1
|
Abstract
Reverse transcriptases (RTs) use their DNA polymerase and RNase H activities to catalyze the conversion of single-stranded RNA to double-stranded DNA (dsDNA), a crucial process for the replication of retroviruses. Foamy viruses (FVs) possess a unique RT, which is a fusion with the protease (PR) domain. The mechanism of substrate binding by this enzyme has been unknown. Here, we report a crystal structure of monomeric full-length marmoset FV (MFV) PR-RT in complex with an RNA/DNA hybrid substrate. We also describe a structure of MFV PR-RT with an RNase H deletion in complex with a dsDNA substrate in which the enzyme forms an asymmetric homodimer. Cryo-electron microscopy reconstruction of the full-length MFV PR-RT–dsDNA complex confirmed the dimeric architecture. These findings represent the first structural description of nucleic acid binding by a foamy viral RT and demonstrate its ability to change its oligomeric state depending on the type of bound nucleic acid. IMPORTANCE Reverse transcriptases (RTs) are intriguing enzymes converting single-stranded RNA to dsDNA. Their activity is essential for retroviruses, which are divided into two subfamilies differing significantly in their life cycles: Orthoretrovirinae and Spumaretrovirinae. The latter family is much more ancient and comprises five genera. A unique feature of foamy viral RTs is that they contain N-terminal protease (PR) domains, which are not present in orthoretroviral enzymes. So far, no structural information for full-length foamy viral PR-RT interacting with nucleic substrates has been reported. Here, we present crystal and cryo-electron microscopy structures of marmoset foamy virus (MFV) PR-RT. These structures revealed the mode of binding of RNA/DNA and dsDNA substrates. Moreover, unexpectedly, the structures and biochemical data showed that foamy viral PR-RT can adopt both a monomeric configuration, which is observed in our structures in the presence of an RNA/DNA hybrid, and an asymmetric dimer arrangement, which we observed in the presence of dsDNA.
Collapse
|
2
|
Wöhrl BM. Structural and Functional Aspects of Foamy Virus Protease-Reverse Transcriptase. Viruses 2019; 11:v11070598. [PMID: 31269675 PMCID: PMC6669543 DOI: 10.3390/v11070598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022] Open
Abstract
Reverse transcription describes the process of the transformation of single-stranded RNA into double-stranded DNA via an RNA/DNA duplex intermediate, and is catalyzed by the viral enzyme reverse transcriptase (RT). This event is a pivotal step in the life cycle of all retroviruses. In contrast to orthoretroviruses, the domain structure of the mature RT of foamy viruses is different, i.e., it harbors the protease (PR) domain at its N-terminus, thus being a PR-RT. This structural feature has consequences on PR activation, since the enzyme is monomeric in solution and retroviral PRs are only active as dimers. This review focuses on the structural and functional aspects of simian and prototype foamy virus reverse transcription and reverse transcriptase, as well as special features of reverse transcription that deviate from orthoretroviral processes, e.g., PR activation.
Collapse
Affiliation(s)
- Birgitta M Wöhrl
- Lehrstuhl Biopolymere, Universität Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
3
|
Using the Hepatitis C Virus RNA-Dependent RNA Polymerase as a Model to Understand Viral Polymerase Structure, Function and Dynamics. Viruses 2015; 7:3974-94. [PMID: 26193306 PMCID: PMC4517137 DOI: 10.3390/v7072808] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/13/2015] [Accepted: 07/13/2015] [Indexed: 12/11/2022] Open
Abstract
Viral polymerases replicate and transcribe the genomes of several viruses of global health concern such as Hepatitis C virus (HCV), human immunodeficiency virus (HIV) and Ebola virus. For this reason they are key targets for therapies to treat viral infections. Although there is little sequence similarity across the different types of viral polymerases, all of them present a right-hand shape and certain structural motifs that are highly conserved. These features allow their functional properties to be compared, with the goal of broadly applying the knowledge acquired from studying specific viral polymerases to other viral polymerases about which less is known. Here we review the structural and functional properties of the HCV RNA-dependent RNA polymerase (NS5B) in order to understand the fundamental processes underlying the replication of viral genomes. We discuss recent insights into the process by which RNA replication occurs in NS5B as well as the role that conformational changes play in this process.
