1
|
Hu J, Luo X, Panga MJ, Appiah C, Retyunskiy V, Zhu L, Zhao Y. Toxic effects and potential mechanisms of zinc pyrithione (ZPT) exposure on sperm and testicular injury in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132575. [PMID: 37741212 DOI: 10.1016/j.jhazmat.2023.132575] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
Zinc pyrithione (ZPT) is widely recognized for its beneficial properties as an antifouling, antibacterial, and antifungal agent. Despite its positive industrial contributions, ZPT has been proven to exhibit toxicity towards various ecosystems, particularly affecting marine life. However, there is still a dearth of comprehensive research on ZPT toxicity and its toxicological mechanism in reproductive systems of aquatic organisms. In our study, we conducted a thorough analysis and unveiled a multitude of abnormalities in zebrafish sperm and testicular tissue caused by ZPT exposure, including a dose-dependent diminishing of testosterone levels, various sperm deformities, decreased sperm concentration and motility, and ROS-induced testicular tissue DNA damage. In addition, our study suggested that ZPT-induced testicular damage is associated with heightened oxidative stress, apoptosis, and possible hyperpolarization of the mitochondrial membrane. Through RNA-seq analysis, a total of 409 DEGs associated with ZPT-induced testicular injury were identified, and the hub gene was determined using a protein-protein interaction network (PPI). The genes and pathways uncovered in this study point to potential mechanisms of ZPT exposure on sperm and testicular injury in zebrafish.
Collapse
Affiliation(s)
- Jinyuan Hu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xu Luo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Mogellah John Panga
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Clara Appiah
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Vladimir Retyunskiy
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Lin Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Yang W, Liu LB, Liu FL, Wu YH, Zhen ZD, Fan DY, Sheng ZY, Song ZR, Chang JT, Zheng YT, An J, Wang PG. Single-cell RNA sequencing reveals the fragility of male spermatogenic cells to Zika virus-induced complement activation. Nat Commun 2023; 14:2476. [PMID: 37120617 PMCID: PMC10148584 DOI: 10.1038/s41467-023-38223-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
Zika virus (ZIKV) is a potential threat to male reproductive health but the mechanisms underlying its influence on testes during ZIKV infection remain obscure. To address this question, we perform single-cell RNA sequencing using testes from ZIKV-infected mice. The results reveal the fragility of spermatogenic cells, especially spermatogonia, to ZIKV infection and show that the genes of the complement system are significantly upregulated mainly in infiltrated S100A4 + monocytes/macrophages. Complement activation and its contribution to testicular damage are validated by ELISA, RT‒qPCR and IFA and further verify in ZIKV-infected northern pigtailed macaques by RNA genome sequencing and IFA, suggesting that this might be the common response to ZIKV infection in primates. On this basis, we test the complement inhibitor C1INH and S100A4 inhibitors sulindac and niclosamide for their effects on testis protection. C1INH alleviates the pathological change in the testis but deteriorates ZIKV infection in general. In contrast, niclosamide effectively reduces S100A4 + monocyte/macrophage infiltration, inhibits complement activation, alleviates testicular damage, and rescues the fertility of male mice from ZIKV infection. This discovery therefore encourages male reproductive health protection during the next ZIKV epidemic.
Collapse
Affiliation(s)
- Wei Yang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Li-Bo Liu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Feng-Liang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Yan-Hua Wu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zi-Da Zhen
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Dong-Ying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zi-Yang Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zheng-Ran Song
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jia-Tong Chang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Lee AS, Rusch J, Lima AC, Usmani A, Huang N, Lepamets M, Vigh-Conrad KA, Worthington RE, Mägi R, Wu X, Aston KI, Atkinson JP, Carrell DT, Hess RA, O'Bryan MK, Conrad DF. Rare mutations in the complement regulatory gene CSMD1 are associated with male and female infertility. Nat Commun 2019; 10:4626. [PMID: 31604923 PMCID: PMC6789153 DOI: 10.1038/s41467-019-12522-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
Infertility in men and women is a complex genetic trait with shared biological bases between the sexes. Here, we perform a series of rare variant analyses across 73,185 women and men to identify genes that contribute to primary gonadal dysfunction. We report CSMD1, a complement regulatory protein on chromosome 8p23, as a strong candidate locus in both sexes. We show that CSMD1 is enriched at the germ-cell/somatic-cell interface in both male and female gonads. Csmd1-knockout males show increased rates of infertility with significantly increased complement C3 protein deposition in the testes, accompanied by severe histological degeneration. Knockout females show significant reduction in ovarian quality and breeding success, as well as mammary branching impairment. Double knockout of Csmd1 and C3 causes non-additive reduction in breeding success, suggesting that CSMD1 and the complement pathway play an important role in the normal postnatal development of the gonads in both sexes.
