1
|
Xie Y, Zou W, Shang Y, Lu W, Li X, Chen Q, Shao R, Ku Y, Lin K. Cognitive and neural abnormalities: working memory deficits in bipolar disorder offspring. Psychol Med 2025; 55:e130. [PMID: 40314170 DOI: 10.1017/s0033291725001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
BACKGROUND Offspring of parents with bipolar disorder (BD offspring) face elevated risks for emotional dysregulation and cognitive deficits, particularly in working memory. This study investigates working memory deficits and their neural correlates in BD offspring. METHODS We assessed 41 BD offspring and 25 age-matched healthy controls (HCs) using a spatial N-back task and task-related functional magnetic resonance imaging (fMRI). RESULTS Compared to HCs, BD offspring exhibit reduced accuracy and lower signal-detection sensitivity (d') on the 1-back task. fMRI reveals hyperactivation in the right intracalcarine cortex/lingual gyrus (ICC/LG) in BD offspring, particularly during the 1-back condition. Psychophysiological interaction (PPI) analyses show reduced connectivity between the right ICC/LG and the left postcentral gyrus in BD offspring as task load increases from 0-back to 1-back. This connectivity positively correlates with 1-back task performance in HCs but not in BD offspring. Additionally, using bilateral dorsolateral prefrontal cortex (DLPFC) as regions of interest, PPI analyses show diminished condition-dependent connectivity between the left DLPFC and the left superior frontal gyrus/paracingulate cortex, and between the right DLPFC and the left postcentral gyrus/precentral gyrus in BD offspring as the task load increases. CONCLUSIONS These findings suggest that BD offspring exhibit working memory deficits and impaired neural connectivity involving both sensory processing and higher-order cognitive systems. Such deficits may emerge at a genetically predisposed stage of bipolar disorder, underscoring the significance of early identification and intervention strategies.
Collapse
Affiliation(s)
- Ye Xie
- School of Psychology, Shenzhen University, Shenzhen, P.R. China
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Wellbeing, Department of Psychology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wenjin Zou
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yuanqi Shang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Wellbeing, Department of Psychology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Weicong Lu
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Xiaoyue Li
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Qi Chen
- School of Psychology, Shenzhen University, Shenzhen, P.R. China
| | - Robin Shao
- State Key Laboratory of Brain and Cognitive Sciences, Department of Psychology, University of Hong Kong, Hong Kong, P.R. China
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Wellbeing, Department of Psychology, Sun Yat-sen University, Guangzhou, P.R. China
- Peng Cheng Laboratory, Shenzhen, P.R. China
| | - Kangguang Lin
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, P.R. China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
- Department of Neurology, Lecong Hospital of Shunde, Foshan, Guangdong, China
| |
Collapse
|
2
|
Boisvert M, Dugré JR, Potvin S. Altered resting-state amplitudes of low-frequency fluctuations in offspring of parents with a diagnosis of bipolar disorder or major depressive disorder. PLoS One 2025; 20:e0316330. [PMID: 39965009 PMCID: PMC11835319 DOI: 10.1371/journal.pone.0316330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/10/2024] [Indexed: 02/20/2025] Open
Abstract
Offspring of parents with bipolar disorder (BD) or major depressive disorder (MDD) are at high biological risk (HR) of these disorders given their significant heritability. Thus, studying neural correlates in youths at HR-MDD and HR-BD appears essential to understand the development of mood disorders before their onset. Resting-state amplitudes of low-frequency fluctuations (ALFF) and fractioned ALFF (fALFF) shows moderate to high test-retest reliability which makes it a great tool to identify biomarkers. However, this avenue is still largely unexplored. Using the Healthy Brain Network biobank, we identified 150 children and adolescents HR-MDD, 50 HR-BD and 150 not at risk of any psychiatric disorder (i.e., the control group). We then examined differences in relative ALFF/fALFF signals during resting-state. At a corrected threshold, participants HR-MDD displayed lower resting-state ALFF signals in the dorsal caudate nucleus compared to the control group. The HR-BD group showed increased fALFF values in the primary motor cortex compared to the control group. Therefore, robust differences were noted in regions that could be linked to important symptoms of mood disorders, namely psychomotor retardation, and agitation. At an uncorrected threshold, differences were noted in the central opercular cortex and the cerebellar. The database is a community-referred cohort and heterogeneous in terms of children's psychiatric diagnosis and symptomatology, which may have altered the results. ALFF and fALFF results for the comparison between both HR groups and the control group overlapped, suggesting good convergence. More studies measuring ALFF/fALFF in HR are needed to replicate these results.
Collapse
Affiliation(s)
- Mélanie Boisvert
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada
- Faculty of Medicine, Department of Psychiatry and Addictology, University of Montreal; Montreal, Canada
| | - Jules R. Dugré
- Centre for Human Brain Health & School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Stéphane Potvin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada
- Faculty of Medicine, Department of Psychiatry and Addictology, University of Montreal; Montreal, Canada
| |
Collapse
|
3
|
Wu J, Lin K, Lu W, Zou W, Li X, Tan Y, Yang J, Zheng D, Liu X, Lam BYH, Xu G, Wang K, McIntyre RS, Wang F, So KF, Wang J. Enhancing Early Diagnosis of Bipolar Disorder in Adolescents Through Multimodal Neuroimaging. Biol Psychiatry 2025; 97:313-322. [PMID: 39069165 DOI: 10.1016/j.biopsych.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/28/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Bipolar disorder (BD), a severe neuropsychiatric condition, often appears during adolescence. Traditional diagnostic methods, which primarily rely on clinical interviews and single-modal magnetic resonance imaging (MRI) techniques, may have limitations in accuracy. This study aimed to improve adolescent BD diagnosis by integrating behavioral assessments with multimodal MRI. We hypothesized that this combination would enhance diagnostic accuracy for at-risk adolescents. METHODS A retrospective cohort of 309 participants, including patients with BD, offspring of patients with BD (with and without subthreshold symptoms), non-BD offspring with subthreshold symptoms, and healthy control participants, was analyzed. Behavioral attributes were integrated with MRI features from T1-weighted, resting-state functional MRI, and diffusion tensor imaging. Three diagnostic models were developed using GLMNET multinomial regression: a clinical diagnosis model based on behavioral attributes, an MRI-based model, and a comprehensive model integrating both datasets. RESULTS The comprehensive model achieved a prediction accuracy of 0.83 (95% CI, 0.72-0.92), significantly higher than the clinical (0.75) and MRI-based (0.65) models. Validation with an external cohort showed high accuracy (0.89, area under the curve = 0.95). Structural equation modeling revealed that clinical diagnosis (β = 0.487, p < .0001), parental BD history (β = -0.380, p < .0001), and global function (β = 0.578, p < .0001) significantly affected brain health, while psychiatric symptoms showed only a marginal influence (β = -0.112, p = .056). CONCLUSIONS This study highlights the value of integrating multimodal MRI with behavioral assessments for early diagnosis in at-risk adolescents. Combining neuroimaging enables more accurate patient subgroup distinctions, facilitating timely interventions and improving health outcomes. Our findings suggest a paradigm shift in BD diagnostics, advocating for incorporating advanced imaging techniques in routine evaluations.
Collapse
Affiliation(s)
- Jinfeng Wu
- Department of Radiology, Songjiang Research Institute, Songjiang Hospital, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangguang Lin
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Weicong Lu
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China
| | - Wenjin Zou
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoyue Li
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China
| | - Yarong Tan
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China
| | - Jingyu Yang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Danhao Zheng
- National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bess Yin-Hung Lam
- Department of Counselling and Psychology, Hong Kong Shue Yan University, Hong Kong, China
| | - Guiyun Xu
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China
| | - Kun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, and Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kwok-Fai So
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Jie Wang
- Department of Radiology, Songjiang Research Institute, Songjiang Hospital, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China.
| |
Collapse
|
4
|
Zhang L, Yan H, Zhang C, Li X, Liang J, Tang C, Wu W, Deng W, Xie G, Guo W. Fronto-Parietal and Language Network Connectivity and Its Association With Gene Expression Profiles in Bipolar Disorder Before and After Treatment. CNS Neurosci Ther 2025; 31:e70236. [PMID: 39953802 PMCID: PMC11829113 DOI: 10.1111/cns.70236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/11/2024] [Accepted: 01/12/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND The resting-state functional connectivity (FC) patterns of the fronto-parietal network (FPN) and language network (LN) underlying bipolar disorder (BD) are obscure. This study aimed to uncover abnormal FC patterns of FPN and LN underlying BD and their evolution following treatment. METHODS Imaging data at rest state and clinical variables were acquired from 82 patients with BD (with 43 finishing the follow-up) and 88 healthy controls (HCs). Seed-based FC analysis was performed, and correlations between FCs and clinical variables were investigated with whole-brain multiple regression analyses. Furthermore, a neuroimaging-transcription spatial association analysis was conducted. RESULTS At baseline, BD patients presented elevated FPN-LN and FPN-prefrontal gyrus FCs, and hyperconnectivity between the LN and bilateral thalamus, right angular gyrus (AG), and right cerebellum. Following 3 months of treatment intervention, there were decreased FCs between the FPN and left superior temporal gyrus (STG), left superior frontal gyrus (SFG), left insula, and bilateral middle temporal gyrus (MTG) (part of LN). Neuroimaging transcription analysis discovered genes correlated with FC alterations in BD. CONCLUSIONS Aberrant FC patterns of FPN and LN might be involved in the neural pathogenetic and therapeutic mechanisms of BD. We also provided potential genetic pathways underlying these functional impairments in BD.
