1
|
Almeida G, Ortiz A, González J, Winchester JB, Ortiz J, Hoppe N, Calderón D. Effectiveness of blood flow restriction (BFR) training on knee stability, strength, and aerobic performance during aerobic cycling exercise in healthy adults: A randomized controlled trial. J Bodyw Mov Ther 2025; 42:40-47. [PMID: 40325698 DOI: 10.1016/j.jbmt.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 05/07/2025]
Abstract
INTRODUCTION Blood Flow Restriction (BFR) training during strength training has been shown to lead to several physical improvements. However, its use during aerobic exercise has yet to be fully documented. This randomized controlled trial assessed the effects of blood flow restriction (BFR) on balance, knee stability, quadriceps strength, and submaximal VO2 after cycling training. METHODS Fifty-two healthy adults (58% women) were randomly assigned to a control group without BFR (CON) and four BFR groups: 60% occlusion in one (60UNIL) or both legs (60BILAT) and 80% occlusion in one (80UNIL) or both legs (80BILAT). Single-leg balance with eyes open and closed, knee stability (i.e., dynamic knee valgus) during a step-down, isokinetic quadriceps strength at 60°, 180°, and 300°/second, and submaximal VO2 were assessed at baseline, and three- and six-week follow-up. All participants performed cycling training thrice weekly for six weeks, pedaling at 70 revolutions/minute for 15 min. Repeated measures analysis of variance was performed for each outcome measure. RESULTS Quadriceps strength at 180°/second showed statistically significant changes across time for all groups. Quadriceps strength at 300°/second showed statistically significant differences across time for the 60% occlusion groups. However, only the 60UNIL showed statistically significant changes in quadriceps strength at three weeks. CONCLUSIONS BFR during cycling does not seem to improve balance, knee stability, quadriceps strength at 60°/second, or submaximal VO2. Unilateral BFR with 60% occlusion improved quadriceps strength and endurance three weeks after cycling.
Collapse
Affiliation(s)
- Gustavo Almeida
- Department of Physical Therapy, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
| | - Alexis Ortiz
- Department of Physical Therapy, Allen College-UnityPoint Health, Waterloo, IA, USA.
| | - Jaime González
- Physical Therapy Program, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Jason B Winchester
- Division of Health and Human Performance, Concordia University Chicago, River Forest, IL, USA
| | - Jovannah Ortiz
- School of Physical Therapy, University of the Incarnate Word, San Antonio, TX, USA
| | - Nicole Hoppe
- School of Physical Therapy, University of the Incarnate Word, San Antonio, TX, USA
| | - David Calderón
- School of Physical Therapy, University of the Incarnate Word, San Antonio, TX, USA
| |
Collapse
|
2
|
Liu X, Xiao J, Chen H. Effects of Blood Flow Restriction Training on Cognitive Flexibility in Adolescent Volleyball Players. Percept Mot Skills 2025:315125251328726. [PMID: 40113583 DOI: 10.1177/00315125251328726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Cognitive flexibility is crucial for volleyball athletes, enabling swift adaptation to dynamic game situations. While blood flow restriction (BFR) training has been suggested to enhance working memory, its specific effects on cognitive flexibility in volleyball players are not well understood. Therefore, this study investigates the effects of BFR combined with low-intensity aerobic exercise on cognitive flexibility in adolescent athletes, with a focus on the role of peripheral catecholamines. A randomized balanced crossover design was employed, involving 20 participants who completed four intervention conditions: sedentary rest, low-intensity aerobic exercise, moderate-intensity aerobic exercise, and BFR with low-intensity aerobic exercise. Post-intervention assessments included measurements of peripheral catecholamine levels and cognitive flexibility, specifically examining shifting costs. The results revealed significant differences in shifting costs across intervention conditions (p < .001). BFR training was associated with significantly higher shifting costs compared to sedentary rest (p < .001), lowintensity aerobic exercise (p < .001), and moderate-intensity aerobic exercise (p = .003). Correlation analysis demonstrated significant negative associations between post-BFR norepinephrine (R = -0.46) and epinephrine (R = -0.48) levels and shifting costs. These findings highlight the potential of BFR training to improve cognitive flexibility in adolescent volleyball players beyond the effects of moderate-intensity aerobic exercise, with practical implications for optimizing training regimens in this population. Additionally, the observed correlations between norepinephrine and epinephrine levels and cognitive performance offer novel insights into the physiological mechanisms underpinning cognitive function in sports contexts.
Collapse
Affiliation(s)
- Xinge Liu
- China Volleyball College Beijing Sport University, Beijing, China
| | - Jingzhe Xiao
- China Ice Sports College Beijing Sport University, Beijing, China
| | - Huawei Chen
- China Volleyball College Beijing Sport University, Beijing, China
| |
Collapse
|
3
|
Mladen SPS, Forbes SPA, Zedic AK, England VS, Drouin PJ, Tschakovsky ME. Leg blood flow during exercise with blood flow restriction: evidence for and implications of compensatory cardiovascular mechanisms. J Appl Physiol (1985) 2025; 138:492-507. [PMID: 39818968 DOI: 10.1152/japplphysiol.00772.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Proximal limb cuff inflation to 40% arterial occlusion pressure (AOP) is assumed to reduce exercising leg perfusion, creating "blood flow restriction" (BFR). However, no study has validated this assumption. Eighteen healthy young participants (9 F) performed two-legged knee flexion/extension exercise at 25% WRpeak with bilateral cuffs applied to the proximal thigh at 0% AOP (CTL), 20% AOP, and 40% AOP. Leg blood flow (LBF; Doppler and echo ultrasound) and cardiac output (CO; finger photoplethysmography) were measured during rest and exercise. LBF values were doubled to account for both exercising legs. AOP (20% and 40%) reduced exercising LBF in a dose-response manner (P < 0.01). However, the magnitude of the leg blood flow restriction by 40% AOP was progressively attenuated across the exercise bout (5-15 s: 37%, 50-70 s: 20%, 240-300 s: 16%; P < 0.01) due to compensatory increases in leg vascular conductance (LVC) (P < 0.01). Between 5 and 15 s of exercise, 40% AOP significantly reduced CO compared with CTL and 20% AOP (8.0 ± 1.3 vs. 8.4 ± 1.5 L/min, P < 0.001 and 8.5 ± 1.5, P < 0.001). By 240-300 s, there were no significant differences in CO between cuff pressures (all P > 0.13). Pneumatic cuff inflation at 20% and 40% AOP reduces LBF in a dose-response manner, but this impairment was progressively attenuated across the exercise bout by an increase in LVC. Importantly, this compensatory response differed across participants, which may have implications for the degree of adaptations following BFR training. Furthermore, restoration of normal CO during BFR despite compromised limb perfusion suggests that other tissue perfusion is increased as part of the response.NEW & NOTEWORTHY It remained to be determined whether BFR set below 60% AOP impairs leg blood flow during continuous exercise. We showed that BFR at 20% and 40% AOP impairs exercising leg blood flow in a dose-response manner. However, the leg blood flow impairment was progressively attenuated across the exercise bout. Both initial compromise and partial restoration varied across participants, which may have implications for the degree of muscle adaptations following BFR training.
Collapse
Affiliation(s)
- Stuart P S Mladen
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Stacey P A Forbes
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Abby K Zedic
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Vaughn S England
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Patrick J Drouin
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Jang MH, Kim DH, Han JH, Kim SH, Kim JH. Impact of ischemic preconditioning combined with aerobic exercise on 24-h ambulatory blood pressure in men with prehypertension and stage 1 hypertension. Front Physiol 2024; 15:1495648. [PMID: 39575451 PMCID: PMC11578983 DOI: 10.3389/fphys.2024.1495648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction A single bout of aerobic exercise is known to induce a temporary reduction in post-exercise blood pressure termed post-exercise hypotension (PEH). Meanwhile, an ischemic preconditioning (IPC), a series of short ischemia-reperfusion intervention, has also shown antihypertensive effects showing a potential nonpharmacologic intervention for hypertension. While the acute BP reduction effects of aerobic exercise and IPC are individually well-investigated, it remains unclear if combining both interventions has an additive effect on PEH. Methods A total of twelve pre- or hypertensive men (six prehypertension, six stage 1 hypertension) underwent either 30 min of aerobic exercise at 50% VO2peak (CON) or IPC before exercise, in a counterbalanced order. IPC involved inflating cuffs on both thighs to 200 mmHg for 5 min, alternating between right and left thighs for three cycles, totaling 30 min. Brachial BP was measured during exercise and 1-h post-exercise recovery whereas muscle oxygen saturation (SmO2) from the rectus femoris was monitored using NIRs during exercise and recovery. Heart rate variability (HRV) and baroreflex sensitivity (BRS) together with a head-up tilt test (at 0 and 50°) were measured at the pre-test, post-test, and 24-h post-test. After the completion of each experiment, 24-h ambulatory blood pressure (ABP) was monitored to assess post-exercise hypotension within a 24-h window. Results BP and heart rate responses during exercise and 1-h recovery did not differ between conditions while SmO2 was significantly elevated during exercise in IPC (p = 0.004). There was no difference in HRV and supine BRS. However, significantly reduced titled BRS after exercise was found in CON while IPC preserved BRS similar to pre-exercise value, extending to 24-h post period (p = 0.047). ABP monitoring revealed a significant reduction in systolic BP during sleep in IPC compared to CON (p = 0.046). Conclusion The present findings suggest that IPC with a single session of aerobic exercise results in a notable decrease in systolic ABP, particularly during sleep, compared to aerobic exercise alone. This supplementary antihypertensive effect was associated with a sustained BRS, persisting up to 24 h in contrast to the significant decrease observed in CON. Future studies are warranted to investigate long-term adaptations to IPC.