Collapse
Affiliation(s)
- Arthur S Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jannette Rusch
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ana C Lima
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Abul Usmani
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ni Huang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maarja Lepamets
- Estonian Genome Center, University of Tartu, 51010, Tartu, Estonia
| | - Katinka A Vigh-Conrad
- Oregon National Primate Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Ronald E Worthington
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville, IL, 62025, USA
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, 51010, Tartu, Estonia
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kenneth I Aston
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Douglas T Carrell
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Rex A Hess
- College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, 61802, USA
| | - Moira K O'Bryan
- The School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Donald F Conrad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Oregon National Primate Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, 97239, USA.
| |
Collapse
|
4
|
Mizuno M, Suzuki Y, Ito Y. Complement regulation and kidney diseases: recent knowledge of the double-edged roles of complement activation in nephrology. Clin Exp Nephrol 2017; 22:3-14. [DOI: 10.1007/s10157-017-1405-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
|
5
|
|
6
|
Mizuno M, Ito Y, Mizuno T, Harris CL, Suzuki Y, Okada N, Matsuo S, Morgan BP. Membrane complement regulators protect against fibrin exudation increases in a severe peritoneal inflammation model in rats. Am J Physiol Renal Physiol 2012; 302:F1245-51. [DOI: 10.1152/ajprenal.00652.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peritonitis and the rare sequela of encapsulating peritoneal sclerosis (EPS) are serious problems in patients on peritoneal dialysis therapy. Chronic and persistent peritoneal injuries may be a risk factor of EPS. We previously reported that a chronic, proliferative peritonitis developed when zymosan was administered intraperitoneally following scraping injury of rat peritoneum (Mizuno M, Ito Y, Hepburn N, Mizuno T, Noda Y, Yuzawa Y, Harris CL, Morgan BP, Matsuo S. J Immunol 183: 1403–1412, 2009). Peritoneal membrane complement regulators (CRegs), especially Crry and CD59, protected from injury by inhibiting local complement activation, suggesting that CRegs play important roles in maintaining homeostasis in rat peritoneum. Here, we investigated roles of complement in the development of EPS by neutralizing CReg function with monoclonal antibodies (MAbs). Proliferative peritonitis was induced by scraping the peritoneum, followed by daily intraperitoneal administration of zymosan. When either Crry or CD59 alone was neutralized by MAb, the tissue injuries were not significantly changed compared with rats without neutralizing MAb. When both Crry and CD59 were neutralized in this model, severe fibrin exudation was observed on the peritoneal surface on day 5, accompanied by inflammatory cell infiltration, resembling the early stages of development of EPS. Dense peritoneal deposition of C3 fragments and membrane attack complex were observed, along with the fibrin exudates. Intravenous administration of cobra venom factor, which profoundly activates complement, further enhanced these pathological changes. Our results show that complement activation in injured peritoneum drives peritoneal inflammation, and that enhancement of complement activation by inhibiting CReg and/or enhancing systemic activation contributes to the initiation of EPS; therefore, anti-complement agents might be of therapeutic value in humans for the treatment of EPS.
Collapse
Affiliation(s)
| | - Yasuhiko Ito
- Renal Replacement Therapy,
- Division of Nephrology,
| | - Tomohiro Mizuno
- Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Claire L. Harris
- Complement Biology Group, Infection, Immunology and Biochemistry, School of Medicine, Cardiff University, Cardiff, UK; and
| | | | - Noriko Okada
- Immunology, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | | | - B. Paul Morgan
- Complement Biology Group, Infection, Immunology and Biochemistry, School of Medicine, Cardiff University, Cardiff, UK; and
| |
Collapse
|
7
|
Hedger MP. Immunophysiology and pathology of inflammation in the testis and epididymis. ACTA ACUST UNITED AC 2011; 32:625-40. [PMID: 21764900 PMCID: PMC7166903 DOI: 10.2164/jandrol.111.012989] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability of spermatogenic cells to evade the host immune system and the ability of systemic inflammation to inhibit male reproductive function represent two of the most intriguing conundrums of male reproduction. Clearly, an understanding of the underlying immunology of the male reproductive tract is crucial to resolving these superficially incompatible observations. One important consideration must be the very different immunological environments of the testis, where sperm develop, and the epididymis, where sperm mature and are stored. Compared with the elaborate blood-testis barrier, the tight junctions of the epididymis are much less effective. Unlike the seminiferous epithelium, immune cells are commonly observed within the epithelium, and can even be found within the lumen, of the epididymis. Crucially, there is little evidence for extended allograft survival (immune privilege) in the epididymis, as it exists in the testis, and the epididymis is much more susceptible to loss of immune tolerance. Moreover, the incidence of epididymitis is considerably greater than that of orchitis in humans, and susceptibility to sperm antibody formation after damage to the epididymis or vas deferens increases with increasing distance of the damage from the testis. Although we still know relatively little about testicular immunity, we know less about the interactions between the epididymis and the immune system. Given that the epididymis appears to be more susceptible to inflammation and immune reactions than the testis, and thereby represents the weaker link in protecting developing sperm from the immune system, it is probably time this imbalance in knowledge was addressed.
