1
|
Feng E, Balint E, Vahedi F, Ashkar AA. Immunoregulatory Functions of Interferons During Genital HSV-2 Infection. Front Immunol 2021; 12:724618. [PMID: 34484233 PMCID: PMC8416247 DOI: 10.3389/fimmu.2021.724618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/02/2021] [Indexed: 12/04/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) infection is one of the most prevalent sexually transmitted infections that disproportionately impacts women worldwide. Currently, there are no vaccines or curative treatments, resulting in life-long infection. The mucosal environment of the female reproductive tract (FRT) is home to a complex array of local immune defenses that must be carefully coordinated to protect against genital HSV-2 infection, while preventing excessive inflammation to prevent disease symptoms. Crucial to the defense against HSV-2 infection in the FRT are three classes of highly related and integrated cytokines, type I, II, and III interferons (IFN). These three classes of cytokines control HSV-2 infection and reduce tissue damage through a combination of directly inhibiting viral replication, as well as regulating the function of resident immune cells. In this review, we will examine how interferons are induced and their critical role in how they shape the local immune response to HSV-2 infection in the FRT.
Collapse
Affiliation(s)
| | | | | | - Ali A. Ashkar
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Tognarelli EI, Palomino TF, Corrales N, Bueno SM, Kalergis AM, González PA. Herpes Simplex Virus Evasion of Early Host Antiviral Responses. Front Cell Infect Microbiol 2019; 9:127. [PMID: 31114761 PMCID: PMC6503643 DOI: 10.3389/fcimb.2019.00127] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) have co-evolved with humans for thousands of years and are present at a high prevalence in the population worldwide. HSV infections are responsible for several illnesses including skin and mucosal lesions, blindness and even life-threatening encephalitis in both, immunocompetent and immunocompromised individuals of all ages. Therefore, diseases caused by HSVs represent significant public health burdens. Similar to other herpesviruses, HSV-1 and HSV-2 produce lifelong infections in the host by establishing latency in neurons and sporadically reactivating from these cells, eliciting recurrences that are accompanied by viral shedding in both, symptomatic and asymptomatic individuals. The ability of HSVs to persist and recur in otherwise healthy individuals is likely given by the numerous virulence factors that these viruses have evolved to evade host antiviral responses. Here, we review and discuss molecular mechanisms used by HSVs to evade early innate antiviral responses, which are the first lines of defense against these viruses. A comprehensive understanding of how HSVs evade host early antiviral responses could contribute to the development of novel therapies and vaccines to counteract these viruses.
Collapse
Affiliation(s)
- Eduardo I Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás F Palomino
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Milligan GN, Vargas G, Vincent KL, Zhu Y, Bourne N, Motamedi M. Evaluation of immunological markers of ovine vaginal irritation: Implications for preclinical assessment of non-vaccine HIV preventive agents. J Reprod Immunol 2017; 124:38-43. [PMID: 29054075 DOI: 10.1016/j.jri.2017.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/15/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
The presence of genital inflammatory responses and a compromised vaginal epithelial barrier have been linked to an increased risk of HIV acquisition. It is important to assure that application of candidate microbicides designed to limit HIV transmission will not cause these adverse events. We previously developed high resolution in vivo imaging methodologies in sheep to assess epithelial integrity following vaginal application of a model microbicide, however characterization of genital inflammation in sheep has not been previously possible. In this study, we significantly advanced the sheep model by developing approaches to detect and quantify inflammatory responses resulting from application of a nonoxynol-9-containing gel known to elicit vaginal irritation. Vaginal application of this model microbicide resulted in foci of disrupted epithelium detectable by confocal endomicroscopy. Leukocytes also infiltrated the treated mucosa and the number and composition of leukocytes obtained by cervicovaginal lavage (CVL) were determined by differential staining and flow cytometry. By 18h post-treatment, a population comprised predominantly of granulocytes and monocytes infiltrated the vagina and persisted through 44h post-treatment. The concentration of proinflammatory cytokines and chemokines in CVL was determined by quantitative ELISA. Concentrations of IL-8 and IL-1β were consistently significantly increased after microbicide application suggesting these cytokines are useful biomarkers for epithelial injury in the sheep model. Together, the results of these immunological assessments mirror those obtained in previous animal models and human trials with the same compound and greatly extend the utility of the sheep vaginal model in assessing the vaginal barrier and immune microenvironment.
