1
|
Tiwari RK, Rawat SG, Rai S, Kumar A. Stress regulatory hormones and cancer: the contribution of epinephrine and cancer therapeutic value of beta blockers. Endocrine 2025; 88:359-386. [PMID: 39869294 DOI: 10.1007/s12020-025-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones. Cancer has been a part of our history, stories, and lives for centuries and has challenged the ingenuity of health and medical science, and the resilience of the human spirit. From the early days of surgery and radiation therapy to cutting-edge developments in chemotherapeutic agents, immunotherapy, and targeted treatments, the medical field continues to make significant headway in the fight against cancer. However, even after all these advancements, cancer is still among the leading cause of death globally. This urges us to understand the central hallmarks of neoplastic cells to identify novel molecular targets for the development of promising therapeutic approaches. Growing research suggests that stress mediators, including epinephrine, play a critical role in the development and progression of cancer by inducing neoplastic features through activating adrenergic receptors, particularly β-adrenoreceptors. Further, our experimental data has also shown that epinephrine mediates the growth of T-cell lymphoma by inducing proliferation, glycolysis, and apoptosis evasion via altering the expression levels of key regulators of these vital cellular processes. The beauty of receptor-based therapy lies in its precision and higher therapeutic value. Interestingly, the enhanced expression of β-adrenergic receptors (ADRBs), namely ADRB2 (β2-adrenoreceptor) and ADRB3 (β3-adrenoreceptor) has been noted in many cancers, such as breast, colon, gastric, pancreatic, and prostate and has been reported to play a pivotal role in facilitating cancer growth mainly by promoting proliferation, evasion of apoptosis, angiogenesis, invasion and metastasis, and chemoresistance. The present review article is an attempt to summarize the available findings which indicate a distinct relationship between stress hormones and cancer, with a special emphasis on epinephrine, considered as a key stress regulatory molecule. This article also discusses the possibility of using beta-blockers for cancer therapy.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
| | - Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- MD Anderson Cancer Center, The University of Texas, Texas, USA
| | - Siddharth Rai
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
2
|
Ben Patel R, Barnwal SK, Saleh M A AM, Francis D. Leveraging nuclear receptor mediated transcriptional signaling for drug discovery: Historical insights and current advances. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:191-269. [PMID: 39843136 DOI: 10.1016/bs.apcsb.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression in response to physiological signals, such as hormones and other chemical messengers. These receptors either activate or repress the transcription of target genes, which in turn promotes or suppresses physiological processes governing growth, differentiation, and homeostasis. NRs bind to specific DNA sequences and, in response to ligand binding, either promote or hinder the assembly of the transcriptional machinery, thereby influencing gene expression at the transcriptional level. These receptors are involved in a wide range of pathological conditions, including cancer, metabolic disorders, chronic inflammatory diseases, and immune system-related disorders. Modulation of NR function through targeted drugs has shown therapeutic benefits in treating such conditions. NR-targeted drugs, which either completely or selectively activate or block receptor function, represent a significant class of clinically valuable therapeutics. However, the pathways of NR-mediated gene expression and the resulting physiological effects are complex, involving crosstalk between various biomolecular components. As a result, NR-targeted drug discovery is challenging. With improved understanding of how NRs regulate physiological functions and deeper insights into their molecular structure, the process of NR-targeted drug discovery has evolved. While many traditional NR-targeting drugs are associated with side effects of varying severity, new drug candidates are being designed to minimize these adverse effects. Given that NR activity varies according to the tissue in which they are expressed and the specific isoform that is activated or repressed, achieving selectivity in targeting specific tissues and isoform classes may help reduce systemic side effects. In a recent breakthrough, the isoform-selective, hepato-targeted thyroid hormone-β agonist, Resmetirom (marketed as Rezdiffra), was approved for the treatment of non-alcoholic steatohepatitis. This chapter explores the structural and mechanistic principles guiding NR-targeted drug discovery and provides insights into recent developments in this field.
