1
|
Stubhan S, Baptist AV, Körösy C, Narducci A, Moya Muñoz GG, Wendler N, Lak A, Sztucki M, Cordes T, Lipfert J. Determination of absolute intramolecular distances in proteins using anomalous X-ray scattering interferometry. NANOSCALE 2025; 17:3322-3330. [PMID: 39691975 PMCID: PMC11653172 DOI: 10.1039/d4nr03375b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024]
Abstract
Biomolecular structures are typically determined using frozen or crystalline samples. Measurement of intramolecular distances in solution can provide additional insights into conformational heterogeneity and dynamics of biological macromolecules and their complexes. The established molecular ruler techniques used for this (NMR, FRET, and EPR) are, however, limited in their dynamic range and require model assumptions to determine absolute distance or distance distributions. Here, we introduce anomalous X-ray scattering interferometry (AXSI) for intramolecular distance measurements in proteins, which are labeled at two sites with small gold nanoparticles of 0.7 nm radius. We apply AXSI to two different cysteine-variants of maltose binding protein in the presence and absence of its ligand maltose and find distances in quantitative agreement with single-molecule FRET experiments. Our study shows that AXSI enables determination of intramolecular distance distributions under virtually arbitrary solution conditions and we anticipate its broad use to characterize protein conformational ensembles and dynamics.
Collapse
Affiliation(s)
- Samuel Stubhan
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
| | - Anna V Baptist
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Caroline Körösy
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Gustavo Gabriel Moya Muñoz
- Physical and Synthetic Biology, Faculty of Biology, LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Nicolas Wendler
- Physical and Synthetic Biology, Faculty of Biology, LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Aidin Lak
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| | | | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
- Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
- Institute for Physics, Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany
| |
Collapse
|
2
|
Voicu SN, Mernea M, Moreau J, Carteret CE, Callewaert M, Chuburu F, Herman H, Hermenean A, Mihailescu DF, Stan MS. Unlocking the potential of biocompatible chitosan-hyaluronic acid nanogels labeled with fluorochromes: A promising step toward enhanced FRET bioimaging. Int J Biol Macromol 2024; 282:137063. [PMID: 39481720 DOI: 10.1016/j.ijbiomac.2024.137063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/21/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Chitosan is a natural polysaccharide widely used in medical formulations as nanoparticles due to their special properties. Our work aimed to assess the biocompatibility of chitosan-hyaluronic acid nanogels labeled with fluorochromes for use in biomedical applications, based on the FRET effect. The preparation method included the ionic gelation, grafting rhodamine or fluorescein isothiocyanate molecules onto the chitosan backbone. To assess the potential applications as fluorescence imaging tools of chitosan-fluorophores conjugates in diagnostics and therapies, SVEC4-10 cells (simian virus 40-transformed mouse microvascular endothelial cell line) and RAW264.7 murine macrophages were used within this study. Good biocompatibility was observed after 6 and 24 h of incubation with nanogels, with no increase in cell death or membrane damage for concentrations up to 120 μg/mL. Both types of fluorescent nanogels presented the tendency to agglomerate on the cell membrane's surface, and few cells were internalized, especially at the periphery of cells. Molecular dynamics simulations showed that distances between fluorophores fitted at values close to those calculated based on FRET experiments. These formulations can further incorporate gadolinium for better nanomedicine tools.
Collapse
Affiliation(s)
- Sorina N Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Bucharest, University of Bucharest, 050095 Bucharest, Romania.
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Bucharest, University of Bucharest, 050095 Bucharest, Romania.
| | - Juliette Moreau
- Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| | - Charles-Emmanuel Carteret
- Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| | - Maité Callewaert
- Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| | - Françoise Chuburu
- Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| | - Hildegard Herman
- "Aurel Ardelean" Institute of Life Sciences, "Vasile Goldiș" Western University of Arad, 310414 Arad, Romania
| | - Anca Hermenean
- Department of Biochemistry and Molecular Biology, Faculty of Bucharest, University of Bucharest, 050095 Bucharest, Romania; "Aurel Ardelean" Institute of Life Sciences, "Vasile Goldiș" Western University of Arad, 310414 Arad, Romania
| | - Dan F Mihailescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Bucharest, University of Bucharest, 050095 Bucharest, Romania; Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Psychiatric Hospital, 10 Șoseaua Berceni Str., 041914 Bucharest, Romania.
| | - Miruna S Stan
- Department of Biochemistry and Molecular Biology, Faculty of Bucharest, University of Bucharest, 050095 Bucharest, Romania; Research Institute of the University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
3
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
4
|
Evans R, Ramisetty S, Kulkarni P, Weninger K. Illuminating Intrinsically Disordered Proteins with Integrative Structural Biology. Biomolecules 2023; 13:124. [PMID: 36671509 PMCID: PMC9856150 DOI: 10.3390/biom13010124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Intense study of intrinsically disordered proteins (IDPs) did not begin in earnest until the late 1990s when a few groups, working independently, convinced the community that these 'weird' proteins could have important functions. Over the past two decades, it has become clear that IDPs play critical roles in a multitude of biological phenomena with prominent examples including coordination in signaling hubs, enabling gene regulation, and regulating ion channels, just to name a few. One contributing factor that delayed appreciation of IDP functional significance is the experimental difficulty in characterizing their dynamic conformations. The combined application of multiple methods, termed integrative structural biology, has emerged as an essential approach to understanding IDP phenomena. Here, we review some of the recent applications of the integrative structural biology philosophy to study IDPs.
Collapse
Affiliation(s)
- Rachel Evans
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Choosing the Probe for Single-Molecule Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms232314949. [PMID: 36499276 PMCID: PMC9735909 DOI: 10.3390/ijms232314949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Probe choice in single-molecule microscopy requires deeper evaluations than those adopted for less sensitive fluorescence microscopy studies. Indeed, fluorophore characteristics can alter or hide subtle phenomena observable at the single-molecule level, wasting the potential of the sophisticated instrumentation and algorithms developed for advanced single-molecule applications. There are different reasons for this, linked, e.g., to fluorophore aspecific interactions, brightness, photostability, blinking, and emission and excitation spectra. In particular, these spectra and the excitation source are interdependent, and the latter affects the autofluorescence of sample substrate, medium, and/or biological specimen. Here, we review these and other critical points for fluorophore selection in single-molecule microscopy. We also describe the possible kinds of fluorophores and the microscopy techniques based on single-molecule fluorescence. We explain the importance and impact of the various issues in fluorophore choice, and discuss how this can become more effective and decisive for increasingly demanding experiments in single- and multiple-color applications.
Collapse
|
6
|
Gordon JB, Hoffman MC, Troiano JM, Li M, Hazelbauer GL, Schlau-Cohen GS. Concerted Differential Changes of Helical Dynamics and Packing upon Ligand Occupancy in a Bacterial Chemoreceptor. ACS Chem Biol 2021; 16:2472-2480. [PMID: 34647725 PMCID: PMC9990816 DOI: 10.1021/acschembio.1c00576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transmembrane receptors are central components of the chemosensory systems by which motile bacteria detect and respond to chemical gradients. An attractant bound to the receptor periplasmic domain generates conformational signals that regulate a histidine kinase interacting with its cytoplasmic domain. Ligand-induced signaling through the periplasmic and transmembrane domains of the receptor involves a piston-like helical displacement, but the nature of this signaling through the >200 Å four-helix coiled coil of the cytoplasmic domain had not yet been identified. We performed single-molecule Förster resonance energy transfer measurements on Escherichia coli aspartate receptor homodimers inserted into native phospholipid bilayers enclosed in nanodiscs. The receptors were labeled with fluorophores at diagnostic positions near the middle of the cytoplasmic coiled coil. At these positions, we found that the two N-helices of the homodimer were more distant, that is, less tightly packed and more dynamic than the companion C-helix pair, consistent with previous deductions that the C-helices form a stable scaffold and the N-helices are dynamic. Upon ligand binding, the scaffold pair compacted further, while separation and dynamics of the dynamic pair increased. Thus, ligand binding had asymmetric effects on the two helical pairs, shifting mean distances in opposite directions and increasing the dynamics of one pair. We suggest that this reflects a conformational change in which differential alterations to the packing and dynamics of the two helical pairs are coupled. These coupled changes could represent a previously unappreciated mode of conformational signaling that may well occur in other coiled-coil signaling proteins.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, 6-225, Cambridge, Massachusetts 02139, United States
| | - Mikaila C Hoffman
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, 6-225, Cambridge, Massachusetts 02139, United States
| | - Julianne M Troiano
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, 6-225, Cambridge, Massachusetts 02139, United States
| | - Mingshan Li
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Gerald L Hazelbauer
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, 6-225, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
van Dorp S, Qiu R, Choi UB, Wu MM, Yen M, Kirmiz M, Brunger AT, Lewis RS. Conformational dynamics of auto-inhibition in the ER calcium sensor STIM1. eLife 2021; 10:66194. [PMID: 34730514 PMCID: PMC8651296 DOI: 10.7554/elife.66194] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
The dimeric ER Ca2+ sensor STIM1 controls store-operated Ca2+ entry (SOCE) through the regulated binding of its CRAC activation domain (CAD) to Orai channels in the plasma membrane. In resting cells, the STIM1 CC1 domain interacts with CAD to suppress SOCE, but the structural basis of this interaction is unclear. Using single-molecule Förster resonance energy transfer (smFRET) and protein crosslinking approaches, we show that CC1 interacts dynamically with CAD in a domain-swapped configuration with an orientation predicted to sequester its Orai-binding region adjacent to the ER membrane. Following ER Ca2+ depletion and release from CAD, cysteine crosslinking indicates that the two CC1 domains become closely paired along their entire length in the active Orai-bound state. These findings provide a structural basis for the dual roles of CC1: sequestering CAD to suppress SOCE in resting cells and propelling it toward the plasma membrane to activate Orai and SOCE after store depletion.