Collapse
Affiliation(s)
- Mark P Hedger
- Monash Institute of Medical Research, Monash University, 27-31 Wright St, Clayton, Victoria, Australia.
| |
Collapse
|
8
|
Abstract
A large body of evidence points to the existence of a close, dynamic relationship between the immune system and the male reproductive tract, which has important implications for our understanding of both systems. The testis and the male reproductive tract provide an environment that protects the otherwise highly immunogenic spermatogenic cells and sperm from immunological attack. At the same time, secretions of the testis, including androgens, influence the development and mature functions of the immune system. Activation of the immune system has negative effects on both androgen and sperm production, so that systemic or local infection and inflammation compromise male fertility. The mechanisms underlying these interactions have begun to receive the attention from reproductive biologists and immunologists that they deserve, but many crucial details remain to be uncovered. A complete picture of male reproductive tract function and its response to toxic agents is contingent upon continued exploration of these interactions and the mechanisms involved.
Collapse
Key Words
- cytokines
- immunity
- immunoregulation
- inflammation
- leydig cell
- lymphocytes
- macrophages
- nitric oxide
- prostanoids
- seminal plasma
- sertoli cell
- sperm
- spermatogenesis
- steroidogenesis
- toll-like receptors
- 16:0a-lpc, 1-palmitoyl-sn-glycero-3-phosphocholine
- 18:1a-lpc, 1-oleoyl-sn-glycero-3-phosphocholine
- 18:2a-lpc, 1-linoleoyl-sn-glycero-3-phosphocholine
- 20:4a-lpc, 1-arachidonyl-sn-glycero-3-phosphocholine
- aid, acquired immune deviation
- aire, autoimmune regulator
- ap1, activated protein 1
- apc, antigen-presenting cell
- bambi, bmp and activin membrane-bound inhibitor
- bmp, bone morphogenetic protein
- cox, cyclooxygenase
- crry, complement receptor-related protein
- ctl, cytotoxic t lymphocyte
- eao, experimental autoimmune orchitis
- eds, ethane dimethane sulfonate
- enos, endothelial nos
- fadd, fas-associated death domain protein
- fasl, fas ligand
- fsh, follicle-stimulating hormone
- gc, glucocorticoid
- hcg, human chorionic gonadotropin
- hla, human leukocyte antigen
- hmgb1, high mobility group box chromosomal protein 1
- ice, il1 converting enzyme
- ifn, interferon
- ifnar, ifnα receptor
- il, interleukin
- il1r, interleukin 1 receptor
- il1ra, il1 receptor antagonist
- inos, inducible nitric oxide synthase
- irf, interferon regulatory factor
- jak/stat, janus kinase/signal transducers and activators of transcription
- jnk, jun n-terminal kinase
- lh, luteinizing hormone
- lpc, lysoglycerophosphatidylcholine
- lps, lipopolysaccharide
- map, mitogen-activated protein
- mhc, major histocompatibility complex
- mif, macrophage migration inhibitory factor
- myd88, myeloid differentiation primary response protein 88
- nfκb, nuclear factor kappa b
- nk, cell natural killer cell
- nkt cell, natural killer t cell
- nlr, nod-like receptor
- nnos, neuronal nos
- nod, nucleotide binding oligomerization domain
- p450c17, 17α-hydroxylase/c17-c20 lyase
- p450scc, cholesterol side-chain cleavage complex
- paf, platelet-activating factor
- pamp, pathogen-associated molecular pattern
- pc, phosphocholine
- pg, prostaglandin
- pges, pge synthase
- pgi, prostacyclin
- pla2, phospholipase a2
- pmn, polymorphonuclear phagocyte
- pparγ, peroxisome proliferator-activated receptor γ
- rig, retinoic acid-inducible gene
- rlh, rig-like helicase
- ros, reactive oxygen species
- star, steroidogenic acute regulatory
- tcr, t cell receptor
- tgf, transforming growth factor
- th cell, helper t cell
- tir, toll/il1r
- tlr, toll-like receptor
- tnf, tumor necrosis factor
- tnfr, tnf receptor
- tr1, t regulatory 1
- tradd, tnfr-associated death domain protein
- traf, tumor necrosis factor receptor-associated factor
- treg, regulatory t cell
- trif, tir domain-containing adaptor protein inducing interferon β
- tx, thromboxane
- txas, thromboxane a synthase
Collapse
|
9
|