Collapse
|
4
|
Nishimura K, Yokokawa K, Hisayoshi T, Fukatsu K, Kuze I, Konishi A, Mikami B, Kojima K, Yasukawa K. Preparation and characterization of the RNase H domain of Moloney murine leukemia virus reverse transcriptase. Protein Expr Purif 2015; 113:44-50. [PMID: 25959458 DOI: 10.1016/j.pep.2015.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
Abstract
Moloney murine leukemia virus reverse transcriptase (MMLV RT) contains fingers, palm, thumb, and connection subdomains as well as an RNase H domain. The DNA polymerase active site resides in the palm subdomain, and the RNase H active site is located in the RNase H domain. The RNase H domain contains a positively charged α-helix called the C helix (H(594)GEIYRRR(601)), that is thought to be involved in substrate recognition. In this study, we expressed three versions of the RNase H domain in Escherichia coli, the wild-type domain (WT) (residues Ile498-Leu671) and two variants that lack the regions containing the C helix (Ile593-Leu603 and Gly595-Thr605, which we called ΔC1 and ΔC2, respectively) with a strep-tag at the N-terminus and a deca-histidine tag at the C-terminus. These peptides were purified from the cells by anion-exchange, Ni(2+) affinity, and Strep-Tactin affinity column chromatography, and then the tags were removed by proteolysis. In an RNase H assay using a 25-bp RNA-DNA heteroduplex, WT, ΔC1, and ΔC2 produced RNA fragments ranging from 7 to 16 nucleotides (nt) whereas the full-length MMLV RT (Thr24-Leu671) produced 14-20-nt RNA fragments, suggesting that elimination of the fingers, palm, thumb, and connection subdomains affects the binding of the RNase H domain to the RNA-DNA heteroduplex. The activity levels of WT, ΔC1, and ΔC2 were estimated to be 1%, 0.01%, and 0.01% of full-length MMLV RT activity, indicating that the C helix is important, but not critical, for the activity of the isolated RNase H domain.
Collapse
Affiliation(s)
- Kosaku Nishimura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kanta Yokokawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tetsuro Hisayoshi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kosuke Fukatsu
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ikumi Kuze
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Atsushi Konishi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Bunzo Mikami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
5
|
Abstract
Retroviruses and LTR retrotransposons are transposable elements that encapsidate the RNAs that are intermediates in the transposition of DNA copies of their genomes (proviruses), from one cell (or one locus) to another. Mechanistic similarities in DNA transposase enzymes and retroviral/retrotransposon integrases underscore the close evolutionary relationship among these elements. The retroviruses are very ancient infectious agents, presumed to have evolved from Ty3/Gypsy LTR retrotransposons (1), and DNA copies of their sequences can be found embedded in the genomes of most, if not all, members of the tree of life. All retroviruses share a specific gene arrangement and similar replication strategies. However, given their ancestries and occupation of diverse evolutionary niches, it should not be surprising that unique sequences have been acquired in some retroviral genomes and that the details of the mechanism by which their transposition is accomplished can vary. While every step in the retrovirus lifecycle is, in some sense, relevant to transposition, this Chapter focuses mainly on the early phase of retroviral replication, during which viral DNA is synthesized and integrated into its host genome. Some of the initial studies that set the stage for current understanding are highlighted, as well as more recent findings obtained through use of an ever-expanding technological toolbox including genomics, proteomics, and siRNA screening. Persistence in the area of structural biology has provided new insight into conserved mechanisms as well as variations in detail among retroviruses, which can also be instructive.
Collapse
Affiliation(s)
- Anna Marie Skalka
- Fox Chase Cancer Center 333 Cottman Avenue Philadelphia, PA 19111 United States 2157282192 2157282778 (fax)
| |
Collapse
|
6
|
Hirsch DR, Cox G, D'Erasmo MP, Shakya T, Meck C, Mohd N, Wright GD, Murelli RP. Inhibition of the ANT(2")-Ia resistance enzyme and rescue of aminoglycoside antibiotic activity by synthetic α-hydroxytropolones. Bioorg Med Chem Lett 2014; 24:4943-7. [PMID: 25283553 PMCID: PMC4798002 DOI: 10.1016/j.bmcl.2014.09.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/17/2022]
Abstract
Aminoglycoside-2"-O-nucleotidyltransferase ANT(2")-Ia is an aminoglycoside resistance enzyme prevalent among Gram-negative bacteria, and is one of the most common determinants of enzyme-dependant aminoglycoside-resistance. The following report outlines the use of our recently described oxidopyrylium cycloaddition/ring-opening strategy in the synthesis and profiling of a library of synthetic α-hydroxytropolones against ANT(2")-Ia. In addition, we show that two of these synthetic constructs are capable of rescuing gentamicin activity against ANT-(2")-Ia-expressing bacteria.