Collapse
Affiliation(s)
- Riya Ben Patel
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Surbhi Kumari Barnwal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arabi Mohammed Saleh M A
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| |
Collapse
|
3
|
Laumann RD, Pedersen LL, Andrés-Jensen L, Mølgaard C, Schmiegelow K, Frandsen TL, Als-Nielsen B. Hyperlipidemia in children and adolescents with acute lymphoblastic leukemia: A systematic review and meta-analysis. Pediatr Blood Cancer 2023; 70:e30683. [PMID: 37776083 DOI: 10.1002/pbc.30683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND The established association between acute lymphoblastic leukemia (ALL) and hyperlipidemia has, in some studies, been linked to toxicities such as pancreatitis, thrombosis, and osteonecrosis. However, a systematic review investigating the incidence, management, and clinical implications of hyperlipidemia during childhood ALL treatment is lacking. OBJECTIVES Systematically assess the incidence of hyperlipidemia during ALL treatment, explore associations with risk factors and severe toxicities (osteonecrosis, thrombosis, and pancreatitis), and review prevalent management strategies. METHODS A systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Data synthesis was descriptive, and a meta-analysis of hypertriglyceridemia and risk of severe toxicities was performed. RESULTS We included 13 studies with 3,425 patients. Hyperlipidemia incidence varied widely (6.7%-85%) but with inconsistent definitions and screening strategies across studies. Evidence regarding risk factors was conflicting, but age (> 10 years) and treatment with asparaginase and glucocorticosteroids seem to be associated with hyperlipidemia. Hypertriglyceridemia (grade 3/4) increased the risk for osteonecrosis (odds ratio (OR): 4.27, 95% confidence interval (CI): 2.77-6.61). No association could be established for pancreatitis (OR: 1.60, 95% CI: 0.53-4.82) or thrombosis (OR: 2.45, 95% CI: 0.86-7.01), but larger studies are needed to confirm this. CONCLUSION The overall evidence of this systematic review is limited by the small number of studies and risk of bias. Our review suggests that hypertriglyceridemia increases the risk for osteonecrosis. However, larger studies are needed to explore the clinical implications of hyperlipidemia and randomized trials investigating hyperlipidemia management and its impact on severe toxicities.
Collapse
Affiliation(s)
- Renate Dagsdottir Laumann
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Louise Lindkvist Pedersen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Liv Andrés-Jensen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christian Mølgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Pediatric Nutrition Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Leth Frandsen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Bodil Als-Nielsen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
4
|
Shah K, Ahmed M, Kazi JU. The Aurora kinase/β-catenin axis contributes to dexamethasone resistance in leukemia. NPJ Precis Oncol 2021; 5:13. [PMID: 33597638 PMCID: PMC7889633 DOI: 10.1038/s41698-021-00148-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids, such as dexamethasone and prednisolone, are widely used in cancer treatment. Different hematological malignancies respond differently to this treatment which, as could be expected, correlates with treatment outcome. In this study, we have used a glucocorticoid-induced gene signature to develop a deep learning model that can predict dexamethasone sensitivity. By combining gene expression data from cell lines and patients with acute lymphoblastic leukemia, we observed that the model is useful for the classification of patients. Predicted samples have been used to detect deregulated pathways that lead to dexamethasone resistance. Gene set enrichment analysis, peptide substrate-based kinase profiling assay, and western blot analysis identified Aurora kinase, S6K, p38, and β-catenin as key signaling proteins involved in dexamethasone resistance. Deep learning-enabled drug synergy prediction followed