1
|
Sykes EME, Mateo-Estrada V, Muzaleva A, Zhanel G, Dettman J, Chapados J, Gerdis S, Akineden Ö, Castillo-Ramírez S, Khan IUH, Kumar A. Characterization of a colistin resistant, hypervirulent hospital isolate of Acinetobacter courvalinii from Canada. Eur J Clin Microbiol Infect Dis 2024; 43:1939-1949. [PMID: 39073669 DOI: 10.1007/s10096-024-04873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
Non-baumannii Acinetobacter spp. are becoming more prevalent in clinical settings including those that present resistance to last-resort antibiotics such as colistin. AB222-IK40 is an Acinetobacter courvalinii strain isolated from the Ottawa Hospital Research Institute located in Ottawa, Canada. To our knowledge, it is the first report of clinical A. courvalinii in Canada. Based on the susceptibility profile, AB222-IK40 is resistant to colistin and non-susceptible to ertapenem. Whole-genome sequencing allowed for genomic investigation into colistin resistance mechanisms. No previously identified mechanism(s) were observed, but a mobile colistin resistance (mcr)-like gene and a UDP-glucose dehydrogenase gene were identified. Based on phylogenomic analyses, the mcr-like gene is an intrinsic phosphoethanolamine transferase. This gene family is implicated in one of the many mechanisms responsible for colistin resistance in Acinetobacter baumannii as well as Acinetobacter modestus. UDP-glucose dehydrogenase is involved in colistin resistance in Enterobacterales and has been shown to be involved in capsule formation in A. baumannii. Global lipidomics revealed greater abundance of phosphatidyl-myo-inositol and lyso-phosphatidyl ethanolamine moieties in the membrane of A. courvalinii than in A. baumannii. Lipidomic profiles showed differences that were probably responsible for the colistin resistance phenotype in AB222-IK40. This isolate was also hypervirulent based on survival assays in Galleria mellonella. As this is the first report of A. courvalinii from a hospital in Canada, this species may be an emerging clinical pathogen, and therefore, it is important to understand this mechanism of its colistin resistance and hypervirulence.
Collapse
Affiliation(s)
- Ellen M E Sykes
- Department of Microbiology, University of Manitoba Winnipeg, Winnipeg, MB, R3T 2N2, Canada
| | - Valeria Mateo-Estrada
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Anna Muzaleva
- Department of Microbiology, University of Manitoba Winnipeg, Winnipeg, MB, R3T 2N2, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Jeremy Dettman
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Julie Chapados
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Suzanne Gerdis
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Ömer Akineden
- Dairy Sciences, Institute of Veterinary Food Science, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Izhar U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba Winnipeg, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
2
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Hussein M, Jasim R, Gocol H, Baker M, Thombare VJ, Ziogas J, Purohit A, Rao GG, Li J, Velkov T. Comparative Proteomics of Outer Membrane Vesicles from Polymyxin-Susceptible and Extremely Drug-Resistant Klebsiella pneumoniae. mSphere 2023; 8:e0053722. [PMID: 36622250 PMCID: PMC9942579 DOI: 10.1128/msphere.00537-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 01/10/2023] Open
Abstract
Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria serve as transporters for the delivery of cargo such as virulence and antibiotic resistance factors. OMVs play a key role in the defense against membrane-targeting antibiotics such as the polymyxin B. Herein, we conducted comparative proteomics of OMVs from paired Klebsiella pneumoniae ATCC 700721 polymyxin-susceptible (polymyxin B MIC = 0.5 mg/L) and an extremely resistant (polymyxin B MIC ≥128 mg/L), following exposure to 2 mg/L of polymyxin B. Comparative profiling of the OMV subproteome of each strain revealed proteins from multiple perturbed pathways, particularly in the polymyxin-susceptible strain, including outer membrane assembly (lipopolysaccharide, O-antigen, and peptidoglycan biosynthesis), cationic antimicrobial peptide resistance, β-lactam resistance, and quorum sensing. In the polymyxin-susceptible strain, polymyxin B