Mizuno M, Ito Y, Hepburn N, Mizuno T, Noda Y, Yuzawa Y, Harris CL, Morgan BP, Matsuo S. Zymosan, but Not Lipopolysaccharide, Triggers Severe and Progressive Peritoneal Injury Accompanied by Complement Activation in a Rat Peritonitis Model. THE JOURNAL OF IMMUNOLOGY 2009; 183:1403-1412. [DOI: 10.4049/jimmunol.0804245] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Fungal peritonitis is an important complication in peritoneal dialysis patients; either continuous or recurrent peritonitis may enhance peritoneal damage. Even when the peritoneal dialysis catheter is removed in patients with fungal peritonitis, peritoneal fibrosis can progress and evolve into encapsular peritoneal sclerosis. It is unclear why fungal infections are worse than bacterial in these respects. Zymosan is a cell wall component of yeast that strongly activates the complement system. In this study, we compared the effects of zymosan and bacterial LPS on peritoneal inflammation in a rat peritoneal injury model induced by mechanical scraping. Intraperitoneal administration of zymosan, but not LPS or vehicle, caused markedly enhanced peritonitis with massive infiltration of cells and deposition of complement activation products C3b and membrane attack complex on day 5. In rats administered zymosan and sacrificed on days 18 or 36, peritoneal inflammation persisted with accumulation of ED-1-positive cells, small deposits of C3b and membrane attack complex, exudation of fibrinogen, and capillary proliferation in subperitoneal tissues. When zymosan was administered daily for 5 days after peritoneal scrape, there was even greater peritoneal inflammation with peritoneal thickening, inflammatory cell accumulation, and complement deposition. Inhibition of systemic complement by pretreatment with cobra venom factor or local inhibition by i.p. administration of the recombinant complement regulator Crry-Ig reduced peritoneal inflammation in zymosan-treated rats. Our results show that yeast components augment inflammation in the injured peritoneum by causing complement activation within the peritoneal cavity. Local anticomplement therapy may therefore protect from peritoneal damage during fungal infection of the peritoneum.
Collapse
Affiliation(s)
- Masashi Mizuno
- *Renal Replacement Therapy and
- †Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Ito
- *Renal Replacement Therapy and
- †Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Natalie Hepburn
- §Complement Biology Group, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, United Kingdom
| | - Tomohiro Mizuno
- ‡Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya, Japan; and
| | - Yukihiro Noda
- ‡Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya, Japan; and
| | - Yukio Yuzawa
- †Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Claire L. Harris
- §Complement Biology Group, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, United Kingdom
| | - B. Paul Morgan
- §Complement Biology Group, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, United Kingdom
| | - Seiichi Matsuo
- †Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Wang XW, Ding GR, Shi CH, Zhao T, Zhang J, Zeng LH, Guo GZ. Effect of electromagnetic pulse exposure on permeability of blood-testicle barrier in mice. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2008; 21:218-221. [PMID: 18714819 DOI: 10.1016/s0895-3988(08)60032-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
OBJECTIVE To study the effect of electromagnetic pulse (EMP) exposure on the permeability of blood-testicle barrier (BTB) in mice. METHODS Adult male BALB/c mice were exposed to EMP at 200 kV/m for 200 pulses with 2 seconds interval. The mice were injected with 2% Evans Blue solution through caudal vein at different time points after exposure, and the permeability of BTB was monitored using a fluorescence microscope. The testis sample for the transmission electron microscopy was prepared at 2 h after EMP exposure. The permeability of BTB in mice was observed by using Evans Blue tracer and lanthanum nitrate tracer. RESULTS After exposure, cloudy Evans Blue was found in the testicle convoluted seminiferous tubule of mice. Lanthanum nitrate was observed not only between testicle spermatogonia near seminiferous tubule wall and sertoli cells, but also between sertoli cells and primary spermatocyte or secondary spermatocyte. In contrast, lanthanum nitrate in control group was only found in the testicle sertoli cells between seminiferous tubule and near seminiferous tubule wall. CONCLUSION EMP exposure could increase the permeability of BTB in the mice.
