402, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11402, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Cheng-Hsuan Ho
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11402, Taiwan
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
10
|
Cardiac Effects of Micrurus corallinus and Micrurus dumerilii carinicauda (Elapidae) Venoms and Neutralization by Brazilian Coralsnake Antivenom and Varespladib. Cardiovasc Toxicol 2023; 23:132-146. [PMID: 36813862 DOI: 10.1007/s12012-023-09786-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
In this work, we examined the action of two South American coralsnake (Micrurus corallinus and Micrurus dumerilii carinicauda) venoms on rat heart function in the absence and presence of treatment with Brazilian coralsnake antivenom (CAV) and varespladib (VPL), a potent phospholipase A2 inhibitor. Anesthetized male Wistar rats were injected with saline (control) or a single dose of venom (1.5 mg/kg, i.m.) and monitored for alterations in echocardiographic parameters, serum CK-MB levels and cardiac histomorphology, the latter using a combination of fractal dimension and histopathological methods. Neither of the venoms caused cardiac functional alterations 2 h after venom injection; however, M. corallinus venom caused tachycardia 2 h after venom injection, with CAV (given i.p. at an antivenom:venom ratio of 1:1.5, v/w), VPL (0.5 mg/kg, i.p.) and CAV + VPL preventing this increase. Both venoms increased the cardiac lesional score and serum CK-MB levels compared to saline-treated rats, but only the combination of CAV + VPL prevented these alterations, although VPL alone was able to attenuate the increase in CK-MB caused by M. corallinus venom. Micrurus corallinus venom increased the heart fractal dimension measurement, but none of the treatments prevented this alteration. In conclusion, M. corallinus and M. d. carinicauda venoms caused no major cardiac functional alterations at the dose tested, although M. corallinus venom caused transient tachycardia. Both venoms caused some cardiac morphological damage, as indicated by histomorphological analyses and the increase in circulating CK-MB levels. These alterations were consistently attenuated by a combination of CAV and VPL.
Collapse
|
11
|
Immunoprofiling of Equine Plasma against Deinagkistrodon acutus in Taiwan: Key to Understanding Differential Neutralization Potency in Immunized Horses. Trop Med Infect Dis 2023; 8:tropicalmed8010051. [PMID: 36668958 PMCID: PMC9866385 DOI: 10.3390/tropicalmed8010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Snakebite envenoming is a public health issue linked to high mortality and morbidity rates worldwide. Although antivenom has been the mainstay treatment for envenomed victims receiving medical care, the diverse therapeutic efficacy of the produced antivenom is a major limitation. Deinagkistrodon acutus is a venomous snake that poses significant concern of risks to human life in Taiwan, and successful production of antivenom against D. acutus envenoming remains a considerable challenge. Among groups of horses subjected to immunization schedules, few or none subsequently meet the quality required for further scale-up harvesting. The determinants underlying the variable immune responses of horses to D. acutus venom are currently unknown. In this study, we assessed the immunoprofiles of high-potency and low-potency horse plasma against D. acutus venom and explored the conspicuous differences between these two groups. Based on the results of liquid chromatography with tandem mass spectrometry (LC-MS/MS), acutolysin A was identified as the major component of venom proteins that immunoreacted differentially with the two plasma samples. Our findings indicate underlying differences in antivenoms with variable neutralization efficacies, and may provide valuable insights for improvement of antivenom production in the future.
