1
|
Zheng J, Zhang Z, An J, Xue Y, Yu B. Adaptive laboratory evolution of Rhodococcus rhodochrous DSM6263 for chlorophenol degradation under hypersaline condition. Microb Cell Fact 2023; 22:220. [PMID: 37880695 PMCID: PMC10601206 DOI: 10.1186/s12934-023-02227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Normally, a salt amount greater than 3.5% (w/v) is defined as hypersaline. Large amounts of hypersaline wastewater containing organic pollutants need to be treated before it can be discharged into the environment. The most critical aspect of the biological treatment of saline wastewater is the inhibitory/toxic effect exerted on bacterial metabolism by high salt concentrations. Although efforts have been dedicated to improving the performance through the use of salt-tolerant or halophilic bacteria, the diversities of the strains and the range of substrate spectrum remain limited, especially in chlorophenol wastewater treatment. RESULTS In this study, a salt-tolerant chlorophenol-degrading strain was generated from Rhodococcus rhodochrous DSM6263, an original aniline degrader, by adaptive laboratory evolution. The evolved strain R. rhodochrous CP-8 could tolerant 8% NaCl with 4-chlorophenol degradation capacity. The synonymous mutation in phosphodiesterase of strain CP-8 may retard the hydrolysis of cyclic adenosine monophosphate (cAMP), which is a key factor reported in the osmoregulation. The experimentally verified up-regulation of intracellular cAMP level in the evolved strain CP-8 contributes to the improvement of growth phenotype under high osmotic condition. Additionally, a point mutant of the catechol 1,2-dioxygenase, CatAN211S, was revealed to show the 1.9-fold increment on activity, which the mechanism was well explained by molecular docking analysis. CONCLUSIONS This study developed one chlorophenol-degrading strain with extraordinary capacity of salt tolerance, which showed great application potential in hypersaline chlorophenol wastewater treatment. The synonymous mutation in phosphodiesterase resulted in the change of intracellular cAMP concentration and then increase the osmotic tolerance in the evolved strain. The catechol 1,2-dioxygenase mutant with improved activity also facilitated chlorophenol removal since it is the key enzyme in the degradation pathway.
Collapse
Affiliation(s)
- Jie Zheng
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhengzhi Zhang
- Linyi Municipal Ecology and Environment Bureau, 276000, Linyi, China
| | - Juan An
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yubin Xue
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
2
|
Yang K, Zhao Y, Ji M, Li Z, Zhai S, Zhou X, Wang Q, Wang C, Liang B. Challenges and opportunities for the biodegradation of chlorophenols: Aerobic, anaerobic and bioelectrochemical processes. WATER RESEARCH 2021; 193:116862. [PMID: 33550168 DOI: 10.1016/j.watres.2021.116862] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Chlorophenols (CPs) are highly toxic and refractory contaminants which widely exist in various environments and cause serious harm to human and environment health and safety. This review provides comprehensive information on typical CPs biodegradation technologies, the most green and benign ones for CPs removal. The known aerobic and anaerobic degradative bacteria, functional enzymes, and metabolic pathways of CPs as well as several improving methods and critical parameters affecting the overall degradation efficiency are systematically summarized and clarified. The challenges for CPs mineralization are also discussed, mainly including the dechlorination of polychlorophenols (poly-CPs) under aerobic condition and the ring-cleavage of monochlorophenols (MCPs) under anaerobic condition. The coupling of functional materials and degraders as well as the operation of sequential anaerobic-aerobic bioreactors and bioelectrochemical system (BES) are promising strategies to overcome some current limitations. Future perspective and research gaps in this field are also proposed, including the further understanding of microbial information and the specific role of materials in CPs biodegradation, the potential application of innovative biotechnologies and new operating modes to optimize and maximize the function of the system, and the scale-up of bioreactors towards the efficient biodegradation of CPs.