Collapse
Affiliation(s)
- Stijn van Dorp
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Ruoyi Qiu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Minnie M Wu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Michelle Yen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Michael Kirmiz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
8
|
Kay TM, Aplin CP, Simonet R, Beenken J, Miller RC, Libal C, Boersma AJ, Sheets ED, Heikal AA. Molecular Brightness Approach for FRET Analysis of Donor-Linker-Acceptor Constructs at the Single Molecule Level: A Concept. Front Mol Biosci 2021; 8:730394. [PMID: 34595208 PMCID: PMC8476790 DOI: 10.3389/fmolb.2021.730394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
In this report, we have developed a simple approach using single-detector fluorescence autocorrelation spectroscopy (FCS) to investigate the Förster resonance energy transfer (FRET) of genetically encoded, freely diffusing crTC2.1 (mTurquoise2.1-linker-mCitrine) at the single molecule level. We hypothesize that the molecular brightness of the freely diffusing donor (mTurquoise2.1) in the presence of the acceptor (mCitrine) is lower than that of the donor alone due to FRET. To test this hypothesis, the fluorescence fluctuation signal and number of molecules of freely diffusing construct were measured using FCS to calculate the molecular brightness of the donor, excited at 405 nm and detected at 475/50 nm, in the presence and absence of the acceptor. Our results indicate that the molecular brightness of cleaved crTC2.1 in a buffer is larger than that of the intact counterpart under 405-nm excitation. The energy transfer efficiency at the single molecule level is larger and more spread in values as compared with the ensemble-averaging time-resolved fluorescence measurements. In contrast, the molecular brightness of the intact crTC2.1, under 488 nm excitation of the acceptor (531/40 nm detection), is the same or slightly larger than that of the cleaved counterpart. These FCS-FRET measurements on freely diffusing donor-acceptor pairs are independent of the precise time constants associated with autocorrelation curves due to the presence of potential photophysical processes. Ultimately, when used in living cells, the proposed approach would only require a low expression level of these genetically encoded constructs, helping to limit potential interference with the cell machinery.
Collapse
Affiliation(s)
- Taryn M Kay
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, MN, United States
| | - Cody P Aplin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Rowan Simonet
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Julie Beenken
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Robert C Miller
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Christin Libal
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Erin D Sheets
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Ahmed A Heikal
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| |
Collapse
|
9
|
Sanders JC, Holmstrom ED. Integrating single-molecule FRET and biomolecular simulations to study diverse interactions between nucleic acids and proteins. Essays Biochem 2021; 65:37-49. [PMID: 33600559 PMCID: PMC8052285 DOI: 10.1042/ebc20200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
The conformations of biological macromolecules are intimately related to their cellular functions. Conveniently, the well-characterized dipole-dipole distance-dependence of Förster resonance energy transfer (FRET) makes it possible to measure and monitor the nanoscale spatial dimensions of these conformations using fluorescence spectroscopy. For this reason, FRET is often used in conjunction with single-molecule detection to study a wide range of conformationally dynamic biochemical processes. Written for those not yet familiar with the subject, this review aims to introduce biochemists to the methodology associated with single-molecule FRET, with a particular emphasis on how it can be combined with biomolecular simulations to study diverse interactions between nucleic acids and proteins. In the first section, we highlight several conceptual and practical considerations related to this integrative approach. In the second section, we review a few recent research efforts wherein various combinations of single-molecule FRET and biomolecular simulations were used to study the structural and dynamic properties of biochemical systems involving different types of nucleic acids (e.g., DNA and RNA) and proteins (e.g., folded and disordered).
Collapse
Affiliation(s)
- Joshua C Sanders
- Department of Chemistry, University of Kansas, Lawrence, KS, U.S.A
| | - Erik D Holmstrom
- Department of Chemistry, University of Kansas, Lawrence, KS, U.S.A
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, U.S.A
| |
Collapse
|
10
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
11
|
Schepers B, Gohlke H. AMBER-DYES in AMBER: Implementation of fluorophore and linker parameters into AmberTools. J Chem Phys 2021; 152:221103. [PMID: 32534525 DOI: 10.1063/5.0007630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Molecular dynamics (MD) simulations of explicit representations of fluorescent dyes attached via a linker to a protein allow, e.g., probing commonly used approximations for dye localization and/or orientation or modeling Förster resonance energy transfer. However, setting up and performing such MD simulations with the AMBER suite of biomolecular simulation programs has remained challenging due to the unavailability of an easy-to-use set of parameters within AMBER. Here, we adapted the AMBER-DYES parameter set derived by Graen et al. [J. Chem. Theory Comput. 10, 5505 (2014)] into "AMBER-DYES in AMBER" to generate a force field applicable within AMBER for commonly used fluorescent dyes and linkers attached to a protein. In particular, the computationally efficient graphics processing unit (GPU) implementation of the AMBER MD engine can now be exploited to overcome sampling issues of dye movements. The implementation is compatible with state-of-the-art force fields such as GAFF, GAFF2, ff99SB, ff14SB, lipid17, and GLYCAM_06j, which allows simulating post-translationally modified proteins and/or protein-ligand complexes and/or proteins in membrane environments. It is applicable with frequently used water models such as TIP3P, TIP4P, TIP4P-Ew, and OPC. For ease of use, a LEaP-based workflow was created, which allows attaching (multiple) dye/linker combinations to a protein prior to further system preparation steps. Following the parameter development described by Graen et al. [J. Chem. Theory Comput. 10, 5505 (2014)] and the adaptation steps described here, AMBER-DYES in AMBER can be extended by additional linkers and fluorescent molecules.
Collapse
Affiliation(s)
- Bastian Schepers
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Seffernick JT, Lindert S. Hybrid methods for combined experimental and computational determination of protein structure. J Chem Phys 2020; 153:240901. [PMID: 33380110 PMCID: PMC7773420 DOI: 10.1063/5.0026025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023] Open
Abstract
Knowledge of protein structure is paramount to the understanding of biological function, developing new therapeutics, and making detailed mechanistic hypotheses. Therefore, methods to accurately elucidate three-dimensional structures of proteins are in high demand. While there are a few experimental techniques that can routinely provide high-resolution structures, such as x-ray crystallography, nuclear magnetic resonance (NMR), and cryo-EM, which have been developed to determine the structures of proteins, these techniques each have shortcomings and thus cannot be used in all cases. However, additionally, a large number of experimental techniques that provide some structural information, but not enough to assign atomic positions with high certainty have been developed. These methods offer sparse experimental data, which can also be noisy and inaccurate in some instances. In cases where it is not possible to determine the structure of a protein experimentally, computational structure prediction methods can be used as an alternative. Although computational methods can be performed without any experimental data in a large number of studies, inclusion of sparse experimental data into these prediction methods has yielded significant improvement. In this Perspective, we cover many of the successes of integrative modeling, computational modeling with experimental data, specifically for protein folding, protein-protein docking, and molecular dynamics simulations. We describe methods that incorporate sparse data from cryo-EM, NMR, mass spectrometry, electron paramagnetic resonance, small-angle x-ray scattering, Förster resonance energy transfer, and genetic sequence covariation. Finally, we highlight some of the major challenges in the field as well as possible future directions.