Collapse
|
12
|
Lewin MR, Carter RW, Matteo IA, Samuel SP, Rao S, Fry BG, Bickler PE. Varespladib in the Treatment of Snakebite Envenoming: Development History and Preclinical Evidence Supporting Advancement to Clinical Trials in Patients Bitten by Venomous Snakes. Toxins (Basel) 2022; 14:783. [PMID: 36422958 PMCID: PMC9695340 DOI: 10.3390/toxins14110783] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
The availability of effective, reliably accessible, and affordable treatments for snakebite envenoming is a critical and long unmet medical need. Recently, small, synthetic toxin-specific inhibitors with oral bioavailability used in conjunction with antivenom have been identified as having the potential to greatly improve outcomes after snakebite. Varespladib, a small, synthetic molecule that broadly and potently inhibits secreted phospholipase A2 (sPLA2s) venom toxins has renewed interest in this class of inhibitors due to its potential utility in the treatment of snakebite envenoming. The development of varespladib and its oral dosage form, varespladib-methyl, has been accelerated by previous clinical development campaigns to treat non-envenoming conditions related to ulcerative colitis, rheumatoid arthritis, asthma, sepsis, and acute coronary syndrome. To date, twenty-nine clinical studies evaluating the safety, pharmacokinetics (PK), and efficacy of varespladib for non-snakebite envenoming conditions have been completed in more than 4600 human subjects, and the drugs were generally well-tolerated and considered safe for use in humans. Since 2016, more than 30 publications describing the structure, function, and efficacy of varespladib have directly addressed its potential for the treatment of snakebite. This review summarizes preclinical findings and outlines the scientific support, the potential limitations, and the next steps in the development of varespladib's use as a snakebite treatment, which is now in Phase 2 human clinical trials in the United States and India.
Collapse
Affiliation(s)
- Matthew R. Lewin
- Division of Research, Ophirex, Inc., Corte Madera, CA 94925, USA
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
| | | | - Isabel A. Matteo
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
| | | | - Sunita Rao
- Division of Research, Ophirex, Inc., Corte Madera, CA 94925, USA
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Philip E. Bickler
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
- Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Offor BC, Muller B, Piater LA. A Review of the Proteomic Profiling of African Viperidae and Elapidae Snake Venoms and Their Antivenom Neutralisation. Toxins (Basel) 2022; 14:723. [PMID: 36355973 PMCID: PMC9694588 DOI: 10.3390/toxins14110723] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease (NTD) that results from the injection of snake venom of a venomous snake into animals and humans. In Africa (mainly in sub-Saharan Africa), over 100,000 envenomings and over 10,000 deaths per annum from snakebite have been reported. Difficulties in snakebite prevention and antivenom treatment are believed to result from a lack of epidemiological data and underestimated figures on snakebite envenoming-related morbidity and mortality. There are species- and genus-specific variations associated with snake venoms in Africa and across the globe. These variations contribute massively to diverse differences in venom toxicity and pathogenicity that can undermine the efficacy of adopted antivenom therapies used in the treatment of snakebite envenoming. There is a need to profile all snake venom proteins of medically important venomous snakes endemic to Africa. This is anticipated to help in the development of safer and more effective antivenoms for the treatment of snakebite envenoming within the continent. In this review, the proteomes of 34 snake venoms from the most medically important snakes in Africa, namely the Viperidae and Elipdae, were extracted from the literature. The toxin families were grouped into dominant, secondary, minor, and others based on the abundance of the protein families in the venom proteomes. The Viperidae venom proteome was dominated by snake venom metalloproteinases (SVMPs-41%), snake venom serine proteases (SVSPs-16%), and phospholipase A2 (PLA2-17%) protein families, while three-finger toxins (3FTxs-66%) and PLA2s (16%) dominated those of the Elapidae. We further review the neutralisation of these snake venoms by selected antivenoms widely used within the African continent. The profiling of African snake venom proteomes will aid in the development of effective antivenom against snakebite envenoming and, additionally, could possibly reveal therapeutic applications of snake venom proteins.
