1
|
Pejenaute-Larráyoz D, Corbi F, Matas S. [Effects of intermittent fasting and sports performance: a narrative review]. NUTR HOSP 2025; 42:153-160. [PMID: 39692222 DOI: 10.20960/nh.05415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Introduction Recently, fasted exercise has generated interest for its potential to stimulate metabolic and performance adaptations. The present study aims to analyze the effects of fasting and fasted training on performance and metabolism, acutely and chronically. The databases Medline (PubMed), Physiotherapy Evidence Database (PEDro), Cochrane, and Google Scholar were searched. In total, 767 studies were identified. Of those, 51 studies were finally included. Acutely, exercise on fasting promotes fat oxidation at low and moderate intensities, while protein catabolism is not increased. Performance is not affected in efforts lower than 1 hour. Chronically, fasting generates greater efficiency in fat metabolism and the ability to regulate blood glucose in the long term, although it has not been possible to determine whether these findings improve sports performance. More research is needed in elite athletes, with high training loads and with a periodized approach to fasting.
Collapse
Affiliation(s)
| | - Francisco Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC-Campus Lleida). Universitat de Lleida (UdL)
| | - Sergi Matas
- Institut Nacional d'Educació Física de Catalunya (INEFC-Campus Lleida). Universitat de Lleida (UdL)
| |
Collapse
|
2
|
Witard OC, Hearris M, Morgan PT. Protein Nutrition for Endurance Athletes: A Metabolic Focus on Promoting Recovery and Training Adaptation. Sports Med 2025:10.1007/s40279-025-02203-8. [PMID: 40117058 DOI: 10.1007/s40279-025-02203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
The purpose of this narrative review is to provide an evidence-based update on the protein needs of endurance athletes with a focus on high-quality metabolic studies conducted on the topics of recovery and training adaptation over the past decade. We use the term 'protein needs' to delineate between the concepts of a daily protein requirement and per meal protein recommendations when devising scientific evidence-based protein guidelines for the endurance athlete to promote post-exercise recovery, enhance the adaptive response to endurance training and improve endurance performance. A habitual protein intake of 1.5 g/kg of body mass (BM)-1·day-1 is typical in male and female endurance athletes. Based on findings from a series of contemporary protein requirement studies, the evidence suggests a daily protein intake of ~ 1.8 g·kgBM-1·day-1 should be advocated for endurance athletes, with the caveat that the protein requirement may be further elevated in excess of 2.0 g·kgBM-1·day-1 during periods of carbohydrate-restricted training and on rest days. Regarding protein recommendations, the current lack of metabolic studies that determine the dose response of muscle protein synthesis to protein ingestion in relation to endurance exercise makes it difficult to present definitive guidelines on optimal per meal protein intakes for endurance athletes. Moreover, there remains no compelling evidence that co-ingesting protein with carbohydrate before or during endurance exercise confers any performance advantage, nor facilitates the resynthesis of liver or muscle glycogen stores during recovery, at least when carbohydrate recommendations are met. However, recent evidence suggests a role for protein nutrition in optimising the adaptive metabolic response to endurance training under conditions of low carbohydrate and/or energy availability that represent increasingly popular periodised strategies for endurance athletes.
Collapse
Affiliation(s)
- Oliver C Witard
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King's College London, Strand Campus, Strand, London, WC2R 2LS, UK.
| | - Mark Hearris
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Paul T Morgan
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
3
|
Slebe R, Wenker E, Schoonmade LJ, Bouman EJ, Blondin DP, Campbell DJT, Carpentier AC, Hoeks J, Raina P, Schrauwen P, Serlie MJ, Stenvers DJ, de Mutsert R, Beulens JWJ, Rutters F. The effect of preprandial versus postprandial physical activity on glycaemia: Meta-analysis of human intervention studies. Diabetes Res Clin Pract 2024; 210:111638. [PMID: 38548105 DOI: 10.1016/j.diabres.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
This meta-analysis aims to investigate the effect of preprandial physical activity (PA) versus postprandial PA on glycaemia in human intervention studies. Medline and Embase.com were searched until February 2023 for intervention studies in adults, directly comparing preprandial PA versus postprandial PA on glycaemia. Studies were screened using ASReview (34,837) and full texts were read by two independent reviewers (42 full text, 28 included). Results were analysed using pooled mean differences in random-effects models. Studies were either acute response studies (n = 21) or Randomized Controlled Trials (RCTs) over multiple weeks (n = 7). In acute response studies, postprandial outcomes followed the expected physiological patterns, and outcomes measured over 24 h showed no significant differences. For the RCTs, glucose area under the curve during a glucose tolerance test was slightly, but not significantly lower in preprandial PA vs postprandial PA (-0.29 [95 %CI:-0.66, 0.08] mmol/L, I2 = 64.36 %). Subgroup analyses (quality, health status, etc.) did not significantly change the outcomes. In conclusion, we found no differences between preprandial PA versus postprandial PA on glycaemia both after one PA bout as well as after multiple weeks of PA. The studies were of low to moderate quality of evidence as assessed by GRADE, showed contradictive results, included no long-term studies and used various designs and populations. We therefore need better RCTs, with more similar designs, in larger populations and longer follow-up periods (≥12 weeks) to have a final answer on the questions eat first, then exercise, or the reverse?
Collapse
Affiliation(s)
- Romy Slebe
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Epidemiology and Data Science, De Boelelaan 1089a, Amsterdam, the Netherlands; Amsterdam Public Health, Health Behaviors & Chronic Diseases, Amsterdam, the Netherlands.
| | - Eva Wenker
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Epidemiology and Data Science, De Boelelaan 1089a, Amsterdam, the Netherlands
| | - Linda J Schoonmade
- University Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Emma J Bouman
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Epidemiology and Data Science, De Boelelaan 1089a, Amsterdam, the Netherlands; Amsterdam Public Health, Health Behaviors & Chronic Diseases, Amsterdam, the Netherlands
| | - Denis P Blondin
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada; Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada
| | - David J T Campbell
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary Cumming School of Medicine, Calgary, AB, Canada; Department of Cardiac Sciences, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - André C Carpentier
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada; Department of Medicine, Division of Endocrinology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Parminder Raina
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joline W J Beulens
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Epidemiology and Data Science, De Boelelaan 1089a, Amsterdam, the Netherlands; Amsterdam Public Health, Health Behaviors & Chronic Diseases, Amsterdam, the Netherlands; Julius Centre for Health Sciences and Primary Care, University Medical Centre, Utrecht, the Netherlands
| | - Femke Rutters
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Epidemiology and Data Science, De Boelelaan 1089a, Amsterdam, the Netherlands; Amsterdam Public Health, Health Behaviors & Chronic Diseases, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Sims ST, Kerksick CM, Smith-Ryan AE, Janse de Jonge XA, Hirsch KR, Arent SM, Hewlings SJ, Kleiner SM, Bustillo E, Tartar JL, Starratt VG, Kreider RB, Greenwalt C, Rentería LI, Ormsbee MJ, VanDusseldorp TA, Campbell BI, Kalman DS, Antonio J. International society of sports nutrition position stand: nutritional concerns of the female athlete. J Int Soc Sports Nutr 2023; 20:2204066. [PMID: 37221858 PMCID: PMC10210857 DOI: 10.1080/15502783.2023.2204066] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 05/25/2023] Open
Abstract
Based on a comprehensive review and critical analysis of the literature regarding the nutritional concerns of female athletes, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Female athletes have unique and unpredictable hormone profiles, which influence their physiology and nutritional needs across their lifespan. To understand how perturbations in these hormones affect the individual, we recommend that female athletes of reproductive age should track their hormonal status (natural, hormone driven) against training and recovery to determine their individual patterns and needs and peri and post-menopausal athletes should track against training and recovery metrics to determine the individuals' unique patterns. 2. The primary nutritional consideration for all athletes, and in particular, female athletes, should be achieving adequate energy intake to meet their energy requirements and to achieve an optimal energy availability (EA); with a focus on the timing of meals in relation to exercise to improve training adaptations, performance, and athlete health. 3. Significant sex differences and sex hormone influences on carbohydrate and lipid metabolism are apparent, therefore we recommend first ensuring athletes meet their carbohydrate needs across all phases of the menstrual cycle. Secondly, tailoring carbohydrate intake to hormonal status with an emphasis on greater carbohydrate intake and availability during the active pill weeks of oral contraceptive users and during the luteal phase of the menstrual cycle where there is a greater effect of sex hormone suppression on gluconogenesis output during exercise. 4. Based upon the limited research available, we recommend that pre-menopausal, eumenorrheic, and oral contraceptives using female athletes should aim to consume a source of high-quality protein as close to beginning and/or after completion of exercise as possible to reduce exercise-induced amino acid oxidative losses and initiate muscle protein remodeling and repair at a dose of 0.32-0.38 g·kg-1. For eumenorrheic women, ingestion during the luteal phase should aim for the upper end of the range due to the catabolic actions of progesterone and greater need for amino acids. 5. Close to the beginning and/or after completion of exercise, peri- and post-menopausal athletes should aim for a bolus of high EAA-containing (~10 g) intact protein sources or supplements to overcome anabolic resistance. 6. Daily protein intake should fall within the mid- to upper ranges of current sport nutrition guidelines (1.4-2.2 g·kg-1·day-1) for women at all stages of menstrual function (pre-, peri-, post-menopausal, and contraceptive users) with protein doses evenly distributed, every 3-4 h, across the day. Eumenorrheic athletes in the luteal phase and peri/post-menopausal athletes, regardless of sport, should aim for the upper end of the range. 7. Female sex hormones affect fluid dynamics and electrolyte handling. A greater predisposition to hyponatremia occurs in times of elevated progesterone, and in menopausal women, who are slower to excrete water. Additionally, females have less absolute and relative fluid available to lose via sweating than males, making the physiological consequences of fluid loss more severe, particularly in the luteal phase. 8. Evidence for sex-specific supplementation is lacking due to the paucity of female-specific research and any differential effects in females. Caffeine, iron, and creatine have the most evidence for use in females. Both iron and creatine are highly efficacious for female athletes. Creatine supplementation of 3 to 5 g per day is recommended for the mechanistic support of creatine supplementation with regard to muscle protein kinetics, growth factors, satellite cells, myogenic transcription factors, glycogen and calcium regulation, oxidative stress, and inflammation. Post-menopausal females benefit from bone health, mental health, and skeletal muscle size and function when consuming higher doses of creatine (0.3 g·kg-1·d-1). 9. To foster and promote high-quality research investigations involving female athletes, researchers are first encouraged to stop excluding females unless the primary endpoints are directly influenced by sex-specific mechanisms. In all investigative scenarios, researchers across the globe are encouraged to inquire and report upon more detailed information surrounding the athlete's hormonal status, including menstrual status (days since menses, length of period, duration of cycle, etc.) and/or hormonal contraceptive details and/or menopausal status.
