1
|
Dai L, Xie Z, Ai T, Jiao Y, Lian X, Long A, Zhang J, Yang G, Hong D. Zinc finger transcription factors BnaSTOP2s regulate sulfur metabolism and confer Sclerotinia sclerotiorum resistance in Brassica napus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:101-116. [PMID: 39503196 DOI: 10.1111/jipb.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Rapeseed (Brassica napus L.) exhibits high-sulfur requirements to achieve optimal growth, development, and pathogen resistance. Despite the importance of sulfur, the mechanisms regulating its metabolism and disease resistance are not fully understood. In this study, we found that the zinc finger transcription factors BnaSTOP2s play a pivotal role in sulfur metabolism and Sclerotinia sclerotiorum resistance. Our findings indicate that BnaSTOP2s are involved in sulfur metabolism, as evidenced by extensive protein interaction screening. BnaSTOP2s knockout reduced the content of essential sulfur-containing metabolites, including glucosinolate and glutathione, which is consistent with the significantly lowered transcriptional levels of BnaMYB28s and BnaGTR2s, key factors involved in glucosinolate synthesis and transportation, respectively. Comprehensive RNA-seq analysis revealed the substantial effect of BnaSTOP2s on sulfur metabolism from roots to siliques, which serve as pivotal sources and sinks for sulfur metabolism, respectively. Furthermore, we found that leaf lesion size significantly decreased and increased in the BnaSTOP2-OE and Bnastop2 mutants, respectively, compared with the wild-type during S. sclerotiorum infection, suggesting a vital role of BnaSTOP2s in plant defense response. In conclusion, BnaSTOP2s act as global regulators of sulfur metabolism and confer resistance to S. sclerotiorum infection in B. napus. Thus, they have potential implications for improving crop resilience.
Collapse
Affiliation(s)
- Lihong Dai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaoqi Xie
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, China
| | - Tianxu Ai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyi Lian
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Angchen Long
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinyun Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572024, China
| |
Collapse
|
2
|
Martínez-Esteso MJ, Morante-Carriel J, Samper-Herrero A, Martínez-Márquez A, Sellés-Marchart S, Nájera H, Bru-Martínez R. Proteomics: An Essential Tool to Study Plant-Specialized Metabolism. Biomolecules 2024; 14:1539. [PMID: 39766246 PMCID: PMC11674799 DOI: 10.3390/biom14121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Plants are a valuable source of specialized metabolites that provide a plethora of therapeutic applications. They are natural defenses that plants use to adapt and respond to their changing environment. Decoding their biosynthetic pathways and understanding how specialized plant metabolites (SPMs) respond to biotic or abiotic stress will provide vital knowledge for plant biology research and its application for the future sustainable production of many SPMs of interest. Here, we focus on the proteomic approaches and strategies that help with the study of plant-specialized metabolism, including the: (i) discovery of key enzymes and the clarification of their biosynthetic pathways; (ii) study of the interconnection of both primary (providers of carbon and energy for SPM production) and specialized (secondary) metabolism; (iii) study of plant responses to biotic and abiotic stress; (iv) study of the regulatory mechanisms that direct their biosynthetic pathways. Proteomics, as exemplified in this review by the many studies performed to date, is a powerful tool that forms part of omics-driven research. The proteomes analysis provides an additional unique level of information, which is absent from any other omics studies. Thus, an integrative analysis, considered versus a single omics analysis, moves us more closely toward a closer interpretation of real cellular processes. Finally, this work highlights advanced proteomic technologies with immediate applications in the field.