Collapse
Affiliation(s)
- Benedict C. Offor
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| | - Beric Muller
- South Africa Venom Suppliers CC, Louis Trichardt 0920, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
14
|
Identification of Daboia siamensis venome using integrated multi-omics data. Sci Rep 2022; 12:13140. [PMID: 35907887 PMCID: PMC9338987 DOI: 10.1038/s41598-022-17300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Snakebite, classified by World Health Organization as a neglected tropical disease, causes more than 100,000 deaths and 2 million injuries per year. Currently, available antivenoms do not bind with strong specificity to target toxins, which means that severe complications can still occur despite treatment. Moreover, the cost of antivenom is expensive. Knowledge of venom compositions is fundamental for producing a specific antivenom that has high effectiveness, low side effects, and ease of manufacture. With advances in mass spectrometry techniques, venom proteomes can now be analyzed in great depth at high efficiency. However, these techniques require genomic and transcriptomic data for interpreting mass spectrometry data. This study aims to establish and incorporate genomics, transcriptomics, and proteomics data to study venomics of a venomous snake, Daboia siamensis. Multiple proteins that have not been reported as venom components of this snake such as hyaluronidase-1, phospholipase B, and waprin were discovered. Thus, multi-omics data are advantageous for venomics studies. These findings will be valuable not only for antivenom production but also for the development of novel therapeutics.
Collapse
|
15
|
Prediction of Compartment Syndrome after Protobothrops mucrosquamatus Snakebite by Diastolic Retrograde Arterial Flow: A Case Report. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58080996. [PMID: 35893111 PMCID: PMC9330921 DOI: 10.3390/medicina58080996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022]
Abstract
Post-snakebite compartment syndrome (PSCS) is an uncommon but dangerous condition. Compartment syndrome-like symptoms after snakebite by Protobothrops mucrosquamatus (P. mucrosquamatus) are not effective in guiding fasciotomy. Objective evaluation of intracompartmental pressure measurements in patients with suspected PSCS is recommended. However, there is a lack of consensus regarding PSCS and indications for surgical intervention, including the threshold value of chamber pressure. In addition, intracompartmental pressure measurements may not be readily available in all emergency service settings. Measuring intracompartmental pressure in all snakebite patients for early diagnosis of PSCS is impractical. Therefore, identifying risk factors, continuous real-time monitoring tools, and predictive factors for PSCS are important. Sonography has proved useful in identifying the location and extension of edema after a snakebite. In this study, we attempted to use point-of-care ultrasound to manage PSCS in real-time. Here, we describe a rare case of snakebite from P. mucrosquamatus. PSCS was considered as diastolic retrograde arterial flow (DRAF) was noted in the affected limb with a cobblestone-like appearance in the subcutaneous area, indicating that the target artery was compressed. The DRAF sign requires physicians to aggressively administer antivenom to salvage the limb. The patient was administered 31 vials of P. mucrosquamatus antivenom, and fasciotomy was not performed. DRAF is an early sign of the prediction of PSCS.
Collapse
|
16
|
Abstract
The deleterious consequences of snake envenomation are due to the extreme protein complexity of snake venoms. Therefore, the identification of their components is crucial for understanding the clinical manifestations of envenomation pathophysiology and for the development of effective antivenoms. In addition, snake venoms are considered as libraries of bioactive molecules that can be used to develop innovative drugs. Numerous separation and analytical techniques are combined to study snake venom composition including chromatographic techniques such as size exclusion and RP-HPLC and electrophoretic techniques. Herein, we present in detail these existing techniques and their applications in snake venom research. In the first part, we discuss the different possible technical combinations that could be used to isolate and purify SV proteins using what is known as bioassay-guided fractionation. In the second part, we describe four different proteomic strategies that could be applied for venomics studies to evaluate whole venom composition, including the mostly used technique: RP-HPLC. Eventually, we show that to date, there is no standard technique used for the separation of all snake venoms. Thus, different combinations might be developed, taking into consideration the main objective of the study, the available resources, and the properties of the target molecules to be isolated.