by in vitro drug synergy analysis identified kinase inhibitors against Aurora kinase, JAK, S6K, and mTOR that displayed synergy with dexamethasone. Combining pathway enrichment, kinase regulation, and kinase inhibition data, we propose that Aurora kinase or its several direct or indirect downstream kinase effectors such as mTOR, S6K, p38, and JAK may be involved in β-catenin stabilization through phosphorylation-dependent inactivation of GSK-3β. Collectively, our data suggest that activation of the Aurora kinase/β-catenin axis during dexamethasone treatment may contribute to cell survival signaling which is possibly maintained in patients who are resistant to dexamethasone.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Urwanisch L, Luciano M, Horejs-Hoeck J. The NLRP3 Inflammasome and Its Role in the Pathogenicity of Leukemia. Int J Mol Sci 2021; 22:1271. [PMID: 33525345 PMCID: PMC7865748 DOI: 10.3390/ijms22031271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation contributes to the development and progression of various tumors. Especially where the inflammation is mediated by cells of the innate immune system, the NLRP3 inflammasome plays an important role, as it senses and responds to a variety of exogenous and endogenous pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The NLRP3 inflammasome is responsible for the maturation and secretion of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and for the induction of a type of inflammatory cell death known as pyroptosis. Overactivation of the NLRP3 inflammasome can be a driver of various diseases. Since leukemia is known to be an inflammation-driven cancer and IL-1β is produced in elevated levels by leukemic cells, research on NLRP3 in the context of leukemia has increased in recent years. In this review, we summarize the current knowledge on leukemia-promoting inflammation and, in particular, the role of the NLRP3 inflammasome in different types of leukemia. Furthermore, we examine a connection between NLRP3, autophagy and leukemia.
Collapse
Affiliation(s)
- Laura Urwanisch
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.U.); (M.L.)
| | - Michela Luciano
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.U.); (M.L.)
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.U.); (M.L.)
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| |
Collapse
|
6
|
Clarisse D, Offner F, De Bosscher K. Latest perspectives on glucocorticoid-induced apoptosis and resistance in lymphoid malignancies. Biochim Biophys Acta Rev Cancer 2020; 1874:188430. [PMID: 32950642 DOI: 10.1016/j.bbcan.2020.188430] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/09/2023]
Abstract
Glucocorticoids are essential drugs in the treatment protocols of lymphoid malignancies. These steroidal hormones trigger apoptosis of the malignant cells by binding to the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily. Long term glucocorticoid treatment is limited by two major problems: the development of glucocorticoid-related side effects, which hampers patient quality of life, and the emergence of glucocorticoid resistance, which is a gradual process that is inevitable in many patients. This emphasizes the need to reevaluate and optimize the widespread use of glucocorticoids in lymphoid malignancies. To achieve this goal, a deep understanding of the mechanisms governing glucocorticoid responsiveness is required, yet, a recent comprehensive overview is currently lacking. In this review, we examine how glucocorticoids mediate apoptosis by detailing GR's genomic and non-genomic action mechanisms in lymphoid malignancies. We continue with a discussion of the glucocorticoid-related problems and how these are intertwined with one another. We further zoom in on glucocorticoid resistance by critically analyzing the plethora of proposed mechanisms and highlighting therapeutic opportunities that emerge from these studies. In conclusion, early detection of glucocorticoid resistance in patients remains an important challenge as this would result in a timelier treatment reorientation and reduced glucocorticoid-instigated side effects.