Collapse
Affiliation(s)
- Min-Hyeok Jang
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin, Republic of Korea
| | - Dae-Hwan Kim
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin, Republic of Korea
| | - Jean-Hee Han
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin, Republic of Korea
| | - Seok-Ho Kim
- Department of Sports Medicine, Kyung Hee University, Yongin, Republic of Korea
| | - Jung-Hyun Kim
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin, Republic of Korea
- Department of Sports Medicine, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
5
|
Bielitzki R, Behrens M, Behrendt T, Franz A, Centner C, Hughes L, Patterson SD, Owens J, Behringer M, Schega L. The Discrepancy Between External and Internal Load/Intensity during Blood Flow Restriction Exercise: Understanding Blood Flow Restriction Pressure as Modulating Factor. SPORTS MEDICINE - OPEN 2024; 10:95. [PMID: 39227485 PMCID: PMC11371992 DOI: 10.1186/s40798-024-00759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Physical exercise induces acute psychophysiological responses leading to chronic adaptations when the exercise stimulus is applied repeatedly, at sufficient time periods, and with appropriate magnitude. To maximize long-term training adaptations, it is crucial to control and manipulate the external load and the resulting psychophysiological strain. Therefore, scientists have developed a theoretical framework that distinguishes between the physical work performed during exercise (i.e., external load/intensity) and indicators of the body's psychophysiological response (i.e., internal load/intensity). However, the application of blood flow restriction (BFR) during exercise with low external loads/intensities (e.g., ≤ 30% of the one-repetition-maximum, ≤ 50% of maximum oxygen uptake) can induce physiological and perceptual responses, which are commonly associated with high external loads/intensities. This current opinion aimed to emphasize the mismatch between external and internal load/intensity when BFR is applied during exercise. In this regard, there is evidence that BFR can be used to manipulate both external load/intensity (by reducing total work when exercise is performed to exhaustion) and internal load/intensity (by leading to higher physiological and perceptual responses compared to exercise performed with the same external load/intensity without BFR). Furthermore, it is proposed to consider BFR as an additional exercise determinant, given that the amount of BFR pressure can determine not only the internal but also external load/intensity. Finally, terminological recommendations for the use of the proposed terms in the scientific context and for practitioners are given, which should be considered when designing, reporting, discussing, and presenting BFR studies, exercise, and/or training programs.
Collapse
Affiliation(s)
- Robert Bielitzki
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Tom Behrendt
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Franz
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Christoph Centner
- Department of Sport and Science, University of Freiburg, Freiburg, Germany
| | - Luke Hughes
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UK
| | - Stephen D Patterson
- Faculty of Sport, Technology and Health Science, St Mary's University, Twickenham, London, UK
| | - Johnny Owens
- Clinical Education Owens Recovery Science, San Antonio, TX, USA
| | - Michael Behringer
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt a. M., Germany
| | - Lutz Schega
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
6
|
Kuhn M, Clarenbach CF, Kläy A, Kohler M, Mayer LC, Lüchinger M, Andrist B, Radtke T, Haile SR, Sievi NA, Kohlbrenner D. Exploring immediate cardiorespiratory responses: low-intensity blood flow restricted cycling vs. moderate-intensity traditional exercise in a randomized crossover trial. BMC Sports Sci Med Rehabil 2024; 16:172. [PMID: 39148127 PMCID: PMC11325739 DOI: 10.1186/s13102-024-00951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE Blood-flow restriction (BFR) endurance training may increase endurance performance and muscle strength similar to traditional endurance training while requiring a lower training intensity. We aimed to compare acute cardiorespiratory responses to low-intensity interval exercise under BFR with moderate-intensity traditional interval exercise (TRA). METHODS We conducted a randomized crossover study. The protocol involved three cycling intervals interspersed with 1 min resting periods. With a 48-h washout period, individuals performed the protocol twice in random order: once as BFR-50 (i.e., 50% incremental peak power output [IPPO] and 50% limb occlusion pressure [LOP]) and once as TRA-65 (65% IPPO without occlusion). TRA-65 intervals lasted 2 min, and time-matched BFR-50 lasted 2 min and 18 s. Respiratory parameters were collected by breath-by-breath analysis. The ratings of perceived breathing and leg exertion (RPE, 0 to 10) were assessed. Linear mixed models were used for analysis. RESULTS Out of the 28 participants initially enrolled in the study, 24 healthy individuals (18 males and 6 females) completed both measurements. Compared with TRA-65, BFR-50 elicited lower minute ventilation (VE, primary outcome) (-3.1 l/min [-4.4 to -1.7]), oxygen consumption (-0.22 l/min [-0.28 to -0.16]), carbon dioxide production (-0.25 l/min [-0.29 to -0.20]) and RPE breathing (-0.9 [-1.2 to -0.6]). RPE leg was significantly greater in the BFR-50 group (1.3 [1.0 to 1.7]). CONCLUSION BFR endurance exercise at 50% IPPO and 50% LOP resulted in lower cardiorespiratory work and perceived breathing effort compared to TRA at 65% IPPO. BFR-50 could be an attractive alternative for TRA-65, eliciting less respiratory work and perceived breathing effort while augmenting perceived leg muscle effort. TRIAL REGISTRATION NCT05163600; December 20, 2021.
Collapse
Affiliation(s)
- Manuel Kuhn
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| | - Christian F Clarenbach
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Adrian Kläy
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Malcolm Kohler
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Laura C Mayer
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Martin Lüchinger
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Belinda Andrist
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Radtke
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Sarah R Haile
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Noriane A Sievi
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Dario Kohlbrenner
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
7
|
Şahin E, Ayaz T, Saglam M. Acute effects of blood flow restricted aerobic exercise in type 2 diabetes mellitus. Medicine (Baltimore) 2024; 103:e39031. [PMID: 39093729 PMCID: PMC11296424 DOI: 10.1097/md.0000000000039031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND This study aimed to compare the acute effects of aerobic exercise performed with blood flow restriction (BFR), a novel method to increase exercise gains, with blood free flow (BFF) conditions in type 2 diabetes mellitus (T2DM). METHODS Fifteen individuals with T2DM performed BFF and BFR (40% of arterial occlusion pressure) cycling exercises 48 hours apart, at equal intensity (45% heart rate reserve) and duration (38 minutes). Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), blood glucose, heart rate, and muscle oxygen saturation (SmO2) were assessed before-after and during exercise sessions. RESULTS SBP, DBP, and MAP in the overload phase were higher in the BFR group than in the BFF group (P = .009, 0.031, and 0.013, respectively). Changes in blood pressure (∆SBP and ∆DBP) were similar between the BFF and BFR groups (P > .05), whereas ∆MAP differed (P = .016). Changes in blood glucose levels and heart rates were not significantly different between the groups. Although SmO2baseline was lower in the BFR group (P = .049), SmO2min and SmO2max did not differ significantly between the BFF and BFR groups. CONCLUSION The similar decrease in blood glucose levels between the groups suggests that BFR exercise is favorable in terms of hypoglycemia. The higher blood pressure observed during the BFR exercise remained within safe limits. These results suggest that people with T2DM can safely perform BFR aerobic exercises; however, further studies are required.
Collapse
Affiliation(s)
- Elif Şahin
- Güneysu Physical Therapy and Rehabilitation College, Recep Tayyip Erdogan University, Rize, Turkey
| | - Teslime Ayaz
- Department of Internal Medicine, Faculty of Medicine, Bakircay University, Izmir, Turkey
| | - Melda Saglam
- Faculty Of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Cockfield BA, Wedig IJ, Vinckier AL, McDaniel J, Elmer SJ. Physiological and perceptual responses to acute arm cranking with blood flow restriction. Eur J Appl Physiol 2024; 124:1509-1521. [PMID: 38142449 DOI: 10.1007/s00421-023-05384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Lower-body aerobic exercise with blood flow restriction (BFR) offers a unique approach for stimulating improvements in muscular function and aerobic capacity. While there are more than 40 reports documenting acute and chronic responses to lower-body aerobic exercise with BFR, responses to upper-body aerobic exercise with BFR are not clearly established. PURPOSE We evaluated acute physiological and perceptual responses to arm cranking with and without BFR. METHODS Participants (N = 10) completed 4 arm cranking (6 × 2 min exercise, 1 min recovery) conditions: low-intensity at 40%VO2peak (LI), low-intensity at 40%VO2peak with BFR at 50% of arterial occlusion pressure (BFR50), low-intensity at 40%VO2peak with BFR at 70% of arterial occlusion pressure (BFR70), and high-intensity at 80%VO2peak (HI) while tissue oxygenation, cardiorespiratory, and perceptual responses were assessed. RESULTS During exercise, tissue saturation for BFR50 (54 ± 6%), BFR70 (55 ± 6%), and HI (54 ± 8%) decreased compared to LI (61 ± 5%, all P < 0.01) and changes in deoxyhemoglobin for BFR50 (11 ± 4), BFR70 (15 ± 6), and HI (16 ± 10) increased compared to LI (4 ± 2, all P < 0.01). During recovery intervals, tissue saturation for BFR50 and BFR70 decreased further and deoxyhemoglobin for BFR50 and BFR70 increased further (all P < 0.04). Heart rate for BFR70 and HI increased by 9 ± 9 and 50 ± 15b/min, respectively, compared to LI (both P < 0.02). BFR50 (8 ± 2, 1.0 ± 1.0) and BFR70 (10 ± 2, 2.1 ± 1.4) elicited greater arm-specific perceived exertion (6-20 scale) and pain (0-10 scale) compared to LI (7 ± 1, 0.2 ± 0.5, all P < 0.05) and pain for BFR70 did not differ from HI (1.7 ± 1.9). CONCLUSION Arm cranking with BFR decreased tissue saturation and increased deoxyhemoglobin without causing excessive cardiorespiratory strain and pain.