Collapse
Affiliation(s)
- Leyi Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Chunguo Zhang
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Xiaoling Li
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Jiaquan Liang
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Chaohua Tang
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Weibin Wu
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Wen Deng
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Guojun Xie
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Cattarinussi G, Heidari-Foroozan M, Jafary H, Mohammadi E, Sambataro F, Ferro A, Barone Y, Delvecchio G. Resting-state functional magnetic resonance imaging alterations in first-degree relatives of individuals with bipolar disorder: A systematic review. J Affect Disord 2024; 365:321-331. [PMID: 39142577 DOI: 10.1016/j.jad.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Relatives of individuals with bipolar disorder (BD) are at higher risk of developing the disorder. Identifying brain alterations associated with familial vulnerability in BD can help discover endophenotypes, which are quantifiable biological traits more prevalent in unaffected relatives of BD (BD-RELs) than the general population. This review aimed at expanding our knowledge on endophenotypes of BD by providing an overview of resting-state functional magnetic resonance imaging (rs-fMRI) alterations in BD-RELs. METHODS A systematic search of PubMed, Scopus, and Web of Science was performed to identify all available rs-fMRI studies conducted in BD-RELs up to January 2024. A total of 18 studies were selected. Six included BD-RELs with no history of psychiatric disorders and 10 included BD-RELs that presented psychiatric disorders. Two investigations examined rs-fMRI alterations in BD-RELs with and without subthreshold symptoms for BD. RESULTS BD-RELs presented rs-fMRI alterations in the cortico-limbic network, fronto-thalamic-striatal circuit, fronto-occipital network, and, to a lesser extent, in the default mode network. This was true both for BD-RELs with no history of psychopathology and for BD-RELs that presented psychiatric disorders. The direct comparison of rs-fMRI alterations in BD-RELs with and without psychiatric symptoms displayed largely non-overlapping patterns of rs-fMRI abnormalities. LIMITATIONS Small sample sizes and the clinical heterogeneity of BD-RELs limit the generalizability of our findings. CONCLUSIONS The current literature suggests that first-degree BD-RELs exhibit rs-fMRI alterations in brain circuits involved in emotion regulation, cognition, reward processing, and psychosis susceptibility. Future studies are needed to validate these findings and to explore their potential as biomarkers for early detection and intervention.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Mahsa Heidari-Foroozan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosein Jafary
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mohammadi
- Department of Neurological Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Fabio Sambataro
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Adele Ferro
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ylenia Barone
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
6
|
Meng X, Zhang S, Zhou S, Ma Y, Yu X, Guan L. Putative Risk Biomarkers of Bipolar Disorder in At-risk Youth. Neurosci Bull 2024; 40:1557-1572. [PMID: 38710851 PMCID: PMC11422403 DOI: 10.1007/s12264-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/08/2024] [Indexed: 05/08/2024] Open
Abstract
Bipolar disorder is a highly heritable and functionally impairing disease. The recognition and intervention of BD especially that characterized by early onset remains challenging. Risk biomarkers for predicting BD transition among at-risk youth may improve disease prognosis. We reviewed the more recent clinical studies to find possible pre-diagnostic biomarkers in youth at familial or (and) clinical risk of BD. Here we found that putative biomarkers for predicting conversion to BD include findings from multiple sample sources based on different hypotheses. Putative risk biomarkers shown by perspective studies are higher bipolar polygenetic risk scores, epigenetic alterations, elevated immune parameters, front-limbic system deficits, and brain circuit dysfunction associated with emotion and reward processing. Future studies need to enhance machine learning integration, make clinical detection methods more objective, and improve the quality of cohort studies.
Collapse
Affiliation(s)
- Xinyu Meng
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Shengmin Zhang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Shuzhe Zhou
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yantao Ma
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xin Yu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lili Guan
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
7
|
Pan N, Qin K, Patino LR, Tallman MJ, Lei D, Lu L, Li W, Blom TJ, Bruns KM, Welge JA, Strawn JR, Gong Q, Sweeney JA, Singh MK, DelBello MP. Aberrant brain network topology in youth with a familial risk for bipolar disorder: a task-based fMRI connectome study. J Child Psychol Psychiatry 2024; 65:1072-1086. [PMID: 38220469 PMCID: PMC11246494 DOI: 10.1111/jcpp.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Youth with a family history of bipolar disorder (BD) may be at increased risk for mood disorders and for developing side effects after antidepressant exposure. The neurobiological basis of these risks remains poorly understood. We aimed to identify biomarkers underlying risk by characterizing abnormalities in the brain connectome of symptomatic youth at familial risk for BD. METHODS Depressed and/or anxious youth (n = 119, age = 14.9 ± 1.6 years) with a family history of BD but no prior antidepressant exposure and typically developing controls (n = 57, age = 14.8 ± 1.7 years) received functional magnetic resonance imaging (fMRI) during an emotional continuous performance task. A generalized psychophysiological interaction (gPPI) analysis was performed to compare their brain connectome patterns, followed by machine learning of topological metrics. RESULTS High-risk youth showed weaker connectivity patterns that were mainly located in the default mode network (DMN) (network weight = 50.1%) relative to controls, and connectivity patterns derived from the visual network (VN) constituted the largest proportion of aberrant stronger pairs (network weight = 54.9%). Global local efficiency (Elocal, p = .022) and clustering coefficient (Cp, p = .029) and nodal metrics of the right superior frontal gyrus (SFG) (Elocal: p < .001; Cp: p = .001) in the high-risk group were significantly higher than those in healthy subjects, and similar patterns were also found in the left insula (degree: p = .004; betweenness: p = .005; age-by-group interaction, p = .038) and right hippocampus (degree: p = .003; betweenness: p = .003). The case-control classifier achieved a cross-validation accuracy of 78.4%. CONCLUSIONS Our findings of abnormal connectome organization in the DMN and VN may advance mechanistic understanding of risk for BD. Neuroimaging biomarkers of increased network segregation in the SFG and altered topological centrality in the insula and hippocampus in broader limbic systems may be used to target interventions tailored to mitigate the underlying risk of brain abnormalities in these at-risk youth.
Collapse
Affiliation(s)
- Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kun Qin
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Luis R. Patino
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Maxwell J. Tallman
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Du Lei
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Thomas J. Blom
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kaitlyn M. Bruns
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jeffrey A. Welge
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jeffrey R. Strawn
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Manpreet K. Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, California, USA
| | | |
Collapse
|
8
|
Zhang X, Cheng X, Chen J, Sun J, Yang X, Li W, Chen L, Mao Y, Liu Y, Zeng X, Ye B, Yang C, Li X, Cao L. Distinct global brain connectivity alterations in depressed adolescents with subthreshold mania and the relationship with processing speed: Evidence from sBEAD Cohort. J Affect Disord 2024; 357:97-106. [PMID: 38657768 DOI: 10.1016/j.jad.2024.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Bipolar disorder (BD) is a progressive condition. Investigating the neuroimaging mechanisms in depressed adolescents with subthreshold mania (SubMD) facilitates the early identification of BD. However, the global brain connectivity (GBC) patterns in SubMD patients, as well as the relationship with processing speed before the onset of full-blown BD, remain unclear. METHODS The study involved 72 SubMD, 77 depressed adolescents without subthreshold mania (nSubMD), and 69 gender- and age-matched healthy adolescents (HCs). All patients underwent a clinical follow-up ranging from six to twelve months. We calculated the voxel-based graph theory analysis of the GBC map and conducted the TMT-A test to measure the processing speed. RESULTS Compared to HCs and nSubMD, SubMD patients displayed distinctive GBC index patterns: GBC index decreased in the right Medial Superior Frontal Gyrus (SFGmed.R)/Superior Frontal Gyrus (SFG) while increased in the right Precuneus and left Postcentral Gyrus. Both patient groups showed increased GBC index in the right Inferior Temporal Gyrus. An increased GBC value in the right Supplementary Motor Area was exclusively observed in the nSubMD-group. There were opposite changes in the GBC index in SFGmed.R/SFG between two patient groups, with an AUC of 0.727. Additionally, GBC values in SFGmed.R/SFG exhibited a positive correlation with TMT-A scores in SubMD-group. LIMITATIONS Relatively shorter follow-up duration, medications confounding, and modest sample size. CONCLUSION These findings suggest that adolescents with subthreshold BD have specific impairments patterns at the whole brain connectivity level associated with processing speed impairments, providing insights into early identification and intervention strategies for BD.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong province 510300, PR China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong province 510000, PR China
| | - Xiaofang Cheng
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong province 510300, PR China
| | - Jianshan Chen
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong province 510300, PR China
| | - Jiaqi Sun
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong province 510300, PR China
| | - Xiaoyong Yang
- Department of Psychiatry, Guangzhou Medical University, Guangdong province 510300, PR China
| | - Weiming Li
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong province 510300, PR China
| | - Lei Chen
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong province 510300, PR China
| | - Yimiao Mao
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong province 510300, PR China
| | - Yutong Liu
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong province 510300, PR China
| | - Xuanlin Zeng
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong province 510300, PR China
| | - Biyu Ye
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong province 510300, PR China
| | - Chanjuan Yang
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong province 510300, PR China
| | - Xuan Li
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong province 510300, PR China.