Collapse
Affiliation(s)
- Justin T. Seffernick
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
13
|
Dimura M, Peulen TO, Sanabria H, Rodnin D, Hemmen K, Hanke CA, Seidel CAM, Gohlke H. Automated and optimally FRET-assisted structural modeling. Nat Commun 2020; 11:5394. [PMID: 33106483 PMCID: PMC7589535 DOI: 10.1038/s41467-020-19023-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
FRET experiments can provide state-specific structural information of complex dynamic biomolecular assemblies. However, to overcome the sparsity of FRET experiments, they need to be combined with computer simulations. We introduce a program suite with (i) an automated design tool for FRET experiments, which determines how many and which FRET pairs should be used to minimize the uncertainty and maximize the accuracy of an integrative structure, (ii) an efficient approach for FRET-assisted coarse-grained structural modeling, and all-atom molecular dynamics simulations-based refinement, and (iii) a quantitative quality estimate for judging the accuracy of FRET-derived structures as opposed to precision. We benchmark our tools against simulated and experimental data of proteins with multiple conformational states and demonstrate an accuracy of ~3 Å RMSDCα against X-ray structures for sets of 15 to 23 FRET pairs. Free and open-source software for the introduced workflow is available at https://github.com/Fluorescence-Tools. A web server for FRET-assisted structural modeling of proteins is available at http://nmsim.de. To overcome the limitation of FRET data being too sparse to cover all structural details, FRET experiments need to be carefully designed and complemented with simulations. Here the authors present a toolkit for automated design of FRET experiments, which determines how many and which FRET pairs should be used to maximize the accuracy, and for FRET-assisted structural modeling and refinement at the atomistic level.
Collapse
Affiliation(s)
- Mykola Dimura
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Thomas-Otavio Peulen
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Hugo Sanabria
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Dmitro Rodnin
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katherina Hemmen
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christian A Hanke
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Claus A M Seidel
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany. .,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
14
|
Aderinwale T, Christoffer CW, Sarkar D, Alnabati E, Kihara D. Computational structure modeling for diverse categories of macromolecular interactions. Curr Opin Struct Biol 2020; 64:1-8. [PMID: 32599506 PMCID: PMC7665979 DOI: 10.1016/j.sbi.2020.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 01/23/2023]
Abstract
Computational protein-protein docking is one of the most intensively studied topics in structural bioinformatics. The field has made substantial progress through over three decades of development. The development began with methods for rigid-body docking of two proteins, which have now been extended in different directions to cover the various macromolecular interactions observed in a cell. Here, we overview the recent developments of the variations of docking methods, including multiple protein docking, peptide-protein docking, and disordered protein docking methods.
Collapse
Affiliation(s)
- Tunde Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Eman Alnabati
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
15
|
Pan M, Zhang Y, Yan G, Chen TY. Dissection of Interaction Kinetics through Single-Molecule Interaction Simulation. Anal Chem 2020; 92:11582-11589. [PMID: 32786469 DOI: 10.1021/acs.analchem.0c01014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to extract kinetic interaction parameters from single-molecule fluorescence resonance energy transfer trajectories without the need for solving complex single-molecule differential equations has the potential to address some of the critical biophysical questions. Here, we provide a noise-free single-molecule interaction simulation (SMIS) tool to give the expected dwell-time distributions and relative populations of each FRET level based on the assigned kinetic model and to dissect kinetic interaction parameters from single-molecule FRET trajectories. The method provides the expected dwell-time distributions, average transition rates, and relative populations of each FRET level based on the assigned kinetic model. By comparing with ground truth data and experimental data, we demonstrated that SMIS is useful to quantify the interaction kinetic rate constants without using the traditional single-molecule analytical solution approach.
Collapse
Affiliation(s)
- Manhua Pan
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Yuteng Zhang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Guangjie Yan
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
16
|
Srivastava A, Tiwari SP, Miyashita O, Tama F. Integrative/Hybrid Modeling Approaches for Studying Biomolecules. J Mol Biol 2020; 432:2846-2860. [DOI: 10.1016/j.jmb.2020.01.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
|
17
|
Raghuraman H, Chatterjee S, Das A. Site-Directed Fluorescence Approaches for Dynamic Structural Biology of Membrane Peptides and Proteins. Front Mol Biosci 2019; 6:96. [PMID: 31608290 PMCID: PMC6774292 DOI: 10.3389/fmolb.2019.00096] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Membrane proteins mediate a number of cellular functions and are associated with several diseases and also play a crucial role in pathogenicity. Due to their importance in cellular structure and function, they are important drug targets for ~60% of drugs available in the market. Despite the technological advancement and recent successful outcomes in determining the high-resolution structural snapshot of membrane proteins, the mechanistic details underlining the complex functionalities of membrane proteins is least understood. This is largely due to lack of structural dynamics information pertaining to different functional states of membrane proteins in a membrane environment. Fluorescence spectroscopy is a widely used technique in the analysis of functionally-relevant structure and dynamics of membrane protein. This review is focused on various site-directed fluorescence (SDFL) approaches and their applications to explore structural information, conformational changes, hydration dynamics, and lipid-protein interactions of important classes of membrane proteins that include the pore-forming peptides/proteins, ion channels/transporters and G-protein coupled receptors.
Collapse
Affiliation(s)
- H. Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | | | | |
Collapse
|
18
|
LeBlanc SJ, Gauer JW, Hao P, Case BC, Hingorani MM, Weninger KR, Erie DA. Coordinated protein and DNA conformational changes govern mismatch repair initiation by MutS. Nucleic Acids Res 2019; 46:10782-10795. [PMID: 30272207 PMCID: PMC6237781 DOI: 10.1093/nar/gky865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
MutS homologs identify base-pairing errors made in DNA during replication and initiate their repair. In the presence of adenosine triphosphate, MutS induces DNA bending upon mismatch recognition and subsequently undergoes conformational transitions that promote its interaction with MutL to signal repair. In the absence of MutL, these transitions lead to formation of a MutS mobile clamp that can move along the DNA. Previous single-molecule FRET (smFRET) studies characterized the dynamics of MutS DNA-binding domains during these transitions. Here, we use protein–DNA and DNA–DNA smFRET to monitor DNA conformational changes, and we use kinetic analyses to correlate DNA and protein conformational changes to one another and to the steps on the pathway to mobile clamp formation. The results reveal multiple sequential structural changes in both MutS and DNA, and they suggest that DNA dynamics play a critical role in the formation of the MutS mobile clamp. Taking these findings together with data from our previous studies, we propose a unified model of coordinated MutS and DNA conformational changes wherein initiation of mismatch repair is governed by a balance of DNA bending/unbending energetics and MutS conformational changes coupled to its nucleotide binding properties.
Collapse
Affiliation(s)
- Sharonda J LeBlanc
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Jacob W Gauer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengyu Hao
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Brandon C Case
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Manju M Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Dorothy A Erie
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Hochreiter B, Kunze M, Moser B, Schmid JA. Advanced FRET normalization allows quantitative analysis of protein interactions including stoichiometries and relative affinities in living cells. Sci Rep 2019; 9:8233. [PMID: 31160659 PMCID: PMC6547726 DOI: 10.1038/s41598-019-44650-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/20/2019] [Indexed: 12/31/2022] Open
Abstract
FRET (Fluorescence Resonance Energy Transfer) measurements are commonly applied to proof protein-protein interactions. However, standard methods of live cell FRET microscopy and signal normalization only allow a principle assessment of mutual binding and are unable to deduce quantitative information of the interaction. We present an evaluation and normalization procedure for 3-filter FRET measurements, which reflects the process of complex formation by plotting FRET-saturation curves. The advantage of this approach relative to traditional signal normalizations is demonstrated by mathematical simulations. Thereby, we also identify the contribution of critical parameters such as the total amount of donor and acceptor molecules and their molar ratio. When combined with a fitting procedure, this normalization facilitates the extraction of key properties of protein complexes such as the interaction stoichiometry or the apparent affinity of the binding partners. Finally, the feasibility of our method is verified by investigating three exemplary protein complexes. Altogether, our approach offers a novel method for a quantitative analysis of protein interactions by 3-filter FRET microscopy, as well as flow cytometry. To facilitate the application of this method, we created macros and routines for the programs ImageJ, R and MS-Excel, which we make publicly available.