Collapse
Affiliation(s)
- Stacy T. Sims
- SPRINZ Auckland University of Technology, Auckland, New Zealand
| | - Chad M. Kerksick
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Saint Charles, TX, USA
| | - Abbie E. Smith-Ryan
- Institute of Sports Sciences and Medicine, Florida State University, Nutrition and Integrative Physiology, Tallahassee, FL, USA
| | | | - Katie R. Hirsch
- Jacksonville University, Department of Health and Exercise Sciences, Jacksonville, FL, USA
| | - Shawn M. Arent
- Jacksonville University, Department of Health and Exercise Sciences, Jacksonville, FL, USA
| | - Susan Joyce Hewlings
- University of South Florida, Performance and Physique Enhancement Laboratory,Tampa, FL, USA
| | - Susan M. Kleiner
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Nutrition Department, Davie, FL, USA
| | - Erik Bustillo
- Nova Southeastern University, Exercise and Sport Science, Fight Science Lab, Davie, FL, USA
| | - Jaime L. Tartar
- College of Science, Technology,
and Health, Lindenwood University, Exercise and Performance Nutrition Laboratory, St Charles, MO, USA
| | - Valerie G. Starratt
- College of Science, Technology,
and Health, Lindenwood University, Exercise and Performance Nutrition Laboratory, St Charles, MO, USA
| | - Richard B. Kreider
- University of North Carolina Chapel Hill, Department of Exercise and Sport Science, Chapel Hill, NC, USA
| | - Casey Greenwalt
- Macquarie University, Department of Health Sciences, Macquarie Park, NSW, Australia
| | - Liliana I. Rentería
- Macquarie University, Department of Health Sciences, Macquarie Park, NSW, Australia
| | - Michael J. Ormsbee
- Macquarie University, Department of Health Sciences, Macquarie Park, NSW, Australia
| | - Trisha A. VanDusseldorp
- University of South, Department of Exercise Science, Arnold School of Public Health, Carolina, Columbia, USA
- Nutrasource, Guelph, Ontario, Canada
| | | | | | - Jose Antonio
- Nova Southeastern University, Department of Psychology and Neuroscience, Fort Lauderdale, FL, USA
| |
Collapse
|
5
|
Fasted Sprint Interval Training Results in Some Beneficial Skeletal Muscle Metabolic, but Similar Metabolomic and Performance Adaptations Compared With Carbohydrate-Fed Training in Recreationally Active Male. Int J Sport Nutr Exerc Metab 2023; 33:73-83. [PMID: 36572038 DOI: 10.1123/ijsnem.2022-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 12/28/2022]
Abstract
Endurance training in fasted conditions (FAST) induces favorable skeletal muscle metabolic adaptations compared with carbohydrate feeding (CHO), manifesting in improved exercise performance over time. Sprint interval training (SIT) is a potent metabolic stimulus, however nutritional strategies to optimize adaptations to SIT are poorly characterized. Here we investigated the efficacy of FAST versus CHO SIT (4-6 × 30-s Wingate sprints interspersed with 4-min rest) on muscle metabolic, serum metabolome and exercise performance adaptations in a double-blind parallel group design in recreationally active males. Following acute SIT, we observed exercise-induced increases in pan-acetylation and several genes associated with mitochondrial biogenesis, fatty acid oxidation, and NAD+-biosynthesis, along with favorable regulation of PDK4 (p = .004), NAMPT (p = .0013), and NNMT (p = .001) in FAST. Following 3 weeks of SIT, NRF2 (p = .029) was favorably regulated in FAST, with augmented pan-acetylation in CHO but not FAST (p = .033). SIT induced increases in maximal citrate synthase activity were evident with no effect of nutrition, while 3-hydroxyacyl-CoA dehydrogenase activity did not change. Despite no difference in the overall serum metabolome, training-induced changes in C3:1 (p = .013) and C4:1 (p = .010) which increased in FAST, and C16:1 (p = .046) and glutamine (p = .021) which increased in CHO, were different between groups. Training-induced increases in anaerobic (p = .898) and aerobic power (p = .249) were not influenced by nutrition. These findings suggest some beneficial muscle metabolic adaptations are evident in FAST versus CHO SIT following acute exercise and 3 weeks of SIT. However, this stimulus did not manifest in differential exercise performance adaptations.
Collapse
|
6
|
Exploring the Effects of Energy Constraints on Performance, Body Composition, Endocrinological/Hematological Biomarkers, and Immune System among Athletes: An Overview of the Fasting State. Nutrients 2022; 14:nu14153197. [PMID: 35956373 PMCID: PMC9370338 DOI: 10.3390/nu14153197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
The Ramadan fasting period (RFP) means abstaining from consuming food and/or beverages during certain hours of the day—from sunrise to sunset. Engaging in exercise and sports during the RFP leads to the lipolysis of adipose tissue and an increase in the breakdown of peripheral fat, leading to an increase in fat consumption. The effects of the RFP on functional, hematological, and metabolic parameters needs further study as existing studies have reported contradictory results. The differences in the results of various studies are due to the geographical characteristics of Muslim athletes, their specific diets, and their genetics, which explain these variations. In recent years, the attention of medical and sports researchers on the effects of the RFP and energy restrictions on bodily functions and athletic performance has increased significantly. Therefore, this brief article examines the effects of the RFP on the immune system, body composition, hematology, and the functionality of athletes during and after the RFP. We found that most sporting activities were performed during any time of the day without being affected by Ramadan fasting. Athletes were able to participate in their physical activities during fasting periods and saw few effects on their performance. Sleep and nutritional factors should be adjusted so that athletic performance is not impaired.
Collapse
|
7
|
Schroeder N. Evidence-Based Nutritional Strategies to Enhance Athletic Performance. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Zainudin SB, Salle DDA, Aziz AR. Walking Football During Ramadan Fasting for Cardiometabolic and Psychological Health Benefits to the Physically Challenged and Aged Populations. Front Nutr 2022; 8:779863. [PMID: 35087855 PMCID: PMC8786710 DOI: 10.3389/fnut.2021.779863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Concurrent exercise and intermittent fasting regimens for long periods have been shown to enhance cardiometabolic health in healthy individuals. As exercise and fasting confer health benefits independently, we propose that Muslims who are fasting, especially those experiencing health and clinical challenges, continually engage in physical activity during the Ramadan month. In this opinion piece, we recommend walking football (WF) as the exercise of choice among Muslims who are fasting. WF can be played by any individual regardless of the level of fitness, skills, and age. WF has been shown to elicit cardiovascular and metabolic stress responses, which are suitable for populations with low fitness levels. Most importantly, WF has the inherent characteristics of being a fun team activity requiring social interactions among participants and, hence, likely to encourage long-term consistent and sustainable participation.
Collapse
Affiliation(s)
- Sueziani Binte Zainudin
- Endocrinology Service, Department of General Medicine, Sengkang General Hospital, Singapore, Singapore
| | - Dee Dee A Salle
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Abdul Rashid Aziz
- Sport Science and Sport Medicine, Singapore Sport Institute, Sport Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Aird TP, Farquharson AJ, Bermingham KM, O'Sulllivan A, Drew JE, Carson BP. Divergent serum metabolomic, skeletal muscle signaling, transcriptomic, and performance adaptations to fasted versus whey protein-fed sprint interval training. Am J Physiol Endocrinol Metab 2021; 321:E802-E820. [PMID: 34747202 PMCID: PMC8906818 DOI: 10.1152/ajpendo.00265.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/01/2022]
Abstract
Sprint interval training (SIT) is a time-efficient alternative to endurance exercise, conferring beneficial skeletal muscle metabolic adaptations. Current literature has investigated the nutritional regulation of acute and chronic exercise-induced metabolic adaptations in muscle following endurance exercise, principally comparing the impact of training in fasted and carbohydrate-fed (CHO) conditions. Alternative strategies such as exercising in low CHO, protein-fed conditions remain poorly characterized, specifically pertaining to adaptations associated with SIT. Thus, this study aimed to compare the metabolic and performance adaptations to acute and short-term SIT in the fasted state with preexercise hydrolyzed (WPH) or concentrated (WPC) whey protein supplementation. In healthy males, preexercise protein ingestion did not alter exercise-induced increases in PGC-1α, PDK4, SIRT1, and PPAR-δ mRNA expression following acute SIT. However, supplementation of WPH beneficially altered acute exercise-induced CD36 mRNA expression. Preexercise protein ingestion attenuated acute exercise-induced increases in muscle pan-acetylation and PARP1 protein content compared with fasted SIT. Acute serum metabolomic differences confirmed greater preexercise amino acid delivery in protein-fed compared with fasted conditions. Following 3 wk of SIT, training-induced increases in mitochondrial enzymatic activity and exercise performance were similar across nutritional groups. Interestingly, resting muscle acetylation status was downregulated in WPH conditions following training. Such findings suggest preexercise WPC and WPH ingestion positively influences metabolic adaptations to SIT compared with fasted training, resulting in either similar or enhanced performance adaptations. Future studies investigating nutritional modulation of metabolic adaptations to exercise are warranted to build upon these novel findings.NEW & NOTEWORTHY These are the first data to show the influence of preexercise protein on serum and skeletal muscle metabolic adaptations to acute and short-term sprint interval training (SIT). Preexercise whey protein concentrate (WPC) or hydrolysate (WPH) feeding acutely affected the serum metabolome, which differentially influenced acute and chronic changes in mitochondrial gene expression, intracellular signaling (acetylation and PARylation) resulting in either similar or enhanced performance outcomes when compared with fasted training.