Collapse
Affiliation(s)
- María José Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Jaime Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Plant Biotechnology Group, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Av. Quito km 1 1/2 vía a Santo Domingo de los Tsachilas, Quevedo 120501, Ecuador
| | - Antonio Samper-Herrero
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Susana Sellés-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Hugo Nájera
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana–Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Alcaldía Cuajimalpa de Morelos, Mexico City 05348, Mexico;
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
3
|
Singh J, Yadav P, Budhlakoti N, Mishra DC, Bhardwaj NR, Rao M, Sharma P, Gupta NC. Exploration of the Sclerotinia sclerotiorum-Brassica pathosystem: advances and perspectives in omics studies. Mol Biol Rep 2024; 51:1097. [PMID: 39460825 DOI: 10.1007/s11033-024-10043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
The polyphagous phytopathogen Sclerotinia sclerotiorum causing Stem rot disease is a major biotic stress in Brassica, and affects the yield and quality in various crops of agricultural significance. It affects the crop at pre-maturity which causes a reduction in the seed yield and deteriorates the oil quality in rapeseeds and Indian mustard globally. The hemibiotrophic nature and long persistence in the soil as sclerotia have made this pathogen difficult to manage through conventional agronomical practices. Hence, for alternative strategies, it is important to understand the basic aspects of the pathogen and the pathogenesis processes in the host. The current developments in technologies for omics studies including whole-genomes, transcriptomes, proteomes, and metabolomes have deciphered various genes, transcription factors, effectors and their target molecules involved in interaction, disease establishment and pathogen progress in the host tissues. The current review encompasses the studies that were conducted to decipher the Brassica-S. sclerotiorum pathosystem and the molecular factors identified through multi-omics studies for their application in building resistance to Sclerotinia stem rot disease in the susceptible cultivars of oilseed Brassica.
Collapse
Affiliation(s)
- Joshi Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Prashant Yadav
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | | | - Mahesh Rao
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Pankaj Sharma
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India.
- ICAR- National Institute of Biotic Stress Management, Raipur, Chhattisgarh, India.
| | | |
Collapse
|
4
|
Teng Z, Chen C, He Y, Pan S, Liu D, Zhu L, Liang K, Li Y, Huang L. Melatonin confers thermotolerance and antioxidant capacity in Chinese cabbage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108736. [PMID: 38797006 DOI: 10.1016/j.plaphy.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Due to the damaging effect of high temperatures on plant development, global warming is predicted to increase agricultural risks. Chinese cabbage holds considerable importance as a leafy vegetable that is extensively consumed and cultivated worldwide. Its year-round production also encounters severe challenges in the face of high temperatures. In this study, melatonin (MT), a pivotal multifunctional signaling molecule that coordinates responses to diverse environmental stressors was used to mitigate the harmful effects of high temperatures on Chinese cabbage. Through the utilization of growth indices, cytological morphology, physiological and biochemical responses, and RNA-Seq analysis, alongside an examination of the influence of crucial enzymes in the endogenous MT synthesis pathway on the thermotolerance of Chinese cabbage, we revealed that MT pretreatment enhanced photosynthetic activity, maintained signaling pathways associated with endoplasmic reticulum protein processing, and preserved circadian rhythm in Chinese cabbage under high temperatures. Furthermore, pretreatment with MT resulted in increased levels of soluble sugar, vitamin C, proteins, and antioxidant enzyme activity, along with decreased levels of malondialdehyde, nitrate, flavonoids, and bitter glucosinolates, ultimately enhancing the capacity of the organism to mitigate oxidative stress. The knockdown of the tryptophan decarboxylase gene, which encodes a key enzyme responsible for MT biosynthesis, resulted in a significant decline in the ability of transgenic Chinese cabbage to alleviate oxidative damage under high temperatures, further indicating an important role of MT in establishing the thermotolerance. Taken together, these results provide a mechanism for MT to improve the antioxidant capacity of Chinese cabbage under high temperatures and suggest beneficial implications for the management of other plants subjected to global warming.
Collapse
Affiliation(s)
- Zhiyan Teng
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Caizhi Chen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Yuanrong He
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Shihui Pan
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Dandan Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Luyu Zhu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Kexin Liang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Yufei Li
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China.