Collapse
Affiliation(s)
- Gregg N Milligan
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA.
| | - Gracie Vargas
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA; Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA
| | - Kathleen L Vincent
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA; Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yong Zhu
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA
| | - Nigel Bourne
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA; Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Mature dendritic cells cause Th17/Treg imbalance by secreting TGF-β1 and IL-6 in the pathogenesis of experimental autoimmune encephalomyelitis. Cent Eur J Immunol 2016; 41:143-52. [PMID: 27536199 PMCID: PMC4967648 DOI: 10.5114/ceji.2016.60987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/26/2015] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is generally acknowledged to be an autoimmune disease, but its etiology remains unknown. The most intensively studied animal model of MS is experimental autoimmune encephalomyelitis (EAE). Dendritic cells (DCs), the professional antigen presenting cells (APCs), have gained increasing attention because they connect innate and adaptive immunity. The aim of this study was to determine the role of mature DCs in the pathogenesis of EAE. It was found that the number of mature DCs in the EAE spleen increased compared to the control group (p < 0.05). And there was an imbalance between Th17 (effector) and Treg (regulatory) in EAE. The data showed that mature DCs can regulate the differentiation of Th17 and Treg in EAE. In addition, there was a significant difference in secretion of TGF-β1 and IL-6 between mature DCs from mice with EAE and controls. The present data suggest that mature DCs cause an imbalance between Th17 and Treg by secreting TGF-β1 and IL-6 in the pathogenesis of EAE disease. Thus, targeting DC may be an effective strategy for treating MS.
Collapse
|
5
|
Anipindi VC, Bagri P, Roth K, Dizzell SE, Nguyen PV, Shaler CR, Chu DK, Jiménez-Saiz R, Liang H, Swift S, Nazli A, Kafka JK, Bramson J, Xing Z, Jordana M, Wan Y, Snider DP, Stampfli MR, Kaushic C. Estradiol Enhances CD4+ T-Cell Anti-Viral Immunity by Priming Vaginal DCs to Induce Th17 Responses via an IL-1-Dependent Pathway. PLoS Pathog 2016; 12:e1005589. [PMID: 27148737 PMCID: PMC4858291 DOI: 10.1371/journal.ppat.1005589] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/01/2016] [Indexed: 12/22/2022] Open
Abstract
Clinical and experimental studies have shown that estradiol (E2) confers protection against HIV and other sexually transmitted infections. Here, we investigated the underlying mechanism. Better protection in E2-treated mice, immunized against genital HSV-2, coincided with earlier recruitment and higher proportions of Th1 and Th17 effector cells in the vagina post-challenge, compared to placebo-treated controls. Vaginal APCs isolated from E2-treated mice induced 10-fold higher Th17 and Th1 responses, compared to APCs from progesterone-treated, placebo-treated, and estradiol-receptor knockout mice in APC-T cell co-cultures. CD11c+ DCs in the vagina were the predominant APC population responsible for priming these Th17 responses, and a potent source of IL-6 and IL-1β, important factors for Th17 differentiation. Th17 responses were abrogated in APC-T cell co-cultures containing IL-1β KO, but not IL-6 KO vaginal DCs, showing that IL-1β is a critical factor for Th17 induction in the genital tract. E2 treatment in vivo directly induced high expression of IL-1β in vaginal DCs, and addition of IL-1β restored Th17 induction by IL-1β KO APCs in co-cultures. Finally, we examined the role of IL-17 in anti-HSV-2 memory T cell responses. IL-17 KO mice were more susceptible to intravaginal HSV-2 challenge, compared to WT controls, and vaginal DCs from these mice were defective at priming efficient Th1 responses in vitro, indicating that IL-17 is important for the generation of efficient anti-viral memory responses. We conclude that the genital mucosa has a unique microenvironment whereby E2 enhances CD4+ T cell anti-viral immunity by priming vaginal DCs to induce Th17 responses through an IL-1-dependent pathway.
Collapse
Affiliation(s)
- Varun C. Anipindi
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Puja Bagri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kristy Roth
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sara E. Dizzell
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Philip V. Nguyen
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Christopher R. Shaler
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Derek K. Chu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rodrigo Jiménez-Saiz
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Hong Liang
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stephanie Swift
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Aisha Nazli
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jessica K. Kafka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan Bramson
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Manel Jordana
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Denis P. Snider
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Martin R. Stampfli
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Charu Kaushic
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Shin H, Iwasaki A. Generating protective immunity against genital herpes. Trends Immunol 2013; 34:487-94. [PMID: 24012144 DOI: 10.1016/j.it.2013.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/01/2013] [Accepted: 08/03/2013] [Indexed: 12/21/2022]
Abstract
Genital herpes is an incurable, chronic disease that affects millions of people worldwide. Not only does genital herpes cause painful, recurrent symptoms, it is also a significant risk factor for the acquisition of other sexually transmitted infections such as HIV-1. Antiviral drugs are used to treat herpes simplex virus (HSV) infection, but they cannot stop viral shedding and transmission. Thus, developing a vaccine that can prevent or clear infection will be crucial in limiting the spread of disease. In this review we outline recent studies that improve our understanding of host responses against HSV infection, discuss past clinical vaccine trials, and highlight new strategies for vaccine design against genital herpes.