Collapse
Affiliation(s)
- Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Schlachter CR, Daneshian L, Amaya J, Klapper V, Wybouw N, Borowski T, Van Leeuwen T, Grbic V, Grbic M, Makris TM, Chruszcz M. Structural and functional characterization of an intradiol ring-cleavage dioxygenase from the polyphagous spider mite herbivore Tetranychus urticae Koch. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 107:19-30. [PMID: 30529144 PMCID: PMC6768081 DOI: 10.1016/j.ibmb.2018.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Genome analyses of the polyphagous spider mite herbivore Tetranychus urticae (two-spotted spider mite) revealed the presence of a set of 17 genes that code for secreted proteins belonging to the "intradiol dioxygenase-like" subgroup. Phylogenetic analyses indicate that this novel enzyme family has been acquired by horizontal gene transfer. In order to better understand the role of these proteins in T. urticae, we have structurally and functionally characterized one paralog (tetur07g02040). It was demonstrated that this protein is indeed an intradiol ring-cleavage dioxygenase, as the enzyme is able to cleave catechol between two hydroxyl-groups using atmospheric dioxygen. The enzyme was characterized functionally and structurally. The active site of the T. urticae enzyme contains an Fe3+ cofactor that is coordinated by two histidine and two tyrosine residues, an arrangement that is similar to those observed in bacterial homologs. However, the active site is significantly more solvent exposed than in bacterial proteins. Moreover, the mite enzyme is monomeric, while almost all structurally characterized bacterial homologs form oligomeric assemblies. Tetur07g02040 is not only the first spider mite dioxygenase that has been characterized at the molecular level, but is also the first structurally characterized intradiol ring-cleavage dioxygenase originating from a eukaryote.
Collapse
Affiliation(s)
- Caleb R Schlachter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Leily Daneshian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Jose Amaya
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Vincent Klapper
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Nicky Wybouw
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Department of Plants and Crops, Ghent University, Ghent, B-9000, Belgium
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Krakow, Poland
| | - Thomas Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Department of Plants and Crops, Ghent University, Ghent, B-9000, Belgium
| | - Vojislava Grbic
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada; University of La Rioja, Logrono, Spain
| | - Miodrag Grbic
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada; University of La Rioja, Logrono, Spain
| | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
4
|
Huang Y, Duan Y, Zhang Y, Fan P, Li Z, Liu W, Cui Z. Crystal structure of hydroxyquinol 1,2-dioxygenase PnpC from Pseudomonas putida DLL-E4 and its role of N-terminal domain for catalysis. Biochem Biophys Res Commun 2018; 507:267-273. [PMID: 30446218 DOI: 10.1016/j.bbrc.2018.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/04/2018] [Indexed: 11/29/2022]
Abstract
Hydroxyquinol 1,2-dioxygenase is a key enzyme in the hydroxyquinol pathway of p-nitrophenol (PNP) degradation, and catalyzes the ring cleavage of benzenetriol to maleylacetate. Here, we report the first structure of a hydroxyquinol 1,2-dioxygenase from the Gram-negative bacterium Pseudomonas putida DLL-E4 (PnpC) at the resolution of 2.1 Å. The tertiary structure of PnpC resembles that of the homologous intradiol dioxygenases. The catalytic Fe(III) is pentacoordinated by the conserved Tyr160, Tyr194, His218 and His220, the citrate anion and one water molecule. Among the residues expected to interact with the substrate, structural comparison with the (chloro)catechol dioxygenases suggested that Asp80, Thr81 and Val248 are responsible for the substrate specificity. Moreover, truncation of the N-terminal α-helix of PnpC suggested the N-terminal domain is required for its soluble expression and enzyme catalysis. Our results might provide insights in the substrate recognition and rational design of this enzyme class to be used in bioremediation.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yajuan Duan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yajuan Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Panpan Fan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
5
|
Subbotina NM, Kolomytseva MP, Baskunov BP, Golovlev LA. Catechol 1,2-dioxygenase induced in Rhodococcus opacus strain 1CP cultured in the presence of 3-hydroxybenzoate. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716050180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Solyanikova IP, Emelyanova EV, Borzova OV, Golovleva LA. Benzoate degradation by Rhodococcus opacus 1CP after dormancy: Characterization of dioxygenases involved in the process. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 51:182-191. [PMID: 26669259 DOI: 10.1080/03601234.2015.1108814] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The process of benzoate degradation by strain Rhodococcus opacus 1CP after a five-year dormancy was investigated and its peculiarities were revealed. The strain was shown to be capable of growth on benzoate at a concentration of up to 10 g L(-1). The substrate specificity of benzoate dioxygenase (BDO) during the culture growth on a medium with a low (200-250 mg L(-1)) and high (4 g L(-1)) concentration of benzoate was assessed. BDO of R. opacus 1CP was shown to be an extremely narrow specificity enzyme. Out of 31 substituted benzoates, only with one, 3-chlorobenzoate, its activity was higher than 9% of that of benzoate. Two dioxygenases, catechol 1,2-dioxygenase (Cat 1,2-DO) and protocatechuate 3,4-dioxygenase (PCA 3,4-DO), were identified in a cell-free extract, purified and characterized. The substrate specificity of Cat 1,2-DO isolated from cells of strain 1CP after the dormancy was found to differ significantly from that of Cat 1,2-DO isolated earlier from cells of this strain grown on benzoate. By its substrate specificity, the described Cat 1,2-DO was close to the Cat 1,2-DO from strain 1CP grown on 4-methylbenzoate. Neither activity nor inhibition by protocatechuate was observed during the reaction of Cat 1,2-DO with catechol, and catechol had no inhibitory effect on the reaction of PCA 3,4-DO with protocatechuate.