| |
Collapse
|
5
|
Hernández-Ruiz J, Giraldo-Acosta M, El Mihyaoui A, Cano A, Arnao MB. Melatonin as a Possible Natural Anti-Viral Compound in Plant Biocontrol. PLANTS (BASEL, SWITZERLAND) 2023; 12:781. [PMID: 36840129 PMCID: PMC9961163 DOI: 10.3390/plants12040781] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Melatonin is a multifunctional and ubiquitous molecule. In animals, melatonin is a hormone that is involved in a wide range of physiological activities and is also an excellent antioxidant. In plants, it has been considered a master regulator of multiple physiological processes as well as of hormonal homeostasis. Likewise, it is known for its role as a protective biomolecule and activator of tolerance and resistance against biotic and abiotic stress in plants. Since infections by pathogens such as bacteria, fungi and viruses in crops result in large economic losses, interest has been aroused in determining whether melatonin plays a relevant role in plant defense systems against pathogens in general, and against viruses in particular. Currently, several strategies have been applied to combat infection by pathogens, one of them is the use of eco-friendly chemical compounds that induce systemic resistance. Few studies have addressed the use of melatonin as a biocontrol agent for plant diseases caused by viruses. Exogenous melatonin treatments have been used to reduce the incidence of several virus diseases, reducing symptoms, virus titer, and even eradicating the proliferation of viruses such as Tobacco Mosaic Virus, Apple Stem Grooving Virus, Rice Stripe Virus and Alfalfa Mosaic Virus in tomato, apple, rice and eggplant, respectively. The possibilities of using melatonin as a possible natural virus biocontrol agent are discussed.
Collapse
|
6
|
Soth S, Glare TR, Hampton JG, Card SD, Brookes JJ, Narciso JO. You are what you eat: fungal metabolites and host plant affect the susceptibility of diamondback moth to entomopathogenic fungi. PeerJ 2022; 10:e14491. [PMID: 36570000 PMCID: PMC9774005 DOI: 10.7717/peerj.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Background Beauveria are entomopathogenic fungi of a broad range of arthropod pests. Many strains of Beauveria have been developed and marketed as biopesticides. Beauveria species are well-suited as the active ingredient within biopesticides because of their ease of mass production, ability to kill a wide range of pest species, consistency in different conditions, and safety with respect to human health. However, the efficacy of these biopesticides can be variable under field conditions. Two under-researched areas, which may limit the deployment of Beauveria-based biopesticides, are the type and amount of insecticidal compounds produced by these fungi and the influence of diet on the susceptibility of specific insect pests to these entomopathogens. Methods To understand and remedy this weakness, we investigated the effect of insect diet and Beauveria-derived toxins on the susceptibility of diamondback moth larvae to Beauveria infection. Two New Zealand-derived fungal isolates, B. pseudobassiana I12 Damo and B. bassiana CTL20, previously identified with high virulence towards diamondback moth larvae, were selected for this study. Larvae of diamondback moth were fed on four different plant diets, based on different types of Brassicaceae, namely broccoli, cabbage, cauliflower, and radish, before their susceptibility to the two isolates of Beauveria was assessed. A second experiment assessed secondary metabolites produced from three genetically diverse isolates of Beauveria for their virulence towards diamondback moth larvae. Results Diamondback moth larvae fed on broccoli were more susceptible to infection by B. pseudobassiana while larvae fed on radish were more susceptible to infection by B. bassiana. Furthermore, the supernatant from an isolate of B. pseudobassiana resulted in 55% and 65% mortality for half and full-strength culture filtrates, respectively, while the filtrates from two other Beauveria isolates, including a B. bassiana isolate, killed less than 50% of larvae. This study demonstrated different levels of susceptibility of the insects raised on different plant diets and the potential use of metabolites produced by Beauveria isolates in addition to their conidia.