Collapse
Affiliation(s)
- Tom P Aird
- Physical Education and Sports Sciences, University of Limerick, Limerick, Ireland
- Physical Activity for Health, Health Research Institute, University of Limerick, Limerick, Ireland
| | | | - Kate M Bermingham
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Aifric O'Sulllivan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Janice E Drew
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Brian P Carson
- Physical Education and Sports Sciences, University of Limerick, Limerick, Ireland
- Physical Activity for Health, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
10
|
Comparison of physiological and clinical markers for chronic sprint-interval training exercise performed either in the fasted or fed states among healthy adults. Curr Res Physiol 2021; 4:192-201. [PMID: 34746838 PMCID: PMC8562244 DOI: 10.1016/j.crphys.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
Sprint-interval training (SIT) and intermittent fasting are effective independent methods in achieving clinical health outcomes. However, the impact of both modalities when performed concurrently is unclear. The aim of this study was to compare the effects of 6 weeks of SIT performed in the fasted versus fed state on physiological and clinical health markers in healthy adults. Methods. Thirty recreationally-active participants were equally randomised into either the fasted (FAS; 4 males, 11 females) or the fed (FED; 6 males, 9 females) group. For all exercise sessions, FAS participants had to fast ≥10 h prior to exercising while FED participants had to consume food within 3 h to exercise. All participants underwent three sessions of SIT per week for 6 weeks. Each session consists of repeated bouts of 30-s Wingate Anaerobic cycle exercise. Pre- and post-training peak oxygen uptake (VO2peak), isokinetic leg strength, insulin sensitivity, blood pressure and serum lipid levels were assessed. Results. There were no differences in baseline physiological and clinical measures between both groups (all p > 0.05). VO2peak improved by 6.0 ± 8.8% in the FAS group and 5.3 ± 10.6% in the FED group (both p < 0.05), however the difference in improvement between groups was not statistically significant (p > 0.05). A similar pattern of results was seen for knee flexion maximum voluntary contraction at 300°·s−1. SIT training in either fasted or fed state had no impact on insulin sensitivity (both p > 0.05). There was significant reduction in diastolic blood pressure (8.2 ± 4.2%) and mean arterial pressure (7.0 ± 3.2%) in the FAS group (both p < 0.05) but not FED group (both p > 0.05). Conclusion. VO2peak and leg strength improved with SIT regardless of whether participants trained in the fasted or fed state. Chronic SIT in the fasted state may potentially reduce blood pressure to a greater extent than the same chronic SIT in the fed state. SIT in the fasted state leads to a significant decrease in blood pressure. VO2peak and leg strength improves with SIT, regardless of nutrition status. SIT, performed in fasted or fed state, does not improve insulin sensitivity, body fat percentage or lipid profile.
Collapse
|
11
|
Gillen JB, Estafanos S, Govette A. Exercise-nutrient interactions for improved postprandial glycemic control and insulin sensitivity. Appl Physiol Nutr Metab 2021; 46:856-865. [PMID: 34081875 DOI: 10.1139/apnm-2021-0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 2 diabetes (T2D) is a rapidly growing yet largely preventable chronic disease. Exaggerated increases in blood glucose concentration following meals is a primary contributor to many long-term complications of the disease that decrease quality of life and reduce lifespan. Adverse health consequences also manifest years prior to the development of T2D due to underlying insulin resistance and exaggerated postprandial concentrations of the glucose-lowering hormone insulin. Postprandial hyperglycemic and hyperinsulinemic excursions can be improved by exercise, which contributes to the well-established benefits of physical activity for the prevention and treatment of T2D. The aim of this review is to describe the postprandial dysmetabolism that occurs in individuals at risk for and with T2D, and highlight how acute and chronic exercise can lower postprandial glucose and insulin excursions. In addition to describing the effects of traditional moderate-intensity continuous exercise on glycemic control, we highlight other forms of activity including low-intensity walking, high-intensity interval exercise, and resistance training. In an effort to improve knowledge translation and implementation of exercise for maximal glycemic benefits, we also describe how timing of exercise around meals and post-exercise nutrition can modify acute and chronic effects of exercise on glycemic control and insulin sensitivity. Novelty: Exaggerated postprandial blood glucose and insulin excursions are associated with disease risk. Both a single session and repeated sessions of exercise improve postprandial glycemic control in individuals with and without T2D. The glycemic benefits of exercise can be enhanced by considering the timing and macronutrient composition of meals around exercise.
Collapse
Affiliation(s)
- Jenna B Gillen
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| | - Stephanie Estafanos
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| | - Alexa Govette
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| |
Collapse
|
12
|
Macedo RCO, Santos HO, Tinsley GM, Reischak-Oliveira A. Low-carbohydrate diets: Effects on metabolism and exercise - A comprehensive literature review. Clin Nutr ESPEN 2020; 40:17-26. [PMID: 33183532 DOI: 10.1016/j.clnesp.2020.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Low-carbohydrate diets (LCD) have gained substantial attention in recent years for their potential in health promotion and treatment of diseases, but they remain controversial in nutrition guidelines and exercise performance. Herein, through a literature review, we discuss the current evidence base by considering management of LCD and potential coupling of these dietary regiments with physical exercise. METHODS We performed a comprehensive literature review with no date limits as a means of including seminal to current studies. RESULTS Reduction of CHO intake decreases muscle glycogen, yielding greater fat oxidation and associated metabolic benefits. LCD may promote fat mass loss and regulation of biochemical parameters, such as lipid and glycemic biomarkers. The therapeutic potential of LCD towards noncommunicable diseases, particularly obesity and its comorbidities, is therefore reasonable as a dietary candidate in this context. Potential benefits to this approach are linked to enhancement of mitochondrial gene expression and mitochondrial biogenesis. As such, LCD may be a feasible tool in a 'periodized nutrition' for athletes and within clinical scenarios. Long-term observational follow-up studies have demonstrated increased mortality and cardiovascular implications of LCD. However, harmful associations may depend on the food source (e.g., animal-based vs. plant-based foods). CONCLUSION LCD may decrease body mass, waist circumference, and improve fat and carbohydrate metabolism. When combined with exercise, LCD seems to be an effective strategy in regulating metabolic factors of cardiovascular diseases. Conversely, LCD may be associated with higher mortality and metabolic dysregulations if it contains large amounts of animal-based foods, particularly saturated fat.
Collapse
Affiliation(s)
- Rodrigo C O Macedo
- University of Santa Cruz do Sul (UNISC), Santa Cruz do Sul, Brazil; Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| | - Grant M Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
13
|
Rothschild JA, Kilding AE, Plews DJ. What Should I Eat before Exercise? Pre-Exercise Nutrition and the Response to Endurance Exercise: Current Prospective and Future Directions. Nutrients 2020; 12:nu12113473. [PMID: 33198277 PMCID: PMC7696145 DOI: 10.3390/nu12113473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
The primary variables influencing the adaptive response to a bout of endurance training are exercise duration and exercise intensity. However, altering the availability of nutrients before and during exercise can also impact the training response by modulating the exercise stimulus and/or the physiological and molecular responses to the exercise-induced perturbations. The purpose of this review is to highlight the current knowledge of the influence of pre-exercise nutrition ingestion on the metabolic, physiological, and performance responses to endurance training and suggest directions for future research. Acutely, carbohydrate ingestion reduces fat oxidation, but there is little evidence showing enhanced fat burning capacity following long-term fasted-state training. Performance is improved following pre-exercise carbohydrate ingestion for longer but not shorter duration exercise, while training-induced performance improvements following nutrition strategies that modulate carbohydrate availability vary based on the type of nutrition protocol used. Contrasting findings related to the influence of acute carbohydrate ingestion on mitochondrial signaling may be related to the amount of carbohydrate consumed and the intensity of exercise. This review can help to guide athletes, coaches, and nutritionists in personalizing pre-exercise nutrition strategies, and for designing research studies to further elucidate the role of nutrition in endurance training adaptations.
Collapse
|
14
|
Prevalence and Determinants of Fasted Training in Endurance Athletes: A Survey Analysis. Int J Sport Nutr Exerc Metab 2020; 30:345-356. [DOI: 10.1123/ijsnem.2020-0109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 11/18/2022]
Abstract
Athletes may choose to perform exercise in the overnight-fasted state for a variety of reasons related to convenience, gut comfort, or augmenting the training response, but it is unclear how many endurance athletes use this strategy. We investigated the prevalence and determinants of exercise performed in the overnight-fasted state among endurance athletes using an online survey and examined differences based on sex, competitive level, and habitual dietary pattern. The survey was completed by 1,950 endurance athletes (51.0% female, mean age 40.9 ± 11.1 years). The use of fasted training was reported by 62.9% of athletes, with significant effects of sex (p < .001, Cramer’s V [φc] = 0.18, 90% CI [0.14, 0.22]), competitive level (p < .001, φc = 0.09, 90% CI [0.5, 0.13]), and habitual dietary pattern noted (p < .001, φc = 0.26, 90% CI [0.22, 0.29]). Males, nonprofessional athletes, and athletes following a low-carbohydrate, high-fat diet were most likely to perform fasted training. The most common reasons for doing so were related to utilizing fat as a fuel source (42.9%), gut comfort (35.5%), and time constraints/convenience (31.4%), whereas the most common reasons athletes avoided fasted training were that it does not help their training (47.0%), performance was worse during fasted training (34.7%), or greater hunger (34.6%). Overall, some athletes perform fasted training because they think it helps their training, whereas others avoid it because they think it is detrimental to their training goals, highlighting a need for future research. These findings offer insights into the beliefs and practices related to fasted-state endurance training.