treatment reduced the expression of OMV proteins in the pathways related to adhesion, virulence, and the cell envelope stress responses, whereas, in the polymyxin-resistant strain, the proteins involved in LPS biosynthesis, RNA degradation, and nucleotide excision repair were significantly overexpressed in response to polymyxin B treatment. Intriguingly, the key polymyxin resistance enzymes 4-amino-4-deoxy-l-arabinose transferase and the PhoPQ two-component protein kinase were significantly downregulated in the OMVs of the polymyxin-susceptible strain. Additionally, a significant reduction in class A β-lactamase proteins was observed following polymyxin B treatment in the OMVs of both strains, particularly the OMVs of the polymyxin-susceptible strain. These findings shed new light on the OMV subproteome of extremely polymyxin resistant K. pneumoniae, which putatively may serve as active decoys to make the outer membrane more impervious to polymyxin attack. IMPORTANCE OMVs can help bacteria to fight antibiotics not only by spreading antibiotic resistance genes but also by acting as protective armor against antibiotics. By employing proteomics, we found that OMVs have a potential role in shielding K. pneumoniae and acting as decoys to polymyxin attack, through declining the export of proteins (e.g., 4-amino-4-deoxy-l-arabinose transferase) involved in polymyxin resistance. Furthermore, polymyxin B treatment of both strains leads to shedding of the OMVs with perturbed proteins involved in outer membrane remodeling (e.g., LPS biosynthesis) as well as pathogenic potential of K. pneumoniae (e.g., quorum sensing). The problematic extended spectrum beta-lactamases SHV and TEM were significantly reduced in both strains, suggesting that polymyxin B may act as a potentiator to sensitize the bacterium to β-lactam antibiotics. This study highlights the importance of OMVs as "molecular mules" for the intercellular transmission and delivery of resistance and cellular repair factors in the bacterial response to polymyxins.
Collapse
Affiliation(s)
- Maytham Hussein
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Raad Jasim
- Department of Pharmacology, College of Pharmacy, University of Babylon, Iraq
| | - Hakan Gocol
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark Baker
- Discipline of Biological Sciences, Priority Research Centre in Reproductive Biology, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Varsha J. Thombare
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - James Ziogas
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Aayush Purohit
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Joo H, Eom H, Cho Y, Rho M, Song WJ. Discovery and Characterization of Polymyxin-Resistance Genes pmrE and pmrF from Sediment and Seawater Microbiome. Microbiol Spectr 2023; 11:e0273622. [PMID: 36602384 PMCID: PMC9927302 DOI: 10.1128/spectrum.02736-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Polymyxins are the last-line antibiotics used to treat Gram-negative pathogens. Thus, the discovery and biochemical characterization of the resistance genes against polymyxins are urgently needed for diagnosis, treatment, and novel antibiotic design. Herein, we report novel polymyxin-resistance genes identified from sediment and seawater microbiome. Despite their low sequence identity against the known pmrE and pmrF, they show in vitro activities in UDP-glucose oxidation and l-Ara4N transfer to undecaprenyl phosphate, respectively, which occur as the part of lipid A modification that leads to polymyxin resistance. The expression of pmrE and pmrF also showed substantially high MICs in the presence of vanadate ions, indicating that they constitute polymyxin resistomes. IMPORTANCE Polymyxins are one of the last-resort antibiotics. Polymyxin resistance is a severe threat to combat multidrug-resistant pathogens. Thus, up-to-date identification and understanding of the related genes are crucial. Herein, we performed structure-guided sequence and activity analysis of five putative polymyxin-resistant metagenomes. Despite relatively low sequence identity to the previously reported polymyxin-resistance genes, at least four out of five discovered genes show reactivity essential for lipid A modification and polymyxin resistance, constituting antibiotic resistomes.