Collapse
Affiliation(s)
- Benjamin A Cockfield
- Department of Kinesiology and Integrative Physiology, College of Science and Arts, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA
- Department of Physical Therapy, Central Michigan University, Mount Pleasant, MI, USA
| | - Isaac J Wedig
- Department of Kinesiology and Integrative Physiology, College of Science and Arts, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, Houghton, MI, USA
- School of Health and Human Performance, Marquette, MI, USA
| | - Alyssa L Vinckier
- Department of Kinesiology and Integrative Physiology, College of Science and Arts, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA
- Department of Physical Therapy, Central Michigan University, Mount Pleasant, MI, USA
| | - John McDaniel
- Exercise Physiology Program, Kent State University, Kent, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Steven J Elmer
- Department of Kinesiology and Integrative Physiology, College of Science and Arts, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
9
|
de Queiros VS, Rolnick N, Sabag A, Wilde P, Peçanha T, Aniceto RR, Rocha RFC, Delgado DZ, de Araújo Tinôco Cabral BG, Dantas PMS. Effect of High-Intensity Interval Exercise versus Continuous Low-Intensity Aerobic Exercise with Blood Flow Restriction on Psychophysiological Responses: A Randomized Crossover Study. J Sports Sci Med 2024; 23:114-125. [PMID: 38455431 PMCID: PMC10915608 DOI: 10.52082/jssm.2024.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 03/09/2024]
Abstract
This study compared the effect of continuous low-intensity aerobic exercise with blood flow restriction (LI-AE-BFR) versus high-intensity interval exercise (HIIE), matching total external mechanical work between conditions, on perceptual (exertion, pain, affective and pleasure) and physiological responses (heart rate [HR], blood lactate [BL] and muscle fatigue). Ten healthy untrained men (25.6 ± 3.78 years old; 75.02 ± 12.02 kg; 172.2 ± 6.76 cm; 24.95 ± 3.16 kg/m²) completed three visits to the laboratory. In visit 1, anthropometry, blood pressure and peak running velocity on the treadmill were measured. In visits 2 and 3, participants were randomly assigned to HIIE or LI-AE-BFR, both in treadmill. HIIE consisted of 10 one-minute stimuli at 80% of peak running velocity interspersed with one-minute of passive recovery. LI-AE-BFR consisted of 20-minutes of continuous walking at 40% of peak running velocity with bilateral cuffs inflated to 50% of arterial occlusion pressure. BL and maximum isometric voluntary contraction (MIVC - fatigue measure) were measured pre- and immediately post-exercise. HR, rating of perceived exertion (RPE), and rating of perceived pain (RPP) were recorded after each stimulus in HIIE and every two minutes in LI-AE-BFR. Affective response to the session, pleasure, and future intention to exercise (FIE) were assessed 10 minutes after the intervention ended. Increases in BL concentrations were greater in HIIE (p = 0.028; r = 0.51). No effects time or condition were reported for MIVC. HR was higher in HIIE at all analyzed time points (p < 0.001; d = 3.1 to 5.2). RPE did not differ between conditions (p > 0.05), while average session RPP was higher in LI-AE-BFR (p = 0.036; r = 0.46). Affective positive response (p = 0.019; d = 0.9) and FIE (p = 0.013; d = 0.97) were significantly higher in HIIE. Therefore, HIIE elicited higher physiological stress, positive affective response, and intention to engage in future exercise bouts compared to LI-AE-BFR.
Collapse
Affiliation(s)
- Victor S de Queiros
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil
| | - Nicholas Rolnick
- The Human Performance Mechanic, CUNY Lehman College, New York, USA
| | - Angelo Sabag
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Phelipe Wilde
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil
| | - Thiago Peçanha
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Rodrigo Ramalho Aniceto
- Study and Research Group in Biomechanics and Psychophysiology of Exercise, Federal Institute of Education, Science and Technology of Rio Grande do Norte, Currais Novos-RN, Brazil
| | | | - Douglas Z Delgado
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil
| | | | - Paulo Moreira Silva Dantas
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil
| |
Collapse
|
10
|
Mckee JR, Girard O, Peiffer JJ, Scott BR. Manipulating Internal and External Loads During Repeated Cycling Sprints: A Comparison of Continuous and Intermittent Blood Flow Restriction. J Strength Cond Res 2024; 38:47-54. [PMID: 37889856 DOI: 10.1519/jsc.0000000000004594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
ABSTRACT Mckee, JR, Girard, O, Peiffer, JJ, and Scott, BR. Manipulating internal and external loads during repeated cycling sprints: A comparison of continuous and intermittent blood flow restriction. J Strength Cond Res 38(1): 47-54, 2024-This study examined the impact of blood flow restriction (BFR) application method (continuous vs. intermittent) during repeated-sprint exercise (RSE) on performance, physiological, and perceptual responses. Twelve adult male semi-professional Australian football players completed 4 RSE sessions (3 × [5 × 5-second maximal sprints:25-second passive recovery], 3-minute rest between the sets) with BFR applied continuously (C-BFR; excluding interset rest periods), intermittently during only sprints (I-BFR WORK ), or intraset rest periods (I-BFR REST ) or not at all (Non-BFR). An alpha level of p < 0.05 was used to determine significance. Mean power output was greater for Non-BFR ( p < 0.001, dz = 1.58 ), I-BFR WORK ( p = 0.002, dz = 0.63 ), and I-BFR REST ( p = 0.003, dz = 0.69 ) than for C-BFR and for Non-BFR ( p = 0.043, dz = 0.55 ) compared with I-BFR REST . Blood lactate concentration ( p = 0.166) did not differ between the conditions. Mean oxygen consumption was higher during Non-BFR ( p < 0.001, dz = 1.29 and 2.31; respectively) and I-BFR WORK ( p < 0.001, dz = 0.74 and 1.63; respectively) than during I-BFR REST and C-BFR and for I-BFR REST ( p = 0.002, dz = 0.57) compared with C-BFR. Ratings of perceived exertion were greater for I-BFR REST ( p = 0.042, dz = 0.51) and C-BFR ( p = 0.011, dz = 0.90) than for Non-BFR and during C-BFR ( p = 0.023, dz = 0.54) compared with I-BFR WORK . Applying C-BFR or I-BFR REST reduced mechanical output and cardiorespiratory demands of RSE and were perceived as more difficult. Practitioners should be aware that BFR application method influences internal and external demands during RSE.
Collapse
Affiliation(s)
- James R Mckee
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, Australia
- Centre for Healthy Ageing, Murdoch University, Perth, Australia; and
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Jeremiah J Peiffer
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, Australia
- Centre for Healthy Ageing, Murdoch University, Perth, Australia; and
| | - Brendan R Scott
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, Australia
- Centre for Healthy Ageing, Murdoch University, Perth, Australia; and
| |
Collapse
|
11
|
Uematsu A, Mizushima Y, Ishizaka H, Hortobágyi T, Mizushima T, Toyoda S, Nakajima T. Blood flow restriction reduces the increases in cardiorespiratory responses and subjective burden without inhibiting muscular activity during cycling at ventilatory threshold in healthy males. PLoS One 2023; 18:e0294524. [PMID: 38064463 PMCID: PMC10707540 DOI: 10.1371/journal.pone.0294524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Low-intensity endurance exercise with blood flow restriction (KAATSU) is under consideration for use in cardiac rehabilitation. However, the physiological responses to such exercise have not yet been fully characterized. In an initial effort in healthy males (n = 11, age: 26.3±4.6 y), we compared the physiological responses to low-intensity endurance exercise with and without a thigh KAATSU. Participants performed maximal graded exercise testing using a cycle ergometer with or without KAATSU. We examined responses to cycling exercise at ventilatory threshold (VT) in heart rate (HR), oxygen consumption (VO2), dyspnea, ratings of perceived exertion (RPE), blood pressure (BP), and rectus femoris activation. Participants reached VT at a lower mechanical load, HR, VO2, dyspnea, and double product (HR×systolic BP) with KAATSU vs. no-KAATSU. At VT, RPE, and rectus femoris activity did not differ between the two conditions. These results suggest that KAATSU reduced exercise intensity to reach VT and the physiological responses to exercise at VT without changes in knee extensor muscle activation. Results from this pilot study in healthy males suggest that KAATSU aerobic exercise at VT intensity has the potential to be an effective and low-burden adjuvant to cycling in cardiac rehabilitation.