| | - Liping Cao
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong province 510300, PR China.
| |
Collapse
|
9
|
Liu Z, Lu W, Zou W, Gao Y, Li X, Xu G, So KF, McIntyre RS, Lin K, Shao R. A Preliminary Study of Brain Developmental Features of Bipolar Disorder Familial Risk and Subthreshold Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00163-0. [PMID: 38909895 DOI: 10.1016/j.bpsc.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Risk for bipolar disorder (BD) is increased among individuals with a family history or subthreshold mood symptoms. However, the brain structural developments associated with these BD risks remain unknown. METHODS This longitudinal cohort study examined the brain gray matter volume (GMV) developmental features of familial and symptomatic risks for BD and their associations with participants' global function levels. We recruited unaffected BD offspring with (n = 26, 14 female, mean ± SD age = 14.9 ± 2.9 years) or without (n = 35, 19 female, age = 15.3 ± 2.7 years) subthreshold manic or depressive symptoms and unaffected non-BD offspring with (n = 49, 30 female, age = 14.5 ± 2.2 years) or without (n = 68, 37 female, age = 15.0 ± 2.3 years) symptoms. The offspring had no mood disorder diagnosis prior to the study. The average follow-up duration was 2.63 ± 1.63 years. RESULTS At baseline, we found significant interactive effects of familial risk and subthreshold symptoms that indicated that the symptomatic offspring exhibited markedly large GMV in the brain affective and cognitive circuitries. During follow-up, the combined group of BD offspring (symptomatic and nonsymptomatic) displayed a more accelerated GMV decrease than BD nonoffspring in the hippocampus and anterior cingulate cortex. In contrast, the combined group of symptomatic participants (offspring and nonoffspring) displayed a slower GMV decrease than nonsymptomatic participants in the ventromedial prefrontal cortex. Larger GMV at baseline and accelerated GMV decrease during follow-up prospectively and longitudinally predicted positive global function changes. All results survived multiple testing correction. CONCLUSIONS These findings indicated that familial and symptomatic risks of BD are associated with distinct brain structural developments and unraveled key brain developmental features of particularly vulnerable high-risk individuals to subsequent functional deterioration.
Collapse
Affiliation(s)
- Zhongwan Liu
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Weicong Lu
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenjin Zou
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Radiology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yanling Gao
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoyue Li
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guiyun Xu
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kwok-Fai So
- Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, People's Republic of China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, People's Republic of China
| | - Roger S McIntyre
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Kangguang Lin
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, People's Republic of China.
| | - Robin Shao
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China; State Key Laboratory of Brain and Cognitive Sciences, Department of Psychology, University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
10
|
Peng C, Guo D, Liu L, Xiao D, Nie L, Liang H, Guo D, Yang H. Total sleep deprivation alters spontaneous brain activity in medical staff during routine clinical work: a resting-state functional MR imaging study. Front Neurosci 2024; 18:1377094. [PMID: 38638698 PMCID: PMC11025562 DOI: 10.3389/fnins.2024.1377094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Objectives To assess the effect of total sleep deprivation (TSD) on spontaneous brain activity in medical staff during routine clinical practice. Methods A total of 36 medical staff members underwent resting-state functional MRI (rs-fMRI) scans and neuropsychological tests twice, corresponding to rested wakefulness (RW) after normal sleep and 24 h of acute TSD. The rs-fMRI features, including the mean fractional amplitude of low-frequency fluctuation (mfALFF), z-score transformed regional homogeneity (zReHo), and functional connectivity (zFC), were compared between RW and TSD. Correlation coefficients between the change in altered rs-fMRI features and the change in altered scores of neuropsychological tests after TSD were calculated. Receiver operating characteristic (ROC) and logistic regression analyses were performed to evaluate the diagnostic efficacy of significantly altered rs-fMRI features in distinguishing between RW and TSD states. Results Brain regions, including right superior temporal gyrus, bilateral postcentral gyrus, left medial superior frontal gyrus, left middle temporal gyrus, right precentral gyrus, and left precuneus, showed significantly enhanced rs-fMRI features (mfALFF, zReHo, zFC) after TSD. Moreover, the changes in altered rs-fMRI features of the right superior temporal gyrus, bilateral postcentral gyrus, left middle temporal gyrus, and left precuneus were significantly correlated with the changes in several altered scores of neuropsychological tests. The combination of mfALFF (bilateral postcentral gyrus) and zFC (left medial superior frontal gyrus and left precuneus) showed the highest area under the curve (0.870) in distinguishing RW from TSD. Conclusion Spontaneous brain activity alterations occurred after TSD in routine clinical practice, which might explain the reduced performances of these participants in neurocognitive tests after TSD. These alterations might be potential imaging biomarkers for assessing the impact of TSD and distinguishing between RW and TSD states.
Collapse
Affiliation(s)
- Cong Peng
- The Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Dingbo Guo
- The Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Liuheng Liu
- The Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Dongling Xiao
- Department of Anatomy, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research, Beijing, China
| | | | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Yang
- The Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
11
|
Huang Y, Li Y, Yuan Y, Zhang X, Yan W, Li T, Niu Y, Xu M, Yan T, Li X, Li D, Xiang J, Wang B, Yan T. Beta-informativeness-diffusion multilayer graph embedding for brain network analysis. Front Neurosci 2024; 18:1303741. [PMID: 38525375 PMCID: PMC10957763 DOI: 10.3389/fnins.2024.1303741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Brain network analysis provides essential insights into the diagnosis of brain disease. Integrating multiple neuroimaging modalities has been demonstrated to be more effective than using a single modality for brain network analysis. However, a majority of existing brain network analysis methods based on multiple modalities often overlook both complementary information and unique characteristics from various modalities. To tackle this issue, we propose the Beta-Informativeness-Diffusion Multilayer Graph Embedding (BID-MGE) method. The proposed method seamlessly integrates structural connectivity (SC) and functional connectivity (FC) to learn more comprehensive information for diagnosing neuropsychiatric disorders. Specifically, a novel beta distribution mapping function (beta mapping) is utilized to increase vital information and weaken insignificant connections. The refined information helps the diffusion process concentrate on crucial brain regions to capture more discriminative features. To maximize the preservation of the unique characteristics of each modality, we design an optimal scale multilayer brain network, the inter-layer connections of which depend on node informativeness. Then, a multilayer informativeness diffusion is proposed to capture complementary information and unique characteristics from various modalities and generate node representations by incorporating the features of each node with those of their connected nodes. Finally, the node representations are reconfigured using principal component analysis (PCA), and cosine distances are calculated with reference to multiple templates for statistical analysis and classification. We implement the proposed method for brain network analysis of neuropsychiatric disorders. The results indicate that our method effectively identifies crucial brain regions associated with diseases, providing valuable insights into the pathology of the disease, and surpasses other advanced methods in classification performance.
Collapse
Affiliation(s)
- Yin Huang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Ying Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Yuting Yuan
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Xingyu Zhang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Wenjie Yan
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Ting Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Niu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Mengzhou Xu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Xiaowen Li
- Computer Information Engineering Institute, Shanxi Technology and Business College, Taiyuan, China
| | - Dandan Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Tianyi Yan
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
12
|
Wu YK, Su YA, Li L, Zhu LL, Li K, Li JT, Mitchell PB, Yan CG, Si TM. Brain functional changes across mood states in bipolar disorder: from a large-scale network perspective. Psychol Med 2024; 54:763-774. [PMID: 38084586 DOI: 10.1017/s0033291723002453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
BACKGROUND Exploring the neural basis related to different mood states is a critical issue for understanding the pathophysiology underlying mood switching in bipolar disorder (BD), but research has been scarce and inconsistent. METHODS Resting-state functional magnetic resonance imaging data were acquired from 162 patients with BD: 33 (hypo)manic, 64 euthymic, and 65 depressive, and 80 healthy controls (HCs). The differences of large-scale brain network functional connectivity (FC) between the four groups were compared and correlated with clinical characteristics. To validate the generalizability of our findings, we recruited a small longitudinal independent sample of BD patients (n = 11). In addition, we examined topological nodal properties across four groups as exploratory analysis. RESULTS A specific strengthened pattern of network FC, predominantly involving the default mode network (DMN), was observed in (hypo)manic patients when compared with HCs and bipolar patients in other mood states. Longitudinal observation revealed an increase in several network FCs in patients during (hypo)manic episode. Both samples evidenced an increase in the FC between the DMN and ventral attention network, and between the DMN and limbic network (LN) related to (hypo)mania. The altered network connections were correlated with mania severity and positive affect. Bipolar depressive patients exhibited decreased FC within the LN compared with HCs. The exploratory analysis also revealed an increase in degree in (hypo)manic patients. CONCLUSIONS Our findings identify a distributed pattern of large-scale network disturbances in the unique context of (hypo)mania and thus provide new evidence for our understanding of the neural mechanism of BD.