Collapse
Affiliation(s)
- Hwanjin Joo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyunuk Eom
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Youna Cho
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
- Department of Biomedical Informatics, Hanyang University, Seoul, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Riegert AS, Raushel FM. Functional and Structural Characterization of the UDP-Glucose Dehydrogenase Involved in Capsular Polysaccharide Biosynthesis from Campylobacter jejuni. Biochemistry 2021; 60:725-734. [PMID: 33621065 DOI: 10.1021/acs.biochem.0c00953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Campylobacter jejuni is a pathogenic organism that can cause campylobacteriosis in children and adults. Most commonly, campylobacter infection is brought on by consumption of raw or undercooked poultry, unsanitary drinking water, or pet feces. Surrounding the C. jejuni bacterium is a coat of sugar molecules known as the capsular polysaccharide (CPS). The capsular polysaccharide can be very diverse among the different strains of C. jejuni, and this diversity is considered important for evading the host immune system. Modifications to the CPS of C. jejuni NCTC 11168 include O-methylation, phosphoramidylation, and amidation of glucuronate with either serinol or ethanolamine. The enzymes responsible for amidation of glucuronate are currently unknown. In this study, Cj1441, an enzyme expressed from the CPS biosynthetic gene cluster in C. jejuni NCTC 11168, was shown to catalyze the oxidation of UDP-α-d-glucose into UDP-α-d-glucuronic acid with NAD+ as the cofactor. No amide products were found in an attempt to determine whether the putative thioester intermediate formed during the oxidation of UDP-glucose by Cj1441 could be captured in the presence of added amines. The three-dimensional crystal structure of Cj1441 was determined in the presence of NAD+ and UDP-glucose bound in the active site of the enzyme (Protein Data Bank entry 7KWS). A more thorough bioinformatic analysis of the CPS gene cluster suggests that the amidation activity is localized to the t-terminal half of Cj1438, a bifunctional enzyme that is currently annotated as a sugar transferase.
Collapse
Affiliation(s)
- Alexander S Riegert
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Frank M Raushel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Cesur MF, Siraj B, Uddin R, Durmuş S, Çakır T. Network-Based Metabolism-Centered Screening of Potential Drug Targets in Klebsiella pneumoniae at Genome Scale. Front Cell Infect Microbiol 2020; 9:447. [PMID: 31993376 PMCID: PMC6970976 DOI: 10.3389/fcimb.2019.00447] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 12/12/2019] [Indexed: 01/28/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic bacterial pathogen leading to life-threatening nosocomial infections. Emergence of highly resistant strains poses a major challenge in the management of the infections by healthcare-associated K. pneumoniae isolates. Thus, despite intensive efforts, the current treatment strategies remain insufficient to eradicate such infections. Failure of the conventional infection-prevention and treatment efforts explicitly indicates the requirement of new therapeutic approaches. This prompted us to systematically analyze the K. pneumoniae metabolism to investigate drug targets. Genome-scale metabolic networks (GMNs) facilitating the systematic analysis of the metabolism are promising platforms. Thus, we used a GMN of K. pneumoniae MGH 78578 to determine putative targets through gene- and metabolite-centric approaches. To develop more realistic infection models, we performed the bacterial growth simulations within different host-mimicking media, using an improved biomass formation reaction. We selected more suitable targets based on several property-based prioritization procedures. KdsA was identified as the high-ranked putative target satisfying most of the target prioritization criteria specified under the gene-centric approach. Through a structure-based virtual screening protocol, we identified potential KdsA inhibitors. In addition, the metabolite-centric approach extended the drug target list based on synthetic lethality. This revealed the importance of combined metabolic analyses for a better understanding of the metabolism. To our knowledge, this is the first comprehensive effort on the investigation of the K. pneumoniae metabolism for drug target prediction through the constraint-based analysis of its GMN in conjunction with several bioinformatic approaches. This study can guide the researchers for the future drug designs by providing initial findings regarding crucial components of the Klebsiella metabolism.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| | - Bushra Siraj