Collapse
Affiliation(s)
- Azusa Uematsu
- Faculty of Sociology, Otemon Gakuin University, Nishiai, Ibaraki, Osaka, Japan
| | - Yuta Mizushima
- Department of Rehabilitation, School of Medicine, Dokkyo Medical University, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
| | - Hayato Ishizaka
- Department of Rehabilitation, School of Medicine, Dokkyo Medical University, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
| | - Tibor Hortobágyi
- Department of Kinesiology, Hungarian University of Sports Science, Alkotás utca, Budapest, Hungary
- Institute of Sport Sciences and Physical Education, University of Pécs, Ifjúság úutja, Pécs, Hungary
- Somogy Country Kaposi Mór Teaching Hospital, Tallián Gyula utca, Kaposvár, Hungary
- Center for Human Movement Sciences, University of Groningen, A. Deusinglaan, Groningen, The Netherlands
| | - Takashi Mizushima
- Department of Rehabilitation, School of Medicine, Dokkyo Medical University, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
- Department of Medical KAATSU Training, Dokkyo Medical University, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
| |
Collapse
|
12
|
Yamada Y, Kataoka R, Bell ZW, Wong V, Spitz RW, Song JS, Abe T, Loenneke JP. Improved interference control after exercise with blood flow restriction and cooling is associated with but not mediated by increased lactate. Physiol Behav 2023; 270:114291. [PMID: 37442356 DOI: 10.1016/j.physbeh.2023.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/27/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND To evaluate the effects of recumbent sprint interval exercise with and without blood flow restriction and body cooling on interference control and whether the changes in interference control can be explained by the changes in blood lactate. METHODS 85 participants (22 SD 3 years old) completed 1 familiarization visit and then 5 experimental visits in a randomized order: exercise only (Ex), exercise with blood flow restriction (ExB), exercise with cooling (ExC), and exercise with blood flow restriction and cooling (ExBC), and non-exercise control (Con). Measurements of blood lactate and the Stroop Color Word Test were performed before and after exercise. Each bout began with a 15-minute low-moderate intensity warm-up, followed by five 20-second "all out" sprints separated by 40 s of active recovery. Bayes Factors (BF10) quantified evidence for or against the null hypothesis. Within-subject mediation analysis quantified the indirect effect of changes in blood lactate (mediator) on the change in interference control (each exercise condition vs. Con). RESULTS Bayesian pairwise comparisons found that only ExC [σ: -0.37 (-0.59, -0.15)] and ExBC [σ: -0.3 (-0.53, -0.09)] produced changes in incongruent reaction time different from that of Con. There was also evidence that all exercise conditions increased blood lactate (BF10 = 8.65e+29 - 1.9e+32) and improved congruent reaction time (BF10 = 4.01 - 15.371) compared to that of Con. There was no evidence to show that changes in lactate mediated the change in incongruent reaction time. CONCLUSIONS Both exercise with body cooling and when body cooling was combined with blood flow restriction presented favorable changes in incongruent reaction time (a marker of interference control), which might not be explained by the changes in systemic blood lactate concentration.
Collapse
Affiliation(s)
- Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, United States of America
| | - Ryo Kataoka
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, United States of America
| | - Zachary W Bell
- Department of Kinesiology and Physical Education. Exercise Metabolism and Nutrition Research Laboratory, McGill University, Montreal, Oquebec H3A 0G4, Canada
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, United States of America
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, United States of America
| | - Jun Seob Song
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, United States of America
| | - Takashi Abe
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba 270-1360, Japan
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, United States of America.
| |
Collapse
|
13
|
Smith NDW, Abbiss CR, Girard O, Scott BR, Peiffer JJ. Blood-Flow Restriction Is Associated With More Even Pacing During High-Intensity Cycling. Int J Sports Physiol Perform 2023; 18:667-673. [PMID: 37130589 DOI: 10.1123/ijspp.2022-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/26/2023] [Accepted: 03/13/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE This study examined the influence of blood-flow restriction (BFR) on the distribution of pace, physiological demands, and perceptual responses during self-paced cycling. METHODS On separate days, 12 endurance cyclists/triathletes were instructed to produce the greatest average power output during 8-minute self-paced cycling trials with BFR (60% arterial occlusion pressure) or without restriction (CON). Power output and cardiorespiratory variables were measured continuously. Perceived exertion, muscular discomfort, and cuff pain were recorded every 2 minutes. RESULTS Linear regression analysis of the power output slope was statistically significant (ie, deviated from the intercept) for CON (2.7 [3.2] W·30 s-1; P = .009) but not for BFR (-0.1 [3.1] W·30 s-1; P = .952). Absolute power output was ∼24% (12%) lower at all time points (P < .001) during BFR compared with CON. Oxygen consumption (18% [12%]; P < .001), heart rate (7% [9%]; P < .001), and perceived exertion (8% [21%]; P = .008) were reduced during BFR compared with CON, whereas muscular discomfort (25% [35%]; P = .003) was greater. Cuff pain was rated as "strong" (5.3 [1.8] au; 0-10 scale) for BFR. CONCLUSION Trained cyclists adopted a more even distribution of pace when BFR was applied compared with a negative distribution during CON. By presenting a unique combination of physiological and perceptual responses, BFR is a useful tool to understand how the distribution of pace is self-regulated.
Collapse
Affiliation(s)
- Nathan D W Smith
- Exercise Science, Centre for Healthy Ageing, Murdoch University, Perth, WA,Australia
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, WA,Australia
| | - Chris R Abbiss
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, WA,Australia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA,Australia
| | - Brendan R Scott
- Exercise Science, Centre for Healthy Ageing, Murdoch University, Perth, WA,Australia
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, WA,Australia
| | - Jeremiah J Peiffer
- Exercise Science, Centre for Healthy Ageing, Murdoch University, Perth, WA,Australia
| |
Collapse
|
14
|
Frechette ML, Scott BR, Vallence AM, Cook SB. Acute physiological responses to steady-state arm cycling ergometry with and without blood flow restriction. Eur J Appl Physiol 2023; 123:901-909. [PMID: 36580109 DOI: 10.1007/s00421-022-05118-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To compare heart rate (HR), oxygen consumption (VO2), blood lactate (BL), and ratings of perceived exertion (RPE) during arm cycling with and without a blood flow restriction (BFR). METHODS Twelve healthy males (age: 23.9 ± 3.75 years) completed four, randomized, 15-min arm cycling conditions: high-workload (HW: 60% maximal power output), low-workload (LW: 30% maximal power output), low-workload with BFR (LW-BFR), and BFR with no exercise (BFR-only). In the BFR conditions, cuff pressure to the proximal biceps brachii was set to 70% of occlusion pressure. HR, VO2, and RPE were recorded throughout the exercise, and BL was measured before, immediately after, and five minutes post-exercise. Within-subject repeated-measures ANOVA was used to evaluate condition-by-time interactions. RESULTS HW elicited the greatest responses in HR (91% of peak; 163.3 ± 15.8 bpm), VO2 (71% of peak; 24.0 ± 3.7 ml kg-1 min-1), BL (7.7 ± 2.5 mmol L-1), and RPE (14 ± 1.7) and was significantly different from the other conditions (p < 0.01). The LW and LW-BFR conditions did not differ from each other in HR, VO2, BL, and RPE mean of conditions: ~ 68%, 41%, 3.5 ± 1.6 mmol L-1, 10.4 ± 1.6, respectively; p > 0.05). During the BFR-only condition, HR increased from baseline by ~ 15% (on average) (p < 0.01) without any changes in VO2, BL, and RPE (p > 0.05). CONCLUSIONS HW arm cycling elicited the largest and most persistent physiological responses compared to LW arm cycling with and without a BFR. As such, practitioners who prescribe arm cycling for their clients should be advised to augment the demands of exercise via increases in exercise intensity (i.e., power output), rather than by adding BFR.
Collapse
Affiliation(s)
- Mikaela L Frechette
- Department of Kinesiology, University of New Hampshire, 124 Main Street, New Hampshire Hall, Durham, NH, 03824, USA
| | - Brendan R Scott
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, Australia
| | - Ann-Maree Vallence
- Discipline of Psychology, Murdoch University, Perth, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Summer B Cook
- Department of Kinesiology, University of New Hampshire, 124 Main Street, New Hampshire Hall, Durham, NH, 03824, USA.
| |
Collapse
|
15
|
Walden TP, Fairchild T, Girard O, Peiffer JJ, Jonson AM, Dempsey AR. BLOOD FLOW RESTRICTED WALKING ALTERS GAIT KINEMATICS. Eur J Sport Sci 2023:1-10. [PMID: 36946174 DOI: 10.1080/17461391.2023.2194274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
HIGHLIGHTS Applying blood flow restriction changes walking kinematics, causing an overall increase in anterior trunk flexion and knee flexion during stance while simultaneously reducing plantar-flexion angle at toe-off and ankle joint velocity.Applying blood flow restriction exacerbate exercise-related sensations of exertion and discomfort.Sample site does not influence the level of post-exercise blood lactate or markers of cell-membrane potential and damage.