Collapse
|
15
|
Gemmink A, Schrauwen P, Hesselink MKC. Exercising your fat (metabolism) into shape: a muscle-centred view. Diabetologia 2020; 63:1453-1463. [PMID: 32529413 PMCID: PMC7351830 DOI: 10.1007/s00125-020-05170-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Abstract
Fatty acids are an important energy source during exercise. Training status and substrate availability are determinants of the relative and absolute contribution of fatty acids and glucose to total energy expenditure. Endurance-trained athletes have a high oxidative capacity, while, in insulin-resistant individuals, fat oxidation is compromised. Fatty acids that are oxidised during exercise originate from the circulation (white adipose tissue lipolysis), as well as from lipolysis of intramyocellular lipid droplets. Moreover, hepatic fat may contribute to fat oxidation during exercise. Nowadays, it is clear that myocellular lipid droplets are dynamic organelles and that number, size, subcellular distribution, lipid droplet coat proteins and mitochondrial tethering of lipid droplets are determinants of fat oxidation during exercise. This review summarises recent insights into exercise-mediated changes in lipid metabolism and insulin sensitivity in relation to lipid droplet characteristics in human liver and muscle. Graphical abstract.
Collapse
Affiliation(s)
- Anne Gemmink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD, Maastricht, the Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD, Maastricht, the Netherlands.
| |
Collapse
|
16
|
M. Correia J, Santos I, Pezarat-Correia P, Minderico C, V. Mendonca G. Effects of Intermittent Fasting on Specific Exercise Performance Outcomes: A Systematic Review Including Meta-Analysis. Nutrients 2020; 12:nu12051390. [PMID: 32408718 PMCID: PMC7284994 DOI: 10.3390/nu12051390] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 11/21/2022] Open
Abstract
Intermittent fasting (IF) has been studied in athletes during Ramadan and in those willing to decrease adiposity while maintaining or increasing lean body mass. The purpose of this systematic review was to summarize the effects of IF on performance outcomes. We searched peer-reviewed articles in the following databases: PubMed, Web of Science and Sport Discus (up to December 2019). Studies were selected if they included samples of adults (≥18 years), had an experimental or observational design, investigated IF (Ramadan and time-restricted feeding (TRF)), and included performance outcomes. Meta-analytical procedures were conducted when feasible. Twenty-eight articles met the eligibility criteria. Findings indicated that maximum oxygen uptake is significantly enhanced with TRF protocols (SMD = 1.32, p = 0.001), but reduced with Ramadan intermittent fasting (Ramadan IF; SMD = −2.20, p < 0.001). Additional effects of IF may be observed in body composition (body mass and fat mass). Non-significant effects were observed for muscle strength and anaerobic capacity. While Ramadan IF may lead to impairments in aerobic capacity, TRF may be effective for improving it. As there are few studies per performance outcome, more research is needed to move the field forward.
Collapse
Affiliation(s)
- Joana M. Correia
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002 Cruz Quebrada, Dafundo, Portugal; (J.M.C.); (P.P.-C.)
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002 Cruz Quebrada, Dafundo, Portugal; (I.S.); (C.M.)
| | - Inês Santos
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002 Cruz Quebrada, Dafundo, Portugal; (I.S.); (C.M.)
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002 Cruz Quebrada, Dafundo, Portugal; (J.M.C.); (P.P.-C.)
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002 Cruz Quebrada, Dafundo, Portugal; (I.S.); (C.M.)
| | - Cláudia Minderico
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002 Cruz Quebrada, Dafundo, Portugal; (I.S.); (C.M.)
| | - Goncalo V. Mendonca
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002 Cruz Quebrada, Dafundo, Portugal; (J.M.C.); (P.P.-C.)
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002 Cruz Quebrada, Dafundo, Portugal; (I.S.); (C.M.)
- Correspondence: ; Tel.: +351933206691
| |
Collapse
|
17
|
Supplements and Nutritional Interventions to Augment High-Intensity Interval Training Physiological and Performance Adaptations-A Narrative Review. Nutrients 2020; 12:nu12020390. [PMID: 32024038 PMCID: PMC7071320 DOI: 10.3390/nu12020390] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
High-intensity interval training (HIIT) involves short bursts of intense activity interspersed by periods of low-intensity exercise or rest. HIIT is a viable alternative to traditional continuous moderate-intensity endurance training to enhance maximal oxygen uptake and endurance performance. Combining nutritional strategies with HIIT may result in more favorable outcomes. The purpose of this narrative review is to highlight key dietary interventions that may augment adaptations to HIIT, including creatine monohydrate, caffeine, nitrate, sodium bicarbonate, beta-alanine, protein, and essential amino acids, as well as manipulating carbohydrate availability. Nutrient timing and potential sex differences are also discussed. Overall, sodium bicarbonate and nitrates show promise for enhancing HIIT adaptations and performance. Beta-alanine has the potential to increase training volume and intensity and improve HIIT adaptations. Caffeine and creatine have potential benefits, however, longer-term studies are lacking. Presently, there is a lack of evidence supporting high protein diets to augment HIIT. Low carbohydrate training enhances the upregulation of mitochondrial enzymes, however, there does not seem to be a performance advantage, and a periodized approach may be warranted. Lastly, potential sex differences suggest the need for future research to examine sex-specific nutritional strategies in response to HIIT.
Collapse
|
18
|
Zouhal H, Saeidi A, Salhi A, Li H, Essop MF, Laher I, Rhibi F, Amani-Shalamzari S, Ben Abderrahman A. Exercise Training and Fasting: Current Insights. Open Access J Sports Med 2020; 11:1-28. [PMID: 32021500 PMCID: PMC6983467 DOI: 10.2147/oajsm.s224919] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
Fasting is defined as the abstinence from consuming food and/or beverages for different periods of time. Both traditional and modern healthcare systems recommend fasting as a therapeutic intervention for the management of several chronic, non-infectious diseases. Exercising during a fasting state increases lipolysis in adipose tissue while also stimulating peripheral fat oxidation, resulting in increased fat utilization and weight loss. A key focus of this review is to assess whether endurance training performed while fasting induces specific training adaptations, where increased fat oxidation improves long-term endurance levels. Fasting decreases body weight, lean body and fat content in both trained and untrained individuals. Several studies indicate a broader impact of fasting on metabolism, with effects on protein and glucose metabolism in sedentary and untrained subjects. However, there are conflicting data regarding the effects of fasting on glucose metabolism in highly trained athletes. The effects of fasting on physical performance indicators also remain unclear, with some reporting a decreased performance, while others found no significant effects. Differences in experimental design, severity of calorie restriction, duration, and participant characteristics could, at least in part, explain such discordant findings. Our review of the literature suggests that there is little evidence to support the notion of endurance training and fasting-mediated increases in fat oxidation, and we recommend that endurance athletes should avoid high intensity training while fasting.
Collapse
Affiliation(s)
- Hassane Zouhal
- M2S (Laboratoire Mouvement, Sport, Santé), University of Rennes, Rennes F-35000, France
| | - Ayoub Saeidi
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Amal Salhi
- Department of Medicine Physical and Functional Rehabilitation of the National Institute of Orthopedics "M.T. Kassab", Tunis, Tunisia
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Fatma Rhibi
- M2S (Laboratoire Mouvement, Sport, Santé), University of Rennes, Rennes F-35000, France
| | - Sadegh Amani-Shalamzari
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | | |
Collapse
|
19
|
Brinkmann C, Weh‐Gray O, Brixius K, Bloch W, Predel HG, Kreutz T. Effects of exercising before breakfast on the health of T2DM patients—A randomized controlled trial. Scand J Med Sci Sports 2019; 29:1930-1936. [DOI: 10.1111/sms.13543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Christian Brinkmann
- IST University of Applied Sciences Düsseldorf Germany
- Institute of Cardiovascular Research and Sport Medicine Department of Preventive and Rehabilitative Sport Medicine German Sport University Cologne Cologne Germany
| | - Olivier Weh‐Gray
- Institute of Cardiovascular Research and Sport Medicine Department of Molecular and Cellular Sport Medicine German Sport University Cologne Cologne Germany
| | - Klara Brixius
- Institute of Cardiovascular Research and Sport Medicine Department of Molecular and Cellular Sport Medicine German Sport University Cologne Cologne Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine Department of Molecular and Cellular Sport Medicine German Sport University Cologne Cologne Germany
| | - Hans-Georg Predel
- Institute of Cardiovascular Research and Sport Medicine Department of Preventive and Rehabilitative Sport Medicine German Sport University Cologne Cologne Germany
| | | |
Collapse
|
20
|
Scott SN, Anderson L, Morton JP, Wagenmakers AJM, Riddell MC. Carbohydrate Restriction in Type 1 Diabetes: A Realistic Therapy for Improved Glycaemic Control and Athletic Performance? Nutrients 2019; 11:E1022. [PMID: 31067747 PMCID: PMC6566372 DOI: 10.3390/nu11051022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Around 80% of individuals with Type 1 diabetes (T1D) in the United States do not achieve glycaemic targets and the prevalence of comorbidities suggests that novel therapeutic strategies, including lifestyle modification, are needed. Current nutrition guidelines suggest a flexible approach to carbohydrate intake matched with intensive insulin therapy. These guidelines are designed to facilitate greater freedom around nutritional choices but they may lead to higher caloric intakes and potentially unhealthy eating patterns that are contributing to the high prevalence of obesity and metabolic syndrome in people with T1D. Low carbohydrate diets (LCD; <130 g/day) may represent a means to improve glycaemic control and metabolic health in people with T1D. Regular recreational exercise or achieving a high level of athletic performance is important for many living with T1D. Research conducted on people without T1D suggests that training with reduced carbohydrate availability (often termed "train low") enhances metabolic adaptation compared to training with normal or high carbohydrate availability. However, these "train low" practices have not been tested in athletes with T1D. This review aims to investigate the known pros and cons of LCDs as a potentially effective, achievable, and safe therapy to improve glycaemic control and metabolic health in people with T1D. Secondly, we discuss the potential for low, restricted, or periodised carbohydrate diets in athletes with T1D.