Collapse
Affiliation(s)
- Inna P Solyanikova
- a FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino , Russia
| | - Elena V Emelyanova
- a FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino , Russia
| | - Oksana V Borzova
- a FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino , Russia
- b Pushchino State Natural Science Institute , Pushchino , Russia
| | - Ludmila A Golovleva
- a FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino , Russia
- b Pushchino State Natural Science Institute , Pushchino , Russia
| |
Collapse
|
7
|
Nešvera J, Rucká L, Pátek M. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants. ADVANCES IN APPLIED MICROBIOLOGY 2015; 93:107-60. [PMID: 26505690 DOI: 10.1016/bs.aambs.2015.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phenol and its derivatives (alkylphenols, halogenated phenols, nitrophenols) are natural or man-made aromatic compounds that are ubiquitous in nature and in human-polluted environments. Many of these substances are toxic and/or suspected of mutagenic, carcinogenic, and teratogenic effects. Bioremediation of the polluted soil and water using various bacteria has proved to be a promising option for the removal of these compounds. In this review, we describe a number of peripheral pathways of aerobic and anaerobic catabolism of various natural and xenobiotic phenolic compounds, which funnel these substances into a smaller number of central catabolic pathways. Finally, the metabolites are used as carbon and energy sources in the citric acid cycle. We provide here the characteristics of the enzymes that convert the phenolic compounds and their catabolites, show their genes, and describe regulatory features. The genes, which encode these enzymes, are organized on chromosomes and plasmids of the natural bacterial degraders in various patterns. The accumulated data on similarities and the differences of the genes, their varied organization, and particularly, an astonishingly broad range of intricate regulatory mechanism may be read as an exciting adventurous book on divergent evolutionary processes and horizontal gene transfer events inscribed in the bacterial genomes. In the end, the use of this wealth of bacterial biodegradation potential and the manipulation of its genetic basis for purposes of bioremediation is exemplified. It is envisioned that the integrated high-throughput techniques and genome-level approaches will enable us to manipulate systems rather than separated genes, which will give birth to systems biotechnology.
Collapse
Affiliation(s)
- Jan Nešvera
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Lenka Rucká
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
8
|
Micalella C, Caglio R, Mozzarelli A, Valetti F, Pessione E, Giunta C, Bruno S. Ormosil gels doped with engineered catechol 1,2 dioxygenases for chlorocatechol bioremediation. Biotechnol Appl Biochem 2014; 61:297-303. [PMID: 24571591 DOI: 10.1002/bab.1162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/01/2013] [Indexed: 11/06/2022]
Abstract
Enzymes entrapped in wet, nanoporous silica gel have great potential as bioreactors for bioremediation because of their improved thermal, chemical, and mechanical stability with respect to enzymes in solution. The B isozyme of catechol 1,2 dioxygenase from Acinetobacter radioresistens and its mutants of Leu69 and Ala72, designed for an increased reactivity toward the environmental pollutant chlorocatechols, were encapsulated using alkoxysilanes and alkyl alkoxysilanes as precursors in varying proportions. Encapsulation of the mutants in a hydrophobic tetramethoxysilane/dimethoxydimethylsilane-based matrix yielded a remarkable 10- to 12-fold enhancement in reactivity toward chlorocatechols. These gels also showed a fivefold increase in relative reactivity toward chlorocatechols with respect to the natural substrate catechol, thus compensating for their relatively low activity for these substrates in solution. The encapsulated enzyme, unlike the enzyme in solution, proved resilient in assays carried out in urban wastewater and bacteria-contaminated solutions mimicking environmentally relevant conditions. Overall, the combination of a structure-based rational design of enzyme mutants, and the selection of a suitable encapsulation material, proved to be a powerful approach for the production and optimization of a potential bioremediation device, with increased activity and resistance toward bacterial degradation.
Collapse
|