Collapse
Affiliation(s)
- Sereyboth Soth
- Bio-Protection Research Centre, Lincoln University, Christchurch, Canterbury, New Zealand
- Department of Science, Technology and Innovation Training, National Institute of Science, Technology and Innovation, Chak Angre Leu, Mean Chey, Phnom Penh, Cambodia
| | - Travis R. Glare
- Bio-Protection Research Centre, Lincoln University, Christchurch, Canterbury, New Zealand
| | - John G. Hampton
- Bio-Protection Research Centre, Lincoln University, Christchurch, Canterbury, New Zealand
| | - Stuart D. Card
- Grasslands Research Centre, AgResearch Limited, Palmerston North, Manawatū-Whanganui, New Zealand
| | - Jenny J. Brookes
- Bio-Protection Research Centre, Lincoln University, Christchurch, Canterbury, New Zealand
| | - Josefina O. Narciso
- Bio-Protection Research Centre, Lincoln University, Christchurch, Canterbury, New Zealand
| |
Collapse
|
7
|
Arnao MB, Cano A, Hernández-Ruiz J. Phytomelatonin: an unexpected molecule with amazing performances in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5779-5800. [PMID: 35029657 DOI: 10.1093/jxb/erac009] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 05/14/2023]
Abstract
Phytomelatonin, a multifunctional molecule that has been found to be present in all plants examined to date, has an important role in plants as a modulatory agent (a biostimulator) that improves plant tolerance to both biotic and abiotic stress. We present a review of phytomelatonin that considers its roles in plant metabolism and in particular its interactions with plant hormone network. In the primary metabolism of plants, melatonin improves the rate and efficiency of photosynthesis, as well related factors such as stomatal conductance, intercellular CO2, and Rubisco activity. It has also been shown to down-regulate some senescence transcription factors. Melatonin up-regulates many enzyme transcripts related to carbohydrates (including sucrose and starch), amino acids, and lipid metabolism, optimizing N, P, and S uptake. With respect to the secondary metabolism, clear increases in polyphenol, glucosinolate, terpenoid, and alkaloid contents have been described in numerous melatonin-treated plants. Generally, the most important genes of these secondary biosynthesis pathways have been found to be up-regulated by melatonin. The great regulatory capacity of melatonin is a result of its control of the redox and plant hormone networks. Melatonin acts as a plant master regulator, up-/down-regulating different plant hormone levels and signalling, and is a key player in redox homeostasis. It has the capacity to counteract diverse critical situations such as pathogen infections and abiotic stresses, and provide plants with varying degrees of tolerance. We propose possible future applications of melatonin for crop improvement and post-harvest product preservation.
Collapse
Affiliation(s)
- Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Antonio Cano
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| |
Collapse
|
8
|
Shamloo-Dashtpagerdi R, Lindlöf A, Tahmasebi S. Evidence that miR168a contributes to salinity tolerance of Brassica rapa L. via mediating melatonin biosynthesis. PHYSIOLOGIA PLANTARUM 2022; 174:e13790. [PMID: 36169653 DOI: 10.1111/ppl.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Melatonin is a master regulator of diverse biological processes, including plant's abiotic stress responses and tolerance. Despite the extensive information on the role of melatonin in response to abiotic stress, how plants regulate endogenous melatonin content under stressful conditions remains largely unknown. In this study, we computationally mined Expressed Sequence Tag (EST) libraries of salinity-exposed Chinese cabbage (Brassica rapa) to identify the most reliable differentially expressed miRNA and its target gene(s). In light of these analyses, we found that miR168a potentially targets a key melatonin biosynthesis gene, namely O-METHYLTRANSFERASE 1 (OMT1). Accordingly, molecular and physiochemical evaluations were performed in a separate salinity experiment using contrasting B. rapa genotypes. Then, the association between B. rapa salinity tolerance and changes in measured molecular and physiochemical characteristics was determined. Results indicated that the expression profiles of miR168a and OMT1 significantly differed between B. rapa genotypes. Moreover, the expression profiles of miR168a and OMT1 significantly correlated with more melatonin content, robust antioxidant activities, and better ion homeostasis during salinity stress. Our results suggest that miR168a plausibly mediates melatonin biosynthesis, mainly through the OMT1 gene, under salinity conditions and thereby contributes to the salinity tolerance of B. rapa. To our knowledge, this is the first report on the role of miR168a and OMT1 in B. rapa salinity response.