Collapse
Affiliation(s)
- Xiao-Wu Wang
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Mizuno M, Harris CL, Morgan BP. Immunization with autologous CD46 generates a strong autoantibody response in rats that targets spermatozoa. J Reprod Immunol 2007; 73:135-147. [PMID: 16950517 DOI: 10.1016/j.jri.2006.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 07/28/2006] [Accepted: 08/01/2006] [Indexed: 11/20/2022]
Abstract
CD46, a membrane complement regulator, has been implicated as pathogen receptor, T cell activator and contributor to spermatozoa-egg interactions. In man, a role in the fertilization process was suggested by its localization on the acrosome. In rodents, CD46 is expressed only on the spermatozoal acrosome, suggesting an essential role at this site. This restricted expression led us to ask whether immunization with CD46 would generate anti-CD46 antibody responses that might target spermatozoa and influence fertility. We immunized male and female rats with rat CD46. Strong immune responses were generated in all rats and immune sera stained CD46 in testis extracts and in situ in testis and sperm. Incubation of spermatozoa with immune sera caused deposition of immunoglobulin and C3b in an acrosome pattern and reduced motility. We mated immune male rats with naïve females and female immune rats with naïve males. The incidence of pregnancy and number of fetuses were not different in matings involving immune male or female rats compared to controls. Testis sections from immune rats revealed no immunoglobulin deposition on CD46-positive sperm precursors, suggesting that acrosomal CD46 was inaccessible in this location. A minority of spermatozoa harvested from epididymis of immune rats had immunoglobulin and C3b bound to the acrosome, suggesting that anti-CD46, present in genital tract fluids, bound after acrosome reaction. These data demonstrate that the restricted expression of CD46 allows strong anti-CD46 responses in rats that target spermatozoa in vitro and in vivo. The anti-CD46 response did not influence fertility, perhaps reflecting the considerable redundancy for fertilization in rodents.
Collapse
Affiliation(s)
- Masashi Mizuno
- Complement Biology Group, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Claire L Harris
- Complement Biology Group, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - B Paul Morgan
- Complement Biology Group, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
12
|
Mizuno M, Donev RM, Harris CL, Morgan BP. CD55 in rat male reproductive tissue: Differential expression in testis and expression of a unique truncated isoform on spermatozoa. Mol Immunol 2007; 44:1613-22. [PMID: 17007930 DOI: 10.1016/j.molimm.2006.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 08/08/2006] [Indexed: 11/28/2022]
Abstract
CD55 is a key regulator of complement activation, expressed on most tissues and cells in man and other mammals. In the rat, alternative splicing in the gene encoding CD55 yields GPI-anchored (GPI-CD55) and transmembrane (TM-CD55) forms. Published Northern blot analysis indicated that while GPI-CD55 was broadly expressed, TM-CD55 was primarily expressed in the testis, although the precise site of expression was not identified. To clarify the distribution of CD55 isoforms in rat reproductive tissues, we first performed immunohistochemistry and Western blot analysis with an anti-rat CD55 mAb that recognized all reported CD55 isoforms, and a polyclonal immunoglobulin specific for TM-CD55. CD55 was absent in testis prior to puberty. Post-puberty, CD55 was expressed at high levels on all spermiogenic cells from step 6 spermatid onward, and on mature spermatozoa focussed on the acrosome, but was absent from support cells and early progenitors. Enzymatic digestion revealed that GPI-CD55 was predominant in testis and spermatozoa. Staining for TM-CD55 with specific immunoglobulin confirmed its absence from mature sperm and expression on spermatids only between steps 11 and 14 of development. GPI-CD55 on spermatozoa was of lower molecular weight than that in testis and other tissues; sequencing from spermatozoal mRNA identified a unique isoform of GPI-CD55 missing short consensus repeat 4. The predominant acrosome expression and presence of a unique, truncated isoform of CD55 on spermatozoa provides further support for the hypothesis that the acrosome is a highly specialized region in which closely regulated complement activation may contribute to reproductive function.
Collapse
Affiliation(s)
- Masashi Mizuno
- Complement Biology Group, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | |
Collapse
|