Collapse
Affiliation(s)
- Thomas P Walden
- Centre for Healthy Ageing, Murdoch University, Perth, Australia
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Australia
| | - Timothy Fairchild
- Centre for Healthy Ageing, Murdoch University, Perth, Australia
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Australia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| | | | - Andrew M Jonson
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Australia
| | - Alasdair R Dempsey
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| |
Collapse
|
16
|
Held S, Rappelt L, Deutsch JP, Rein R, Wiedenmann T, Schiffer A, Bieder A, Staub I, Donath L. Low-intensity swimming with blood flow restriction over 5 weeks increases VO 2peak: A randomized controlled trial using Bayesian informative prior distribution. Eur J Sport Sci 2023:1-7. [PMID: 36780333 DOI: 10.1080/17461391.2023.2180671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Peak oxygen uptake (VO2peak) and speed at first (LT1, minimal lactate equivalent) and second lactate threshold (LT2 = LT1 +1.5 mmol·L-1) are crucial swimming performance surrogates. The present randomized controlled study investigated the effects of blood flow restriction (BFR) during low-intensity swimming (LiT) on VO2peak, LT1, and LT2. Eighteen male swimmers (22.7 ±3.0 yrs; 69.9 ±8.5 kg; 1.8 ±0.1 m) were either assigned to the BFR or control (noBFR) group. While BFR was applied during LiT, noBFR completed the identical LIT without BFR application. BFR of the upper limb was applied via customized pneumatic cuffs (75% of occlusion pressure: 135 ±10 mmHg; 8 cm cuff width). BFR training took place three times a week over 5 weeks (accumulated weekly net BFR training: 60 min·week-1; occlusion per session: 2-times 10 min·session-1) and was used exclusively at low intensities. VO2peak, LT1, and LT2 diagnostics were employed. Bayesian credible intervals revealed notable VO2peak improvements by +0.29 L·min-1 kg-1 (95% credible interval: -0.26 to +0.85 L·min-1 kg-1) when comparing BFR vs. noBFR. Speed at LT1 -0.01 m·s-1 (-0.04 to +0.02 m·s-1) and LT2 -0.01 m·s-1 (-0.03 to +0.02 m·s-1) did not change meaningfully when BFR was employed. Fifteen sessions of LIT swimming (macrocycle of 5 h over 5 weeks) with a weekly volume of 60 min with BFR application adds additional impact on VO2peak improvement compared to noBFR LIT swimming. Occasional BFR applications should be considered as a promising means to improve relevant performance surrogates in trained swimmers. HighlightsLow-intensity swimming with blood flow restricted (BFR) induced superior peak oxygen consumption adaptations compared to non-restricted swimming training over a 5-week lasting training periodBFR and non-BFR swimming training-induced similar adaptations regarding swimming speed at first and second lactate thresholdIn conclusion, BFR served as a feasible, promising and beneficial complementary training stimuli to traditional swimming training regarding oxygen consumption adaptations.
Collapse
Affiliation(s)
- Steffen Held
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany.,Department of Fitness and Health, IST University of Applied Sciences, Duesseldorf, Germany
| | - Ludwig Rappelt
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany.,Department of Movement and Training Science, University of Wuppertal, Wuppertal, Germany
| | - Jan-Philip Deutsch
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Robert Rein
- Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany
| | - Tim Wiedenmann
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Anton Schiffer
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Andreas Bieder
- Institute of Professional Sport Education and Sport Qualifications, German Sport University, Cologne, Germany
| | - Ilka Staub
- Institute of Professional Sport Education and Sport Qualifications, German Sport University, Cologne, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
17
|
Held S, Rappelt L, Wiedenmann T, Deutsch JP, Röttgen J, Donath L. Blood Flow Restricted Cycling Impairs Subsequent Jumping But Not Balance Performance Slightly More Than Non-Restricted Cycling: An Acute Randomized Controlled Cross-Over Trial. J Sports Sci Med 2023; 22:44-50. [PMID: 36876181 PMCID: PMC9982535 DOI: 10.52082/jssm.2023.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023]
Abstract
Chronic blood flow restriction (BFR) training has been shown to improve drop jumping (DJ) and balance performance. However, the acute effects of low intensity BFR cycling on DJ and balance indices have not yet been examined. 28 healthy young adults (9 female; 21.8 ± 2.7years; 1.79 ± 0.08m; 73.9 ± 9.5kg) performed DJ and balance testing before and immediately after 20min low intensity cycling (40% of power at maximal oxygen uptake) with (BFR) and without BFR (noBFR). For DJ related parameters, no significant mode × time interactions were found (p ≥ 0.221, ηp 2 ≤ 0.06). Large time effects for DJ heights and the reactive strength index were observed (p < 0.001, ηp 2 ≥ 0.42). Pairwise comparison revealed notably lower values for both DJ jumping height and reactive strength index at post compared to pre (BFR: -7.4 ± 9.4%, noBFR: -4.2 ± 7.4%). No statistically significant mode × time interactions (p ≥ 0.36; ηp 2 ≤ 0.01) have been observed for balance testing. Low intensity cycling with BFR results in increased (p ≤ 0.01; SMD ≥ 0.72) mean heart rate (+14 ± 8bpm), maximal heart rate (+16 ± 12 bpm), lactate (+0.7 ± 1.2 mmol/L), perceived training intensity (+2.5 ± 1.6au) and pain scores (+4.9 ± 2.2au) compared to noBFR. BFR cycling induced acutely impaired DJ performance, but balance performance was not affected, compared to noBFR cycling. Heart rate, lactate, perceived training intensity, and pain scores were increased during BFR cycling.
Collapse
Affiliation(s)
- Steffen Held
- Intervention Research in Exercise Training, German Sports University Cologne, Germany
| | - Ludwig Rappelt
- Intervention Research in Exercise Training, German Sports University Cologne, Germany
| | - Tim Wiedenmann
- Intervention Research in Exercise Training, German Sports University Cologne, Germany
| | - Jan-Phillip Deutsch
- Intervention Research in Exercise Training, German Sports University Cologne, Germany
| | - Julian Röttgen
- Intervention Research in Exercise Training, German Sports University Cologne, Germany
| | - Lars Donath
- Intervention Research in Exercise Training, German Sports University Cologne, Germany
| |
Collapse
|
18
|
Mckee JR, Girard O, Peiffer JJ, Scott BR. Repeated-Sprint Training With Blood Flow Restriction: A Novel Approach to Improve Repeated-Sprint Ability? Strength Cond J 2023. [DOI: 10.1519/ssc.0000000000000771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Smith NDW, Scott BR, Girard O, Peiffer JJ. Aerobic Training With Blood Flow Restriction for Endurance Athletes: Potential Benefits and Considerations of Implementation. J Strength Cond Res 2022; 36:3541-3550. [PMID: 34175880 DOI: 10.1519/jsc.0000000000004079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Smith, NDW, Scott, BR, Girard, O, and Peiffer, JJ. Aerobic training with blood flow restriction for endurance athletes: potential benefits and considerations of implementation. J Strength Cond Res 36(12): 3541-3550, 2022-Low-intensity aerobic training with blood flow restriction (BFR) can improve maximal oxygen uptake, delay the onset of blood lactate accumulation, and may provide marginal benefits to economy of motion in untrained individuals. Such a training modality could also improve these physiological attributes in well-trained athletes. Indeed, aerobic BFR training could be beneficial for those recovering from injury, those who have limited time for training a specific physiological capacity, or as an adjunct training stimulus to provide variation in a program. However, similarly to endurance training without BFR, using aerobic BFR training to elicit physiological adaptations in endurance athletes will require additional considerations compared with nonendurance athletes. The objective of this narrative review is to discuss the acute and chronic aspects of aerobic BFR exercise for well-trained endurance athletes and highlight considerations for its effective implementation. This review first highlights key physiological capacities of endurance performance. The acute and chronic responses to aerobic BFR exercise and their impact on performance are then discussed. Finally, considerations for prescribing and monitoring aerobic BFR exercise in trained endurance populations are addressed to challenge current views on how BFR exercise is implemented.
Collapse
Affiliation(s)
- Nathan D W Smith
- Exercise Science, Murdoch University, Perth, Western Australia.,Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, Western Australia
| | - Brendan R Scott
- Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, Western Australia.,Center for Healthy Ageing, Murdoch University, Perth, Western Australia ; and
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia
| | - Jeremiah J Peiffer
- Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, Western Australia.,Center for Healthy Ageing, Murdoch University, Perth, Western Australia ; and
| |
Collapse
|
20
|
Smith NDW, Girard O, Scott BR, Peiffer JJ. Blood flow restriction during self-paced aerobic intervals reduces mechanical and cardiovascular demands without modifying neuromuscular fatigue. Eur J Sport Sci 2022; 23:755-765. [PMID: 35400303 DOI: 10.1080/17461391.2022.2062056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study examined cardiovascular, perceptual, and neuromuscular fatigue characteristics during and after cycling intervals with and without blood flow restriction (BFR). Fourteen endurance cyclists/triathletes completed four 4-minute self-paced aerobic cycling intervals at the highest sustainable intensity, with and without intermittent BFR (60% of arterial occlusion pressure). Rest interval durations were six, four, and four minutes respectively. Power output, cardiovascular demands, and ratings of perceived exertion (RPE) were averaged over each interval. Knee extension torque and vastus lateralis electromyography responses following electrical stimulation of the femoral nerve were recorded pre-exercise, post-interval one (+1, 2, and 4-minutes) and post-interval four (+1, 2, 4, 6 and 8-minutes). Power output during BFR intervals was lower than non-BFR (233 ± 54 vs 282 ± 60W, p < 0.001). Oxygen uptake and heart rate during BFR intervals were lower compared to non-BFR (38.7 ± 4.5 vs 44.7 ± 6.44mL·kg-1·min-1, p < 0.001; 160 ± 14 vs 166 ± 10bpm, p < 0.001), while RPE was not different between conditions. Compared to pre-exercise, maximal voluntary contraction torque and peak twitch torque were reduced after the first interval with further reductions following the fourth interval (p < 0.001) independent of condition (p = 0.992). Voluntary activation (twitch interpolation) did not change between timepoints (p = 0.375). Overall, intermittent BFR reduced the mechanical and cardiovascular demands of self-paced intervals without modifying RPE or knee-extensor neuromuscular characteristics. Therefore, BFR reduced the cardiovascular demands while maintaining the muscular demands associated with self-paced intervals. Self-paced BFR intervals could be used to prevent cardiovascular and perceptual demands being the limiting factor of exercise intensity, thus allowing greater physiological muscular demands compared to intervals without BFR.