Collapse
Affiliation(s)
- Haina Shin
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
7
|
Delayed but effective induction of mucosal memory immune responses against genital HSV-2 in the absence of secondary lymphoid organs. Mucosal Immunol 2013; 6:56-68. [PMID: 22718264 DOI: 10.1038/mi.2012.48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To examine whether local immunization in the absence of secondary lymphoid organs (SLOs) could establish effective antiviral memory responses in the female genital tract, we examined immunity in the vaginal tracts of LTα-/- mice, LTα-/- SPL (splenectomized), and control C57BL/6 (WT) mice. All three groups of mice were immunized intravaginally (IVAG) with attenuated thymidine kinase-negative (TK(-)) Herpes simplex virus type 2 (HSV-2) and challenged 4-6 weeks later with wild-type (WT) HSV-2. Both groups of LTα-/- mice exhibited delayed viral clearance and prolonged genital pathology after immunization. Following IVAG WT HSV-2 challenge, LTα-/- and LTα-/- SPL mice had significantly lower levels of HSV-2-specific IgG and IgA in the vaginal secretions. Although the frequency of B and T cells in the vaginal mucosa was comparable or higher in both groups of LTα-/- mice, lower frequency of HSV-2-specific interferon-γ (IFNγ)-producing CD3+ T cells was seen after immunization and after challenge, compared with WT group. Despite this, immunized mice in all three groups showed complete sterile protection against IVAG WT HSV-2 challenge. These results show that even in the absence of SLOs, IVAG immunization generates effector memory immune responses at genital mucosa that can provide antiviral protection against subsequent viral exposures. This will inform new strategies to design mucosal vaccines against sexually transmitted infections.
Collapse
|
8
|
Single and combination herpes simplex virus type 2 glycoprotein vaccines adjuvanted with CpG oligodeoxynucleotides or monophosphoryl lipid A exhibit differential immunity that is not correlated to protection in animal models. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1702-9. [PMID: 21852545 DOI: 10.1128/cvi.05071-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite several attempts to develop an effective prophylactic vaccine for HSV-2, all have failed to show efficacy in the clinic. The most recent of these failures was the GlaxoSmithKline (GSK) subunit vaccine based on the glycoprotein gD with the adjuvant monophosphoryl lipid A (MPL). In a phase 3 clinical trial, this vaccine failed to protect from HSV-2 disease, even though good neutralizing antibody responses were elicited. We aimed to develop a superior, novel HSV-2 vaccine containing either gD or gB alone or in combination, together with the potent adjuvant CpG oligodeoxynucleotides (CPG). The immunogenic properties of these vaccines were compared in mice. We show that gB/CPG/alum elicited a neutralizing antibody response similar to that elicited by gD/CPG/alum vaccine but a significantly greater gamma interferon (IFN-γ) T cell response. Furthermore, the combined gB-gD/CPG/alum vaccine elicited significantly greater neutralizing antibody and T cell responses than gD/MPL/alum. The efficacies of these candidate vaccines were compared in the mouse and guinea pig disease models, including a novel male guinea pig genital disease model. These studies demonstrated that increased immune response did not correlate to improved protection. First, despite a lower IFN-γ T cell response, the gD/CPG/alum vaccine was more effective than gB/CPG/alum in mice. Furthermore, the gB-gD/CPG/alum vaccine was no more effective than gD/MPL/alum in mice or male guinea pigs. We conclude that difficulties in correlating immune responses to efficacy in animal models will act as a deterrent to researchers attempting to develop effective HSV vaccines.
Collapse
|
9
|
Nelson MH, Bird MD, Chu CF, Johnson AJ, Friedrich BM, Allman WR, Milligan GN. Rapid clearance of herpes simplex virus type 2 by CD8+ T cells requires high level expression of effector T cell functions. J Reprod Immunol 2011; 89:10-7. [PMID: 21444117 PMCID: PMC3081923 DOI: 10.1016/j.jri.2011.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/22/2010] [Accepted: 01/08/2011] [Indexed: 11/18/2022]
Abstract
CD8(+) T cells are important for resolution of HSV-2 lesions from the female genital epithelium. It is uncertain whether optimal clearance of viruses such as HSV-2 that cause a limited, non-systemic infection solely requires expression of effector functions by infiltrating CD8(+) T lymphocytes, or if the clearance rate is reflective of the expression level of critical effector functions. To address this, CD8(+) T cells from normal OT-I mice or OT-I mice deficient in IFNγ (IFNγ(-/-)) or the IFNγ receptor (IFNγR(-/-)) were activated in vitro in the presence of IFNγ or IL-4 to generate a series of effector populations (Tc1 and Tc2-like respectively) that secreted different levels of IFNγ and expressed different levels of HSV-specific cytolytic function. Compared with Tc1 cells, Tc2-like cells produced the type 2 cytokines IL-4 and IL-5, exhibited decreased IFNγ secretion, diminished proliferation in vitro, and decreased antigen-specific cytolysis in vivo. Clearance of an ovalbumin-expressing HSV-2 strain (HSV-2 tk(-) OVA) by adoptively transferred Tc2-like cells was delayed relative to Tc1 cell recipients. Because donor Tc2-like cells proliferated in vivo and infiltrated the infected genital epithelium similar to Tc1 cells, the diminished virus clearance by Tc2-like effector cells correlated with reduced expression of critical effector functions. Together, these results suggest that high level expression of protective T cell functions by effector T cells is necessary for optimal clearance of HSV-2 from the genital epithelium. These results have important implications for vaccines designed to elicit CD8(+) T cells against viruses such as HSV-2 that infect the genital tract.