Collapse
Affiliation(s)
- Danielle R Hirsch
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, United States; Department of Chemistry, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States
| | - Georgina Cox
- M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8N 4K1, Canada
| | - Michael P D'Erasmo
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, United States; Department of Chemistry, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States
| | - Tushar Shakya
- M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8N 4K1, Canada
| | - Christine Meck
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, United States; Department of Chemistry, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States
| | - Noushad Mohd
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, United States
| | - Gerard D Wright
- M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8N 4K1, Canada
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, United States; Department of Chemistry, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States.
| |
Collapse
|
7
|
Amino acid substitutions away from the RNase H catalytic site increase the thermal stability of Moloney murine leukemia virus reverse transcriptase through RNase H inactivation. Biochem Biophys Res Commun 2014; 454:269-74. [DOI: 10.1016/j.bbrc.2014.10.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/10/2014] [Indexed: 11/21/2022]
|
8
|
Meck C, D'Erasmo MP, Hirsch DR, Murelli RP. The biology and synthesis of α-hydroxytropolones. MEDCHEMCOMM 2014; 5:842-852. [PMID: 25089179 PMCID: PMC4114738 DOI: 10.1039/c4md00055b] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
α-Hydroxytropolones are a subclass of the troponoid family of natural products that are of high interest due to their broad biological activity and potential as treatment options for several diseases. Despite this promise, there have been scarce synthetic chemistry-driven optimization studies on the molecules. The following review highlights key developments in the biological studies conducted on α-hydroxytropolones to date, including the few synthetic chemistry-driven optimization studies. In addition, we provide an overview of the methods currently available to access these molecules. This review is intended to serve as a resource for those interested in biological activity of α-hydroxytropolones, and inspire the development of new synthetic methods and strategies that could aid in this pursuit.
Collapse
Affiliation(s)
- Christine Meck
- Brooklyn College, City University of New York, Department of Chemistry, 2900 Bedford 4 Avenue, Brooklyn, New York, USA
| | - Michael P D'Erasmo
- Brooklyn College, City University of New York, Department of Chemistry, 2900 Bedford 4 Avenue, Brooklyn, New York, USA
| | - Danielle R Hirsch
- Brooklyn College, City University of New York, Department of Chemistry, 2900 Bedford 4 Avenue, Brooklyn, New York, USA
| | - Ryan P Murelli
- Brooklyn College, City University of New York, Department of Chemistry, 2900 Bedford 4 Avenue, Brooklyn, New York, USA
| |
Collapse
|
9
|
Stafford KA, Palmer Iii AG. Evidence from molecular dynamics simulations of conformational preorganization in the ribonuclease H active site. F1000Res 2014; 3:67. [PMID: 25075292 PMCID: PMC4032109 DOI: 10.12688/f1000research.3605.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2014] [Indexed: 11/26/2022] Open
Abstract
Ribonuclease H1 (RNase H) enzymes are well-conserved endonucleases that are present in all domains of life and are particularly important in the life cycle of retroviruses as domains within reverse transcriptase. Despite extensive study, especially of the E. coli homolog, the interaction of the highly negatively charged active site with catalytically required magnesium ions remains poorly understood. In this work, we describe molecular dynamics simulations of the E. coli homolog in complex with magnesium ions, as well as simulations of other homologs in their apo states. Collectively, these results suggest that the active site is highly rigid in the apo state of all homologs studied and is conformationally preorganized to favor the binding of a magnesium ion. Notably, representatives of bacterial, eukaryotic, and retroviral RNases H all exhibit similar active-site rigidity, suggesting that this dynamic feature is only subtly modulated by amino acid sequence and is primarily imposed by the distinctive RNase H protein fold.