Collapse
Affiliation(s)
- Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
7
|
Lesovaya EA, Savinkova AV, Morozova OV, Lylova ES, Zhidkova EM, Kulikov EP, Kirsanov KI, Klopot A, Baida G, Yakubovskaya MG, Gordon LI, Readhead B, Dudley JT, Budunova I. A Novel Approach to Safer Glucocorticoid Receptor-Targeted Anti-lymphoma Therapy via REDD1 (Regulated in Development and DNA Damage 1) Inhibition. Mol Cancer Ther 2020; 19:1898-1908. [PMID: 32546661 PMCID: PMC7875139 DOI: 10.1158/1535-7163.mct-19-1111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
Abstract
Glucocorticoids are widely used for therapy of hematologic malignancies. Unfortunately, chronic treatment with glucocorticoids commonly leads to adverse effects including skin and muscle atrophy and osteoporosis. We found recently that REDD1 (regulated in development and DNA damage 1) plays central role in steroid atrophy. Here, we tested whether REDD1 suppression makes glucocorticoid-based therapy of blood cancer safer. Unexpectedly, approximately 50% of top putative REDD1 inhibitors selected by bioinformatics screening of Library of Integrated Network-Based Cellular Signatures database (LINCS) were PI3K/Akt/mTOR inhibitors. We selected Wortmannin, LY294002, and AZD8055 for our studies and showed that they blocked basal and glucocorticoid-induced REDD1 expression. Moreover, all PI3K/mTOR/Akt inhibitors modified glucocorticoid receptor function shifting it toward therapeutically important transrepression. PI3K/Akt/mTOR inhibitors enhanced anti-lymphoma effects of Dexamethasone in vitro and in vivo, in lymphoma xenograft model. The therapeutic effects of PI3K inhibitor+Dexamethasone combinations ranged from cooperative to synergistic, especially in case of LY294002 and Rapamycin, used as a previously characterized reference REDD1 inhibitor. We found that coadministration of LY294002 or Rapamycin with Dexamethasone protected skin against Dexamethasone-induced atrophy, and normalized RANKL/OPG ratio indicating a reduction of Dexamethasone-induced osteoporosis. Together, our results provide foundation for further development of safer and more effective glucocorticoid-based combination therapy of hematologic malignancies using PI3K/Akt/mTOR inhibitors.
Collapse
Affiliation(s)
- Ekaterina A Lesovaya
- N.N. Blokhin NMRCO, Moscow, Russia
- I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| | | | | | | | | | | | | | - Anna Klopot
- Department of Dermatology, Northwestern University, Chicago, Illinois
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, Illinois
| | | | - Leo I Gordon
- Division of Hematology Oncology; Northwestern University; Chicago, Illinois
| | - Ben Readhead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Irina Budunova
- Department of Dermatology, Northwestern University, Chicago, Illinois.
| |
Collapse
|
8
|
Lucafò M, Franzin M, Decorti G, Stocco G. A patent review of anticancer glucocorticoid receptor modulators (2014-present). Expert Opin Ther Pat 2020; 30:313-324. [PMID: 32148111 DOI: 10.1080/13543776.2020.1740206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/05/2020] [Indexed: 01/11/2023]
Abstract
Introduction: Natural and synthetic glucocorticoids are widely employed in different diseases, among which are hematological and solid tumors. Their use is however associated with a number of serious side effects and by the occurrence of resistance. With the aim of separating their gene transactivating effect, more linked to side effects, from transrepressive properties, associated with therapeutic efficacy, a number of selective glucocorticoid modulators have been identified.Areas covered: This review summarizes the patent applications from 2014 to present in the field of selective glucocorticoid receptor modulators employed in cancer therapy. Only few patents have been identified, that concern the identification of new molecules or the method of use of already patented compounds. In addition, a discussion of the mechanism of action of these compounds is included.Expert opinion: Only a very limited number of patents have been applied that concern selective glucocorticoid receptor modulators and their use in cancer. Biological information is scarce for most of these patents; more research is necessary in this field in particular concerning clinical data in order to understand whether it is actually possible to improve the efficacy and therapeutic index of these compounds in cancer therapy.