Collapse
Affiliation(s)
- Bernhard Hochreiter
- Medical University Vienna, Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Vienna, Austria
| | - Markus Kunze
- Medical University Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, Vienna, Austria
| | - Bernhard Moser
- Medical University Vienna, Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Vienna, Austria
| | - Johannes A Schmid
- Medical University Vienna, Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Vienna, Austria.
| |
Collapse
|
20
|
Braitbard M, Schneidman-Duhovny D, Kalisman N. Integrative Structure Modeling: Overview and Assessment. Annu Rev Biochem 2019; 88:113-135. [PMID: 30830798 DOI: 10.1146/annurev-biochem-013118-111429] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Integrative structure modeling computationally combines data from multiple sources of information with the aim of obtaining structural insights that are not revealed by any single approach alone. In the first part of this review, we survey the commonly used sources of structural information and the computational aspects of model building. Throughout the past decade, integrative modeling was applied to various biological systems, with a focus on large protein complexes. Recent progress in the field of cryo-electron microscopy (cryo-EM) has resolved many of these complexes to near-atomic resolution. In the second part of this review, we compare a range of published integrative models with their higher-resolution counterparts with the aim of critically assessing their accuracy. This comparison gives a favorable view of integrative modeling and demonstrates its ability to yield accurate and informative results. We discuss possible roles of integrative modeling in the new era of cryo-EM and highlight future challenges and directions.
Collapse
Affiliation(s)
- Merav Braitbard
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Dina Schneidman-Duhovny
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; .,School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Nir Kalisman
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| |
Collapse
|
21
|
Biochemical studies of membrane fusion at the single-particle level. Prog Lipid Res 2019; 73:92-100. [PMID: 30611882 DOI: 10.1016/j.plipres.2019.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 01/21/2023]
Abstract
To study membrane fusion mediated by synaptic proteins, proteoliposomes have been widely used for in vitro ensemble measurements with limited insights into the fusion mechanism. Single-particle techniques have proven to be powerful in overcoming the limitations of traditional ensemble methods. Here, we summarize current single-particle methods in biophysical and biochemical studies of fusion mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and other synaptic proteins, together with their advantages and limitations.
Collapse
|
22
|
Nagy J, Eilert T, Michaelis J. Precision and accuracy in smFRET based structural studies-A benchmark study of the Fast-Nano-Positioning System. J Chem Phys 2018; 148:123308. [PMID: 29604844 DOI: 10.1063/1.5006477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Modern hybrid structural analysis methods have opened new possibilities to analyze and resolve flexible protein complexes where conventional crystallographic methods have reached their limits. Here, the Fast-Nano-Positioning System (Fast-NPS), a Bayesian parameter estimation-based analysis method and software, is an interesting method since it allows for the localization of unknown fluorescent dye molecules attached to macromolecular complexes based on single-molecule Förster resonance energy transfer (smFRET) measurements. However, the precision, accuracy, and reliability of structural models derived from results based on such complex calculation schemes are oftentimes difficult to evaluate. Therefore, we present two proof-of-principle benchmark studies where we use smFRET data to localize supposedly unknown positions on a DNA as well as on a protein-nucleic acid complex. Since we use complexes where structural information is available, we can compare Fast-NPS localization to the existing structural data. In particular, we compare different dye models and discuss how both accuracy and precision can be optimized.
Collapse
Affiliation(s)
- Julia Nagy
- Ulm University, Institute of Biophysics, Albert-Einstein-Allee 11, Ulm 89069, Germany
| | - Tobias Eilert
- Ulm University, Institute of Biophysics, Albert-Einstein-Allee 11, Ulm 89069, Germany
| | - Jens Michaelis
- Ulm University, Institute of Biophysics, Albert-Einstein-Allee 11, Ulm 89069, Germany
| |
Collapse
|
23
|
Barth A, Hendrix J, Fried D, Barak Y, Bayer EA, Lamb DC. Dynamic interactions of type I cohesin modules fine-tune the structure of the cellulosome of Clostridium thermocellum. Proc Natl Acad Sci U S A 2018; 115:E11274-E11283. [PMID: 30429330 PMCID: PMC6275499 DOI: 10.1073/pnas.1809283115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Efficient degradation of plant cell walls by selected anaerobic bacteria is performed by large extracellular multienzyme complexes termed cellulosomes. The spatial arrangement within the cellulosome is organized by a protein called scaffoldin, which recruits the cellulolytic subunits through interactions between cohesin modules on the scaffoldin and dockerin modules on the enzymes. Although many structural studies of the individual components of cellulosomal scaffoldins have been performed, the role of interactions between individual cohesin modules and the flexible linker regions between them are still not entirely understood. Here, we report single-molecule measurements using FRET to study the conformational dynamics of a bimodular cohesin segment of the scaffoldin protein CipA of Clostridium thermocellum We observe compacted structures in solution that persist on the timescale of milliseconds. The compacted conformation is found to be in dynamic equilibrium with an extended state that shows distance fluctuations on the microsecond timescale. Shortening of the intercohesin linker does not destabilize the interactions but reduces the rate of contact formation. Upon addition of dockerin-containing enzymes, an extension of the flexible state is observed, but the cohesin-cohesin interactions persist. Using all-atom molecular-dynamics simulations of the system, we further identify possible intercohesin binding modes. Beyond the view of scaffoldin as "beads on a string," we propose that cohesin-cohesin interactions are an important factor for the precise spatial arrangement of the enzymatic subunits in the cellulosome that leads to the high catalytic synergy in these assemblies and should be considered when designing cellulosomes for industrial applications.
Collapse
Affiliation(s)
- Anders Barth
- Physical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Nanosystems Initative Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Nanoscience, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jelle Hendrix
- Physical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Nanosystems Initative Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Nanoscience, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Daniel Fried
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yoav Barak
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany;
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Nanosystems Initative Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Nanoscience, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
24
|
LeBlanc SJ, Kulkarni P, Weninger KR. Single Molecule FRET: A Powerful Tool to Study Intrinsically Disordered Proteins. Biomolecules 2018; 8:biom8040140. [PMID: 30413085 PMCID: PMC6315554 DOI: 10.3390/biom8040140] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are often modeled using ideas from polymer physics that suggest they smoothly explore all corners of configuration space. Experimental verification of this random, dynamic behavior is difficult as random fluctuations of IDPs cannot be synchronized across an ensemble. Single molecule fluorescence (or Förster) resonance energy transfer (smFRET) is one of the few approaches that are sensitive to transient populations of sub-states within molecular ensembles. In some implementations, smFRET has sufficient time resolution to resolve transitions in IDP behaviors. Here we present experimental issues to consider when applying smFRET to study IDP configuration. We illustrate the power of applying smFRET to IDPs by discussing two cases in the literature of protein systems for which smFRET has successfully reported phosphorylation-induced modification (but not elimination) of the disordered properties that have been connected to impacts on the related biological function. The examples we discuss, PAGE4 and a disordered segment of the GluN2B subunit of the NMDA receptor, illustrate the great potential of smFRET to inform how IDP function can be regulated by controlling the detailed ensemble of disordered states within biological networks.
Collapse
Affiliation(s)
- Sharonda J LeBlanc
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
25
|
Teunissen AJP, Pérez-Medina C, Meijerink A, Mulder WJM. Investigating supramolecular systems using Förster resonance energy transfer. Chem Soc Rev 2018; 47:7027-7044. [PMID: 30091770 PMCID: PMC6441672 DOI: 10.1039/c8cs00278a] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Supramolecular systems have applications in areas as diverse as materials science, biochemistry, analytical chemistry, and nanomedicine. However, analyzing such systems can be challenging due to the wide range of time scales, binding strengths, distances, and concentrations at which non-covalent phenomena take place. Due to their versatility and sensitivity, Förster resonance energy transfer (FRET)-based techniques are excellently suited to meet such challenges. Here, we detail the ways in which FRET has been used to study non-covalent interactions in both synthetic and biological supramolecular systems. Among other topics, we examine methods to measure molecular forces, determine protein conformations, monitor assembly kinetics, and visualize in vivo drug release from nanoparticles. Furthermore, we highlight multiplex FRET techniques, discuss the field's limitations, and provide a perspective on new developments.
Collapse
Affiliation(s)
- Abraham J. P. Teunissen
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Andries Meijerink
- Department of Chemistry, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Willem J. M. Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Laboratory of Chemical biology, Department of Biomedical Engineering and Institute for Complex Molecular systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, The Netherlands
| |
Collapse
|
26
|
Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study. Nat Methods 2018; 15:669-676. [PMID: 30171252 PMCID: PMC6121742 DOI: 10.1038/s41592-018-0085-0] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/25/2018] [Indexed: 12/12/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods. A multi-laboratory study finds that single-molecule FRET is a reproducible and reliable approach for determining accurate distances in dye-labeled DNA duplexes.