Collapse
Affiliation(s)
- Yan-Kun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Le Li
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Center for Cognitive Science of Language, Beijing Language and Culture University, Beijing, China
| | - Lin-Lin Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ke Li
- PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Black Dog Institute, Prince of Wales Hospital, Sydney, Australia
| | - Chao-Gan Yan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
13
|
Huang S, Wen X, Liu Z, Li C, He Y, Liang J, Huang W. Distinguishing functional and structural MRI abnormalities between bipolar and unipolar depression. Front Psychiatry 2023; 14:1343195. [PMID: 38169701 PMCID: PMC10758430 DOI: 10.3389/fpsyt.2023.1343195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Background This study aims to investigate the underlying characteristics of spontaneous brain activity by analyzing the volumes of the hippocampus and parahippocampal gyrus, as well as the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo), in order to differentiate between bipolar disorder (BD) and unipolar depressive disorder. Methods A total of 46 healthy controls, 58 patients with major depressive disorder (MDD), and 61 patients with BD participated in the study and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans. The researchers calculated the differences in volume, fALFF, and ReHo values among the three groups. Additionally, they conducted correlation analyses to examine the relationships between clinical variables and the aforementioned brain measures. Results The results showed that the BD group exhibited increased fALFF in the hippocampus compared to the healthy control (HC) and MDD groups. Furthermore, the ReHo values in the hippocampus and parahippocampal gyrus were significantly higher in the BD group compared to the HC group. The findings from the person correlation analysis indicated a positive relationship between ReHo values in the hippocampus and both HAMD and HAMA scores. Moreover, there was no correlation between the volumes, fALFF, and ReHo values in the hippocampus and parahippocampal gyrus, and cognitive function levels (RBANS). Conclusion Taken together, these aberrant patterns of intrinsic brain activity in the hippocampus and parahippocampal gyrus may serve as quantitative indicators for distinguishing between BD and unipolar depression.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaquan Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Wei Huang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| |
Collapse
|
14
|
Ekin M, Koçoğlu K, Eraslan Boz H, Akkoyun M, Tüfekci IY, Cesim E, Yalınçetin B, Özbek SU, Bora E, Akdal G. Antisaccade and memory-guided saccade in individuals at ultra-high-risk for bipolar disorder. J Affect Disord 2023; 339:965-972. [PMID: 37499914 DOI: 10.1016/j.jad.2023.07.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Ultra-high-risk for bipolar disorder (UHR-BD) is an important paradigm to investigate the potential early-stage biomarkers of bipolar disorder, including eye-tracking abnormalities and cognitive functions. Antisaccade (AS) described as looking in the opposite direction of the target, and memory-guided saccade (MGS), identified as maintaining fixation, and remembering the location of the target, were used in this study. The aim of this study was to evaluate the differences in saccadic eye movements between UHR-BD and healthy controls (HCs) via AS-MGS. METHODS The study included 28 UHR-BD and 29 HCs. Participants were selected using a structured clinical interview for prodromal symptoms of BD. AS-MGS were measured with parameters like uncorrected errors, anticipatory saccades, and latency. Eye movements were recorded with the EyeLink 1000-Plus eye-tracker. RESULTS In the AS, the number of correct saccades was significantly decreased in UHR-BD (p = 0.020). Anticipatory (p = 0.009) and express saccades (p = 0.040) were increased in UHR-BD. In the MGS paradigm, the correct saccades were reduced in UHR-BD (p = 0.031). In addition, anticipatory (p = 0.004) and express saccades (p = 0.012) were significantly increased in cue-screen in UHR-BD. CONCLUSIONS To our knowledge, this is the first study to evaluate cognitive functions with eye movements in individuals at UHR-BD. The current findings showed that eye movement functions, particularly in saccadic parameters related to inhibition and spatial perception, may be affected in the UHR-BD group. Therefore, assessment of oculomotor functions may provide observation of clinical and cognitive functions in the early-stage of bipolar disorder. However, further research is needed because the potential effects of medication may affect saccadic results.
Collapse
Affiliation(s)
- Merve Ekin
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, İzmir, Türkiye; Institute of Psychology, SWPS University, Warsaw, Poland.
| | - Koray Koçoğlu
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, İzmir, Türkiye
| | - Hatice Eraslan Boz
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, İzmir, Türkiye
| | - Müge Akkoyun
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, İzmir, Türkiye
| | - Işıl Yağmur Tüfekci
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, İzmir, Türkiye
| | - Ezgi Cesim
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, İzmir, Türkiye
| | - Berna Yalınçetin
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, İzmir, Türkiye
| | - Simge Uzman Özbek
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylül University, Izmir, Türkiye
| | - Emre Bora
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, İzmir, Türkiye; Department of Psychiatry, Faculty of Medicine, Dokuz Eylül University, Izmir, Türkiye; Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia
| | - Gülden Akdal
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, İzmir, Türkiye; Department of Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir, Türkiye
| |
Collapse
|
15
|
Nery FG, Welge JA, Fleck D, Weber W, Patino LR, Strawn JR, Adler CM, Strakowski SM, DelBello MP. Brain functional activation and first mood episode in youth at risk for bipolar disorder. J Affect Disord 2023; 331:238-244. [PMID: 36931569 PMCID: PMC10413175 DOI: 10.1016/j.jad.2023.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND In order to identify biomarkers of prodromal mood disorders, we examined functional brain activation in children and adolescent at familial risk for bipolar disorder. METHODS Offspring of parents with bipolar I disorder (at-risk youth; N = 115, mean ± SD age: 13.6 ± 2.7; 54 % girls) and group-matched offspring of healthy parents (healthy controls; N = 58, mean ± SD age: 14.2 ± 3.0; 53 % girls) underwent functional magnetic resonance imaging while performing a continuous performance task with emotional and neutral distracters. At baseline, at-risk youth had no history of mood episodes or psychotic disorders. Subjects were followed longitudinally until developing their first mood episode or being lost to follow-up. Standard event-related region-of-interest (ROI) analyses were performed to compare brain activation at baseline between groups and in survival analyses. RESULTS At baseline, at-risk youth exhibited reduced activation to emotional distracters in the right ventrolateral prefrontal cortex (VLPFC) (p = 0.04). Activation was not significantly altered in additional ROIs, including left VLPFC, bilateral amygdala, caudate, or putamen. In those at-risk youth who developed their first mood episode during follow-up (n = 17), baseline increased activation in right VLPFC, right caudate, and right putamen activation predicted the development of a mood episode. LIMITATIONS Sample size of converters, loss to follow-up, and number of statistical comparisons. CONCLUSIONS We found preliminary evidence that a reduced activation in right VLPFC might be a marker of risk for or resilience to mood disorders in at-risk youth. Conversely, an increased activation in the right VLPFC, caudate, and putamen might indicate an increased risk for the later development of their first mood episode.
Collapse
Affiliation(s)
- Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Jeffrey A Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wade Weber
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephen M Strakowski
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
16
|
Qin K, Sweeney JA, DelBello MP. The inferior frontal gyrus and familial risk for bipolar disorder. PSYCHORADIOLOGY 2022; 2:171-179. [PMID: 38665274 PMCID: PMC10917220 DOI: 10.1093/psyrad/kkac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 04/28/2024]
Abstract
Bipolar disorder (BD) is a familial disorder with high heritability. Genetic factors have been linked to the pathogenesis of BD. Relatives of probands with BD who are at familial risk can exhibit brain abnormalities prior to illness onset. Given its involvement in prefrontal cognitive control and in frontolimbic circuitry that regulates emotional reactivity, the inferior frontal gyrus (IFG) has been a focus of research in studies of BD-related pathology and BD-risk mechanism. In this review, we discuss multimodal neuroimaging findings of the IFG based on studies comparing at-risk relatives and low-risk controls. Review of these studies in at-risk cases suggests the presence of both risk and resilience markers related to the IFG. At-risk individuals exhibited larger gray matter volume and increased functional activities in IFG compared with low-risk controls, which might result from an adaptive brain compensation to support emotion regulation as an aspect of psychological resilience. Functional connectivity between IFG and downstream limbic or striatal areas was typically decreased in at-risk individuals relative to controls, which could contribute to risk-related problems of cognitive and emotional control. Large-scale and longitudinal investigations on at-risk individuals will further elucidate the role of IFG and other brain regions in relation to familial risk for BD, and together guide identification of at-risk individuals for primary prevention.
Collapse
Affiliation(s)
- Kun Qin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| |
Collapse
|
17
|
Zou W, Song P, Lu W, Shao R, Zhang R, Yau SY, Yuan TF, Wang Y, Lin K. Global hippocampus functional connectivity as a predictive neural marker for conversion to future mood disorder in unaffected offspring of bipolar disorder parents. Asian J Psychiatr 2022; 78:103307. [PMID: 36332319 DOI: 10.1016/j.ajp.2022.103307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Hippocampus-related functional alteration in genetically at-risk individuals may reflect an endophenotype of a mood disorder. Herein, we performed a prospective study to investigate whether baseline hippocampus functional connectivity (FC) in offspring of patients with bipolar disorder (BD) would predict subsequent conversion to mood disorder. METHODS Eighty bipolar offspring and 40 matched normal controls (NC) underwent resting state functional MRI (rsfMRI) scanning on a 3.0 Tesla MR scanner. The offspring were subdivided into asymptomatic offspring (AO) (n = 41) and symptomatic offspring (SO) (n = 39) according to whether they manifested subthreshold mood symptoms. After identifying the different hippocampus FCs between the AO and SO, a logistic regression analysis was conducted to investigate whether the baseline hippocampus FCs predicted a future mood disorder during a 6-year follow-up. RESULTS We identified seven baseline para/hippocampus FCs that showed differences between AO and SO, which were entered as predictive features in the logistic regressive model. Of the 80 bipolar offspring entering the analysis, the FCs between left hippocampus and left precuneus, and between right hippocampus and left posterior cingulate, showed a discriminative capacity for predicting future mood disorder (area-under-curve, or AUC=75.76 % and 75.00 % respectively), and for predicting BD onset (AUC=77.46 % and 81.63 %, respectively). CONCLUSIONS The present findings revealed high predictive utility of the hippocampus resting state FCs for future mood disorder and BD onset in individuals at familial risk. These neural markers can potentially improve early detection of individuals carrying particularly high risk for future mood disorder.