Collapse
Affiliation(s)
- Nathan D W Smith
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, Western Australia.,Centre for Healthy Ageing, Murdoch University, Perth, Western Australia
| | - Olivier Girard
- Exercise and Sport Science Department, School of Human Sciences, The University of Western Australia, Perth, Western Australia
| | - Brendan R Scott
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, Western Australia.,Centre for Healthy Ageing, Murdoch University, Perth, Western Australia
| | - Jeremiah J Peiffer
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, Western Australia.,Centre for Healthy Ageing, Murdoch University, Perth, Western Australia
| |
Collapse
|
21
|
Walden TP, Girard O, Scott BR, Jonson AM, Peiffer JJ. Does the application of blood flow restriction during walking exercise influence the accuracy of indirect calorimetry? J Sci Med Sport 2022; 25:673-677. [DOI: 10.1016/j.jsams.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/25/2022]
|
22
|
Silva JCG, Freitas EDS, Aniceto RR, Silva KF, Araújo JP, Bembem MG, Batista GR, Sousa MSC. Aerobic exercise with blood flow restriction: energy expenditure, excess post-exercise oxygen consumption, and respiratory exchange ratio. Clin Physiol Funct Imaging 2022; 42:241-249. [PMID: 35357762 DOI: 10.1111/cpf.12753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
Abstract
We compared the effects of aerobic exercise with and without blood flow restriction (BFR) to high-intensity aerobic exercise on energy expenditure (EE), excess post-exercise oxygen consumption (EPOC), and respiratory exchange ratio (RER) during and after exercise. Twenty-two recreationally active males randomly completed the following experimental conditions: AE - aerobic exercise without BFR, AE+BFR - aerobic exercise with BFR, HIAE - high-intensity aerobic exercise, CON - non-exercise control condition. EE was significantly (p<0.05) greater during exercise for HIAE compared to all conditions, and for AE+BFR compared to AE and CON during and post-exercise exercise. There were no significant (p>0.05) differences in EPOC between HIAE and AE+BFR at any time point, however, both conditions were significantly (p < 0.05) greater than the AE (d = 1.50 and d = 1.03, respectively) and CON at the first 10 minutes post-exercise. RER during exercise for HIAE was significantly (p<0.05) greater than AE+BFR at the first 6 minutes of exercise (p = 0.003, d = 0.88), however, no significant differences were observed from 9 min up to the end of the exercise. HIAE was also significantly (p<0.05) greater than AE and CON at all time points during exercise, whereas, AE+BFR was significantly (p<0.05) greater than CON at all time points but not significantly (p < 0.05) different than AE (p<0.05); although the overall session RER was significantly (p<0.05) greater during AE+BFR than AE. Altogether, continuous AE+BFR results in greater EE compared to volume matched AE, as well as a similar EPOC compared to HIAE. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Julio C G Silva
- Department of Physical Education, Associate Graduate Program in physical Education UPE-UFPB, João Pessoa, PB, Brazil.,Department of Physical Education, Professional Master's in Family Health, Nursing and Medical Schools, Nova Esperança (FAMENE/FACENE), João Pessoa, PB, Brazil.,Department of Physical Education, Center for higher education and Development (CESED/UNIFACISA/FCM/ESAC), Campina Grande, PB, Brazil
| | | | - Rodrigo R Aniceto
- Study and Research Group in Biomechanics and Psychophysiology of Exercise, Department of Physical Education and Sport, Federal Institute of Education, Science and Technology of Rio Grande do Norte, Currais Novos-RN, Brazil
| | - Kalinne F Silva
- Department of Physical Education, Associate Graduate Program in physical Education UPE-UFPB, João Pessoa, PB, Brazil
| | - Joamira P Araújo
- Department of Physical Education, Associate Graduate Program in physical Education UPE-UFPB, João Pessoa, PB, Brazil
| | - Michael G Bembem
- Neuromuscular Laboratory, Department of health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Gilmário R Batista
- Department of Physical Education, Associate Graduate Program in physical Education UPE-UFPB, João Pessoa, PB, Brazil
| | - Maria S C Sousa
- Department of Physical Education, Associate Graduate Program in physical Education UPE-UFPB, João Pessoa, PB, Brazil
| |
Collapse
|
23
|
Hughes L, Hackney KJ, Patterson SD. Optimization of Exercise Countermeasures to Spaceflight Using Blood Flow Restriction. Aerosp Med Hum Perform 2022; 93:32-45. [PMID: 35063054 DOI: 10.3357/amhp.5855.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION: During spaceflight missions, astronauts work in an extreme environment with several hazards to physical health and performance. Exposure to microgravity results in remarkable deconditioning of several physiological systems, leading to impaired physical condition and human performance, posing a major risk to overall mission success and crew safety. Physical exercise is the cornerstone of strategies to mitigate physical deconditioning during spaceflight. Decades of research have enabled development of more optimal exercise strategies and equipment onboard the International Space Station. However, the effects of microgravity cannot be completely ameliorated with current exercise countermeasures. Moreover, future spaceflight missions deeper into space require a new generation of spacecraft, which will place yet more constraints on the use of exercise by limiting the amount, size, and weight of exercise equipment and the time available for exercise. Space agencies are exploring ways to optimize exercise countermeasures for spaceflight, specifically exercise strategies that are more efficient, require less equipment, and are less time-consuming. Blood flow restriction exercise is a low intensity exercise strategy that requires minimal equipment and can elicit positive training benefits across multiple physiological systems. This method of exercise training has potential as a strategy to optimize exercise countermeasures during spaceflight and reconditioning in terrestrial and partial gravity environments. The possible applications of blood flow restriction exercise during spaceflight are discussed herein.Hughes L, Hackney KJ, Patterson SD. Optimization of exercise countermeasures to spaceflight using blood flow restriction. Aerosp Med Hum Perform. 2021; 93(1):32-45.
Collapse
|
24
|
Self-Paced Cycling at the Highest Sustainable Intensity With Blood Flow Restriction Reduces External but Not Internal Training Loads. Int J Sports Physiol Perform 2022; 17:1272-1279. [DOI: 10.1123/ijspp.2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
Purpose: This study compared training loads and internal:external load ratios from an aerobic interval session at the highest perceptually sustainable intensity with and without blood flow restriction (BFR). Methods: On separate days, 14 endurance cyclists/triathletes completed four 4-minute self-paced aerobic cycling intervals at their highest sustainable intensity, with and without BFR (60% of arterial occlusion pressure). Internal training load was quantified using 3 training impulses (TRIMP; Banister, Lucia, and Edwards) and sessional ratings of perceived exertion. External load was assessed using total work done (TWD). Training load ratios between all internal loads were calculated relative to TWD. Results: Lucia TRIMP was lower for the BFR compared with non-BFR session (49 [9] vs 53 [8] arbitrary units [au], P = .020, dz = −0.71). No between-conditions differences were observed for Banister TRIMP (P = .068), Edwards TRIMP (P = .072), and training load in sessional ratings of perceived exertion (P = .134). The TWD was lower for the BFR compared with non-BFR session (223 [52] vs 271 [58] kJ, P < .001, dz = −1.27). Ratios were greater for the BFR session compared with non-BFR for Lucia TRIMP:TWD (0.229 [0.056] vs 0.206 [0.056] au, P < .001, dz = 1.21), Edwards TRIMP:TWD (0.396 [0.105] vs 0.370 [0.088] au, P = .031, dz = 0.66), and training load in sessional ratings of perceived exertion:TWD (1.000 [0.266] vs 0.890 [0.275] au, P = .044, dz = 0.60), but not Banister TRIMP:TWD (P = .306). Conclusions: Practitioners should consider both internal and external loads when monitoring BFR exercise to ensure the demands are appropriately captured. These BFR-induced changes were reflected by the Lucia TRIMP:TWD and Edwards TRIMP:TWD ratio, which could be used to monitor aerobic BFR training loads. The Lucia TRIMP:TWD ratio likely represents BFR-induced changes more appropriately compared with ratios involving either Edwards or Banister TRIMP.