Collapse
|
27
|
Lou F, Yang J, Wu S, Perrett S. A co-expression strategy to achieve labeling of individual subunits within a dimeric protein for single molecule analysis. Chem Commun (Camb) 2018. [PMID: 28650509 DOI: 10.1039/c7cc03032k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A generic co-expression strategy for site-specific incorporation of a single donor-acceptor dye pair into any position in a dimeric protein, allowing single molecule FRET study of proteins previously inaccessible to this technique, such as the intrinsically disordered prion N-domain of Ure2 in the context of its globular dimeric C-domain.
Collapse
Affiliation(s)
- Fei Lou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China. and University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jie Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China. and University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China. and University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China. and University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
28
|
Craggs TD. Cool and dynamic: single-molecule fluorescence-based structural biology. Nat Methods 2018; 14:123-124. [PMID: 28139670 DOI: 10.1038/nmeth.4159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Hayne CK, Yumerefendi H, Cao L, Gauer JW, Lafferty MJ, Kuhlman B, Erie DA, Neher SB. We FRET so You Don't Have To: New Models of the Lipoprotein Lipase Dimer. Biochemistry 2018; 57:241-254. [PMID: 29303250 PMCID: PMC5860654 DOI: 10.1021/acs.biochem.7b01009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lipoprotein lipase (LPL) is a dimeric enzyme that is responsible for clearing triglyceride-rich lipoproteins from the blood. Although LPL plays a key role in cardiovascular health, an experimentally derived three-dimensional structure has not been determined. Such a structure would aid in understanding mutations in LPL that cause familial LPL deficiency in patients and help in the development of therapeutic strategies to target LPL. A major obstacle to structural studies of LPL is that LPL is an unstable protein that is difficult to produce in the quantities needed for nuclear magnetic resonance or crystallography. We present updated LPL structural models generated by combining disulfide mapping, computational modeling, and data derived from single-molecule Förster resonance energy transfer (smFRET). We pioneer the technique of smFRET for use with LPL by developing conditions for imaging active LPL and identifying positions in LPL for the attachment of fluorophores. Using this approach, we measure LPL-LPL intermolecular interactions to generate experimental constraints that inform new computational models of the LPL dimer structure. These models suggest that LPL may dimerize using an interface that is different from the dimerization interface suggested by crystal packing contacts seen in structures of pancreatic lipase.
Collapse
Affiliation(s)
- Cassandra K. Hayne
- Department of Biochemistry and Biophysics, University of North Carolina - Chapel Hill
| | - Hayretin Yumerefendi
- Department of Biochemistry and Biophysics, University of North Carolina - Chapel Hill
| | - Lin Cao
- Department of Biochemistry and Biophysics, University of North Carolina - Chapel Hill
| | - Jacob W. Gauer
- Department of Chemistry, University of North Carolina at Chapel Hill
| | - Michael J. Lafferty
- Department of Biochemistry and Biophysics, University of North Carolina - Chapel Hill
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina - Chapel Hill
| | - Dorothy A. Erie
- Department of Chemistry, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Saskia B. Neher
- Department of Biochemistry and Biophysics, University of North Carolina - Chapel Hill
| |
Collapse
|
30
|
Andreoni A, Sen S, Hagedoorn PL, Buma WJ, Aartsma TJ, Canters GW. Fluorescence Correlation Spectroscopy of Labeled Azurin Reveals Photoinduced Electron Transfer between Label and Cu Center. Chemistry 2018; 24:646-654. [PMID: 29064125 DOI: 10.1002/chem.201703733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 11/06/2022]
Abstract
Fluorescent labeling of biomacromolecules enjoys increasing popularity for structural, mechanistic, and microscopic investigations. Its success hinges on the ability of the dye to alternate between bright and dark states. Förster resonance energy transfer (FRET) is an important source of fluorescence modulation. Photo-induced electron transfer (PET) may occur as well, but is often considered only when donor and acceptor are in van der Waals contact. In this study, PET is shown between a label and redox centers in oxidoreductases, which may occur over large distances. In the small blue copper protein azurin, labeled with ATTO655, PET is observed when the label is at 18.5 Å, but not when it is at 29.1 Å from the Cu. For CuII , PET from label to Cu occurs at a rate of (4.8±0.3)×104 s-1 and back at (0.7±0.1)×103 s-1 . With CuI the numbers are (3.3±0.7)×106 s-1 and (1.0±0.1)×104 s-1 . Reorganization energies and electronic coupling elements are in the range of 0.8-1.2 eV and 0.02-0.5 cm-1 , respectively. These data are compatible with electron transfer (ET) along a through-bond pathway although transient complex formation followed by ET cannot be ruled out. The outcome of this study is a useful guideline for experimental designs in which oxidoreductases are labelled with fluorescent dyes, with particular attention to single molecule investigations. The labelling position for FRET can be optimized to avoid reactions like PET by evaluating the structure and thermodynamics of protein and label.
Collapse
Affiliation(s)
- Alessio Andreoni
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CC, Leiden, The Netherlands.,Present address: National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Saptaswa Sen
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CC, Leiden, The Netherlands.,Present address: AlbaNova University Center, Department of Applied Physics, KTH-Royal Institute of, Technology, 10691, Stockholm, Sweden
| | - Peter-Leon Hagedoorn
- TU Delft, Applied Sciences, Biotechnology, Building 58, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Wybren J Buma
- Van't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD, Amsterdam, The Netherlands
| | - Thijs J Aartsma
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CC, Leiden, The Netherlands
| | - Gerard W Canters
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CC, Leiden, The Netherlands
| |
Collapse
|
31
|
Toulmin A, Baltierra-Jasso LE, Morten MJ, Sabir T, McGlynn P, Schröder GF, Smith BO, Magennis SW. Conformational Heterogeneity in a Fully Complementary DNA Three-Way Junction with a GC-Rich Branchpoint. Biochemistry 2017; 56:4985-4991. [PMID: 28820590 DOI: 10.1021/acs.biochem.7b00677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA three-way junctions (3WJs) are branched structures that serve as important biological intermediates and as components in DNA nanostructures. We recently derived the global structure of a fully complementary 3WJ and found that it contained unpaired bases at the branchpoint, which is consistent with previous observations of branch flexibility and branchpoint reactivity. By combining high-resolution single-molecule Förster resonance energy transfer, molecular modeling, time-resolved ensemble fluorescence spectroscopy, and the first 19F nuclear magnetic resonance observations of fully complementary 3WJs, we now show that the 3WJ structure can adopt multiple distinct conformations depending upon the sequence at the branchpoint. A 3WJ with a GC-rich branchpoint adopts an open conformation with unpaired bases at the branch and at least one additional conformation with an increased number of base interactions at the branchpoint. This structural diversity has implications for branch interactions and processing in vivo and for technological applications.