Collapse
Affiliation(s)
- Wenjin Zou
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peilun Song
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Weicong Lu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Robin Shao
- Laboratory of Neuropsychology and Laboratory of Social Cognitive Affective, Neuroscience, Department of Psychology, University of Hong Kong, Hong Kong
| | - Ruoxi Zhang
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Yaping Wang
- School of Information Engineering, Zhengzhou University, Zhengzhou, China.
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, No. 17, Shandong Road, Shinan district, Qingdao City, Shandong Province, China.
| |
Collapse
|
18
|
Peng C, Ran Q, Liu CX, Zhang L, Yang H. The instant impact of a single hemodialysis session on brain morphological measurements in patients with end-stage renal disease. Front Hum Neurosci 2022; 16:967214. [PMID: 36082229 PMCID: PMC9445124 DOI: 10.3389/fnhum.2022.967214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo investigate the instant impact of hemodialysis (HD) on the cerebral morphological measurements of patients with end-stage renal disease (ESRD).Materials and methodsTwenty-five patients undergoing maintenance HD and twenty-eight age-, sex-, and education-matched healthy control (HC) were included. The HD group and HC group had 3D high-resolution structural magnetic resonance imaging (MRI) scans twice and once, respectively. Both groups underwent neuropsychologic tests. The morphological measurements of structural MRI were measured using CAT12 and these measures were compared among three groups. The relationship between morphological measures and clinical parameters and neuropsychological tests were investigated through multiple regression analysis.ResultsCompared to the HC group, the cortical thickness before HD significantly decreased in the bilateral temporal lobe and significantly decreased in the left superior temporal gyrus after HD. The cortical thickness significantly increased in the bilateral temporal lobe, frontal lobe and occipital lobe after HD compared to before HD. The sulcus depth in the bilateral insula, frontal lobe, and parietal lobe after HD significantly increased compared to before HD. No significant differences in sulcus depth between HD and HC were detected. After HD, the cortical thickness of the right parsopercularis was positively correlated with the number connection test-A. Cortical thickness in multiple regions were positively correlated with blood flow velocity and cortical thickness in the left parahippocampal gyrus was negatively correlated with ultrafiltration volume. Patients showed better performance in the digit symbol test and line tracing test after HD compared to before HD, but there were no significant differences in the comparison of neuropsychologic tests between patients and HC.ConclusionThe instant morphological changes were captured during a single hemodialysis in HD patients. There was an association between these instant changes in the brain and clinical parameters and neuropsychologic tests. This work implied the instant impact of a single hemodialysis impact on the brain in HD patients.
Collapse
Affiliation(s)
- Cong Peng
- Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Qian Ran
- Department of Radiology, Xinqiao Hospital, Chongqing, China
- Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium
| | - Cheng Xuan Liu
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ling Zhang
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Hua Yang
- Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- *Correspondence: Hua Yang,
| |
Collapse
|
19
|
Integrity of cerebellar tracts associated with the risk of bipolar disorder. Transl Psychiatry 2022; 12:335. [PMID: 35977925 PMCID: PMC9385641 DOI: 10.1038/s41398-022-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
This study examined the structural brain differences across individuals of different BD stages and the risks of developing bipolar disorder (BD) associated with these brain differences. A total of 221 participants who were recruited from the Guangzhou Brain Hospital and the community were categorized into four groups: NC (healthy control) (N = 77), high risk (HR) (N = 42), ultra-high risk (UHR) (N = 38), and bipolar disorder (BD) (N = 64) based on a list of criteria. Their demographics, clinical characteristics, and diffusion magnetic resonance imaging (dMRI) data were collected. ANCOVA results showed that the HR group had significantly reduced mean diffusivity (MD) (p = 0.043) and radial diffusivity (RD) (p = 0.039) of the left portico-ponto-cerebellar tracts when compared with the BD group. Moreover, logistic regression results showed that the specific diffusivity measures of cerebellar tracts (e.g., cortico-ponto-cerebellar tract), particularly the RD and MD revealed differences between groups at different BD stages after controlling for the covariates. The findings suggested that specific diffusivity (RD and MD) of cerebellar tracts (e.g., cortico-ponto-cerebellar tract) revealed differences between groups at different BD stages which is helpful in detecting the trajectory changes in BD syndromes in the early stages of BD, particularly when the BD syndromes start from HR stage.
Collapse
|
20
|
Cui L, Li H, Li JB, Zeng H, Zhang Y, Deng W, Zhou W, Cao L. Altered cerebellar gray matter and cerebellar-cortex resting-state functional connectivity in patients with bipolar disorder Ⅰ. J Affect Disord 2022; 302:50-57. [PMID: 35074460 DOI: 10.1016/j.jad.2022.01.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bipolar disorder (BP) is a common psychiatric disorder characterized by extreme fluctuations in mood. Recent studies have indicated the involvement of cerebellum in the pathogenesis of BP. However, no study has focused on the precise role of cerebellum exclusively in patients with bipolar I disorder (BP-I). METHODS Forty-five patients with BP-I and 40 healthy controls were recruited. All subjects underwent clinical evaluation and Magnetic Resonance diffusion Tension Imaging scans. For structural images, we used a spatially unbiased infratentorial template toolbox to isolate the cerebellum and then preformed voxel-based morphometry (VBM) analyses to assess the difference in cerebellar gray matter volume (GMV) between the two groups. For the functional images, we chose the clusters that survived from VBM analysis as seeds and performed functional connectivity (FC) analysis. Between-group differences were assessed using the independent Students t test or the nonparametric Mann-Whitney U Test. For multiple comparisons, the results were further corrected with Gaussian random field (GRF) approach (voxel-level P < 0.001, cluster-level P < 0.05). RESULTS Compared with healthy controls, BP-I patients showed significantly decreased GMV in left lobule V and left lobule VI (P < 0.05, GRF corrected). The FC of cerebellum with bilateral superior temporal gyrus, bilateral insula, bilateral rolandic operculum, right putamen, and left precentral gyrus was disrupted in BP-I patients (P < 0.05, GRF corrected). CONCLUSIONS BP-I patients showed decreased cerebellar GMV and disrupted cerebellar-cortex resting-state FC. This suggests that cerebellar abnormalities may play an important role in the pathogenesis of BP-I.
Collapse
Affiliation(s)
- Liqian Cui
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China.
| | - Hao Li
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Jin Biao Li
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Huixing Zeng
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yizhi Zhang
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Wenhao Deng
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Wenjin Zhou
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Liping Cao
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China.
| |
Collapse
|
21
|
Gray matter volume covariance networks are associated with altered emotional processing in bipolar disorder: a source-based morphometry study. Brain Imaging Behav 2021; 16:738-747. [PMID: 34546520 PMCID: PMC9010334 DOI: 10.1007/s11682-021-00541-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Widespread regional gray matter volume (GMV) alterations have been reported in bipolar disorder (BD). Structural networks, which are thought to better reflect the complex multivariate organization of the brain, and their clinical and psychological function have not been investigated yet in BD. 24 patients with BD type-I (BD-I), and 30 with BD type-II (BD-II), and 45 controls underwent MRI scan. Voxel-based morphometry and source-based morphometry (SBM) were performed to extract structural covariation patterns of GMV. SBM components associated with morphometric differences were compared among diagnoses. Executive function and emotional processing correlated with morphometric characteristics. Compared to controls, BD-I showed reduced GMV in the temporo-insular-parieto-occipital cortex and in the culmen. An SBM component spanning the prefrontal-temporal-occipital network exhibited significantly lower GMV in BD-I compared to controls, but not between the other groups. The structural network covariance in BD-I was associated with the number of previous manic episodes and with worse executive performance. Compared to BD-II, BD-I showed a loss of GMV in the temporal-occipital regions, and this was correlated with impaired emotional processing. Altered prefrontal-temporal-occipital network structure could reflect a neural signature associated with visuospatial processing and problem-solving impairments as well as emotional processing and illness severity in BD-I.