Collapse
|
17
|
Menzies SK, Clare RH, Xie C, Westhorpe A, Hall SR, Edge RJ, Alsolaiss J, Crittenden E, Marriott AE, Harrison RA, Kool J, Casewell NR. In vitro and in vivo preclinical venom inhibition assays identify metalloproteinase inhibiting drugs as potential future treatments for snakebite envenoming by Dispholidus typus. Toxicon X 2022; 14:100118. [PMID: 35321116 PMCID: PMC8935517 DOI: 10.1016/j.toxcx.2022.100118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Snakebite envenoming affects more than 250,000 people annually in sub-Saharan Africa. Envenoming by Dispholidus typus (boomslang) results in venom-induced consumption coagulopathy (VICC), whereby highly abundant prothrombin-activating snake venom metalloproteinases (SVMPs) consume clotting factors and deplete fibrinogen. The only available treatment for D. typus envenoming is the monovalent SAIMR Boomslang antivenom. Treatment options are urgently required because this antivenom is often difficult to source and, at US$6000/vial, typically unaffordable for most snakebite patients. We therefore investigated the in vitro and in vivo preclinical efficacy of four SVMP inhibitors to neutralise the effects of D. typus venom; the matrix metalloproteinase inhibitors marimastat and prinomastat, and the metal chelators dimercaprol and DMPS. The venom of D. typus exhibited an SVMP-driven procoagulant phenotype in vitro. Marimastat and prinomastat demonstrated equipotent inhibition of the SVMP-mediated procoagulant activity of the venom in vitro, whereas dimercaprol and DMPS showed considerably lower potency. However, when tested in preclinical murine models of envenoming using mixed sex CD1 mice, DMPS and marimastat demonstrated partial protection against venom lethality, demonstrated by prolonged survival times of experimental animals, whereas dimercaprol and prinomastat failed to confer any protection at the doses tested. The preclinical results presented here demonstrate that DMPS and marimastat show potential as novel small molecule-based therapeutics for D. typus snakebite envenoming. These two drugs have been previously shown to be effective against Echis ocellatus VICC in preclinical models, and thus we conclude that marimastat and DMPS should be further explored as potentially valuable early intervention therapeutics to broadly treat VICC following snakebite envenoming in sub-Saharan Africa.
Collapse
Affiliation(s)
- Stefanie K. Menzies
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Rachel H. Clare
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Chunfang Xie
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Adam Westhorpe
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Steven R. Hall
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Rebecca J. Edge
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Jaffer Alsolaiss
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Edouard Crittenden
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Amy E. Marriott
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Robert A. Harrison
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| |
Collapse
|
18
|
Varespladib (LY315920) rescued mice from fatal neurotoxicity caused by venoms of five major Asiatic kraits (Bungarus spp.) in an experimental envenoming and rescue model. Acta Trop 2022; 227:106289. [PMID: 34929179 DOI: 10.1016/j.actatropica.2021.106289] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022]
Abstract
The venoms of Asiatic kraits (Bungarus spp.) contain various neurotoxic phospholipases A2 (beta-bungarotoxins) which can irreversibly damage motor nerve terminals, resulting in rapidly fatal suffocation by respiratory muscle paralysis or oral airway obstruction. Hence, there is a need of adjunct therapy at the pre-hospital stage to prevent or delay the onset of neurotoxicity, so that antivenom can be given within golden hour before the envenoming becomes antivenom-resistant. This study investigated the efficacy of varespladib, a small molecule PLA2 (phospholipase A2) inhibitor, given as a bolus subcutaneously upon the onset of krait venom-induced paralysis in a mouse experimental envenoming and rescue model, where the severity of neurotoxicity was scored and the survival rate was monitored over 24 h. Varespladib at 10 mg/kg effectively alleviated the neurotoxicity of Bungarus sindanus, Bungarus multicinctus and Bungarus fasciatus venoms, and rescued all mice from venom-induced lethality (100% survival). Varespladib at this dose, however, only partially reduced the neurotoxicity of Bungarus caeruleus and Bungarus candidus venoms, while all challenged mice were dead by 23 h (B. caeruleus) and 12 h (B. candidus). An increased dose of varespladib at 20 mg/kg markedly abated the venom neurotoxicity past 8 h of envenoming, and protected the mice from venom lethality (B. caeruleus: 75% survival; B. candidus: 100% survival). The finding is consistent with previous studies which demonstrated varespladib's inhibitory effect against some snake venoms. The findings suggest varespladib could be repurposed as an emergency drug for prevention or rescue (if given early enough) from the acute, neurotoxic envenoming syndromes caused by various major krait species in Asia.