Collapse
Affiliation(s)
- Anita Toulmin
- The School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K.,The Photon Science Institute, The University of Manchester , Alan Turing Building, Oxford Road, Manchester M13 9PL, U.K
| | - Laura E Baltierra-Jasso
- The School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K.,The Photon Science Institute, The University of Manchester , Alan Turing Building, Oxford Road, Manchester M13 9PL, U.K.,School of Chemistry, WestCHEM, University of Glasgow , Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| | - Michael J Morten
- School of Chemistry, WestCHEM, University of Glasgow , Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| | - Tara Sabir
- The School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K.,The Photon Science Institute, The University of Manchester , Alan Turing Building, Oxford Road, Manchester M13 9PL, U.K
| | - Peter McGlynn
- Department of Biology, University of York , Wentworth Way, York YO10 5DD, U.K
| | - Gunnar F Schröder
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich , 52425 Jülich, Germany.,Physics Department, Heinrich-Heine Universität Düsseldorf , Düsseldorf, Germany
| | - Brian O Smith
- Institute of Molecular, Cell and Systems Biology, University of Glasgow , Glasgow G12 8QQ, U.K
| | - Steven W Magennis
- School of Chemistry, WestCHEM, University of Glasgow , Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
32
|
Peulen TO, Opanasyuk O, Seidel CAM. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately. J Phys Chem B 2017; 121:8211-8241. [PMID: 28709377 PMCID: PMC5592652 DOI: 10.1021/acs.jpcb.7b03441] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Förster resonance energy transfer
(FRET) measurements from
a donor, D, to an acceptor, A, fluorophore are frequently used in vitro and in live cells to reveal information on the
structure and dynamics of DA labeled macromolecules. Accurate descriptions
of FRET measurements by molecular models are complicated because the
fluorophores are usually coupled to the macromolecule via flexible
long linkers allowing for diffusional exchange between multiple states
with different fluorescence properties caused by distinct environmental
quenching, dye mobilities, and variable DA distances. It is often
assumed for the analysis of fluorescence intensity decays that DA
distances and D quenching are uncorrelated (homogeneous quenching
by FRET) and that the exchange between distinct fluorophore states
is slow (quasistatic). This allows us to introduce the FRET-induced
donor decay, εD(t), a function solely
depending on the species fraction distribution of the rate constants
of energy transfer by FRET, for a convenient joint analysis of fluorescence
decays of FRET and reference samples by integrated graphical and analytical
procedures. Additionally, we developed a simulation toolkit to model
dye diffusion, fluorescence quenching by the protein surface, and
FRET. A benchmark study with simulated fluorescence decays of 500
protein structures demonstrates that the quasistatic homogeneous model
works very well and recovers for single conformations the average
DA distances with an accuracy of < 2%. For more complex
cases, where proteins adopt multiple conformations with significantly
different dye environments (heterogeneous case), we introduce a general
analysis framework and evaluate its power in resolving heterogeneities
in DA distances. The developed fast simulation methods, relying on
Brownian dynamics of a coarse-grained dye in its sterically accessible
volume, allow us to incorporate structural information in the decay
analysis for heterogeneous cases by relating dye states with protein
conformations to pave the way for fluorescence and FRET-based dynamic
structural biology. Finally, we present theories and simulations to
assess the accuracy and precision of steady-state and time-resolved
FRET measurements in resolving DA distances on the single-molecule
and ensemble level and provide a rigorous framework for estimating
approximation, systematic, and statistical errors.
Collapse
Affiliation(s)
- Thomas-Otavio Peulen
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Oleg Opanasyuk
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität , Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
33
|
Oligomerization of the tetramerization domain of p53 probed by two- and three-color single-molecule FRET. Proc Natl Acad Sci U S A 2017; 114:E6812-E6821. [PMID: 28760960 DOI: 10.1073/pnas.1700357114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a method that combines two- and three-color single-molecule FRET spectroscopy with 2D FRET efficiency-lifetime analysis to probe the oligomerization process of intrinsically disordered proteins. This method is applied to the oligomerization of the tetramerization domain (TD) of the tumor suppressor protein p53. TD exists as a monomer at subnanomolar concentrations and forms a dimer and a tetramer at higher concentrations. Because the dissociation constants of the dimer and tetramer are very close, as we determine in this paper, it is not possible to characterize different oligomeric species by ensemble methods, especially the dimer that cannot be readily separated. However, by using single-molecule FRET spectroscopy that includes measurements of fluorescence lifetime and two- and three-color FRET efficiencies with corrections for submillisecond acceptor blinking, we show that it is possible to obtain structural information for individual oligomers at equilibrium and to determine the dimerization kinetics. From these analyses, we show that the monomer is intrinsically disordered and that the dimer conformation is very similar to that of the tetramer but the C terminus of the dimer is more flexible.
Collapse
|
34
|
Tutkus M, Marciulionis T, Sasnauskas G, Rutkauskas D. DNA-Endonuclease Complex Dynamics by Simultaneous FRET and Fluorophore Intensity in Evanescent Field. Biophys J 2017; 112:850-858. [PMID: 28297644 DOI: 10.1016/j.bpj.2017.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/06/2017] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
The single-molecule Förster resonance energy transfer (FRET) is a powerful tool to study interactions and conformational changes of biological molecules in the distance range from a few to 10 nm. In this study, we demonstrate a method to augment this range with longer distances. The method is based on the intensity changes of a tethered fluorophore, diffusing in the exponentially decaying evanescent excitation field. In combination with FRET it allowed us to reveal and characterize the dynamics of what had been inaccessible conformations of the DNA-protein complex. Our model system, restriction enzyme Ecl18kI, interacts with a FRET pair-labeled DNA fragment to form two different DNA loop conformations. The DNA-protein interaction geometry is such that the efficient FRET is expected for one of these conformations-"antiparallel" loop. In the alternative "parallel" loop, the expected distance between the dyes is outside the range accessible by FRET. Therefore, "antiparallel" looping is observed in a single-molecule time trajectory as discrete transitions to a state of high FRET efficiency. At the same time, transitions to a high-intensity state of the directly excited acceptor fluorophore on a DNA tether are due to a change of its average position in the evanescent field of excitation and can be associated with a loop of either "parallel" or "antiparallel" configuration. Simultaneous analysis of FRET and acceptor intensity trajectories then allows us to discriminate different DNA loop conformations and access the average lifetimes of different states.
Collapse
Affiliation(s)
- Marijonas Tutkus
- Institute of Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Tomas Marciulionis
- Institute of Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | | | - Danielis Rutkauskas
- Institute of Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania.
| |
Collapse
|
35
|
Ma J, Yanez-Orozco IS, Rezaei Adariani S, Dolino D, Jayaraman V, Sanabria H. High Precision FRET at Single-molecule Level for Biomolecule Structure Determination. J Vis Exp 2017. [PMID: 28570518 DOI: 10.3791/55623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A protocol on how to perform high-precision interdye distance measurements using Förster resonance energy transfer (FRET) at the single-molecule level in multiparameter fluorescence detection (MFD) mode is presented here. MFD maximizes the usage of all "dimensions" of fluorescence to reduce photophysical and experimental artifacts and allows for the measurement of interdye distance with an accuracy up to ~1 Å in rigid biomolecules. This method was used to identify three conformational states of the ligand-binding domain of the N-methyl-D-aspartate (NMDA) receptor to explain the activation of the receptor upon ligand binding. When comparing the known crystallographic structures with experimental measurements, they agreed within less than 3 Å for more dynamic biomolecules. Gathering a set of distance restraints that covers the entire dimensionality of the biomolecules would make it possible to provide a structural model of dynamic biomolecules.
Collapse
Affiliation(s)
- Junyan Ma
- Department of Chemistry, Clemson University
| | | | | | - Drew Dolino
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, Graduate School for Biomedical Sciences, University of Texas Health Science Center
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, Graduate School for Biomedical Sciences, University of Texas Health Science Center
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University;
| |
Collapse
|
36
|
Dörfler T, Eilert T, Röcker C, Nagy J, Michaelis J. Structural Information from Single-molecule FRET Experiments Using the Fast Nano-positioning System. J Vis Exp 2017:54782. [PMID: 28287526 PMCID: PMC5407667 DOI: 10.3791/54782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Single-molecule Förster Resonance Energy Transfer (smFRET) can be used to obtain structural information on biomolecular complexes in real-time. Thereby, multiple smFRET measurements are used to localize an unknown dye position inside a protein complex by means of trilateration. In order to obtain quantitative information, the Nano-Positioning System (NPS) uses probabilistic data analysis to combine structural information from X-ray crystallography with single-molecule fluorescence data to calculate not only the most probable position but the complete three-dimensional probability distribution, termed posterior, which indicates the experimental uncertainty. The concept was generalized for the analysis of smFRET networks containing numerous dye molecules. The latest version of NPS, Fast-NPS, features a new algorithm using Bayesian parameter estimation based on Markov Chain Monte Carlo sampling and parallel tempering that allows for the analysis of large smFRET networks in a comparably short time. Moreover, Fast-NPS allows the calculation of the posterior by choosing one of five different models for each dye, that account for the different spatial and orientational behavior exhibited by the dye molecules due to their local environment. Here we present a detailed protocol for obtaining smFRET data and applying the Fast-NPS. We provide detailed instructions for the acquisition of the three input parameters of Fast-NPS: the smFRET values, as well as the quantum yield and anisotropy of the dye molecules. Recently, the NPS has been used to elucidate the architecture of an archaeal open promotor complex. This data is used to demonstrate the influence of the five different dye models on the posterior distribution.