Collapse
|
22
|
Wang Y, Sun K, Liu Z, Chen G, Jia Y, Zhong S, Pan J, Huang L, Tian J. Classification of Unmedicated Bipolar Disorder Using Whole-Brain Functional Activity and Connectivity: A Radiomics Analysis. Cereb Cortex 2021; 30:1117-1128. [PMID: 31408101 DOI: 10.1093/cercor/bhz152] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to develop and validate a method of disease classification for bipolar disorder (BD) by functional activity and connectivity using radiomics analysis. Ninety patients with unmedicated BD II as well as 117 healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI). A total of 4 types of 7018 features were extracted after preprocessing, including mean regional homogeneity (mReHo), mean amplitude of low-frequency fluctuation (mALFF), resting-state functional connectivity (RSFC), and voxel-mirrored homotopic connectivity (VMHC). Then, predictive features were selected by Mann-Whitney U test and removing variables with a high correlation. Least absolute shrinkage and selection operator (LASSO) method was further used to select features. At last, support vector machine (SVM) model was used to estimate the state of each subject based on the selected features after LASSO. Sixty-five features including 54 RSFCs, 7 mALFFs, 1 mReHo, and 3 VMHCs were selected. The accuracy and area under curve (AUC) of the SVM model built based on the 65 features is 87.3% and 0.919 in the training dataset, respectively, and the accuracy and AUC of this model validated in the validation dataset is 80.5% and 0.838, respectively. These findings demonstrate a valid radiomics approach by rs-fMRI can identify BD individuals from healthy controls with a high classification accuracy, providing the potential adjunctive approach to clinical diagnostic systems.
Collapse
Affiliation(s)
- Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.,Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Kai Sun
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100190, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.,Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shuming Zhong
- University of Chinese Academy of Science, Beijing, 100190, China
| | - Jiyang Pan
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.,Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100190, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China
| |
Collapse
|
23
|
Singh MK, Nimarko AF, Garrett AS, Gorelik AJ, Roybal DJ, Walshaw PD, Chang KD, Miklowitz DJ. Changes in Intrinsic Brain Connectivity in Family-Focused Therapy Versus Standard Psychoeducation Among Youths at High Risk for Bipolar Disorder. J Am Acad Child Adolesc Psychiatry 2021; 60:458-469. [PMID: 32745598 PMCID: PMC7854810 DOI: 10.1016/j.jaac.2020.07.892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/22/2020] [Accepted: 07/24/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE We compared intrinsic network connectivity in symptomatic youths at high risk (HR) for bipolar disorder (BD) and healthy comparison (HC) youths. In HR youths, we also investigated treatment-related changes in intrinsic connectivity after family-focused therapy for high-risk youths (FFT-HR) vs standardized family psychoeducation. METHOD HR youths (N = 34; age 9-17 years; mean 14 years, 56% girls and 44% boys) with depressive and/or hypomanic symptoms and at least 1 first- or second-degree relative with BD I or II were randomly assigned to 4 months of FFT-HR (12 sessions of psychoeducation, communication, and problem-solving skills training) or enhanced care (EC; 3 family and 3 individual psychoeducation sessions). Before and after 4 months of treatment, participants underwent resting state functional magnetic resonance imaging (rs-fMRI). A whole-brain independent component analysis compared rs-fMRI networks in HR youths and 30 age-matched HC youths at a pretreatment baseline. Then we identified pretreatment to posttreatment (4-month) changes in network connectivity in HR youths receiving FFT-HR (n = 16) or EC (n = 18) and correlated these changes with depression improvement. RESULTS At baseline, HR youths had greater connectivity between the ventrolateral prefrontal cortex (VLPFC) and the anterior default mode network (aDMN) than did HCs (p = .004). Over 4 months of treatment, FFT-HR-assigned HR youths had increased VLPFC-aDMN connectivity from pre- to posttreatment (p = .003), whereas HR youths in EC showed no significant change over time (p = .11) (treatment by time interaction, t31 = 3.33, 95% CI = 0.27-1.14, p = .002]. Reduction in depression severity over 4 months inversely correlated with enhanced anterior DMN (r = -0.71) connectivity in the FFT-HR but not in the EC (r = -0.07) group (z = -2.17, p = .015). CONCLUSION Compared to standard psychoeducation, FFT-HR is associated with stronger connectivity between the VLPFC and aDMN, suggesting possible enhancements of self-awareness, illness awareness, and emotion regulation. CLINICAL TRIAL REGISTRATION INFORMATION Early Intervention for Youth at Risk for Bipolar Disorder; https://clinicaltrials.gov/; NCT01483391.
Collapse
Affiliation(s)
| | | | - Amy S Garrett
- University of Texas, Health Science Center at San Antonio
| | | | - Donna J Roybal
- University of Texas, Health Science Center at San Antonio
| | | | | | | |
Collapse
|
24
|
Liu T, Xu G, Lu W, Zhang R, Chen K, McIntyre RS, Teopiz KM, So KF, Lin K. Affective Temperament Traits Measured by TEMPS-A and Their Associations with Cognitive Functions among Offspring of Parents with Bipolar Disorder with and without Subthreshold Symptoms. J Affect Disord 2021; 283:377-383. [PMID: 33581463 DOI: 10.1016/j.jad.2021.01.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/06/2021] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND To our knowledge, there have been no studies that have examined affective temperament traits in offspring of parents with bipolar disorder (BD). The aim of this study was to identify affective temperamental characteristics and their relationships with cognitive functions in BD offspring. METHODS A group of BD offspring were enrolled in this study. Subthreshold symptoms were used to categorize participants as either symptomatic offspring (SO) (n=60) or asymptomatic offspring (AO) (n=52). Healthy controls (HCs; n=48) were also enrolled for comparison. We used the Chinese Short Version of Temperament Evaluation of Memphis, Pisa, Paris, and San Diego, Auto-questionnaire (TEMPS-A) to measure temperament traits, and MATRICS Consensus Cognitive Battery (MCCB) to measure cognitive functions. RESULTS We observed higher cyclothymic, irritable, depressive and anxious temperament scores in SO than AO when compared to HCs. In BD offspring (SO and AO), cyclothymic individuals performed better in processing speed and verbal learning than depressive individuals and better in attention/vigilance than irritable and anxious individuals; hyperthymic individuals performed better in processing speed than depressive individuals. We also observed that a higher cyclothymic score was associated with better verbal learning and verbal fluency, a higher hyperthymic score was associated with better processing speed and verbal learning; while a higher depressive score was associated with worse processing speed, verbal learning and verbal fluency and a higher irritable score was associated with worse attention/vigilance. CONCLUSIONS The relationships between cognitive functions and measures of temperament suggest that these features may share neurobiological substrates and appear to be heritable.
Collapse
Affiliation(s)
- Tao Liu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Guiyun Xu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Weicong Lu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Ruoxi Zhang
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Kun Chen
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada
| | - Kayla M Teopiz
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Kwok-Fai So
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China; Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China; The State Key Laboratory of Brain and Cognitive Sciences and Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China; Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
| |
Collapse
|
25
|
Integrity of the uncinate fasciculus is associated with the onset of bipolar disorder: a 6-year followed-up study. Transl Psychiatry 2021; 11:111. [PMID: 33547277 PMCID: PMC7864939 DOI: 10.1038/s41398-021-01222-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022] Open
Abstract
Patients with Bipolar Disorder (BD) are associated with aberrant uncinate fasciculus (UF) that connects amygdala-ventral prefrontal cortex (vPFC) system, but the casual relationship is still uncertain. The research aimed to investigate the integrity of UF among offspring of patients with BD and investigate its potential causal association with subsequent declaration of BD. The fractional anisotropy (FA) and mean diffusivity (MD) of UF were compared in asymptomatic offspring (AO, n = 46) and symptomatic offspring (SO, n = 45) with a parent with BD, and age-matched healthy controls (HCs, n = 35). Logistic regressions were performed to assess the predictive effect of UF integrity on the onset of BD. The three groups did not differ at baseline in terms of FA and MD of the UF. Nine out of 45 SO developed BD over a follow-up period of 6 years, and the right UF FA predicted the onset of BD (p = 0.038, OR = 0.212, 95% CI = 0.049-0.917). The ROC curve revealed that the right UF FA predicted BD onset (area-under-curve = 0.859) with sensitivity of 88.9% and specificity of 77.3%. The complementary whole-brain tract-based spatial statistics (TBSS) showed that widespread increases of FA were found in the SO group compared with HCs, but were not associated with the onset of BD. Our data provide evidence supporting the causal relationship between the white matter structural integrity of the amygdala-vPFC system and the onset of BD in genetically at-risk offspring of BD patients.
Collapse
|
26
|
Zhong S, Lai S, Yue J, Wang Y, Shan Y, Liao X, Chen J, Li Z, Chen G, Chen F, Jia Y. The characteristic of cognitive impairments in patients with bipolar II depression and its association with N-acetyl aspartate of the prefrontal white matter. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1457. [PMID: 33313202 PMCID: PMC7723520 DOI: 10.21037/atm-20-7098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Cognitive deficit is acknowledged as a core feature of clinical manifestations of bipolar disorder (BD). However, the underlying mechanism of cognitive impairment in bipolar II depression has remained uncertain. We aim to determine the association of cognitive impairments with biochemical metabolism using proton magnetic resonance spectroscopy (1H-MRS) and a battery of neuropsychological testing. Methods The current study was designed to assess four cognitive domains in a sample of 110 patients with bipolar II depression and 110 healthy controls, using a battery of 6 cognitive tests, including the Digit Symbol Substitution Test (DSST), Wisconsin Cart Sorting Test (WCST), Trail Making Test Part B (TMT-B), Digit Span Test (DST), TMT-part A (TMT-A) and Verbal Fluency Test (VFT). Metabolite levels were obtained in the following brain regions of interest: bilateral prefrontal white matter (PWM), bilateral anterior cingulate cortex (ACC), bilateral lenticular nucleus (LN), and bilateral thalamus. N-acetyl aspartate (NAA)/creatine (Cr) and choline-containing compounds (Cho)/Cr ratios are analyzed. Results Patients with bipolar II depression performed significantly worse on DSST (score), TMT (completion time), DSB (score), and VFT (valid word number) when compared with healthy controls. In the bilateral PWM, NAA/Cr ratios in the PWM were significantly reduced (bilaterally) than those in healthy controls. Correlation analysis was conducted with data from patients with bipolar II depression, we found that the NAA/Cr ratio of the left PWM was positively correlated with the score of DS and DSB, and the NAA/Cr ratio of the right PWM was negatively correlated with the completion time of TMT-B. Conclusions Our findings suggested that psychomotor speed, executive function, working memory, and verbal fluency are impaired in patients with BD II depression. Hypoactivity NAA/Cr in bilateral PWM may be associated with BD II depression's pathophysiology and results in cognitive dysfunction.