Collapse
Affiliation(s)
- Sam N Scott
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada.
| | | | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Anton J M Wagenmakers
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada.
- LMC Diabetes & Endocrinology, 1929 Bayview Avenue, Toronto, ON M4G 3E8, Canada.
| |
Collapse
|
21
|
Stocks B, Dent JR, Ogden HB, Zemp M, Philp A. Postexercise skeletal muscle signaling responses to moderate- to high-intensity steady-state exercise in the fed or fasted state. Am J Physiol Endocrinol Metab 2019; 316:E230-E238. [PMID: 30512989 DOI: 10.1152/ajpendo.00311.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exercise performed in the fasted state acutely increases fatty acid availability and utilization. Furthermore, activation of energy-sensing pathways and fatty acid metabolic genes can be augmented by fasting and fasted exercise. However, whether a similar effect occurs at higher exercise intensities remains poorly understood. This study aimed to assess the effect of fed and fasted exercise upon postexercise signaling and mRNA responses during moderate- to high-intensity steady-state exercise. Eight male participants [age: 25 (SD 2) yr, V̇o2peak: 47.9 (SD 3.8) ml·kg-1·min-1] performed 1 h of cycling at 70% Wmax in the fasted (FAST) state or 2 h following ingestion of a carbohydrate-rich mixed-macronutrient breakfast (FED). Muscle biopsies were collected pre-, immediately, and 3 h postexercise from the medial vastus lateralis, while venous blood samples were collected throughout the trial. Plasma, nonesterified fatty acid, and glycerol concentrations were elevated during FAST compared with FED, although substrate utilization during exercise was similar. AMPKThr172 phosphorylation was ~2.5-fold elevated postexercise in both trials and was significantly augmented by ~30% during FAST. CREBSer133 phosphorylation was elevated approximately twofold during FAST, although CREBSer133 phosphorylation acutely decreased by ~50% immediately postexercise. mRNA expression of PDK4 was approximately three- to fourfold augmented by exercise and approximately twofold elevated throughout FAST, while expression of PPARGC1A mRNA was similarly activated (~10-fold) by exercise in both FED and FAST. In summary, performing moderate- to high-intensity steady-state exercise in the fasted state increases systemic lipid availability, elevates phosphorylation of AMPKThr172 and CREBSer133, and augments PDK4 mRNA expression without corresponding increases in whole body fat oxidation and the mRNA expression of PPARGC1A.
Collapse
Affiliation(s)
- Ben Stocks
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
| | - Jessica R Dent
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
| | - Henry B Ogden
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
| | - Martina Zemp
- Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich , Switzerland
| | - Andrew Philp
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
- Mitochondrial Metabolism and Ageing Laboratory, Diabetes and Metabolism Division, Garvan Institute of Medical Research , Darlinghurst , Australia
| |
Collapse
|
22
|
Earnest CP, Rothschild J, Harnish CR, Naderi A. Metabolic adaptations to endurance training and nutrition strategies influencing performance. Res Sports Med 2018; 27:134-146. [PMID: 30411978 DOI: 10.1080/15438627.2018.1544134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Endurance performance is the result of optimal training targeting cardiovascular, metabolic, and peripheral muscular adaptations and is coupled to effective nutrition strategies via the use of macronutrient manipulations surrounding training and potential supplementation with ergogenic aids. It is important to note that training and nutrition may differ according to the individual needs of the athlete and can markedly impact the physiological response to training. Herein, we discuss various aspects of endurance training adaptations, nutritional strategies and their contributions to towards performance.
Collapse
Affiliation(s)
- Conrad P Earnest
- a Health and Kinesiology, College Station , Texas A&M University , College Station , TX , USA
| | | | | | - Alireza Naderi
- d Department of Sport Physiology , Islamic Azad University , Boroujerd , Iran (the Islamic Republic of)
| |
Collapse
|
23
|
Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med 2018; 48:1809-1828. [PMID: 29934848 DOI: 10.1007/s40279-018-0936-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle has been linked to a number of metabolic disorders that have been associated with sub-optimal mitochondrial characteristics and an increased risk of premature death. Endurance training can induce an increase in mitochondrial content and/or mitochondrial functional qualities, which are associated with improved health and well-being and longer life expectancy. It is therefore important to better define how manipulating key parameters of an endurance training intervention can influence the content and functionality of the mitochondrial pool. This review focuses on mitochondrial changes taking place following a series of exercise sessions (training-induced mitochondrial adaptations), providing an in-depth analysis of the effects of exercise intensity and training volume on changes in mitochondrial protein synthesis, mitochondrial content and mitochondrial respiratory function. We provide evidence that manipulation of different exercise training variables promotes specific and diverse mitochondrial adaptations. Specifically, we report that training volume may be a critical factor affecting changes in mitochondrial content, whereas relative exercise intensity is an important determinant of changes in mitochondrial respiratory function. As a consequence, a dissociation between training-induced changes in mitochondrial content and mitochondrial respiratory function is often observed. We also provide evidence that exercise-induced changes are not necessarily predictive of training-induced adaptations, we propose possible explanations for the above discrepancies and suggestions for future research.
Collapse
|
24
|
Rothschild J, Earnest CP. Dietary Manipulations Concurrent to Endurance Training. J Funct Morphol Kinesiol 2018; 3:jfmk3030041. [PMID: 33466970 PMCID: PMC7739303 DOI: 10.3390/jfmk3030041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
The role of an athlete's dietary intake (both timing and food type) goes beyond simply providing fuel to support the body's vital processes. Nutritional choices also have an impact on the metabolic adaptations to training. Over the past 20 years, research has suggested that strategically reducing carbohydrate (CHO) availability during an athlete's training can modify the metabolic responses in lieu of simply maintaining a high CHO diet. Several methods have been explored to manipulate CHO availability and include: Low-carb, high-fat (LCHF) diets, performing two-a-day training without glycogen restoration between sessions, and a "sleep-low" approach entailing a glycogen-depleting session in the evening without consuming CHO until after a morning training session performed in an overnight fasted state. Each of these methods can confer beneficial metabolic adaptations for the endurance athlete including increases in mitochondrial enzyme activity, mitochondrial content, and rates of fat oxidation, yet data showing a direct performance benefit is still unclear.
Collapse
Affiliation(s)
| | - Conrad P. Earnest
- Exercise and Sport Nutrition Laboratory, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
25
|
Hansen D, De Strijcker D, Calders P. Impact of Endurance Exercise Training in the Fasted State on Muscle Biochemistry and Metabolism in Healthy Subjects: Can These Effects be of Particular Clinical Benefit to Type 2 Diabetes Mellitus and Insulin-Resistant Patients? Sports Med 2018; 47:415-428. [PMID: 27459862 DOI: 10.1007/s40279-016-0594-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Exercise training intervention is a cornerstone in the care of type 2 diabetes mellitus (T2DM) and insulin resistance (IR), and it is pursued in order to optimize exercise interventions for these patients. In this regard, the nutritional state of patients during exercise (being in the fed or fasted state) can be of particular interest. The aim of the present review is to describe the impact of endurance exercise (training) in the fasted versus fed state on parameters of muscle biochemistry and metabolism linked to glycemic control or insulin sensitivity in healthy subjects. From these data it can then be deduced whether exercise training in the fasted state may be relevant to patients with T2DM or IR. In healthy subjects, acute endurance exercise in the fasted state is accompanied by lower blood insulin and elevated blood free fatty acid concentrations, stable blood glucose concentrations (in the first 60-90 min), superior intramyocellular triacylglycerol oxidation and whole-body lipolysis, and muscle glycogen preservation. Long-term exercise training in the fasted state in healthy subjects is associated with greater improvements in insulin sensitivity, basal muscle fat uptake capacity, and oxidation. Therefore, promising results of exercise (training) in the fasted state have been found in healthy subjects on parameters of muscle biochemistry and metabolism linked to insulin sensitivity and glycemic control. Whether exercise training intervention in which exercise sessions are organized in the fasted state may be more effective in improving insulin sensitivity or glycemic control in T2DM patients and insulin-resistant individuals warrants investigation.
Collapse
Affiliation(s)
- Dominique Hansen
- Faculty of Medicine and Life Sciences, Rehabilitation Research Center, Hasselt University, REVAL, Agoralaan, Building A, 3590, Diepenbeek, Belgium. .,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium.
| | - Dorien De Strijcker
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Patrick Calders
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Ferreira AMJ, Farias-Junior LF, Mota TAA, Elsangedy HM, Marcadenti A, Lemos TMAM, Okano AH, Fayh APT. The effect of carbohydrate mouth rinse on performance, biochemical and psychophysiological variables during a cycling time trial: a crossover randomized trial. J Int Soc Sports Nutr 2018; 15:23. [PMID: 29743827 PMCID: PMC5932899 DOI: 10.1186/s12970-018-0225-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/24/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The hypothesis of the central effect of carbohydrate mouth rinse (CMR) on performance improvement in a fed state has not been established, and its psychophysiological responses have not yet been described. The aim of this study was to evaluate the effect of CMR in athletes fed state on performance, biochemical and psychophysiological responses compared to ad libitum water intake. METHODS Eleven trained male cyclists completed a randomized, crossover trial, which consisted of a 30 km cycle ergometer at self-selected intensity and in a fed state. Subjects were under random influence of the following interventions: CMR with a 6% unflavored maltodextrin solution; mouth rinsing with a placebo solution (PMR); drinking "ad libitum" (DAL). The time for completion of the test (min), heart rate (bpm) and power (watts), rating of perceived exertion (RPE), affective response, blood glucose (mg/dL) and lactate (mmol/DL), were evaluated before, during and immediately after the test, while insulin (uIL/mL), cortisol (μg/dL) and creatine kinase (U/L) levels were measured before, immediately after the test and 30 min after the test. RESULTS Time for completion of the 30 km trial did not differ significantly among CMR, PMR and DAL interventions (means = 54.5 ± 2.9, 54.7 ± 2.9 and 54.5 ± 2.5 min, respectively; p = 0.82). RPE and affective response were higher in DAL intervention (p < 0.01). Glucose, insulin, cortisol and creatine kinase responses showed no significant difference among interventions. CONCLUSIONS In a fed state, CMR has not caused metabolic changes, and it has not improved physical performance compared to ad libitum water intake, but demonstrated a possible central effect. ReBec registration number: RBR-4vpwkg. Available in http://www.ensaiosclinicos.gov.br/rg/?q=RBR-4vpwkg.