Collapse
Affiliation(s)
- Marianna Lucafò
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Martina Franzin
- PhD Course in Reproductive and Developmental Sciences, University of Trieste, Trieste, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
9
|
Ren Y, Xu X, Mao CY, Han KK, Xu YJ, Cao BY, Zhang ZB, Sethi G, Tang XW, Mao XL. RNF6 promotes myeloma cell proliferation and survival by inducing glucocorticoid receptor polyubiquitination. Acta Pharmacol Sin 2020; 41:394-403. [PMID: 31645658 PMCID: PMC7470801 DOI: 10.1038/s41401-019-0309-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022]
Abstract
RNF6, a RING-type ubiquitin ligase, has been identified as an oncogene in various cancers but its role in multiple myeloma (MM) remains elusive. In the present study we first showed that the expression levels of RNF6 in MM were significantly elevated compared with the bone marrow cells of healthy donors. Overexpression of RNF6 in LP1 and PRMI-8266 MM cell lines promoted cell proliferation, whereas knockdown of RNF6 led to apoptosis of MM cells. Furthermore, we revealed that RNF6, as a ubiquitin ligase, interacted with glucocorticoid receptor (GR) and induced its K63-linked polyubiquitination. Different from current knowledge, RNF6 increased GR stability at both endogenous and exogenous contexts. Such an action greatly promoted GR transcriptional activity, which was confirmed by luciferase assays and by the increased expression levels of prosurvival genes including Bcl-xL and Mcl-1, two typical downstream genes of the GR pathway. Consistent with these findings, ectopic expression of RNF6 in MM cells conferred resistance to dexamethasone, a typical anti-myeloma agent. In conclusion, we demonstrate that RNF6 promotes MM cell proliferation and survival by inducing atypical polyubiquitination to GR, and RNF6 could be a promising therapeutic target for the treatment of MM.
Collapse
|
10
|
IgG4-Related Sclerosing Disease Causing Spinal Cord Compression: The First Reported Case in Literature. Case Reports Immunol 2019; 2019:3618510. [PMID: 31316844 PMCID: PMC6604497 DOI: 10.1155/2019/3618510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
Immunoglobulin G4-related disease (IgG4-RD) is known for forming soft tissue mass lesions that may have compressive effects. It is an extremely rare disease that most frequently affects the pancreas causing autoimmune pancreatitis. It can also affect the gallbladder, salivary glands, and lacrimal glands causing respective organ-specific complications. In our report, we describe an IgG4-RD case that affected the spinal cord. A 60-year-old female presented with cervical spinal cord compression caused by IgG4-RD leading to several neurological deficits. Pathological examination of the excisional biopsy of the mass revealed dense lymphoplasmacytic cells infiltration and stromal fibrosis with IgG4 and plasma cells. The patient showed a dramatic response to the administration of systemic steroids with almost resolution of her neurological symptoms. This case highlights the first case in literature for IgG4-RD of the extradural tissue causing spinal compression. Hereby, we also demonstrate the dramatic response of IgG4-RD to the administration of systemic steroids as the patient had no recurrence after 5 years of close follow-up, the longest reported period of follow-up reported in the literature to date.
Collapse
|
11
|
Zubeldia-Plazaola A, Recalde-Percaz L, Moragas N, Alcaraz M, Chen X, Mancino M, Fernández-Nogueira P, Prats de Puig M, Guzman F, Noguera-Castells A, López-Plana A, Enreig E, Carbó N, Almendro V, Gascón P, Bragado P, Fuster G. Glucocorticoids promote transition of ductal carcinoma in situ to invasive ductal carcinoma by inducing myoepithelial cell apoptosis. Breast Cancer Res 2018; 20:65. [PMID: 29973218 PMCID: PMC6032539 DOI: 10.1186/s13058-018-0977-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/06/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The microenvironment and stress factors like glucocorticoids have a strong influence on breast cancer progression but their role in the first stages of breast cancer and, particularly, in myoepithelial cell regulation remains unclear. Consequently, we investigated the role of glucocorticoids in ductal carcinoma in situ (DCIS) in breast cancer, focusing specially on myoepithelial cells. METHODS To clarify the role of glucocorticoids at breast cancer onset, we evaluated the effects of cortisol and corticosterone on epithelial and myoepithelial cells using 2D and 3D in vitro and in vivo approaches and human samples. RESULTS Glucocorticoids induce a reduction in laminin levels and favour the disruption of the basement membrane by promotion of myoepithelial cell apoptosis in vitro. In an in vivo stress murine model, increased corticosterone levels fostered the transition from DCIS to invasive ductal carcinoma (IDC) via myoepithelial cell apoptosis and disappearance of the basement membrane. RU486 is able to partially block the effects of cortisol in vitro and in vivo. We found that myoepithelial cell apoptosis is more frequent in patients with DCIS+IDC than in patients with DCIS. CONCLUSIONS Our findings show that physiological stress, through increased glucocorticoid blood levels, promotes the transition from DCIS to IDC, particularly by inducing myoepithelial cell apoptosis. Since this would be a prerequisite for invasive features in patients with DCIS breast cancer, its clinical management could help to prevent breast cancer progression to IDC.