Collapse
Affiliation(s)
| | | | - Sirous Tahmasebi
- Seed and Plant Improvement Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
| |
Collapse
|
9
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Interactions of fungi with non-isothiocyanate products of the plant glucosinolate pathway: A review on product formation, antifungal activity, mode of action and biotransformation. PHYTOCHEMISTRY 2022; 200:113245. [PMID: 35623473 DOI: 10.1016/j.phytochem.2022.113245] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 05/05/2023]
Abstract
The glucosinolate pathway, which is present in the order Brassicales, is one of the most researched defensive natural product biosynthesis pathways. Its core molecules, the glucosinolates are broken down upon pathogen challenge or tissue damage to yield an array of natural products that may help plants defend against the stressor. Though the most widely known glucosinolate decomposition products are the antimicrobial isothiocyanates, there is a wide range of other volatile and non-volatile natural products that arise from this biosynthetic pathway. This review summarizes our current knowledge on the interaction of these much less examined, non-isothiocyanate products with fungi. It deals with compounds including (1) glucosinolates and their biosynthesis precursors; (2) glucosinolate-derived nitriles (e.g. derivatives of 1H-indole-3-acetonitrile), thiocyanates, epithionitriles and oxazolidine-2-thiones; (3) putative isothiocyanate downstream products such as raphanusamic acid, 1H-indole-3-methanol (= indole-3-carbinol) and its oligomers, 1H-indol-3-ylmethanamine and ascorbigen; (4) 1H-indole-3-acetonitrile downstream products such as 1H-indole-3-carbaldehyde (indole-3-carboxaldehyde), 1H-indole-3-carboxylic acid and their derivatives; and (5) indole phytoalexins including brassinin, cyclobrassinin and brassilexin. Herein, a literature review on the following aspects is provided: their direct antifungal activity and the proposed mechanisms of antifungal action, increased biosynthesis after fungal challenge, as well as data on their biotransformation/detoxification by fungi, including but not limited to fungal myrosinase activity.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032, Debrecen, Hungary.
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Healthcare Industry Institute, University of Debrecen, 4032, Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| |
Collapse
|
10
|
Cao Y, Zang Y, Wu S, Li T, Li J, Xu K, Hong SB, Wu B, Zhang W, Zheng W. Melatonin affects cuticular wax profile in rabbiteye blueberry (Vaccinium ashei) during fruit development. Food Chem 2022; 384:132381. [DOI: 10.1016/j.foodchem.2022.132381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/12/2022] [Accepted: 02/05/2022] [Indexed: 11/27/2022]
|
11
|
Teng Z, Zheng W, Jiang S, Hong SB, Zhu Z, Zang Y. Role of melatonin in promoting plant growth by regulating carbon assimilation and ATP accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111276. [PMID: 35487649 DOI: 10.1016/j.plantsci.2022.111276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 03/27/2022] [Indexed: 05/27/2023]
Abstract
Melatonin (MT) is a phytohormone important in mediating diverse plant growth processes. In this study, we performed transcriptomic, qRT-PCR, physiological and biochemical analyses of Brassica rapa seedlings in order to understand how MT promotes plant growth. The results showed that exogenous MT increased the rate of cyclic electron flow around photosystem (PS) I, fluorescence quantum yield, and electron transport efficiency between PSII and PSI to promote the vegetative growth of B. rapa seedlings without affecting oxidative stress level, as compared to control. However, MT treatment significantly reduced photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) by 2.25-, 1.23- and 3.50-fold at 0.05 level, respectively. This occurred in parallel with the down-regulation of the genes for carbon fixation in photosynthetic organisms in a KEGG pathway enrichment. More accelerated plant growth despite the reduced photosynthesis rate and the enhanced electron transport rate suggested that NADPH and adenosine triphosphate (ATP) were preferentially diverted into other anabolic reactions than the Calvin cycle upon MT application. MT treatment increased ATP level and facilitated carbon assimilation into primary metabolism that led to a significant enhancement of soluble protein, sucrose, and fructose, but a significant decrease in glucose content. MT-induced carbon assimilation into primary metabolism was driven by up-regulation of the genes for glutathione metabolism, Krebs cycle, ribosome, and DNA replication in a KEGG pathway enrichment, as well as down-regulation of the genes for secondary metabolites. Our results provide an insight into MT-mediated metabolic adjustments triggered by coordinate changes in a wide range of gene expression profiles to help improve the plant functionality.