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Saliha Durmuş
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| | - Tunahan Çakır
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
7
|
Ishizaki S, Papry RI, Miyake H, Narita Y, Okabe S. Membrane Fouling Potentials of an Exoelectrogenic Fouling-Causing Bacterium Cultured With Different External Electron Acceptors. Front Microbiol 2019; 9:3284. [PMID: 30692973 PMCID: PMC6340052 DOI: 10.3389/fmicb.2018.03284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/17/2018] [Indexed: 01/05/2023] Open
Abstract
Integrated microbial fuel cell (MFC) and membrane bioreactor (MBR) systems are a promising cost-effective and energy-saving technology for wastewater treatment. Membrane fouling is still an important issue of such integrated systems in which aeration (oxygen) is replaced with anode electrodes (anodic respiration). Here, we investigated the effect of culture conditions on the membrane fouling potential of fouling-causing bacteria (FCB). In the present study, Klebsiella quasipneumoniae strain S05, which is an exoelectrogenic FCB isolated from a MBR treating municipal wastewater, was cultured with different external electron acceptors (oxygen, nitrate, and solid-state anode electrode). As results, the fouling potential of S05 was lowest when cultured with anode electrode and highest without any external electron acceptor (p < 0.05, respectively). The composition of soluble microbial products (SMP) and extracellular polymeric substances (EPS) was also dependent on the type of electron acceptor. Protein and biopolymer contents in SMP were highly correlated with the fouling potential (R2 = 0.73 and 0.81, respectively). Both the fouling potential and yield of protein and biopolymer production were significantly mitigated by supplying electron acceptors sufficiently regardless of its types. Taken together, the aeration of MBR could be replaced with solid-state anode electrodes without enhancement of membrane fouling, and the anode electrodes must be placed sufficiently to prevent the dead spaces in the integrated reactor.
Collapse
Affiliation(s)
- So Ishizaki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Rimana Islam Papry
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Hiroshi Miyake
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Yuko Narita
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Savov E, Todorova I, Politi L, Trifonova A, Borisova M, Kioseva E, Tsakris A. Colistin Resistance in KPC-2- and SHV-5-Producing Klebsiella pneumoniae Clinical Isolates in Bulgaria. Chemotherapy 2017; 62:339-342. [DOI: 10.1159/000464275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/18/2017] [Indexed: 11/19/2022]
Abstract
Background/Aims: Colistin resistance is increasingly recognized among carbapenemase-producing Klebsiella pneumoniae isolates in several European regions. The current study documents the appearance of colistin resistance among KPC-2 and SHV-5-produning K. pneumoniae strains in Bulgaria. Methods: Four colistin-resistant K. pneumoniae isolates were recovered from 2 patients hospitalized in the anesthesiology and resuscitation clinic of a tertiary care university hospital in Sofia, Bulgaria. Microbial identification and antimicrobial susceptibility testing was performed by Vitek 2 (Biomerieux, France). β-Lactamase genes were amplified using a panel of primers for detection of all MBL-types, KPCs, plasmid-mediated AmpCs in single PCR reactions, OXA-type carbapenemases, extended-spectrum β-lactamases (ESBLs) and TEM enzymes. The colistin-resistant mcr-1 gene was also investigated using previously described primers and conditions. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to investigate clonality. Results: The 4 K. pneumoniae isolates exhibited colistin MICs >16 mg/L and showed multidrug-resistant phenotypes, remaining intermediately susceptible only to gentamicin. They were clustered into a single PFGE clonal type and MLST assigned them to sequence type 258. All isolates possessed KPC-2 carbapenemase and SHV-5 ESBL. They were negative for the plasmid-mediated colistin-resistant mcr-1 gene, possibly implying an intrinsic mechanism of resistance. Conclusions: Although colistin use in Bulgaria only started moderately during 2014, the findings of the current study notify the appearance of colistin resistance among carbapenemase-producing Klebsiella species in another European region.