Collapse
|
37
|
Dimura M, Peulen TO, Hanke CA, Prakash A, Gohlke H, Seidel CA. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr Opin Struct Biol 2016; 40:163-185. [PMID: 27939973 DOI: 10.1016/j.sbi.2016.11.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 01/11/2023]
Abstract
Förster Resonance Energy Transfer (FRET) combined with single-molecule spectroscopy probes macromolecular structure and dynamics and identifies coexisting conformational states. We review recent methodological developments in integrative structural modeling by satisfying spatial restraints on networks of FRET pairs (hybrid-FRET). We discuss procedures to incorporate prior structural knowledge and to obtain optimal distance networks. Finally, a workflow for hybrid-FRET is presented that automates integrative structural modeling and experiment planning to put hybrid-FRET on rails. To test this workflow, we simulate realistic single-molecule experiments and resolve three protein conformers, exchanging at 30μs and 10ms, with accuracies of 1-3Å RMSD versus the target structure. Incorporation of data from other spectroscopies and imaging is also discussed.
Collapse
Affiliation(s)
- Mykola Dimura
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas O Peulen
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christian A Hanke
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Aiswaria Prakash
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Claus Am Seidel
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
38
|
Multidomain structure and correlated dynamics determined by self-consistent FRET networks. Nat Methods 2016; 14:174-180. [PMID: 27918541 PMCID: PMC5289555 DOI: 10.1038/nmeth.4081] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/26/2016] [Indexed: 01/17/2023]
Abstract
We present an approach that allows us to simultaneously access structure and dynamics of a multi-domain protein in solution. Dynamic domain arrangements are experimentally determined by combining self-consistent networks of distance distributions with known domain structures. Local structural dynamics are correlated with the global arrangements by analyzing networks of time-resolved single-molecule fluorescence parameters. The strength of this hybrid approach is shown by an application to the flexible multi-domain Hsp90. The average solution structure of Hsp90’s closed state resembles the known x-ray crystal structure with Angstrom precision. The open state is represented by an ensemble of conformations with inter-domain fluctuations of up to 25 Å. The data reveal a state-specific suppression of the sub-millisecond fluctuations by dynamic protein-protein interaction. Finally, the method enables localization and functional characterization of dynamic elements and domain interfaces.
Collapse
|
39
|
van Gunsteren WF, Allison JR, Daura X, Dolenc J, Hansen N, Mark AE, Oostenbrink C, Rusu VH, Smith LJ. Bestimmung von Strukturinformation aus experimentellen Messdaten für Biomoleküle. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wilfred F. van Gunsteren
- Laboratorium für Physikalische Chemie; Eidgenössische Technische Hochschule Zürich; 8093 Zürich Schweiz
| | - Jane R. Allison
- Centre for Theor. Chem. and Phys. & Institute of Natural and Mathematical Sciences; Massey Univ.; Auckland Neuseeland
- Biomolecular Interaction Centre; University of Canterbury, Christchurch; Neuseeland
- Maurice Wilkins Centre for Molecular Biodiscovery; Neuseeland
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine; Universitat Autònoma de Barcelona (UAB); 08193 Barcelona Spanien
- Catalan Institution for Research and Advanced Studies (ICREA); 08010 Barcelona Spanien
| | - Jožica Dolenc
- Laboratorium für Physikalische Chemie; Eidgenössische Technische Hochschule Zürich; 8093 Zürich Schweiz
| | - Niels Hansen
- Institut für Technische Thermodynamik und Thermische Verfahrenstechnik; Universität Stuttgart; Pfaffenwaldring 9 70569 Stuttgart Deutschland
| | - Alan E. Mark
- School of Chemistry and Molecular Biosciences; University of Queensland; St. Lucia QLD 4072 Australien
| | - Chris Oostenbrink
- Institut für Molekulare Modellierung und Simulation; Universität für Bodenkultur Wien; Wien Österreich
| | - Victor H. Rusu
- Laboratorium für Physikalische Chemie; Eidgenössische Technische Hochschule Zürich; 8093 Zürich Schweiz
| | - Lorna J. Smith
- Department of Chemistry; University of Oxford, Inorganic Chemistry Laboratory; South Parks Road Oxford OX1 3QR Großbritannien
| |
Collapse
|
40
|
van Gunsteren WF, Allison JR, Daura X, Dolenc J, Hansen N, Mark AE, Oostenbrink C, Rusu VH, Smith LJ. Deriving Structural Information from Experimentally Measured Data on Biomolecules. Angew Chem Int Ed Engl 2016; 55:15990-16010. [PMID: 27862777 DOI: 10.1002/anie.201601828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/08/2016] [Indexed: 12/27/2022]
Abstract
During the past half century, the number and accuracy of experimental techniques that can deliver values of observables for biomolecular systems have been steadily increasing. The conversion of a measured value Qexp of an observable quantity Q into structural information is, however, a task beset with theoretical and practical problems: 1) insufficient or inaccurate values of Qexp , 2) inaccuracies in the function Q(r→) used to relate the quantity Q to structure r→ , 3) how to account for the averaging inherent in the measurement of Qexp , 4) how to handle the possible multiple-valuedness of the inverse r→(Q) of the function Q(r→) , to mention a few. These apply to a variety of observable quantities Q and measurement techniques such as X-ray and neutron diffraction, small-angle and wide-angle X-ray scattering, free-electron laser imaging, cryo-electron microscopy, nuclear magnetic resonance, electron paramagnetic resonance, infrared and Raman spectroscopy, circular dichroism, Förster resonance energy transfer, atomic force microscopy and ion-mobility mass spectrometry. The process of deriving structural information from measured data is reviewed with an eye to non-experts and newcomers in the field using examples from the literature of the effect of the various choices and approximations involved in the process. A list of choices to be avoided is provided.
Collapse
Affiliation(s)
- Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Jane R Allison
- Centre for Theor. Chem. and Phys. & Institute of Natural and Mathematical Sciences, Massey Univ., Auckland, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Jožica Dolenc
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| | - Alan E Mark
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Victor H Rusu
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Lorna J Smith
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
41
|
Hohlbein J, Kapanidis AN. Probing the Conformational Landscape of DNA Polymerases Using Diffusion-Based Single-Molecule FRET. Methods Enzymol 2016; 581:353-378. [PMID: 27793286 DOI: 10.1016/bs.mie.2016.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open and closed conformations of DNA polymerases, our smFRET assays utilizing doubly labeled variants of Escherichia coli DNA polymerase I were pivotal in identifying and characterizing a partially closed conformation as a primary checkpoint for nucleotide selection. Here, we provide a comprehensive overview of the methods we used for the conformational analysis of wild-type DNA polymerase and some of its low-fidelity derivatives; these methods include strategies for protein labeling and our procedures for solution-based single-molecule fluorescence data acquisition and data analysis. We also discuss alternative single-molecule fluorescence strategies for analyzing the conformations of DNA polymerases in vitro and in vivo.
Collapse
Affiliation(s)
- J Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Wageningen, The Netherlands; Microspectroscopy Centre, Wageningen University and Research, Wageningen, The Netherlands.
| | - A N Kapanidis
- Clarendon Laboratory, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
42
|
Combined use of optical spectroscopy and computational methods to study the binding and the photoinduced conformational modification of proteins when NMR and X-ray structural determinations are not an option. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016. [PMID: 24018324 DOI: 10.1016/b978-0-12-416596-0.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The functions of proteins depend on their interactions with various ligands and these interactions are controlled by the structure of the polypeptides. If one can manipulate the structure of proteins, their functions can in principle be modulated. The issue of protein structure-function relationship is not only a central problem in biophysics, but is becoming clear that the ability to "artificially" modify the structure of proteins could be relevant in fields beyond the biomedical area to provide, for instance, light responses in proteins which would not possess such properties in their native state. This chapter presents an overview of the combination of optical electronic and vibrational spectroscopy with various computational methods to investigate the binding between photoactive ligands and proteins.
Collapse
|
43
|
Gauer J, LeBlanc S, Hao P, Qiu R, Case B, Sakato M, Hingorani M, Erie D, Weninger K. Single-Molecule FRET to Measure Conformational Dynamics of DNA Mismatch Repair Proteins. Methods Enzymol 2016; 581:285-315. [PMID: 27793283 PMCID: PMC5423442 DOI: 10.1016/bs.mie.2016.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Single-molecule FRET measurements have a unique sensitivity to protein conformational dynamics. The FRET signals can either be interpreted quantitatively to provide estimates of absolute distance in a molecule configuration or can be qualitatively interpreted as distinct states, from which quantitative kinetic schemes for conformational transitions can be deduced. Here we describe methods utilizing single-molecule FRET to reveal the conformational dynamics of the proteins responsible for DNA mismatch repair. Experimental details about the proteins, DNA substrates, fluorescent labeling, and data analysis are included. The complementarity of single molecule and ensemble kinetic methods is discussed as well.