Collapse
Affiliation(s)
- Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jihui Yue
- Department of Psychiatry, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanyan Shan
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaoxiao Liao
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Junhao Chen
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhinan Li
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Zhang L, Li W, Wang L, Bai T, Ji GJ, Wang K, Tian Y. Altered functional connectivity of right inferior frontal gyrus subregions in bipolar disorder: a resting state fMRI study. J Affect Disord 2020; 272:58-65. [PMID: 32379621 DOI: 10.1016/j.jad.2020.03.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/04/2020] [Accepted: 03/29/2020] [Indexed: 11/26/2022]
Abstract
The right inferior frontal gyrus (rIFG) is a key cortical node in the circuits of emotion and cognitive control, and it has been frequently associated with bipolar disorder (BP); however, a reliable pattern of aberrant rIFG activation and connectivity in bipolar disorder has yet to be established. To further elucidate rIFG abnormalities in different states of bipolar disorder, we examined activation and functional connectivity (FC) in five subregions of rIFG in bipolar disorder. A total of 83 participants, including those with bipolar depression (BPD; n = 25) and bipolar mania (BPM; n = 37) along with healthy control (HC) subjects (n = 26), were examined by resting state functional magnetic resonance imaging (rs-fMRI). Both BPD and BPM groups showed higher values of amplitude of low-frequency fluctuations (ALFF) than healthy control in four of the five rIFG subregions except cluster 2(posterior-ventral rIFG). Using five subregions of rIFG as seeds, the decreased FC in bipolar disorder was mainly between posterior-ventral rIFG(cluster 2) and multiple brain regions including the postcentral gyrus, the precentral gyrus, paracentral lobule, lingual Gyrus, fusiform and cerebellum posterior lobe. These results indicated that local activity and FC were altered within specific subregions of the rIFG in BP. These findings may provide the distinct functional connectivity of rIFG subregions in BP and suggest that the cluster2 (posterior-ventral rIFG) circuitry plays a crucial role in BP. Also, such abnormalities might help define a more precise intervention targets.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Wenfei Li
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Long Wang
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Tongjian Bai
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China;; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China;; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
28
|
Jiang Z, Zhang X, Lv Y, Zheng X, Zhang H, Zhang X, Jiang C, Lin G, Gu W. Preoperative Altered Spontaneous Brain Activity and Functional Connectivity Were Independent Risk Factors for Delayed Neurocognitive Recovery in Older Adults Undergoing Noncardiac Surgery. Neural Plast 2020; 2020:9796419. [PMID: 32617099 PMCID: PMC7315267 DOI: 10.1155/2020/9796419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 02/05/2023] Open
Abstract
Objectives Recently, it has been demonstrated that patients with subtle preexisting cognitive impairment were susceptible to delayed neurocognitive recovery (DNR). This present study investigated whether preoperative alterations in gray matter volume, spontaneous activity, or functional connectivity (FC) were associated with DNR. Methods This was a nested case-control study of older adults (≥60 years) undergoing noncardiac surgery. All patients received MRI scan at least 1 day prior to surgery. Cognitive function was assessed prior to surgery and at 7-14 days postsurgery. Preoperative gray matter volume, amplitude of low-frequency fluctuation (ALFF), and FC were compared between the DNR patients and non-DNR patients. The independent risk factors associated with DNR were identified using a multivariate logistic regression model. Results Of the 74 patients who completed assessments, 16/74 (21.6%) had DNR following surgery. There were no differences in gray matter volume between the two groups. However, the DNR patients exhibited higher preoperative ALFF in the bilateral middle cingulate cortex (MCC) and left fusiform gyrus and lower preoperative FC between the bilateral MCC and left calcarine than the non-DNR patients. The multivariate logistic regression analysis showed that higher preoperative spontaneous activity in the bilateral MCC was independently associated with a higher risk of DNR (OR = 3.11, 95% CI, 1.30-7.45; P = 0.011). A longer education duration (OR = 0.57, 95% CI, 0.41-0.81; P = 0.001) and higher preoperative FC between the bilateral MCC and left calcarine (OR = 0.40, 95% CI, 0.18-0.92; P = 0.031) were independently correlated with a lower risk of DNR. Conclusions Preoperative higher ALFF in the bilateral MCC and lower FC between the bilateral MCC and left calcarine were independently associated with the occurrence of DNR. The present fMRI study identified possible preoperative neuroimaging risk factors for DNR. This trial is registered with Chinese Clinical Trial Registry ChiCTR-DCD-15006096.
Collapse
Affiliation(s)
- Zhaoshun Jiang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
- Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China
| | - Xixue Zhang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
- Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China
| | - Yating Lv
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Xiaodong Zheng
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Huibiao Zhang
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xuelin Zhang
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Chongyi Jiang
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Weidong Gu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
- Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China
| |
Collapse
|
29
|
Mansur RB, Lee Y, McIntyre RS, Brietzke E. What is bipolar disorder? A disease model of dysregulated energy expenditure. Neurosci Biobehav Rev 2020; 113:529-545. [PMID: 32305381 DOI: 10.1016/j.neubiorev.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/24/2022]
Abstract
Advances in the understanding and management of bipolar disorder (BD) have been slow to emerge. Despite notable recent developments in neurosciences, our conceptualization of the nature of this mental disorder has not meaningfully progressed. One of the key reasons for this scenario is the continuing lack of a comprehensive disease model. Within the increasing complexity of modern research methods, there is a clear need for an overarching theoretical framework, in which findings are assimilated and predictions are generated. In this review and hypothesis article, we propose such a framework, one in which dysregulated energy expenditure is a primary, sufficient cause for BD. Our proposed model is centered on the disruption of the molecular and cellular network regulating energy production and expenditure, as well its potential secondary adaptations and compensatory mechanisms. We also focus on the putative longitudinal progression of this pathological process, considering its most likely periods for onset, such as critical periods that challenges energy homeostasis (e.g. neurodevelopment, social isolation), and the resulting short and long-term phenotypical manifestations.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Kingston General Hospital, Providence Care Hospital, Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| |
Collapse
|
30
|
Lin K, Shao R, Wang R, Lu W, Zou W, Chen K, Gao Y, Brietzke E, McIntyre RS, Mansur RB, Zhang L, Yau SY, Su H, Xu G, So KF. Inflammation, brain structure and cognition interrelations among individuals with differential risks for bipolar disorder. Brain Behav Immun 2020; 83:192-199. [PMID: 31614176 DOI: 10.1016/j.bbi.2019.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/27/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
Neuro-inflammation might impact on clinical manifestations and cognition function via changing the volumes of key brain structures such as the anterior cingulate cortex (ACC) in bipolar disorder (BD). In this study, we investigated the interrelations among interleukin (IL)-6 cytokine level, grey matter (GM) volume of the anterior cingulated cortex (ACC), and attention function among offspring of parents diagnosed with BD. The offspring were categorized as being either asymptomatic or symptomatic based on whether they manifested pre-defined sub-threshold mood symptoms. We found that the symptomatic offspring showed significantly higher serum levels of IL-6 than the asymptomatic offspring (F(1, 59) = 67.65, p < 0.001). On the brain level, we obtained significant interactive effect of group and IL6 level on the ACC GM (PFWE = 0.017). Specifically, the GM volume of the rostral ACC was negatively associated with the levels of IL-6 in the asymptomatic offspring (PFWE = 0.021), but not the symptomatic offspring (PFWE > 0.05). Mediation analyses revealed that the GM volume of the rostral ACC significantly mediated the negative association between the IL-6 levels and attention performance in the asymptomatic offspring (bootstrapping Confidence Interval (CI) = -6.0432 to -0.0731) but not the symptomatic offspring (bootstrapping CI = -0.3197 to 1.3423). Our data suggest that the asymptomatic and symptomatic bipolar offspring may exhibit different neurocognitive-inflammatory profiles, which could be further validated as viable biosignatures for BD risk and resilience.