Collapse
|
9
|
Kaur M, Jayaraman G. Hyaluronan production and molecular weight is enhanced in pathway-engineered strains of lactate dehydrogenase-deficient Lactococcus lactis. Metab Eng Commun 2016; 3:15-23. [PMID: 29468110 PMCID: PMC5779726 DOI: 10.1016/j.meteno.2016.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/08/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
The potential advantages of hyaluronic acid (HA) production by metabolically-engineered Lactococcus lactis is constrained by the lower molecular weight and yield of HA obtained in these strains, compared to natural producers. Earlier studies have correlated lower HA yield with excessive lactate production in L. lactis cultures (Chauhan et al., 2014). In the present study, a three-fold increase was observed in the amount as well as molecular weight of HA produced by recombinant ldh-mutant L. lactis strains. The diversion from lactate production in the ldh-mutant strains resulted in excess ethanol and acetoin production and higher NAD+/NADH ratio in these cultures. The initial NAD+/NADH ratio showed a positive correlation with HA molecular weight as well as with the HA-precursor ratio (UDP-GlcUA/UDP-GlcNAc). The influence of NAD+/NADH ratio on regulation of the concerned metabolic pathways was assessed by transcriptional analysis of key genes having putative binding sites of the NADH-binding transcriptional factor, Rex.
Collapse
Affiliation(s)
| | - Guhan Jayaraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
10
|
NADPH oxidase-derived H2O2 subverts pathogen signaling by oxidative phosphotyrosine conversion to PB-DOPA. Proc Natl Acad Sci U S A 2016; 113:10406-11. [PMID: 27562167 DOI: 10.1073/pnas.1605443113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Strengthening the host immune system to fully exploit its potential as antimicrobial defense is vital in countering antibiotic resistance. Chemical compounds released during bidirectional host-pathogen cross-talk, which follows a sensing-response paradigm, can serve as protective mediators. A potent, diffusible messenger is hydrogen peroxide (H2O2), but its consequences on extracellular pathogens are unknown. Here we show that H2O2, released by the host on pathogen contact, subverts the tyrosine signaling network of a number of bacteria accustomed to low-oxygen environments. This defense mechanism uses heme-containing bacterial enzymes with peroxidase-like activity to facilitate phosphotyrosine (p-Tyr) oxidation. An intrabacterial reaction converts p-Tyr to protein-bound dopa (PB-DOPA) via a tyrosinyl radical intermediate, thereby altering antioxidant defense and inactivating enzymes involved in polysaccharide biosynthesis and metabolism. Disruption of bacterial signaling by DOPA modification reveals an infection containment strategy that weakens bacterial fitness and could be a blueprint for antivirulence approaches.
Collapse
|
11
|
Singh S, Michalska K, Bigelow L, Endres M, Kharel MK, Babnigg G, Yennamalli RM, Bingman CA, Joachimiak A, Thorson JS, Phillips GN. Structural Characterization of CalS8, a TDP-α-D-Glucose Dehydrogenase Involved in Calicheamicin Aminodideoxypentose Biosynthesis. J Biol Chem 2015; 290:26249-58. [PMID: 26240141 DOI: 10.1074/jbc.m115.673459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-α-d-glucose (UDP-Glc) to the key metabolic precursor UDP-α-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a >15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8·substrate·cofactor ternary complex (at 2.47 and 1.95 Å resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process.