Collapse
Affiliation(s)
- J.W. Gauer
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - S. LeBlanc
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - P. Hao
- North Carolina State University, Raleigh, NC, United States
| | - R. Qiu
- North Carolina State University, Raleigh, NC, United States
| | - B.C. Case
- Wesleyan University, Middletown, CT, United States
| | - M. Sakato
- Wesleyan University, Middletown, CT, United States
| | | | - D.A. Erie
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Corresponding authors: ;
| | - K.R. Weninger
- North Carolina State University, Raleigh, NC, United States,Corresponding authors: ;
| |
Collapse
|
44
|
Hildebrandt LL, Preus S, Birkedal V. Quantitative single molecule FRET efficiencies using TIRF microscopy. Faraday Discuss 2015; 184:131-42. [PMID: 26416760 DOI: 10.1039/c5fd00100e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Förster resonance energy transfer (FRET) microscopy at the single molecule level has the potential to yield information on intra and intermolecular distances within the 2-10 nm range of molecules or molecular complexes that undergo frequent conformation changes. A pre-requirement for obtaining accurate distance information is to determine quantitative instrument independent FRET efficiency values. Here, we applied and evaluated a procedure to determine quantitative FRET efficiencies directly from individual fluorescence time traces of surface immobilized DNA molecules without the need for external calibrants. To probe the robustness of the approach over a wide range of FRET efficiencies we used a set of doubly labelled double stranded DNA samples, where the acceptor position was varied systematically. Interestingly, we found that fluorescence contributions arising from direct acceptor excitation following donor excitation are intrinsically taken into account in these conditions as other correction factors can compensate for inaccurate values of these parameters. We give here guidelines, that can be used through tools within the iSMS software (), for determining quantitative FRET and assess uncertainties linked with the procedure. Our results provide insights into the experimental parameters governing quantitative FRET determination, which is essential for obtaining accurate structural information from a wide range of biomolecules.
Collapse
Affiliation(s)
- Lasse L Hildebrandt
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
| | | | | |
Collapse
|
45
|
Metskas LA, Rhoades E. Conformation and Dynamics of the Troponin I C-Terminal Domain: Combining Single-Molecule and Computational Approaches for a Disordered Protein Region. J Am Chem Soc 2015; 137:11962-9. [PMID: 26327565 DOI: 10.1021/jacs.5b04471] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In recent years, single-molecule Förster resonance energy transfer (smFRET) has emerged as a critical and flexible tool in structural biology, particularly in the study of highly dynamic regions and molecular assemblies. The usefulness of smFRET can be further extended by combining it with computational approaches, marrying the coarse-grained experimental data with higher-resolution in silico calculations. Here we use smFRET to determine six pairwise distances within the intrinsically disordered C-terminal domain of the troponin I subunit (TnIC) of the cardiac troponin complex. We used published conflicting structures of TnIC as starting models for molecular dynamics simulations, which were validated through successful comparison with smFRET measurements before extracting information on conformational dynamics. We find that pairwise distances between residues fluctuate widely in silico, but simulations are generally in good agreement with longer time scale smFRET measurements after averaging across time. Finally, Monte Carlo simulations establish that the lower-energy conformers of TnIC are indeed varied, but that the highest-sampled clusters resemble the published, conflicting models. In this way, we find that the controversial structures are simply stabilized local minima of this dynamic region, and a population including all three would still be consistent with spectroscopic measurements. Taken together, the combined approaches described here allow us to critically evaluate existing models of TnIC, giving insight into the conformation and dynamics of TnIC's disordered state prior to its probable disorder-order transition. Moreover, they provide a framework for combining computational and experimental methods with different time scales for the study of disordered and dynamic protein states.
Collapse
Affiliation(s)
- Lauren Ann Metskas
- Department of Molecular Biophysics and Biochemistry, ‡Department of Physics, and §Integrated Graduate Program in Physical and Engineering Biology, Yale University , New Haven, Connecticut 06520, United States
| | - Elizabeth Rhoades
- Department of Molecular Biophysics and Biochemistry, ‡Department of Physics, and §Integrated Graduate Program in Physical and Engineering Biology, Yale University , New Haven, Connecticut 06520, United States
| |
Collapse
|
46
|
Claxton DP, Kazmier K, Mishra S, Mchaourab HS. Navigating Membrane Protein Structure, Dynamics, and Energy Landscapes Using Spin Labeling and EPR Spectroscopy. Methods Enzymol 2015; 564:349-87. [PMID: 26477257 DOI: 10.1016/bs.mie.2015.07.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A detailed understanding of the functional mechanism of a protein entails the characterization of its energy landscape. Achieving this ambitious goal requires the integration of multiple approaches including determination of high-resolution crystal structures, uncovering conformational sampling under distinct biochemical conditions, characterizing the kinetics and thermodynamics of transitions between functional intermediates using spectroscopic techniques, and interpreting and harmonizing the data into novel computational models. With increasing sophistication in solution-based and ensemble-oriented biophysical approaches such as electron paramagnetic resonance (EPR) spectroscopy, atomic resolution structural information can be directly linked to conformational sampling in solution. Here, we detail how recent methodological and technological advances in EPR spectroscopy have contributed to the elucidation of membrane protein mechanisms. Furthermore, we aim to assist investigators interested in pursuing EPR studies by providing an introduction to the technique, a primer on experimental design, and a description of the practical considerations of the method toward generating high quality data.
Collapse
Affiliation(s)
- Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Kelli Kazmier
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
47
|
Kulesza A, Daly S, MacAleese L, Antoine R, Dugourd P. Structural exploration and Förster theory modeling for the interpretation of gas-phase FRET measurements: Chromophore-grafted amyloid-β peptides. J Chem Phys 2015; 143:025101. [DOI: 10.1063/1.4926390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Alexander Kulesza
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Steven Daly
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Luke MacAleese
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Rodolphe Antoine
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Philippe Dugourd
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| |
Collapse
|
48
|
Abstract
FRET (Förster Resonance Energy Transfer) microscopy breaks the resolution limit of light to let us investigate the conformation and function of proteins within living cells. Intensity-based methods are the most popular and direct approach to detect FRET. Among them, detection of sensitized emission signals and ratio imaging of specially designed FRET sensors are routinely used in modern cell biology laboratories. In this chapter, we provide protocols for both these techniques. We guide the reader through the mathematical corrections necessary to calculate the sensitized emission image. We illustrate this approach with an example of studying the interaction of nexin (SNX1) proteins. In the ratio FRET protocol, we focus on monitoring changes in cellular concentration of cAMP with an EPAC-based FRET sensor.
Collapse
|
49
|
Matsunaga Y, Kidera A, Sugita Y. Sequential data assimilation for single-molecule FRET photon-counting data. J Chem Phys 2015; 142:214115. [DOI: 10.1063/1.4921983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yasuhiro Matsunaga
- Advanced Institute for Computational Science, RIKEN, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Akinori Kidera
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yuji Sugita
- Advanced Institute for Computational Science, RIKEN, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- iTHES, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Quantitative Biology Center, RIKEN, International Medical Device Alliance (IMDA) 6F, 1-6-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
50
|
Khrenova M, Topol I, Collins J, Nemukhin A. Estimating orientation factors in the FRET theory of fluorescent proteins: the TagRFP-KFP pair and beyond. Biophys J 2015; 108:126-32. [PMID: 25564859 PMCID: PMC4286598 DOI: 10.1016/j.bpj.2014.11.1859] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/20/2014] [Accepted: 11/06/2014] [Indexed: 11/29/2022] Open
Abstract
The orientation factor κ(2), one of the key parameters defining Förster resonance energy transfer efficiency, is determined by the transition dipole moment orientations of the donor and acceptor species. Using the results of quantum chemical and quantum mechanical/molecular mechanical calculations for the chromophore-containing pockets in selected colored proteins of the green fluorescent protein family, we derived transition dipole moments corresponding to the S0,min → S1 excitation for green fluorescent protein, red fluorescent protein (TagRFP), and kindling fluorescent protein, and the S1,min → S0 emission for TagRFP. These data allowed us to estimate κ(2) values for the TagRFP-linker-kindling fluorescent protein tetrameric complex required for constructing novel sensors.
Collapse
Affiliation(s)
- Maria Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Igor Topol
- Advanced Biomedical Computing Center, Information Systems Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| | - Jack Collins
- Advanced Biomedical Computing Center, Information Systems Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Alexander Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation; Emanuel Institute of Biochemical Physics, Moscow, Russian Federation
| |
Collapse
|