Collapse
Affiliation(s)
- Zhiyan Teng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China
| | - Weiwei Zheng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China
| | - Shufang Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX 77058-1098, USA
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China
| | - Yunxiang Zang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
12
|
Wu Y, Tao Y, Jin J, Tong S, Li S, Zhang L. Multi-omics analyses of the mechanism for the formation of soy sauce-like and soybean flavor in Bacillus subtilis BJ3-2. BMC Microbiol 2022; 22:142. [PMID: 35596127 PMCID: PMC9121592 DOI: 10.1186/s12866-022-02555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
Although soy sauce-like flavor and soybean flavor are two key contributors to the flavor of fermented foods, the key compounds of soy sauce-like flavor and soybean flavor and production mechanisms are still poorly understood and need further investigation. In the present study, we found that the Bacillus subtilis (B. subtilis) BJ3-2 strain has various metabolic properties at different temperatures, and the strain cultured at 37℃ increased the soybean flavor (a special flavor of ammonia-containing smelly distinct from natto) compared with culturing at 45℃ and 53℃. Interestingly, the strain cultured at 45℃ and 53℃ had a higher soy sauce-like flavor than that in 37℃. Moreover, a comparative transcriptome analysis of the strain cultured at 37℃, 45℃, and 53℃ showed transcriptional changes related to secondary metabolites and ABC transporters, which is critical for the amino acid transport and metabolism in B. subtilis. Meanwhile, proteomics and metabolomics profiling showed a marked change in amino acids transport and metabolism. In addition, the metabolic analysis revealed a significant metabolic difference (including sulfur metabolism, glutathione metabolism, nicotinate and nicotinamide metabolism, cysteine and methionine metabolism, and pyrimidine metabolism) in the strain cultured at 45℃ and 53℃ compared to 37℃. To sum, this study used the multi-omics profiling tool to investigate the fermentative strains B. subtilis BJ3-2, thus providing a deeper insight into the mechanism of the formation of soy sauce-like flavor and soybean flavor compounds.
Collapse
Affiliation(s)
- Yongjun Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025 Guizhou Province China
| | - Yi Tao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025 Guizhou Province China
| | - Jing Jin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025 Guizhou Province China
| | - Shuoqiu Tong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025 Guizhou Province China
| | - Sheng Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025 Guizhou Province China
| | - Lincheng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025 Guizhou Province China
| |
Collapse
|
13
|
Gu Q, Xiao Q, Chen Z, Han Y. Crosstalk between Melatonin and Reactive Oxygen Species in Plant Abiotic Stress Responses: An Update. Int J Mol Sci 2022; 23:ijms23105666. [PMID: 35628474 PMCID: PMC9143051 DOI: 10.3390/ijms23105666] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Melatonin acts as a multifunctional molecule that takes part in various physiological processes, especially in the protection against abiotic stresses, such as salinity, drought, heat, cold, heavy metals, etc. These stresses typically elicit reactive oxygen species (ROS) accumulation. Excessive ROS induce oxidative stress and decrease crop growth and productivity. Significant advances in melatonin initiate a complex antioxidant system that modulates ROS homeostasis in plants. Numerous evidences further reveal that melatonin often cooperates with other signaling molecules, such as ROS, nitric oxide (NO), and hydrogen sulfide (H2S). The interaction among melatonin, NO, H2S, and ROS orchestrates the responses to abiotic stresses via signaling networks, thus conferring the plant tolerance. In this review, we summarize the roles of melatonin in establishing redox homeostasis through the antioxidant system and the current progress of complex interactions among melatonin, NO, H2S, and ROS in higher plant responses to abiotic stresses. We further highlight the vital role of respiratory burst oxidase homologs (RBOHs) during these processes. The complicated integration that occurs between ROS and melatonin in plants is also discussed.
Collapse
Affiliation(s)
- Quan Gu
- School of Biological Food and Environment, Hefei University, Hefei 230601, China; (Q.G.); (Q.X.)
| | - Qingqing Xiao
- School of Biological Food and Environment, Hefei University, Hefei 230601, China; (Q.G.); (Q.X.)
| | - Ziping Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Z.C.); (Y.H.)
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Z.C.); (Y.H.)