Collapse
Affiliation(s)
- Shanteri Singh
- From the Center for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596
| | - Karolina Michalska
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Lance Bigelow
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Michael Endres
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Madan K Kharel
- the School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland 21853
| | - Gyorgy Babnigg
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Ragothaman M Yennamalli
- the Department of BioSciences, Department of Chemistry, Rice University, Houston, Texas 77005
| | - Craig A Bingman
- the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Andrzej Joachimiak
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Jon S Thorson
- From the Center for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596,
| | - George N Phillips
- the Department of BioSciences, Department of Chemistry, Rice University, Houston, Texas 77005 the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| |
Collapse
|
12
|
Fischer U, Hertlein S, Grimm C. The structure of apo ArnA features an unexpected central binding pocket and provides an explanation for enzymatic cooperativity. ACTA ACUST UNITED AC 2015; 71:687-96. [PMID: 25760615 DOI: 10.1107/s1399004714026686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022]
Abstract
The bacterial protein ArnA is an essential enzyme in the pathway leading to the modification of lipid A with the pentose sugar 4-amino-4-deoxy-L-arabinose. This modification confers resistance to polymyxins, which are antibiotics that are used as a last resort to treat infections with multiple drug-resistant Gram-negative bacteria. ArnA contains two domains with distinct catalytic functions: a dehydrogenase domain and a transformylase domain. The protein forms homohexamers organized as a dimer of trimers. Here, the crystal structure of apo ArnA is presented and compared with its ATP- and UDP-glucuronic acid-bound counterparts. The comparison reveals major structural rearrangements in the dehydrogenase domain that lead to the formation of a previously unobserved binding pocket at the centre of each ArnA trimer in its apo state. In the crystal structure, this pocket is occupied by a DTT molecule. It is shown that formation of the pocket is linked to a cascade of structural rearrangements that emerge from the NAD(+)-binding site. Based on these findings, a small effector molecule is postulated that binds to the central pocket and modulates the catalytic properties of ArnA. Furthermore, the discovered conformational changes provide a mechanistic explanation for the strong cooperative effect recently reported for the ArnA dehydrogenase function.
Collapse
Affiliation(s)
- Utz Fischer
- Department of Biochemistry, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Simon Hertlein
- Department of Biochemistry, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Clemens Grimm
- Department of Biochemistry, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
13
|
Colistin resistance mechanisms in Klebsiella pneumoniae strains from Taiwan. Antimicrob Agents Chemother 2015; 59:2909-13. [PMID: 25691646 DOI: 10.1128/aac.04763-14] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/11/2015] [Indexed: 11/20/2022] Open
Abstract
Colistin is one of the antibiotics of last resort for the treatment of carbapenem-resistant Klebsiella pneumoniae infection. This study showed that capsular type K64 (50%) and ST11 (53.9%) are the prevalent capsular and sequence types in the colistin-resistant strains in Taiwan. The interruption of transcripts (38.5%) and amino acid mutation (15.4%) in mgrB are the major mechanisms contributing to colistin resistance. In addition, novel single amino acid changes in MgrB (Stop48Tyr) and PhoQ (Leu26Pro) were observed to contribute to colistin resistance.
Collapse
|
14
|
Shi L, Ji B, Kolar-Znika L, Boskovic A, Jadeau F, Combet C, Grangeasse C, Franjevic D, Talla E, Mijakovic I. Evolution of bacterial protein-tyrosine kinases and their relaxed specificity toward substrates. Genome Biol Evol 2015; 6:800-17. [PMID: 24728941 PMCID: PMC4007543 DOI: 10.1093/gbe/evu056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It has often been speculated that bacterial protein-tyrosine kinases (BY-kinases) evolve rapidly and maintain relaxed substrate specificity to quickly adopt new substrates when evolutionary pressure in that direction arises. Here, we report a phylogenomic and biochemical analysis of BY-kinases, and their relationship to substrates aimed to validate this hypothesis. Our results suggest that BY-kinases are ubiquitously distributed in bacterial phyla and underwent a complex evolutionary history, affected considerably by gene duplications and horizontal gene transfer events. This is consistent with the fact that the BY-kinase sequences represent a high level of substitution saturation and have a higher evolutionary rate compared with other bacterial genes. On the basis of similarity networks, we could classify BY kinases into three main groups with 14 subgroups. Extensive sequence conservation was observed only around the three canonical Walker motifs, whereas unique signatures proposed the functional speciation and diversification within some subgroups. The relationship between BY-kinases and their substrates was analyzed using a ubiquitous substrate (Ugd) and some Firmicute-specific substrates (YvyG and YjoA) from Bacillus subtilis. No evidence of coevolution between kinases and substrates at the sequence level was found. Seven BY-kinases, including well-characterized and previously uncharacterized ones, were used for experimental studies. Most of the tested kinases were able to phosphorylate substrates from B. subtilis (Ugd, YvyG, and YjoA), despite originating from very distant bacteria. Our results are consistent with the hypothesis that BY-kinases have evolved relaxed substrate specificity and are probably maintained as rapidly evolving platforms for adopting new substrates.