Collapse
Affiliation(s)
- Amanda M. J. Ferreira
- Graduate Progrtam in Physical Education, Federal University of Rio Grande do Norte, Avenida senador Salgado Filho 3000, Campus Universitário, Lagoa Nova, Natal, RN Brazil
| | - Luiz F. Farias-Junior
- Graduate Progrtam in Physical Education, Federal University of Rio Grande do Norte, Avenida senador Salgado Filho 3000, Campus Universitário, Lagoa Nova, Natal, RN Brazil
| | - Thaynan A. A. Mota
- Graduate Progrtam in Physical Education, Federal University of Rio Grande do Norte, Avenida senador Salgado Filho 3000, Campus Universitário, Lagoa Nova, Natal, RN Brazil
| | - Hassan M. Elsangedy
- Graduate Progrtam in Physical Education, Federal University of Rio Grande do Norte, Avenida senador Salgado Filho 3000, Campus Universitário, Lagoa Nova, Natal, RN Brazil
| | - Aline Marcadenti
- HCor, Institute of Research, Coracao Hospital, São Paulo, SP Brazil
- IC/FUC, Postgraduate Program in Health Sciences, Cardiology Institute / University Foundation of Rio Grande do Sul Cardiology, Porto Alegre, RS Brazil
| | - Telma M. A. M. Lemos
- Graduate Progrtam in Physical Education, Federal University of Rio Grande do Norte, Avenida senador Salgado Filho 3000, Campus Universitário, Lagoa Nova, Natal, RN Brazil
| | - Alexandre H. Okano
- UFABC, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Ana P. T. Fayh
- Graduate Progrtam in Physical Education, Federal University of Rio Grande do Norte, Avenida senador Salgado Filho 3000, Campus Universitário, Lagoa Nova, Natal, RN Brazil
| |
Collapse
|
27
|
Terada T, Toghi Eshghi SR, Liubaoerjijin Y, Kennedy M, Myette-Côté É, Fletcher K, Boulé NG. Overnight fasting compromises exercise intensity and volume during sprint interval training but improves high-intensity aerobic endurance. J Sports Med Phys Fitness 2018; 59:357-365. [PMID: 29619796 DOI: 10.23736/s0022-4707.18.08281-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The combined effects of sprint interval training (SIT) and exercising in the fasted state are unknown. We compared the effects of SIT with exogenous carbohydrate supplementation (SIT-CHO) and SIT following overnight fast (SIT-Fast) on aerobic capacity (peak oxygen consumption: V̇O2peak) and high-intensity aerobic endurance (time-to-exhaustion at 85% V̇O2peak [T85%]). METHODS Twenty male cyclists were randomized to SIT-CHO and SIT-Fast. Both groups performed 30-second all-out cycling followed by 4-minute active recovery 3 times per week for 4 weeks, with the number of sprint bouts progressing from 4 to 7. Peak power output (PPO) and total mechanical work were measured for each sprint interval bout. The SIT-CHO group performed exercise sessions following breakfast and consumed carbohydrate drink during exercise, whereas the SIT-Fast group performed exercise sessions following overnight fast and consumed water during exercise. Before and after training, V̇O2peak and T85% were assessed. Blood glucose, non-esterified fatty acids, insulin and glucagon concentrations were measured during T85%. RESULTS Overall PPO and mechanical work were lower in SIT-Fast than SIT-CHO (3664.9 vs. 3871.7 J/kg; P=0.021 and 10.6 vs. 9.9 W/kg; P=0.010, respectively). Post-training V̇O2peak did not differ between groups. Baseline-adjusted post-training T85% was longer in SIT-Fast compared to SIT-CHO (19.7±3.0 vs. 16.6±3.0 minutes, ANCOVA P=0.038) despite no changes in circulating energy substrates or hormones. CONCLUSIONS Our results suggest that SIT-Fast compromises exercise intensity and volume but still can have a greater impact on the ability to sustain high-intensity aerobic endurance exercise compared to SIT-CHO.
Collapse
Affiliation(s)
- Tasuku Terada
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | - Étienne Myette-Côté
- -052 Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
28
|
Iwayama K, Kawabuchi R, Nabekura Y, Kurihara R, Park I, Kobayashi M, Ogata H, Kayaba M, Omi N, Satoh M, Tokuyama K. Exercise before breakfast increases 24-h fat oxidation in female subjects. PLoS One 2017; 12:e0180472. [PMID: 28692687 PMCID: PMC5503250 DOI: 10.1371/journal.pone.0180472] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
Background Exercise performed in a postprandial state does not increase 24-h fat oxidation of male and female subjects. Conversely, it has been shown in male subjects that exercise performed in a postabsorptive state increases 24-h fat oxidation compared with that in sedentary control and that with exercise trials performed after breakfast, lunch, or dinner. There is a paucity of study evaluating the effect of exercise performed in a postabsorptive state in female subjects. Method Nine young female subjects participated in indirect calorimetry measurement over 24-h using a room-size metabolic chamber in which subjects remained sedentary or performed 60 min exercise before breakfast at 50% of V˙O2max. Exercise was accompanied by an increase in energy intake to ensure that subjects were in a similar state of energy balance over 24 h for the two trials. Findings Compared with the sedentary condition, exercise performed before breakfast increased 24-h fat oxidation (519 ± 37 vs. 400 ± 41 kcal/day). Time courses of relative energy balance differed between trials with transient negative energy balance observed before breakfast. The lowest values of relative energy balance observed during the 24-h calorimetry, i.e., transient energy deficit, were greater in exercise trials than in sedentary trials. The transient deficit in carbohydrate balance was also observed before breakfast, and magnitude of the deficit was greater in exercise trial compared to that of sedentary trial. Interpretation Under energy-balanced conditions, exercise performed in a post-absorptive state increases 24-h fat oxidation in female subjects. The effect of exercise performed before breakfast can be attributed to nutritional state: a transient deficit in energy and carbohydrate at the end of exercise.
Collapse
Affiliation(s)
- Kaito Iwayama
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Ryosuke Kawabuchi
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Yoshiharu Nabekura
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Reiko Kurihara
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Insung Park
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Masashi Kobayashi
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Hitomi Ogata
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Momoko Kayaba
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Naomi Omi
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Makoto Satoh
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Kumpei Tokuyama
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
29
|
Abstract
The Bath Breakfast Project is a series of randomised controlled trials exploring the effects of extended morning fasting on energy balance and health. These trials were categorically not designed to answer whether or not breakfast is the most important meal of the day. However, this review will philosophise about the meaning of that question and about what questions we should be asking to better understand the effects of breakfast, before summarising how individual components of energy balance and health respond to breakfast v. fasting in lean and obese adults. Current evidence does not support a clear effect of regularly consuming or skipping breakfast on body mass/composition, metabolic rate or diet-induced thermogenesis. Findings regarding energy intake are variable, although the balance of evidence indicates some degree of compensatory feeding later in the day such that overall energy intake is either unaffected or slightly lower when breakfast is omitted from the diet. However, even if net energy intake is reduced, extended morning fasting may not result in expected weight loss due to compensatory adjustments in physical activity thermogenesis. Specifically, we report that both lean and obese adults expended less energy during the morning when remaining in the fasted state than when consuming a prescribed breakfast. Further research is required to examine whether particular health markers may be responsive to breakfast-induced responses of individual components of energy balance irrespective of their net effect on energy balance and therefore body mass.
Collapse
|
30
|
Charlot K, Pichon A, Chapelot D. Effets de l’entraînement à jeun sur la V˙O2max, l’oxydation des lipides et la performance aérobie chez des jeunes hommes modérément entraînés. Sci Sports 2016. [DOI: 10.1016/j.scispo.2016.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Carbohydrate mouth rinsing has no effect on power output during cycling in a glycogen-reduced state. J Int Soc Sports Nutr 2016; 13:19. [PMID: 27110224 PMCID: PMC4842283 DOI: 10.1186/s12970-016-0131-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 04/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background The effect of mouth rinsing with a carbohydrate (CHO) solution on exercise performance is inconclusive with no benefits observed in the fed state. This study examined the effect of CHO mouth rinse or CHO ingestion on performance in 9 moderately trained male cyclists. Methods Four trials were undertaken, separated by 7 days, in a randomized, counterbalanced design. Each trial included a 90-min glycogen-reducing exercise protocol, immediately followed by a low CHO meal and subsequent overnight fast; the following morning a 1-h cycling time trial was conducted. The trials included 15 % CHO mouth rinse (CHOR), 7.5 % CHO ingestion (CHOI), placebo mouth rinse and placebo ingestion. Solutions were provided after every 12.5 % of completed exercise: 1.5 mL · kg−1 and 0.33 mL · kg−1 body mass during ingestion and rinse trials, respectively. During rinse trials participants swirled the solution for 8 s before expectorating. Blood samples were taken at regular intervals before and during exercise. Results Performance time was not different between trials (P = 0.21) but the 4.5-5.2 % difference between CHOI and other trials showed moderate practical significance (Cohen’s d 0.57-0.65). Power output was higher in CHOI relative to other trials (P < 0.01). There were no differences between CHOR and placebo groups for any performance variables. Plasma glucose, insulin and lactate concentrations were higher in CHOI relative to other groups (P < 0.05). Conclusions In a fasted and glycogen-reduced state ingestion of a CHO solution during high-intensity exercise enhanced performance through stimulation of insulin-mediated glucose uptake. The CHO mouth rinsing had neither ergogenic effects nor changes in endocrine or metabolic responses relative to placebo.