Collapse
|
25
|
Acute physiological and perceptual responses to moderate intensity cycling with different levels of blood flow restriction. Biol Sport 2021; 38:437-443. [PMID: 34475624 PMCID: PMC8329982 DOI: 10.5114/biolsport.2021.100146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to compare: i) the physiological and perceptual responses of low-load exercise [(moderate intensity exercise (MI)] with different levels of blood flow restriction (BFR), and ii) MI with BFR on the bike with high intensity (HI) exercise without BFR. The protocol involved large muscle mass exercise at different levels of BFR, and this differentiates our study from others. Twenty-one moderately trained males (age: 24.6 ± 2.4 years; VO2peak: 47.2 ± 7.0 ml.kg-1.min-1, mean ± sd) performed one maximal graded exercise test and seven 5-min constant-load cycling bouts. Six bouts were at MI [40% peak power (Ppeak), 60%VO2peak], one without BFR and five with different levels of BFR (40%, 50%, 60%, 70%, 80% of estimated arterial occlusion pressure). The HI bout (70%Ppeak, 90%VO2peak) was without BFR. Oxygen uptake (VO2), heart rate (HR), blood lactate (BLa), rate of perceived exertion (RPE), and tissue oxygen saturation (TSI) were recorded. Regardless of pressure, HR, BLa and RPE during MI-BFR were higher compared to MI (p < 0.05, ES: moderate to very large), and TSI reduction was greater in MI-BFR than MI (p < 0.05, ES: moderate to large). The responses of VO2, HR, BLa, RPE and TSI induced by the different levels of BFR in MI-BFR were similar. Regardless of pressure, the responses of VO2, HR, BLa and RPE induced by MI-BFR were lower than HI (p < 0.05), except for TSI. TSI change was similar between MI-BFR and HI. It appears that BFR equal to 40% of arterial occlusion pressure is sufficient to reduce TSI when exercising with a large muscle mass.
Collapse
|
26
|
Salzmann K, Sanchez AMJ, Borrani F. Effects of Blood Flow Restriction on O 2 Muscle Extraction and O 2 Pulmonary Uptake Kinetics During Heavy Exercise. Front Physiol 2021; 12:722848. [PMID: 34539445 PMCID: PMC8441002 DOI: 10.3389/fphys.2021.722848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to determine the effects of three levels of blood flow restriction (BFR) onV ˙ O 2 and O 2 extraction kinetics during heavy cycling exercise transitions. Twelve healthy trained males completed two bouts of 10 min heavy intensity exercise without BFR (CON), with 40% or 50% BFR (BFR40 and BFR50, respectively).V ˙ O 2 and tissue saturation index (TSI) were continuously measured and modelled using multiexponential functions. The time constant of theV ˙ O 2 primary phase was significantly slowed in BFR40 (26.4 ± 2.0s; p < 0.001) and BFR50 (27.1 ± 2.1s; p = 0.001) compared to CON (19.0 ± 1.1s). The amplitude of theV ˙ O 2 slow component was significantly increased (p < 0.001) with BFR in a pressure-dependent manner 3.6 ± 0.7, 6.7 ± 0.9 and 9.7 ± 1.0 ml·min-1·kg-1 for CON, BFR40, and BFR50, respectively. While no acceleration of the primary component of the TSI kinetics was observed, there was an increase (p < 0.001) of the phase 3 amplitude with BFR (CON -0.8 ± 0.3% VS BFR40 -2.9 ± 0.9%, CON VS BFR50 -2.8 ± 0.8%). It may be speculated that BFR applied during cycling exercise in the heavy intensity domain shifted the working muscles to an O 2 dependent situation. The acceleration of the extraction kinetics could have reached a plateau, hence not permitting compensation for the slowdown of the blood flow kinetics, and slowingV ˙ O 2 kinetics.
Collapse
Affiliation(s)
- Killian Salzmann
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| | - Anthony M. J. Sanchez
- University of Perpignan Via Domitia (UPVD), Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement De Montagne (LIPSEM), Font-Romeu, France
| | - Fabio Borrani
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Yamada Y, Song JS, Bell ZW, Wong V, Spitz RW, Abe T, Loenneke JP. Effects of isometric handgrip exercise with or without blood flow restriction on interference control and feelings. Clin Physiol Funct Imaging 2021; 41:480-487. [PMID: 34392595 DOI: 10.1111/cpf.12723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to investigate whether isometric handgrip exercise, with or without blood flow restriction, would alter interference control and feelings. 60 healthy young adults completed three experimental visits, consisting of four sets of 2 min isometric handgrip exercise, at 30% of maximal strength with or without blood flow restriction (50% of arterial occlusion pressure), or a non-exercise/time-matched control. Exercise-induced feeling inventory and Stroop Color Word Test were performed at pre- and ~10-min post-exercise, respectively. Bayes factors (BF10 ) quantified the evidence for or against the null. There were no changes or differences between conditions for interference control following exercise with or without blood flow restriction (Incongruent BF10 : 0.155; Stroop Interference BF10 : 0.082). There were also no differences in the error rate as well as no differences between conditions for changes in 'positivity' or 'revitalization'. Feelings of 'tranquility' were reduced relative to a control following exercise with (median δ [95% credible interval]: -0.74 (-1.05, -0.45), BF10 : 5515.7) and without (median δ: -0.72 [-1.02, -0.41], BF10 : 571.3) blood flow restriction. These changes were not different between exercise conditions. Feelings of 'physical exhaustion' were increased relative to a control following exercise without blood flow restriction (median δ: 0.35[0.09, 0.61], BF10 : 5.84). However, this increase was not different from the same exercise with blood flow restriction. These results suggest that 1) isometric handgrip exercise could be performed without impairing interference control, even when blood flow restriction is added, and that 2) changes in feelings occur independent of changes in interference control.
Collapse
Affiliation(s)
- Yujiro Yamada
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, Oxford, Mississippi, USA
| | - Jun Seob Song
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, Oxford, Mississippi, USA
| | - Zachary W Bell
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, Oxford, Mississippi, USA
| | - Vickie Wong
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, Oxford, Mississippi, USA
| | - Robert W Spitz
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, Oxford, Mississippi, USA
| | - Takashi Abe
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Jeremy P Loenneke
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, Oxford, Mississippi, USA
| |
Collapse
|
28
|
Cardiac autonomic response to aerobic exercise with different levels of blood flow restriction in pre-hypertensive men. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-020-00699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Yamada Y, Frith EM, Wong V, Spitz RW, Bell ZW, Chatakondi RN, Abe T, Loenneke JP. Acute exercise and cognition: A review with testable questions for future research into cognitive enhancement with blood flow restriction. Med Hypotheses 2021; 151:110586. [PMID: 33848917 DOI: 10.1016/j.mehy.2021.110586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/01/2022]
Abstract
Blood flow restriction, in combination with low load/intensity exercise, has consistently been shown to increase both muscle size and strength. In contrast, the effects of blood flow restricted exercise on cognition have not been well studied. Therefore, the purpose of this paper is 1) to review the currently available literature investigating the impact of blood flow restricted exercise on cognition and 2) to provide some hypotheses for how blood flow restriction might provide an additive stimulus for augmenting specific cognitive domains above exercise alone. Given the lack of research in this area, the effects of blood flow restricted exercise on cognition are still unclear. We hypothesize that blood flow restricted exercise could potentially enhance several cognitive domains (such as attention, executive functioning, and memory) through increases in lactate production, catecholamine concentration, and PGC-1α expression. We review work that suggests that blood flow restriction is not only a beneficial strategy to improve musculoskeletal function but could also be a favorable method for enhancing multiple domains of cognition. Nonetheless, it must be emphasized this is a hypothesis that currently has only minimal experimental support, and further investigations in the future are necessary to test the hypothesis.
Collapse
Affiliation(s)
- Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Emily M Frith
- Department of Psychology, Cognitive Neuroscience of Creativity Laboratory, Pennsylvania State University, PA 16801, USA
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Zachary W Bell
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Raksha N Chatakondi
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Takashi Abe
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
30
|
Cardiorespiratory, Metabolic and Perceived Responses to Electrical Stimulation of Upper-Body Muscles While Performing Arm Cycling. J Hum Kinet 2021; 77:117-123. [PMID: 34168697 PMCID: PMC8008305 DOI: 10.2478/hukin-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was designed to assess systemic cardio-respiratory, metabolic and perceived responses to incremental arm cycling with concurrent electrical myostimulation (EMS). Eleven participants (24 ± 3 yrs; 182 ± 10 cm; 86 ± 16.8 kg) performed two incremental tests involving arm cycling until volitional exhaustion was reached with and without EMS of upper-body muscles. The peak power output was 10.1% lower during arm cycling with (128 ± 30 W) than without EMS (141 ± 25 W, p = 0.01; d = 0.47). In addition, the heart rate (2-9%), oxygen uptake (7-15%), blood lactate concentration (8-46%) and ratings of perceived exertion (4-14%) while performing submaximal arm cycling with EMS were all higher with than without EMS (all p < 0.05). Upon exhaustion, the heart rate, oxygen uptake, lactate concentration, and ratings of perceived exertion did not differ between the two conditions (all p > 0.05). In conclusion, arm cycling with EMS induced more pronounced cardio-respiratory, metabolic and perceived responses, especially during submaximal arm cycling. This form of exercise with stimulation might be beneficial for a variety of athletes competing in sports involving considerable generation of work by the upper body (e.g., kayaking, cross-country skiing, swimming, rowing and various parasports).