Collapse
Affiliation(s)
- Lei Shi
- INRA-AgroParisTech UMR 1319, Micalis-CBAI, Thiverval-Grignon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mainprize IL, Bean JD, Bouwman C, Kimber MS, Whitfield C. The UDP-glucose dehydrogenase of Escherichia coli K-12 displays substrate inhibition by NAD that is relieved by nucleotide triphosphates. J Biol Chem 2013; 288:23064-74. [PMID: 23792965 DOI: 10.1074/jbc.m113.486613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UDP-glucose dehydrogenase (Ugd) generates UDP-glucuronic acid, an important precursor for the production of many hexuronic acid-containing bacterial surface glycostructures. In Escherichia coli K-12, Ugd is important for biosynthesis of the environmentally regulated exopolysaccharide known as colanic acid, whereas in other E. coli isolates, the same enzyme is required for production of the constitutive group 1 capsular polysaccharides, which act as virulence determinants. Recent studies have implicated tyrosine phosphorylation in the activation of Ugd from E. coli K-12, although it is not known if this is a feature shared by bacterial Ugd proteins. The activities of Ugd from E. coli K-12 and from the group 1 capsule prototype (serotype K30) were compared. Surprisingly, for both enzymes, site-directed Tyr → Phe mutants affecting the previously proposed phosphorylation site retained similar kinetic properties to the wild-type protein. Purified Ugd from E. coli K-12 had significant levels of NAD substrate inhibition, which could be alleviated by the addition of ATP and several other nucleotide triphosphates. Mutations in a previously identified UDP-glucuronic acid allosteric binding site decreased the binding affinity of the nucleotide triphosphate. Ugd from E. coli serotype K30 was not inhibited by NAD, but its activity still increased in the presence of ATP.
Collapse
Affiliation(s)
- Iain L Mainprize
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
16
|
Sakuraba H, Kawai T, Yoneda K, Ohshima T. Structure of a UDP-glucose dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1003-7. [PMID: 22949183 PMCID: PMC3433186 DOI: 10.1107/s1744309112030667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/04/2012] [Indexed: 06/01/2023]
Abstract
The crystal structure of an extremely thermostable UDP-glucose dehydrogenase (UDP-GDH) from the hyperthermophilic archaeon Pyrobaculum islandicum was determined at a resolution of 2.0 Å. The overall fold was comprised of an N-terminal NAD(+) dinucleotide binding domain and a C-terminal UDP-sugar binding domain connected by a long α-helix, and the main-chain coordinates of the enzyme were similar to those of previously studied UDP-GDHs, including the enzymes from Burkholderia cepacia, Streptococcus pyogenes and Klebsiella pneumoniae. However, the sizes of several surface loops in P. islandicum UDP-GDH were much smaller than the corresponding loops in B. cepacia UDP-GDH but were comparable to those of the S. pyogenes and K. pneumoniae enzymes. Structural comparison revealed that the presence of extensive intersubunit hydrophobic interactions, as well as the formation of an intersubunit aromatic pair network, is likely to be the main factor contributing to the hyperthermostability of P. islandicum UDP-GDH.