Collapse
|
32
|
de Lima FD, Correia ALM, Teixeira DDS, da Silva Neto DV, Fernandes ÍSG, Viana MBX, Petitto M, da Silva Sampaio RA, Chaves SN, Alves ST, Dantas RAE, Mota MR. Acute metabolic response to fasted and postprandial exercise. Int J Gen Med 2015; 8:255-60. [PMID: 26316800 PMCID: PMC4540134 DOI: 10.2147/ijgm.s87429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to analyze the acute metabolic response to exercise in fasting and postprandial. For this, ten individuals were submitted to an incremental treadmill test, with an initial speed of 5 and 1 km/h increments every minute, with no inclination, and a body composition assessment. After this 1st day, all volunteers were submitted to two experimental procedures (fasting and postprandial), with an aerobic exercise performed for 36 minutes at 65% of maximal oxygen consumption. At postprandial procedure, all subjects ingested a breakfast containing 59.3 g of carbohydrate (76.73%), 9.97 g of protein (12.90%), 8.01 g of lipids (10.37%), with a total energy intake of 349.17 kcal. An analysis of plasma concentration of triglycerides, lactate, and glucose was performed in two stages: before and after exercise. The Shapiro–Wilk test was used to verify the normality of the data. For analysis of glucose concentration, plasma lactate, and triglycerides, we used a repeated measures analysis of variance factorial 2×2, with Bonferroni multiple comparison test. The significance level of P<0.05 was adopted. The results indicated a maintenance level of glucose at fasting and a decrease in glucose concentration at postprandial exercise. Both conditions increase plasma lactate. Triglycerides also increased in the two experimental conditions; however, after exercise fasting, the increase was significantly higher than in the postprandial exercise. These data suggest that both exercises could increase plasma lactate and triglycerides. However, exercise performed in fasting condition decreases glucose concentration and increases triglycerides, even more than postprandial exercise.
Collapse
Affiliation(s)
- Filipe Dinato de Lima
- University of Brasília, Brasília, DF, Brazil ; Universitary Center of Brasília (UniCEUB), Brasília, DF, Brazil
| | | | | | | | | | | | - Mateus Petitto
- Universitary Center of Brasília (UniCEUB), Brasília, DF, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Does Ramadan fasting affect the diurnal variations in metabolic responses and total antioxidant capacity during exercise in young soccer players? SPORT SCIENCES FOR HEALTH 2014. [DOI: 10.1007/s11332-014-0179-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Concomitant effects of Ramadan fasting and time-of-day on apolipoprotein AI, B, Lp-a and homocysteine responses during aerobic exercise in Tunisian soccer players. PLoS One 2013; 8:e79873. [PMID: 24244572 PMCID: PMC3823586 DOI: 10.1371/journal.pone.0079873] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/27/2013] [Indexed: 12/02/2022] Open
Abstract
Objective To examine the time-of-day and Ramadan fasting (RF) effects on serum apolipoprotein-AI (Apo-AI) and B (Apo-B), lipoprotein particles-a (Lp-a), high-sensitive C-reactive-protein (hs-CRP), and homocysteine (Hcy) during the Yo-Yo intermittent recovery test (YYIRT). Design Performance and biochemical measures were completed at two times-of-day (07:00 and 17:00 h), 1-week before RF (BR), the second week of RF (SWR), and the fourth week of RF (ER). Setting For each session, subjects performed the YYIRT, and blood samples were taken before and 3-min after the test for biochemical measures. Participants Fifteen soccer players. Main Outcome Measures Total distance during the YYIRT, core temperature, body composition, dietary intakes, lipid (HDL-C, LDL-C, Apo-AI, B and Lp-a) and inflammatory (hs-CRP and Hcy) profiles. Results Performances during the YYIRT were higher in the evening than the morning BR (P < 0.05), but this fluctuation was not observed during RF. Moreover, LDL-C, ApoB, and Lp-a were stable throughout the daytime BR. However, during RF, they decreased at 17:00 h (P < 0.05). Likewise, HDL-C and Apo-AI increased after the exercise and were higher at 17:00 h BR (P < 0.001). Moreover, these parameters increased during RF (P < 0.01). Furthermore, Hcy and hs-CRP increased during the exercise (P < 0.01) with higher evening levels BR. During ER, the diurnal pattern of Hcy was inversed (P < 0.001). Conclusions This study concluded that caloric restriction induced by RF seems to ameliorate lipid and inflammatory markers of cardiovascular health during intermittent exercise performed in the evening.
Collapse
|
35
|
Gillen JB, Percival ME, Ludzki A, Tarnopolsky MA, Gibala MJ. Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity (Silver Spring) 2013; 21:2249-55. [PMID: 23723099 DOI: 10.1002/oby.20379] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/18/2012] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To investigate the effects of low-volume high-intensity interval training (HIT) performed in the fasted (FAST) versus fed (FED) state on body composition, muscle oxidative capacity, and glycemic control in overweight/obese women. DESIGN AND METHODS Sixteen women (27 ± 8 years, BMI: 29 ± 6 kg/m(2) , VO2peak : 28 ± 3 ml/kg/min) were assigned to either FAST or FED (n = 8 each) and performed 18 sessions of HIT (10× 60-s cycling efforts at ∼90% maximal heart rate, 60-s recovery) over 6 weeks. RESULTS There was no significant difference between FAST and FED for any measured variable. Body mass was unchanged following training; however, dual energy X-ray absorptiometry revealed lower percent fat in abdominal and leg regions as well as the whole body level (main effects for time, P ≤ 0.05). Fat-free mass increased in leg and gynoid regions (P ≤ 0.05). Resting muscle biopsies revealed a training-induced increase in mitochondrial capacity as evidenced by increased maximal activities of citrate synthase and β-hydroxyacyl-CoA dehydrogenase (P ≤ 0.05). There was no change in insulin sensitivity, although change in insulin area under the curve was correlated with change in abdominal percent fat (r = 0.54, P ≤ 0.05). CONCLUSION Short-term low-volume HIT is a time-efficient strategy to improve body composition and muscle oxidative capacity in overweight/obese women, but fed- versus fasted-state training does not alter this response.
Collapse
Affiliation(s)
- Jenna B Gillen
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
36
|
Emhoff CAW, Messonnier LA, Horning MA, Fattor JA, Carlson TJ, Brooks GA. Direct and indirect lactate oxidation in trained and untrained men. J Appl Physiol (1985) 2013; 115:829-38. [PMID: 23788576 DOI: 10.1152/japplphysiol.00538.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lactate has been shown to be an important oxidative fuel. We aimed to quantify the total lactate oxidation rate (Rox) and its direct vs. indirect (glucose that is gluconeogenically derived from lactate and subsequently oxidized) components (mg·kg(-1)·min(-1)) during rest and exercise in humans. We also investigated the effects of endurance training, exercise intensity, and blood lactate concentration ([lactate]b) on direct and indirect lactate oxidation. Six untrained (UT) and six trained (T) men completed 60 min of constant load exercise at power outputs corresponding to their lactate threshold (LT). T subjects completed two additional 60-min sessions of constant load exercise at 10% below the LT workload (LT-10%), one of which included a lactate clamp (LC; LT-10%+LC). Rox was higher at LT in T [22.7 ± 2.9, 75% peak oxygen consumption (Vo2peak)] compared with UT (13.4 ± 2.5, 68% Vo2peak, P < 0.05). Increasing [lactate]b (LT-10%+LC, 67% Vo2peak) significantly increased lactate Rox (27.9 ± 3.0) compared with its corresponding LT-10% control (15.9 ± 2.2, P < 0.05). Direct and indirect Rox increased significantly from rest to exercise, and their relative partitioning remained constant in all trials but differed between T and UT: direct oxidation comprised 75% of total lactate oxidation in UT and 90% in T, suggesting the presence of training-induced adaptations. Partitioning of total carbohydrate (CHO) use showed that subjects derived one-third of CHO energy from blood lactate, and exogenous lactate infusion increased lactate oxidation significantly, causing a glycogen-sparing effect in exercising muscle.
Collapse
Affiliation(s)
- Chi-An W Emhoff
- Department of Integrative Biology, University of California, Berkeley, California
| | | | | | | | | | | |
Collapse
|
37
|
Shimada K, Yamamoto Y, Iwayama K, Nakamura K, Yamaguchi S, Hibi M, Nabekura Y, Tokuyama K. Effects of post-absorptive and postprandial exercise on 24 h fat oxidation. Metabolism 2013; 62:793-800. [PMID: 23313101 DOI: 10.1016/j.metabol.2012.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 12/03/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Fat oxidation during exercise depends on nutritional state, and exercise performed in the post-absorptive state oxidizes more fat than that performed in the postprandial state. However, the effects of exercise on energy metabolism continue during the post-exercise period, and the difference in fat oxidation during exercise may be compensated for during the post-exercise period. The present study compared the effects of an acute exercise bout in the post-absorptive or postprandial state on 24 h fat oxidation. METHODS Twelve young male athletes stayed twice in a room-size metabolic chamber for 24 h indirect calorimetry in a randomized repeated-measure design. Before or after breakfast, i.e. in the post-absorptive or postprandial state, subjects exercised at 50% VO(2)max for 60 min. RESULTS During the 60 min of exercise, energy expenditure in the two exercise trials were equivalent, but exercise in the post-absorptive state was performed with lower RQ compared with that in the postprandial state (P<0.01). The time of exercise relative to breakfast did not affect 24 h energy expenditure (P>0.5). However, accumulated 24 h fat oxidation was higher (P<0.05) and that of carbohydrate oxidation was lower (P<0.05) when exercise was performed in the post-absorptive state. CONCLUSIONS Compared with exercise performed in the postprandial state, exercise performed in the post-absorptive state oxidized more fat and saved more carbohydrate in the body, without affecting 24 h energy expenditure.