Collapse
|
31
|
Spranger MD. Commentary: Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front Physiol 2020; 11:599592. [PMID: 33329051 PMCID: PMC7716798 DOI: 10.3389/fphys.2020.599592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Marty D Spranger
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
32
|
Munhoz SV, Ramis TR, dos Santos LP, Ribeiro JL. Comparison of cardiopulmonary exercise testing performed with blood flow restriction vs. a traditional maximum test on execution speed, ventilatory thresholds and maximum oxygen uptake. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Rolnick N, Schoenfeld BJ. Can Blood Flow Restriction Used During Aerobic Training Enhance Body Composition in Physique Athletes? Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Clarkson MJ, May AK, Warmington SA. Is there rationale for the cuff pressures prescribed for blood flow restriction exercise? A systematic review. Scand J Med Sci Sports 2020; 30:1318-1336. [PMID: 32279391 DOI: 10.1111/sms.13676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Blood flow restriction exercise has increasingly broad applications among healthy and clinical populations. Ensuring the technique is applied in a safe, controlled, and beneficial way for target populations is essential. Individualized cuff pressures are a favored method for achieving this. However, there remains marked inconsistency in how individualized cuff pressures are applied. OBJECTIVES To quantify the cuff pressures used in the broader blood flow restriction exercise literature, and determine whether there is clear justification for the choice of pressure prescribed. METHODS Studies were included in this review from database searches if they employed an experimental design using original data, involved either acute or chronic exercise using blood flow restriction, and they assessed limb or arterial occlusion pressure to determine an individualized cuff pressure. Methodologies of the studies were evaluated using a bespoke quality assessment tool. RESULTS Fifty-one studies met the inclusion criteria. Individualized cuff pressures ranged from 30% to 100% arterial occlusion pressure. Only 7 out of 52 studies attempted to justify the individualized cuff pressure applied during exercise. The mean quality rating for all studies was 11.1 ± 1.2 out of 13. CONCLUSIONS The broader blood flow restriction exercise literature uses markedly heterogeneous prescription variables despite using individualized cuff pressures. This is problematic in the absence of any clear justification for the individualized cuff pressures selected. Systematically measuring and reporting all relevant acute responses and training adaptations to the full spectrum of BFR pressures alongside increased clarity around the methodology used during blood flow restriction exercise is paramount.
Collapse
Affiliation(s)
- Matthew J Clarkson
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Vic., Australia
| | - Anthony K May
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Vic., Australia
| | - Stuart A Warmington
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Vic., Australia
| |
Collapse
|
35
|
Price KJ, Gordon BA, Bird SR, Benson AC. Acute cardiovascular responses to interval exercise: A systematic review and meta-analysis. J Sports Sci 2020; 38:970-984. [PMID: 32154760 DOI: 10.1080/02640414.2020.1737395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Interval exercise training is increasingly recommended to improve health and fitness; however, it is not known if cardiovascular risk is different from continuous exercise protocols. This systematic review with meta-analyses assessed the effect of a single bout of interval exercise on cardiovascular responses that indicate risk of cardiac fibrillation and infarction compared to continuous exercise. Electronic databases Medline, CINAHL, Embase, Scopus and Cochrane were searched. Key inclusion criteria were: (1) intervals of the same intensity and duration followed by a recovery period and (2) reporting at least one of blood pressure, heart rate variability, arterial stiffness or function. Cochrane Risk of Bias tool and GRADE approach were used. Meta-analyses found that systolic blood pressure responses to interval exercise did not differ from responses to continuous exercise immediately (MD 8 mmHg [95% CI -32, 47], p = 0.71) or at 60 min following exercise (MD 0 mmHg [95% CI -2, 1], p = 0.79). However, reductions in diastolic blood pressure and flow-mediated dilation with interval exercise were observed 10-15 min post-exercise. The available evidence indicates that interval exercise does not convey higher cardiovascular risk than continuous exercise. Further investigation is required to establish the safety of interval exercise for clinical populations.
Collapse
Affiliation(s)
- Kym Joanne Price
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Brett Ashley Gordon
- Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia
| | - Stephen Richard Bird
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Amanda Clare Benson
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Silva JCG, Pereira Neto EA, Pfeiffer PAS, Neto GR, Rodrigues AS, Bemben MG, Patterson SD, Batista GR, Cirilo-Sousa MS. Acute and Chronic Responses of Aerobic Exercise With Blood Flow Restriction: A Systematic Review. Front Physiol 2019; 10:1239. [PMID: 31636569 PMCID: PMC6787286 DOI: 10.3389/fphys.2019.01239] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/10/2019] [Indexed: 11/13/2022] Open
Abstract
This study systematically reviewed the available scientific evidence pertaining to the acute and chronic changes promoted by aerobic exercise (AE) combined with blood flow restriction (BFR) on neuromuscular, metabolic and hemodynamic variables. PubMed, Web of ScienceTM and Scopus databases were searched for the period from January 2000 to June 2019 and the analysis involved a critical content review. A total of 313 articles were identified, of which 271 were excluded and 35 satisfied the inclusion criteria. Twelve studies evaluated the acute effects and eight studies evaluated the chronic metabolic effects of AE + BFR. For the neuromuscular variables, three studies analyzed the acute effects of AE + BFR and nine studies analyzed the chronic effects. Only 15 studies were identified that evaluated the hemodynamic acute effects of AE + BFR. The analysis provided evidence that AE combined with BFR promotes positive acute and chronic changes in neuromuscular and metabolic variables, a greater elevation in hemodynamic variables than exercise alone, and a higher energy demand during and after exercise. Since these alterations were all well-tolerated, this method can be considered to be safe and feasible for populations of athletes, healthy young, obese, and elderly individuals.
Collapse
Affiliation(s)
- Júlio Cesar Gomes Silva
- Associate Graduate Program in Physical Education, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil.,Laboratory of Kinanthropometry and Human Performance, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil.,Faculty Nova Esperança (FAMENE/FACENE), Coordination of Physical Education, Nursing and Medical Schools, João Pessoa, Brazil.,Coordination of Physical Education, University Center for Higher Education and Development (CESED/UNIFACISA/FCM/ESAC), Campina Grande, Brazil
| | - Elísio Alves Pereira Neto
- Associate Graduate Program in Physical Education, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil.,Laboratory of Kinanthropometry and Human Performance, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil.,Alliance for Research in Exercise, Nutrition and Activity (ARENA), School of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Patrick Alan Souza Pfeiffer
- Associate Graduate Program in Physical Education, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil.,Laboratory of Kinanthropometry and Human Performance, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil
| | - Gabriel Rodrigues Neto
- Laboratory of Kinanthropometry and Human Performance, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil.,Faculty Nova Esperança (FAMENE/FACENE), Coordination of Physical Education, Nursing and Medical Schools, João Pessoa, Brazil.,Coordination of Physical Education, University Center for Higher Education and Development (CESED/UNIFACISA/FCM/ESAC), Campina Grande, Brazil
| | - Amanda Santos Rodrigues
- Laboratory of Kinanthropometry and Human Performance, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil
| | - Michael G Bemben
- Department of Health and Exercise Science, Norman, OK, United States
| | - Stephen D Patterson
- Faculty of Sport, Health and Applied Science, St Marys' University, London, United Kingdom
| | - Gilmário Ricarte Batista
- Associate Graduate Program in Physical Education, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil.,Laboratory of Kinanthropometry and Human Performance, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil
| | - Maria S Cirilo-Sousa
- Associate Graduate Program in Physical Education, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil.,Laboratory of Kinanthropometry and Human Performance, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
37
|
Chen YT, Hsieh YY, Ho JY, Lin JC. Effects of Running Exercise Combined With Blood Flow Restriction on Strength and Sprint Performance. J Strength Cond Res 2019; 35:3090-3096. [PMID: 31453935 DOI: 10.1519/jsc.0000000000003313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chen, YT, Hsieh, YY, Ho, JY, and Lin, JC. Effects of running exercise combined with blood flow restriction on strength and sprint performance. J Strength Cond Res XX(X): 000-000, 2019-We investigated muscle strength and sprint performance after combining running exercise (RE) with blood flow restriction (BFR). Twelve male sprinters received 2 experimental warm-ups: (a) RE (50% heart rate reserve, 2 minutes × 5 sets, 1-minute rest interval) with BFR (occlusion pressure: 1.3 × resting systolic blood pressure) warm-up, namely RE-BFR; and (b) RE without BFR warm-up, namely RE. Isokinetic strength or 60-m sprint performance was assessed after a 5-minute recovery from each experimental warm-up. All subjects completed 4 exercise trials in a counterbalanced order: (a) RE-BFR-strength; (b) RE-strength; (c) RE-BFR-sprint; and (d) RE-sprint. Muscle activation (during RE), blood lactate (BLa) (pre- and post-REs), heart rate (HR), and rating of perceived exertion (RPE) (pre- and post-REs and at a 5-minute recovery) were determined during each experimental warm-up. The isokinetic knee flexor strength and the hamstring-quadriceps (H:Q) ratio observed for the RE-BFR warm-up were significantly higher than those observed for the RE warm-up (p < 0.05). However, no differences (p > 0.05) in the isokinetic knee extensor strength and 60-m sprint performance were observed between the 2 warm-ups. Running exercise-BFR warm-up induced a higher level of vastus lateralis and biceps femoris muscle activation than did RE warm-up (p < 0.05). Furthermore, RE-BFR warm-up induced higher HR, RPE, and BLa values than did RE warm-up after RE and at a 5-minute recovery (p < 0.05). These results suggest that RE-BFR warm-up may augment physiological responses and improve the H:Q ratio and isokinetic knee flexor strength. Thus, RE-BFR warm-up may be considered a practical warm-up strategy for promoting muscle strength and reducing the risk of hamstring injury in male sprinters.
Collapse
Affiliation(s)
- Yun-Tsung Chen
- Department of Physical Education, Dongguan University of Technology, Guangdong, China
| | - Yao-Yi Hsieh
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| | - Jen-Yu Ho
- Department of Athletic Performance, National Taiwan Normal University, Taipei, Taiwan
| | - Jung-Charng Lin
- Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|