Collapse
Affiliation(s)
- Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Tomoyuki Kawai
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, Aso, Kumamoto 869-1404, Japan
| | - Toshihisa Ohshima
- Microbial Genetics Division, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
17
|
Eixelsberger T, Brecker L, Nidetzky B. Catalytic mechanism of human UDP-glucose 6-dehydrogenase: in situ proton NMR studies reveal that the C-5 hydrogen of UDP-glucose is not exchanged with bulk water during the enzymatic reaction. Carbohydr Res 2012; 356:209-14. [PMID: 22525098 PMCID: PMC3387377 DOI: 10.1016/j.carres.2012.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 11/18/2022]
Abstract
Human UDP-glucose 6-dehydrogenase (hUGDH) catalyzes the biosynthetic oxidation of UDP-glucose into UDP-glucuronic acid. The catalytic reaction proceeds in two NAD+-dependent steps via covalent thiohemiacetal and thioester enzyme intermediates. Formation of the thiohemiacetal adduct occurs through attack of Cys276 on C-6 of the UDP-gluco-hexodialdose produced in the first oxidation step. Because previous studies of the related enzyme from bovine liver had suggested loss of the C-5 hydrogen from UDP-gluco-hexodialdose due to keto-enol tautomerism, we examined incorporation of solvent deuterium into product(s) of UDP-glucose oxidation by hUGDH. We used wild-type enzyme and a slow-reacting Glu161→Gln mutant that accumulates the thioester adduct at steady state. In situ proton NMR measurements showed that UDP-glucuronic acid was the sole detectable product of both enzymatic transformations. The product contained no deuterium at C-5 within the detection limit (⩽2%). The results are consistent with the proposed mechanistic idea for hUGDH that incipient UDP-gluco-hexodialdose is immediately trapped by thiohemiacetal adduct formation.
Collapse
Affiliation(s)
- Thomas Eixelsberger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, A-8010 Graz, Austria
| | - Lothar Brecker
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, A-1090 Vienna, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, A-8010 Graz, Austria
- Corresponding author. Tel.: +43 316 873 8400; fax: +43 316 873 8434.
| |
Collapse
|
18
|
Egger S, Chaikuad A, Klimacek M, Kavanagh KL, Oppermann U, Nidetzky B. Structural and kinetic evidence that catalytic reaction of human UDP-glucose 6-dehydrogenase involves covalent thiohemiacetal and thioester enzyme intermediates. J Biol Chem 2011; 287:2119-29. [PMID: 22123821 PMCID: PMC3265891 DOI: 10.1074/jbc.m111.313015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Biosynthesis of UDP-glucuronic acid by UDP-glucose 6-dehydrogenase (UGDH) occurs through the four-electron oxidation of the UDP-glucose C6 primary alcohol in two NAD+-dependent steps. The catalytic reaction of UGDH is thought to involve a Cys nucleophile that promotes formation of a thiohemiacetal enzyme intermediate in the course of the first oxidation step. The thiohemiacetal undergoes further oxidation into a thioester, and hydrolysis of the thioester completes the catalytic cycle. Herein we present crystallographic and kinetic evidence for the human form of UGDH that clarifies participation of covalent catalysis in the enzymatic mechanism. Substitution of the putative catalytic base for water attack on the thioester (Glu161) by an incompetent analog (Gln161) gave a UGDH variant (E161Q) in which the hydrolysis step had become completely rate-limiting so that a thioester enzyme intermediate accumulated at steady state. By crystallizing E161Q in the presence of 5 mm UDP-glucose and 2 mm NAD+, we succeeded in trapping a thiohemiacetal enzyme intermediate and determined its structure at 2.3 Å resolution. Cys276 was covalently modified in the structure, establishing its role as catalytic nucleophile of the reaction. The thiohemiacetal reactive C6 was in a position suitable to become further oxidized by hydride transfer to NAD+. The proposed catalytic mechanism of human UGDH involves Lys220 as general base for UDP-glucose alcohol oxidation and for oxyanion stabilization during formation and breakdown of the thiohemiacetal and thioester enzyme intermediates. Water coordinated to Asp280 deprotonates Cys276 to function as an aldehyde trap and also provides oxyanion stabilization. Glu161 is the Brønsted base catalytically promoting the thioester hydrolysis.
Collapse
Affiliation(s)
- Sigrid Egger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|