Collapse
Affiliation(s)
- Kenshiro Shimada
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan 305-8574
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Trabelsi K, Stannard SR, Ghlissi Z, Maughan RJ, Kallel C, Jamoussi K, Zeghal KM, Hakim A. Effect of fed- versus fasted state resistance training during Ramadan on body composition and selected metabolic parameters in bodybuilders. J Int Soc Sports Nutr 2013; 10:23. [PMID: 23617897 PMCID: PMC3639860 DOI: 10.1186/1550-2783-10-23] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/16/2013] [Indexed: 11/25/2022] Open
Abstract
Background Muslim bodybuilders often continue training during Ramadan. However, the effect of resistance training in a fasted versus a fed state during Ramadan on body composition and metabolic parameters in bodybuilders is not well known. The aim of this study was to evaluate the effects of resistance training in a fasted versus a fed state during Ramadan on body composition and metabolic parameters in bodybuilders. Methods Sixteen men were allocated to two groups: Eight practicing resistance training in the late afternoon in a fasted state (FAST), and eight training in the late evening in an acutely fed state (FED) during Ramadan. All visited the laboratory in the morning two days before the start of Ramadan (Bef-R) and on the 29th day of Ramadan (End-R) for anthropometric measurement, completion of a dietary questionnaire, and provision of fasting blood and urine samples. Results Body mass and body fat percentage remained unchanged in FAST and FED during the whole period of the investigation. Both FAST and FED experienced an increase in the following parameters from Bef-R to End-R: urine specific gravity (1%; p = 0.028, p = 0.004 respectively), serum concentrations of urea (4%, p = 0.006; 7%, p = 0.004 respectively), creatinine (5%, p = 0.015; 6%, p = 0.04 respectively), uric acid (17%; p < 0.001, p = 0.04 respectively), sodium (1%; p = 0.029, p = 0.019 respectively), chloride (2%; p = 0.039, p = 0.004 respectively), and high-density lipoprotein cholesterol (11%, p = 0.04; 10%, p = 0.04 respectively). Conclusion Hypertrophic training in a fasted or in a fed state during Ramadan does not affect body mass and body composition of bodybuilders. Additionally, Ramadan fasting induced changes in urinary and some biochemical parameters, but these changes were not different according to when the training occurred.
Collapse
Affiliation(s)
- Khaled Trabelsi
- University of Sfax, Laboratory of Pharmacology, Faculty of Medicine, Sfax, 3029, Tunisia.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Breakfast and exercise contingently affect postprandial metabolism and energy balance in physically active males. Br J Nutr 2013; 110:721-32. [PMID: 23340006 DOI: 10.1017/s0007114512005582] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study examined the impact of breakfast and exercise on postprandial metabolism, appetite and macronutrient balance. A sample of twelve (blood variables n 11) physically active males completed four trials in a randomised, crossover design comprising a continued overnight fast followed by: (1) rest without breakfast (FR); (2) exercise without breakfast (FE); (3) breakfast consumption (1859 kJ) followed by rest (BR); (4) breakfast consumption followed by exercise (BE). Exercise was continuous, moderate-intensity running (expending approximately 2·9 MJ of energy). The equivalent time was spent sitting during resting trials. A test drink (1500 kJ) was ingested on all trials followed 90 min later by an ad libitum lunch. The difference between the BR and FR trials in blood glucose time-averaged AUC following test drink consumption approached significance (BR: 4·33 (SEM 0·14) v. FR: 4·75 (SEM 0·16) mmol/l; P=0·08); but it was not different between FR and FE (FE: 4·77 (SEM 0·14) mmol/l; P=0·65); and was greater in BE (BE: 4·97 (SEM 0·13) mmol/l) v. BR (P=0·012). Appetite following the test drink was reduced in BR v. FR (P=0·006) and in BE v. FE (P=0·029). Following lunch, the most positive energy balance was observed in BR and least positive in FE. Regardless of breakfast, acute exercise produced a less positive energy balance following ad libitum lunch consumption. Energy and fat balance is further reduced with breakfast omission. Breakfast improved the overall appetite responses to foods consumed later in the day, but abrogated the appetite-suppressive effect of exercise.
Collapse
|
40
|
Stannard SR. Ramadan and Its Effect on Fuel Selection during Exercise and Following Exercise Training. Asian J Sports Med 2012; 2:127-33. [PMID: 22375231 PMCID: PMC3289214 DOI: 10.5812/asjsm.34760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/07/2011] [Indexed: 11/16/2022] Open
Abstract
Fasting induces short-term physiological adaptations which spare the body's remaining carbohydrate stores and mobilize lipid stores to provide a substitute fuel for many tissues and organs, especially skeletal muscle. Rodent studies show that regular occurrence of fasting then refeeding, stimulates adaptations in muscle which make the animal better placed to withstand a further period of fasting by possessing a better ability to oxidise lipid.This review explores the research describing these adaptations, with an emphasis on Ramadan, a human model of repeated fasting/refeeding. Separately, a single bout of endurance exercise places similar metabolic stress on the body as fasting since the exercising muscle must reduce its use of carbohydrate and utilize lipid more readily as exercise progresses. Not surprisingly therefore, adaptations in muscle to repeated bouts of endurance exercise (endurance training) are similar to those seen with repeated fasting/refeeding. Superimposing the stressors of repeated fasting/refeeding and exercise training, and subsequent adaptations to the muscle and exercise response, are examined by describing the published research which has investigated the situation where athletes continue their training whilst participating in Ramadan.
Collapse
Affiliation(s)
- Stephen R. Stannard
- Corresponding Author: Address: Private Bag 11-222, Manawatu Mail Centre, Palmerston North, New Zealand. E-mail:
| |
Collapse
|
41
|
Van Proeyen K, Szlufcik K, Nielens H, Pelgrim K, Deldicque L, Hesselink M, Van Veldhoven PP, Hespel P. Training in the fasted state improves glucose tolerance during fat-rich diet. J Physiol 2011; 588:4289-302. [PMID: 20837645 DOI: 10.1113/jphysiol.2010.196493] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A fat-rich energy-dense diet is an important cause of insulin resistance. Stimulation of fat turnover in muscle cells during dietary fat challenge may contribute to maintenance of insulin sensitivity. Exercise in the fasted state markedly stimulates energy provision via fat oxidation. Therefore, we investigated whether exercise training in the fasted state is more potent than exercise in the fed state to rescue whole-body glucose tolerance and insulin sensitivity during a period of hyper-caloric fat-rich diet. Healthy male volunteers (18-25 y) received a hyper-caloric (∼+30% kcal day(-1)) fat-rich (50% of kcal) diet for 6 weeks. Some of the subjects performed endurance exercise training (4 days per week) in the fasted state (F; n = 10), whilst the others ingested carbohydrates before and during the training sessions (CHO; n = 10). The control group did not train (CON; n = 7). Body weight increased in CON (+3.0 ± 0.8 kg) and CHO (+1.4 ± 0.4 kg) (P < 0.01), but not in F (+0.7 ± 0.4 kg, P = 0.13). Compared with CON, F but not CHO enhanced whole-body glucose tolerance and the Matsuda insulin sensitivity index (P < 0.05). Muscle GLUT4 protein content was increased in F (+28%) compared with both CHO (P = 0.05) and CON (P < 0.05). Furthermore, only training in F elevated AMP-activated protein kinase α phosphorylation (+25%) as well as up-regulated fatty acid translocase/CD36 and carnitine palmitoyltransferase 1 mRNA levels compared with CON (∼+30%). High-fat diet increased intramyocellular lipid but not diacylglycerol and ceramide contents, either in the absence or presence of training. This study for the first time shows that fasted training is more potent than fed training to facilitate adaptations in muscle and to improve whole-body glucose tolerance and insulin sensitivity during hyper-caloric fat-rich diet.
Collapse
Affiliation(s)
- Karen Van Proeyen
- Research Centre for Exercise and Health, Department of Biomedical Kinesiology, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Van Proeyen K, Szlufcik K, Nielens H, Ramaekers M, Hespel P. Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J Appl Physiol (1985) 2010; 110:236-45. [PMID: 21051570 DOI: 10.1152/japplphysiol.00907.2010] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Training with limited carbohydrate availability can stimulate adaptations in muscle cells to facilitate energy production via fat oxidation. Here we investigated the effect of consistent training in the fasted state, vs. training in the fed state, on muscle metabolism and substrate selection during fasted exercise. Twenty young male volunteers participated in a 6-wk endurance training program (1-1.5 h cycling at ∼70% Vo(₂max), 4 days/wk) while receiving isocaloric carbohydrate-rich diets. Half of the subjects trained in the fasted state (F; n = 10), while the others ingested ample carbohydrates before (∼160 g) and during (1 g·kg body wt⁻¹·h⁻¹) the training sessions (CHO; n = 10). The training similarly increased Vo(₂max) (+9%) and performance in a 60-min simulated time trial (+8%) in both groups (P < 0.01). Metabolic measurements were made during a 2-h constant-load exercise bout in the fasted state at ∼65% pretraining Vo(₂max). In F, exercise-induced intramyocellular lipid (IMCL) breakdown was enhanced in type I fibers (P < 0.05) and tended to be increased in type IIa fibers (P = 0.07). Training did not affect IMCL breakdown in CHO. In addition, F (+21%) increased the exercise intensity corresponding to the maximal rate of fat oxidation more than did CHO (+6%) (P < 0.05). Furthermore, maximal citrate synthase (+47%) and β-hydroxyacyl coenzyme A dehydrogenase (+34%) activity was significantly upregulated in F (P < 0.05) but not in CHO. Also, only F prevented the development exercise-induced drop in blood glucose concentration (P < 0.05). In conclusion, F is more effective than CHO to increase muscular oxidative capacity and at the same time enhances exercise-induced net IMCL degradation. In addition, F but not CHO prevented drop of blood glucose concentration during fasting exercise.
Collapse
Affiliation(s)
- Karen Van Proeyen
- Research Centre for Exercise and Health, Department of Biomedical Kinesiology, K. U. Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|