Collapse
|
19
|
Gutierres PG, Pereira DR, Vieira NL, Arantes LF, Silva NJ, Torres-Bonilla KA, Hyslop S, Morais-Zani K, Nogueira RMB, Rowan EG, Floriano RS. Action of Varespladib (LY-315920), a Phospholipase A 2 Inhibitor, on the Enzymatic, Coagulant and Haemorrhagic Activities of Lachesis muta rhombeata (South-American Bushmaster) Venom. Front Pharmacol 2022; 12:812295. [PMID: 35095526 PMCID: PMC8790531 DOI: 10.3389/fphar.2021.812295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023] Open
Abstract
Varespladib (VPL) was primarily developed to treat inflammatory disturbances associated with high levels of serum phospholipase A2 (PLA2). VPL has also demonstrated to be a potential antivenom support agent to prevent PLA2-dependent effects produced by snake venoms. In this study, we examined the action of VPL on the coagulant, haemorrhagic and enzymatic activities of Lachesis muta rhombeata (South-American bushmaster) venom. Conventional colorimetric enzymatic assays were performed for PLA2, caseinolytic and esterasic activities; in vitro coagulant activities for prothrombin time (PT) and activated partial thromboplastin time (aPTT) were performed in rat citrated plasma through a quick timer coagulometer, whereas the dimensions of haemorrhagic haloes obtained after i.d. injections of venom in Wistar rats were determined using ImageJ software. Venom (1 mg/ml) exhibited accentuated enzymatic activities for proteases and PLA2in vitro, with VPL abolishing the PLA2 activity from 0.01 mM; VPL did not affect caseinolytic and esterasic activities at any tested concentrations (0.001–1 mM). In rat citrated plasma in vitro, VPL (1 mM) alone efficiently prevented the venom (1 mg/ml)-induced procoagulant disorder associated to extrinsic (PT) pathway, whereas its association with a commercial antivenom successfully prevented changes in both intrinsic (aPTT) and extrinsic (PT) pathways; commercial antivenom by itself failed to avoid the procoagulant disorders by this venom. Venom (0.5 mg/kg)-induced hemorrhagic activity was slightly reduced by VPL (1 mM) alone or combined with antivenom (antivenom:venom ratio 1:3 ‘v/w’) in rats, with antivenom alone producing no protective action on this parameter. In conclusion, VPL does not inhibit other major enzymatic groups of L. m. rhombeata venom, with its high PLA2 antagonize activity efficaciously preventing the venom-induced coagulation disturbances.
Collapse
Affiliation(s)
- Pamella G Gutierres
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Diego R Pereira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Nataly L Vieira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Lilian F Arantes
- Graduate Program in Zootechnics, Rural Federal University of Pernambuco, Recife, Brazil
| | - Nelson J Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | - Kristian A Torres-Bonilla
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Stephen Hyslop
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | - Rosa M B Nogueira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| |
Collapse
|
20
|
In vivo treatment with varespladib, a phospholipase A 2 inhibitor, prevents the peripheral neurotoxicity and systemic disorders induced by Micrurus corallinus (coral snake) venom in rats. Toxicol Lett 2021; 356:54-63. [PMID: 34774704 DOI: 10.1016/j.toxlet.2021.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022]
Abstract
In this study, we investigated the action of varespladib (VPL) alone or in combination with a coral snake antivenom (CAV) on the local and systemic effects induced by Micrurus corallinus venom in rats. Adult male Wistar rats were exposed to venom (1.5 mg/kg - i.m.) and immediately treated with CAV (antivenom:venom ratio 1:1.5 'v/w' - i.p.), VPL (0.5 mg/kg - i.p.), or both of these treatments. The animals were monitored for 120 min and then anesthetized to collect blood samples used for haematological and serum biochemical analysis; after euthanasia, skeletal muscle, renal and hepatic tissue samples were collected for histopathological analysis. M. corallinus venom caused local oedema without subcutaneous haemorrhage or apparent necrosis formation, although there was accentuated muscle morphological damage; none of the treatments prevented oedema formation but the combination of CAV and VPL reduced venom-induced myonecrosis. Venom caused neuromuscular paralysis and respiratory impairment in approximately 60 min following envenomation; CAV alone did not prevent the neurotoxic action, whereas VPL alone prevented neurotoxic symptoms developing as did the combination of CAV and VPL. Venom induced significant increase of serum CK and AST release, mostly due to local and systemic myotoxicity, which was partially prevented by the combination of CAV and VPL. The release of hepatotoxic serum biomarkers (LDH and ALP) induced by M. corallinus venom was not prevented by CAV and VPL when individually administered; their combination effectively prevented ALP release. The venom-induced nephrotoxicity (increase in serum creatinine concentration) was prevented by all the treatments. VPL alone or in combination with CAV significantly prevented the venom-induced lymphocytosis. In conclusion, VPL shows to be effective at preventing the neurotoxic, nephrotoxic, and inflammatory activities of M. corallinus venom. In addition, VPL acts synergistically with antivenom to prevent a number of systemic effects caused by M. corallinus venom.