| |
Collapse
|
14
|
Liu Z, Wang H, Lv J, Luo S, Hu L, Wang J, Li L, Zhang G, Xie J, Yu J. Effects of Plant Hormones, Metal Ions, Salinity, Sugar, and Chemicals Pollution on Glucosinolate Biosynthesis in Cruciferous Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:856442. [PMID: 35574082 PMCID: PMC9096887 DOI: 10.3389/fpls.2022.856442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Cruciferous vegetable crops are grown widely around the world, which supply a multitude of health-related micronutrients, phytochemicals, and antioxidant compounds. Glucosinolates (GSLs) are specialized metabolites found widely in cruciferous vegetables, which are not only related to flavor formation but also have anti-cancer, disease-resistance, and insect-resistance properties. The content and components of GSLs in the Cruciferae are not only related to genotypes and environmental factors but also are influenced by hormones, plant growth regulators, and mineral elements. This review discusses the effects of different exogenous substances on the GSL content and composition, and analyzes the molecular mechanism by which these substances regulate the biosynthesis of GSLs. Based on the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Huiping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
Hernández-Ruiz J, Ruiz-Cano D, Giraldo-Acosta M, Cano A, Arnao MB. Melatonin in Brassicaceae: Role in Postharvest and Interesting Phytochemicals. Molecules 2022; 27:1523. [PMID: 35268624 PMCID: PMC8911641 DOI: 10.3390/molecules27051523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Brassicaceae plants are of great interest for human consumption due to their wide variety and nutritional qualities. Of the more than 4000 species that make up this family, about a hundred varieties of 6-8 genera are extensively cultivated. One of the most interesting aspects is its high content of glucosinolates, which are plant secondary metabolites with widely demonstrated anti-oncogenic properties that make them healthy. The most relevant Brassicaceae studies related to food and melatonin are examined in this paper. The role of melatonin as a beneficial agent in seedling grown mainly in cabbage and rapeseed and in the postharvest preservation of broccoli is especially analyzed. The beneficial effect of melatonin treatments on the organoleptic properties of these commonly consumed vegetables can be of great interest in the agri-food industry. Melatonin application extends the shelf life of fresh-cut broccoli while maintaining optimal visual and nutritional parameters. In addition, an integrated model indicating the role of melatonin on the organoleptic properties, the biosynthesis of glucosinolates and the regulatory action of these health-relevant compounds with anti-oncogenic activity is presented.
Collapse
Affiliation(s)
| | | | | | | | - Marino B. Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (J.H.-R.); (D.R.-C.); (M.G.-A.); (A.C.)
| |
Collapse
|
16
|
Teng Z, Zheng W, Yu Y, Hong SB, Zhu Z, Zang Y. Effects of BrMYC2/3/4 on Plant Development, Glucosinolate Metabolism, and Sclerotinia sclerotiorum Resistance in Transgenic Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:707054. [PMID: 34539701 PMCID: PMC8446384 DOI: 10.3389/fpls.2021.707054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
MYC2/3/4, known as a basic helix-loop-helix (bHLH) transcription factor, directly activate the genes involved in diverse plant development and secondary metabolites biosynthesis. In this study, we identified and cloned five MYC paralogs (BrMYC2/3-1/3-2/4-1/4-2) from Chinese cabbage (Brassica rapa ssp. pekinensis). In-silico analyses for the physicochemical properties suggested that BrMYC2/3-1/3-2/4-2/4-3 are unstable hydrophobic and acidic proteins, while BrMYC4-1 is an unstable hydrophobic and basic protein. BrMYC2/3/4 belong to the bHLH superfamily and are closely related to AthMYC2/3/4 orthologs that mediate the regulation of various secondary metabolites. It was demonstrated that BrMYC2/3/4-GFP fusion protein localized in the nucleus and expression levels of five BrMYC2/3/4 homologous genes all elevated relative to control (Ctrl). When expressed in Arabidopsis under the control of 35S promoter, each of the BrMYC2/3-1/3-2/4-1/4-2 transgenes differentially influenced root and shoot elongation, vegetative phase change, flowering time, plant height and tiller number after flowering, and seed production. Despite the variation of phenotypes between the transgenic lines, all the lines except for BrMYC4-2 exhibited shorter seed length, less seed weight, higher accumulation of glucosinolates (GSs), and resistance to Sclerotinia sclerotiorum than Ctrl. Notably, BrMYC2 overexpression (OE) line significantly reduced the lengths of root and hypocotyl, seed length, and weight, along with faster bolting time and strikingly higher accumulation of total GSs. Accumulation of GSs at the highest levels in the BrMYC2 OE line conferred the highest resistance to S. sclerotiorum. Unlike BrMYC3 OE and BrMYC4 OE , BrMYC2 OE stimulated the growth of plant height after fluorescence. The results of this study point to the BrMYC2 overexpression that may provide a beneficial effect on plant growth and development via plant resistance to the fungal pathogen.
Collapse
Affiliation(s)
- Zhiyan Teng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Weiwei Zheng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Youjian Yu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, United States
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yunxiang Zang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|