Collapse
Affiliation(s)
- Michelle H. Nelson
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Melanie D. Bird
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Chin-Fun Chu
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Alison J. Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Brian M. Friedrich
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Windy R. Allman
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Gregg N. Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
- Sealy Center for Vaccine Development. University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| |
Collapse
|
10
|
Nelson MH, Winkelmann E, Ma Y, Xia J, Mason PW, Bourne N, Milligan GN. Immunogenicity of RepliVAX WN, a novel single-cycle West Nile virus vaccine. Vaccine 2010; 29:174-82. [PMID: 21055493 PMCID: PMC2997156 DOI: 10.1016/j.vaccine.2010.10.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/21/2010] [Accepted: 10/23/2010] [Indexed: 12/28/2022]
Abstract
We recently reported that immunization with RepliVAX WN, a single-cycle West Nile virus (WNV) vaccine, protected mice against WNV challenge. We have extended these studies by characterizing the RepliVAX WN-elicited antibody and T cell responses. WNV-specific IgG antibody responses comprised predominantly of IgG(2c) and IgG(2b) subclasses were detected 8 months after immunization. Vigorous WNV-specific CD4(+) and CD8(+) T cell responses directed at both structural and nonstructural WNV proteins were detected which were characterized by cytolytic activity and secretion of IFN-γ and TNF-α. Importantly, RepliVAX WN immunization resulted in vigorous CD8(+) memory T cell responses detected at 8 months after immunization.
Collapse
Affiliation(s)
- Michelle H. Nelson
- Department of Microbiology and Immunology. University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Evandro Winkelmann
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yinghong Ma
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jingya Xia
- Department of Microbiology and Immunology. University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Peter W. Mason
- Department of Microbiology and Immunology. University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nigel Bourne
- Department of Microbiology and Immunology. University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gregg N. Milligan
- Department of Microbiology and Immunology. University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
11
|
Farley N, Bernstein DI, Bravo FJ, Earwood J, Sawtell N, Cardin RD. Recurrent vaginal shedding of herpes simplex type 2 virus in the mouse and effects of antiviral therapy. Antiviral Res 2010; 86:188-95. [PMID: 20167236 PMCID: PMC2878486 DOI: 10.1016/j.antiviral.2010.02.317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 01/02/2023]
Abstract
A mouse model of recurrent herpes simplex type 2 (HSV-2) would improve our understanding of the immunobiology of recurrent disease and provide a useful model for evaluating antiviral treatments. We developed a model to evaluate recurrent vaginal HSV-2 shedding using high-dose acyclovir (ACV) therapy beginning at 3 days post infection (dpi). Treatment with 150mg/kg of ACV for 10 days increased survival to 80% following vaginal challenge with HSV-2 strain 186 and to 100% after challenge with strain MS. We then evaluated recurrent vaginal HSV-2 shedding in surviving mice. Although infectious virus was not detected in vaginal samples after 21dpi, viral DNA was detectable by PCR in 80% of mice (47/59) on at least 1 day, while no animal was positive for virus on every day. ACV therapy administered from day 21 to 31 significantly reduced recurrent virus shedding during this period from 7.3% (8/109 swabs) to 0.8% (1/126 swabs) (p=0.013). Lastly, ACV-rescued HSV-2-infected mice treated with cyclophosphamide at 35 and 38dpi rapidly succumbed, indicating that this model can be used to study immune control of the persistent infection. Thus, this model provides an inexpensive model for evaluating therapeutic strategies and immune control of persistent HSV.
Collapse
Affiliation(s)
- Nicholas Farley
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati Ohio
| | - David I. Bernstein
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati Ohio
| | - Fernando J. Bravo
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati Ohio
| | - Julie Earwood
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati Ohio
| | - Nancy Sawtell
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati Ohio
| | - Rhonda D. Cardin
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati Ohio
| |
Collapse
|