Collapse
|
21
|
Patra A, Kalita B, Khadilkar MV, Salvi NC, Shelke PV, Mukherjee AK. Assessment of quality and pre-clinical efficacy of a newly developed polyvalent antivenom against the medically important snakes of Sri Lanka. Sci Rep 2021; 11:18238. [PMID: 34521877 PMCID: PMC8440654 DOI: 10.1038/s41598-021-97501-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 07/06/2021] [Indexed: 02/08/2023] Open
Abstract
Snake envenomation is a severe problem in Sri Lanka (SL) and Indian polyvalent antivenom (PAV) is mostly used for treating snakebite albeit due to geographical variation in venom composition, Indian PAV shows poor efficacy in neutralizing the lethality and toxicity of venom from the same species of snakes in SL. Therefore, the quality and in vivo venom neutralization potency of a country-specific PAV produced against the venom of the five most medically important snakes of SL (Daboia russelii, Echis carinatus, Hypnale hypnale, Naja naja, Bungarus caeruleus) was assessed. LC-MS/MS analysis of two batches of PAV showed the presence of 88.7-97.2% IgG and traces of other plasma proteins. The tested PAVs contained minor amounts of undigested IgG and F(ab')2 aggregates, showed complement activation, were devoid of IgE, endotoxin, and content of preservative was below the threshold level. Immunological cross-reactivity and in vitro neutralization of enzymatic activities, pharmacological properties demonstrated superior efficacy of SL PAV compared to Indian PAV against SL snake venoms. The in vivo neutralization study showed that the tested PAVs are potent to neutralize the lethality and venom-induced toxicity of SL snake venoms. Therefore, our study suggests that introduction of SL-specific PAV will improve snakebite management in SL.
Collapse
Affiliation(s)
- Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Science, Tezpur University, Tezpur, Assam, 784028, India
| | - Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Science, Tezpur University, Tezpur, Assam, 784028, India
| | - Milind V Khadilkar
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, Maharashtra, 410504, India
| | - Nitin C Salvi
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, Maharashtra, 410504, India
| | - Pravin V Shelke
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, Maharashtra, 410504, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Science, Tezpur University, Tezpur, Assam, 784028, India.
- Institute of Advanced Study in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati, Assam, 781035, India.