Collapse
Affiliation(s)
- Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Academician Workstation of Mood and Brain Sciences, Guangzhou Medical University, China; Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China; Laboratory of Neuropsychology and Laboratory of Social Cognitive Affective Neuroscience, Department of Psychology, University of Hong Kong, Hong Kong.
| | - Robin Shao
- Laboratory of Neuropsychology and Laboratory of Social Cognitive Affective Neuroscience, Department of Psychology, University of Hong Kong, Hong Kong.
| | - Runhua Wang
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Academician Workstation of Mood and Brain Sciences, Guangzhou Medical University, China
| | - Weicong Lu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Wenjin Zou
- Department of Radiology, The Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kun Chen
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Academician Workstation of Mood and Brain Sciences, Guangzhou Medical University, China
| | - Yanling Gao
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Academician Workstation of Mood and Brain Sciences, Guangzhou Medical University, China
| | - Elisa Brietzke
- Department of Psychiatry, Queen's University, School of Medicine, Kingston, ON, Canada
| | - Roger S McIntyre
- Academician Workstation of Mood and Brain Sciences, Guangzhou Medical University, China; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Li Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Huanxing Su
- Academician Workstation of Mood and Brain Sciences, Guangzhou Medical University, China
| | - Guiyun Xu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Kwok-Fai So
- Academician Workstation of Mood and Brain Sciences, Guangzhou Medical University, China; Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China; The State Key Laboratory of Brain and Cognitive Sciences and Department of Ophthalmology, University of Hong Kong, Hong Kong.
| |
Collapse
|
31
|
11th International Congress on Psychopharmacology & 7th International Symposium on Child and Adolescent Psychopharmacology. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1606883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
32
|
Zhang B, Wang F, Dong HM, Jiang XW, Wei SN, Chang M, Yin ZY, Yang N, Zuo XN, Tang YQ, Xu K. Surface-based regional homogeneity in bipolar disorder: A resting-state fMRI study. Psychiatry Res 2019; 278:199-204. [PMID: 31220786 DOI: 10.1016/j.psychres.2019.05.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Surface-based, two-dimensional regional homogeneity (2dReHo) was used in the current study to compare local functional synchronization of spontaneous neuronal activity between patients with bipolar disorder (BD) and healthy controls (HC), rather than volume-based, three-dimensional regional homogeneity (3dReHo) methods that have been previously described. Seventy-one BD patients and 113 HC participated in structural and resting-state fMRI scans. Participants ranged in age from 12 to 54 years. All subjects were rated with the Young Mania Rating Scale and the Hamilton Depression Rating Scale. BD patients showed reduced surface-based ReHo across the cortical surface, both at the global level and in the left ventral visual stream (VVS). Additionally, ReHo value across the cortical surface showed a significant negative correlation with age in both groups at the global level. Abnormal activity in the left VVS cortex may contribute to the pathogenesis of BD. Therefore, surface-based ReHo may be a useful index to explore the pathophysiology of BD.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning 110001, PR China
| | - Fei Wang
- Department of Radiology and Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning 110001, PR China
| | - Hao-Ming Dong
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Wei Jiang
- Department of Radiology and Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning 110001, PR China
| | - Sheng-Nan Wei
- Department of Radiology and Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning 110001, PR China
| | - Miao Chang
- Department of Radiology and Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning 110001, PR China
| | - Zhi-Yang Yin
- Department of Radiology and Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning 110001, PR China
| | - Ning Yang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xi-Nian Zuo
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yan-Qing Tang
- Department of Radiology and Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning 110001, PR China
| | - Ke Xu
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
33
|
Demirgören BS, Özbek A, Göçmen Karabekir N, Ay B, Turan S, Yonguç GN, Karabekir S, Polat Aİ, Hız AS, Gencer Kıdak Ö. Cerebellar volumes in early-onset bipolar disorder: a pilot study of a stereological measurement technique. PSYCHIAT CLIN PSYCH 2019; 29:293-297. [DOI: 10.1080/24750573.2019.1637040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Burcu Serim Demirgören
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Aylin Özbek
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | | | - Bari Ay
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Serkan Turan
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | | | - Selim Karabekir
- Department of Neurosurgery, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ayşe İpek Polat
- Department of Child Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ayşe Semra Hız
- Department of Child Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Özlem Gencer Kıdak
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
34
|
Bora E, McIntyre RS, Ozerdem A. Neurococognitive and neuroimaging correlates of obesity and components of metabolic syndrome in bipolar disorder: a systematic review. Psychol Med 2019; 49:738-749. [PMID: 30326979 DOI: 10.1017/s0033291718003008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Individuals with bipolar disorder (BD) have a higher prevalence of obesity and metabolic syndrome (MetS) compared with the general population. Obesity and MetS are associated with cognitive deficits and brain imaging abnormalities in the general population. Obesity and components of MetS might potentially associate with neuroimaging and neurocognitive findings in BD. METHODS A literature search of studies investigating the association between obesity (and other components of MetS) and neurocognitive and neuroimaging findings in BD was conducted. In addition to a systematic review, a random-effects meta-analysis was conducted when sufficient data were available. RESULTS Twenty-three studies were included in the current systematic review. Overweight/obese patients were significantly associated with impaired neurocognition compared normal weight individuals with BD (d = 0.37). The most robust association between obesity and cognitive deficits in BD was observed in the cognitive subdomain of executive functions (d = 0.61). There was also evidence for a significant relationship between cognitive impairment in BD and other components of MetS including hypertension, dyslipidemia, and diabetes. Overweight/obese individuals with BD had more pronounced brain imaging abnormalities than normal weight individuals with BD. CONCLUSIONS Obesity and related cardiovascular risk factors significantly are associated with more severe cognitive and brain imaging abnormalities in BD. Medical co-morbidities can potentially contribute to functional decline observed in some patients throughout the course of BD.
Collapse
Affiliation(s)
- Emre Bora
- Department of Psychiatry,Dokuz Eylul University School of Medicine,Izmir,Turkey
| | - Roger S McIntyre
- Department of Psychiatry,University of Toronto,Toronto, ON,Canada
| | - Aysegul Ozerdem
- Department of Psychiatry,Dokuz Eylul University School of Medicine,Izmir,Turkey
| |
Collapse
|
35
|
Liu T, Zhong S, Wang B, Liao X, Lai S, Jia Y. Similar profiles of cognitive domain deficits between medication-naïve patients with bipolar II depression and those with major depressive disorder. J Affect Disord 2019; 243:55-61. [PMID: 30227315 DOI: 10.1016/j.jad.2018.05.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/26/2018] [Accepted: 05/27/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Bipolar disorder (BD) II is more likely to be misdiagnosed as major depressive disorder (MDD) than other types of BD, leading to incorrect treatment and poor outcomes. Previous studies have shown inconsistent results regarding the differences in cognitive deficits between the two disorders. To eliminate the compounding effects of medication and aging, we sought to investigate changes in cognitive function in medication-naïve, non-late-life patients with BDII and MDD. METHODS Three subject groups were enrolled: 30 depressed BDII patients, 30 depressed MDD patients and 30 healthy controls. All subjects underwent a battery of cognitive tests to assess 8 cognitive domains. The cognitive domains were compared between the three subject groups. In BDII and MDD, the effect sizes were computed as evaluation parameters, weighing the degree of the cognitive deficits and the correlations between cognitive test deficits and clinical variables were also computed. RESULTS Compared with the controls, the BDII and MDD patients were characterized by similar deficits in psychomotor speed, working memory, visual memory, attention switching and verbal fluency. Moderate to severe deficits in the majority of cognitive tests were observed in the BDII and MDD patients. Furthermore, correlations between the modified Wisconsin Card Sorting Test total errors and age of onset in the BDII patients and between correct digit span responses (backward and total) and depressive severity were found in the MDD patients. CONCLUSIONS Our findings suggest that BDII and MDD patients may suffer from similar profiles of cognitive domain deficits that may not assist in distinguishing between the two disorders. In addition, cognitive deficits may be correlated with the age of onset and depressive severity in mood disorders.
Collapse
Affiliation(s)
- Tao Liu
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuming Zhong
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bing Wang
- Department of Affective Disorder, Shenzhen Mental Health Center, Shenzhen, China
| | - Xiaoxiao Liao
- Department of Psychology, Jiangmen Central Hospital, Jiangmen, China
| | - Shunkai Lai
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
36
|
Li G, Liu P, Andari E, Zhang A, Zhang K. The Role of Amygdala in Patients With Euthymic Bipolar Disorder During Resting State. Front Psychiatry 2018; 9:445. [PMID: 30283367 PMCID: PMC6156348 DOI: 10.3389/fpsyt.2018.00445] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Abstract
The current study aims to explore the functional changes of the amygdala in patients with euthymic Bipolar Disorder (BD) using resting state fMRI (rs-fMRI). Twenty-one euthymic patients with bipolar disorder and 28 healthy controls participated in this study. Two of the euthymic patients with BD and three of the healthy controls were excluded due to excessive head motion. We found that patients with euthymia (38.79 ± 12.03) show higher fALFF (fractional Amplitude of low-frequency fluctuation) value of the amygdala (t = 2.076, P = 0.044), and lower functional connectivity between the amygdala and supplementary motor area (p < 0.01, GRF corrected) than healthy controls (33.40 ± 8.21). However, euthymic patients did not show a differential activity in ReHo (Regional Homogeneity) and gray matter of the amygdala region as compared to healthy controls. Thus, despite the absence of clinical symptoms in euthymic patients with BD, the amygdala functional activity and its connectivity to other brain regions remain altered. Further investigation of negative emotions and social functioning in euthymic patients with BD are needed and can help pave the way for a better understanding of BD psychopathology.
Collapse
Affiliation(s)
- Gaizhi Li
- Shanxi Medical University, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Penghong Liu
- Shanxi Medical University, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Elissar Andari
- Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Aixia Zhang
- Shanxi Medical University, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kerang Zhang
- Shanxi Medical University, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|