Collapse
Affiliation(s)
- Kate A Stafford
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Arthur G Palmer Iii
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
10
|
|
11
|
Abstract
RNase H (retroviral ribonuclease H) cleaves the phosphate backbone of the RNA template within an RNA/DNA hybrid to complete the synthesis of double-stranded viral DNA. In the present study we have determined the complete structure of the RNase H domain from XMRV (xenotropic murine leukaemia virus-related virus) RT (reverse transcriptase). The basic protrusion motif of the XMRV RNase H domain is folded as a short helix and an adjacent highly bent loop. Structural superposition and subsequent mutagenesis experiments suggest that the basic protrusion motif plays a role in direct binding to the major groove in RNA/DNA hybrid, as well as in establishing the co-ordination among modules in RT necessary for proper function.
Collapse
|
12
|
Nowak E, Potrzebowski W, Konarev PV, Rausch JW, Bona MK, Svergun DI, Bujnicki JM, Le Grice SFJ, Nowotny M. Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res 2013; 41:3874-87. [PMID: 23382176 PMCID: PMC3616737 DOI: 10.1093/nar/gkt053] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 11/19/2022] Open
Abstract
A key step in proliferation of retroviruses is the conversion of their RNA genome to double-stranded DNA, a process catalysed by multifunctional reverse transcriptases (RTs). Dimeric and monomeric RTs have been described, the latter exemplified by the enzyme of Moloney murine leukaemia virus. However, structural information is lacking that describes the substrate binding mechanism for a monomeric RT. We report here the first crystal structure of a complex between an RNA/DNA hybrid substrate and polymerase-connection fragment of the single-subunit RT from xenotropic murine leukaemia virus-related virus, a close relative of Moloney murine leukaemia virus. A comparison with p66/p51 human immunodeficiency virus-1 RT shows that substrate binding around the polymerase active site is conserved but differs in the thumb and connection subdomains. Small-angle X-ray scattering was used to model full-length xenotropic murine leukaemia virus-related virus RT, demonstrating that its mobile RNase H domain becomes ordered in the presence of a substrate-a key difference between monomeric and dimeric RTs.
Collapse
Affiliation(s)
- Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Wojciech Potrzebowski
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Petr V. Konarev
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Jason W. Rausch
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Marion K. Bona
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Dmitri I. Svergun
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Janusz M. Bujnicki
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Stuart F. J. Le Grice
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
13
|
Leo B, Schweimer K, Rösch P, Hartl MJ, Wöhrl BM. The solution structure of the prototype foamy virus RNase H domain indicates an important role of the basic loop in substrate binding. Retrovirology 2012; 9:73. [PMID: 22962864 PMCID: PMC3443672 DOI: 10.1186/1742-4690-9-73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/10/2012] [Indexed: 11/13/2022] Open
Abstract
Background The ribonuclease H (RNase H) domains of retroviral reverse transcriptases play an essential role in the replication cycle of retroviruses. During reverse transcription of the viral genomic RNA, an RNA/DNA hybrid is created whose RNA strand needs to be hydrolyzed by the RNase H to enable synthesis of the second DNA strand by the DNA polymerase function of the reverse transcriptase. Here, we report the solution structure of the separately purified RNase H domain from prototype foamy virus (PFV) revealing the so-called C-helix and the adjacent basic loop, which both were suggested to be important in substrate binding and activity. Results The solution structure of PFV RNase H shows that it contains a mixed five-stranded β-sheet, which is sandwiched by four α-helices (A-D), including the C-helix, on one side and one α-helix (helix E) on the opposite side. NMR titration experiments demonstrate that upon substrate addition signal changes can be detected predominantly in the basic loop as well as in the C-helix. All these regions are oriented towards the bound substrate. In addition, signal intensities corresponding to residues in the B-helix and the active site decrease, while only minor or no changes of the overall structure of the RNase H are detectable upon substrate binding. Dynamic studies confirm the monomeric state of the RNase H domain. Structure comparisons with HIV-1 RNase H, which lacks the basic protrusion, indicate that the basic loop is relevant for substrate interaction, while the C-helix appears to fulfill mainly structural functions, i.e. positioning the basic loop in the correct orientation for substrate binding. Conclusions The structural data of PFV RNase H demonstrate the importance of the basic loop, which contains four positively charged lysines, in substrate binding and the function of the C-helix in positioning of the loop. In the dimeric full length HIV-1 RT, the function of the basic loop is carried out by a different loop, which also harbors basic residues, derived from the connection domain of the p66 subunit. Our results suggest that RNases H which are also active as separate domains might need a functional basic loop for proper substrate binding.
Collapse
Affiliation(s)
- Berit Leo
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr, 30, D-95447 Bayreuth, Germany
| | | | | | | | | |
Collapse
|