| |
Collapse
|
22
|
Kazandjian TD, Arrahman A, Still KBM, Somsen GW, Vonk FJ, Casewell NR, Wilkinson MC, Kool J. Anticoagulant Activity of Naja nigricollis Venom Is Mediated by Phospholipase A2 Toxins and Inhibited by Varespladib. Toxins (Basel) 2021; 13:toxins13050302. [PMID: 33922825 PMCID: PMC8145175 DOI: 10.3390/toxins13050302] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/03/2022] Open
Abstract
Bites from elapid snakes typically result in neurotoxic symptoms in snakebite victims. Neurotoxins are, therefore, often the focus of research relating to understanding the pathogenesis of elapid bites. However, recent evidence suggests that some elapid snake venoms contain anticoagulant toxins which may help neurotoxic components spread more rapidly. This study examines the effects of venom from the West African black-necked spitting cobra (Naja nigricollis) on blood coagulation and identifies potential coagulopathic toxins. An integrated RPLC-MS methodology, coupled with nanofractionation, was first used to separate venom components, followed by MS, proteomics and coagulopathic bioassays. Coagulation assays were performed on both crude and nanofractionated N. nigricollis venom toxins as well as PLA2s and 3FTx purified from the venom. Assays were then repeated with the addition of either the phospholipase A2 inhibitor varespladib or the snake venom metalloproteinase inhibitor marimastat to assess whether either toxin inhibitor is capable of neutralizing coagulopathic venom activity. Subsequent proteomic analysis was performed on nanofractionated bioactive venom toxins using tryptic digestion followed by nanoLC-MS/MS measurements, which were then identified using Swiss-Prot and species-specific database searches. Varespladib, but not marimastat, was found to significantly reduce the anticoagulant activity of N. nigricollis venom and MS and proteomics analyses confirmed that the anticoagulant venom components mostly consisted of PLA2 proteins. We, therefore, conclude that PLA2s are the most likely candidates responsible for anticoagulant effects stimulated by N. nigricollis venom.
Collapse
Affiliation(s)
- Taline D. Kazandjian
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (T.D.K.); (N.R.C.)
| | - Arif Arrahman
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
- Faculty of Pharmacy, Kampus Baru UI, Universitas Indonesia, Depok 16424, Indonesia
| | - Kristina B. M. Still
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
| | - Govert W. Somsen
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
| | - Freek J. Vonk
- Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, The Netherlands;
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (T.D.K.); (N.R.C.)
| | - Mark C. Wilkinson
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (T.D.K.); (N.R.C.)
- Correspondence: (M.C.W.); (J.K.)
| | - Jeroen Kool
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
- Correspondence: (M.C.W.); (J.K.)
| |
Collapse
|
23
|
Salvador GHM, Borges RJ, Lomonte B, Lewin MR, Fontes MRM. The synthetic varespladib molecule is a multi-functional inhibitor for PLA 2 and PLA 2-like ophidic toxins. Biochim Biophys Acta Gen Subj 2021; 1865:129913. [PMID: 33865953 DOI: 10.1016/j.bbagen.2021.129913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The treatment for snakebites is early administration of antivenom, which can be highly effective in inhibiting the systemic effects of snake venoms, but is less effective in the treatment of extra-circulatory and local effects. To complement standard-of-care treatments such as antibody-based antivenoms, natural and synthetic small molecules have been proposed for the inhibition of key venom components such as phospholipase A2 (PLA2) and PLA2-like toxins. Varespladib (compound LY315920) is a synthetic molecule developed and clinically tested aiming to block inflammatory cascades of several diseases associated with high PLA2s. Recent studies have demonstrated this molecule is able to potently inhibit snake venom catalytic PLA2 and PLA2-like toxins. METHODS In vivo and in vitro techniques were used to evaluate the inhibitory effect of varespladib against MjTX-I. X-ray crystallography was used to reveal details of the interaction between these molecules. A new methodology that combines crystallography, mass spectroscopy and phylogenetic data was used to review its primary sequence. RESULTS Varespladib was able to inhibit the myotoxic and cytotoxic effects of MjTX-I. Structural analysis revealed a particular inhibitory mechanism of MjTX-I when compared to other PLA2-like myotoxin, presenting an oligomeric-independent function. CONCLUSION Results suggest the effectiveness of varespladib for the inhibition of MjTX-I, in similarity with other PLA2 and PLA2-like toxins. GENERAL SIGNIFICANCE Varespladib appears to be a promissory molecule in the treatment of local effects led by PLA2 and PLA2-like toxins (oligomeric dependent and independent), indicating that this is a multifunctional or broadly specific inhibitor for different toxins within this superfamily.
Collapse
Affiliation(s)
- Guilherme H M Salvador
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Rafael J Borges
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Matthew R Lewin
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|