Collapse
Affiliation(s)
- Arantzazu Zubeldia-Plazaola
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Leire Recalde-Percaz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Núria Moragas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Mireia Alcaraz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Xieng Chen
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Mario Mancino
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Patricia Fernández-Nogueira
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Miquel Prats de Puig
- Department of Medicine, University of Barcelona, Barcelona, Spain.,Department of Senology, Clínica Planas, Barcelona, Spain
| | - Flavia Guzman
- Histopathology-Citology, Anatomical Pathology Service, Centro Médico Teknon, Barcelona, Spain
| | - Aleix Noguera-Castells
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Anna López-Plana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Estel Enreig
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Neus Carbó
- Department of Biochemistry and molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Vanessa Almendro
- Division of Medical Oncology, Department of Medicine, Harvard Medical School, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Pedro Gascón
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain.,Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| | - Paloma Bragado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Department of Medicine, University of Barcelona, Barcelona, Spain.
| | - Gemma Fuster
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Department of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Jiang J, Yin XY, Song XW, Xie D, Xu HJ, Yang J, Sun LR. EgoNet identifies differential ego-modules and pathways related to prednisolone resistance in childhood acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2017; 23:221-227. [PMID: 29019453 DOI: 10.1080/10245332.2017.1385211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE To extract feature ego-modules and pathways in childhood acute lymphoblastic leukemia (ALL) resistant to prednisolone treatment, and further to explore the mechanisms behind prednisolone resistance. MATERIALS AND METHODS EgoNet algorithm was used to identify candidate ego-network modules, mainly via constructing differential co-expression network (DCN); selecting ego genes; collecting ego-network modules; refining candidate modules. Afterwards, statistical significance was calculated for these candidate modules. Biological functions of differential ego-network modules were identified using Reactome database. To verify this proposed method can lead to truly positive findings in clinical settings, support vector machine (SVM) was utilized to compute the AUC values for each significant pathway using 3-fold cross-validation method. To predict the reliability of our findings, another established method (attract) was used to identify the differential attractor modules using the same microarray profile. RESULTS After eliminating the modules with classification accuracy < 0.9 and node number < 15, only ego-network module 30 was eligible. After significance calculation, module 30 was significant. Module 30 was enriched in APC/C-mediated degradation of cell cycle proteins. The AUC for the significant pathway of APC/C-mediated degradation of cell cycle proteins was 0.915. Although the attract method obtained more modules, the module identified by our proposed method owned more gene nodes, and had more classification ability (AUC = 0.915). CONCLUSION One differential ego-network module identified in childhood ALL resistance to prednisolone based on DCN and EgoNet, might be helpful to reveal the mechanisms underlying prednisolone resistance in childhood ALL.
Collapse
Affiliation(s)
- Jian Jiang
- a Department of Pediatrics , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , People's Republic of China
| | - Xiang-Yun Yin
- a Department of Pediatrics , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , People's Republic of China
| | - Xue-Wen Song
- b Out-Patient Department , Qingdao First Convalescent Hospital , Jinan Military Region, Qingdao , Shandong , People's Republic of China
| | - Dong Xie
- a Department of Pediatrics , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , People's Republic of China
| | - Hui-Juan Xu
- a Department of Pediatrics , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , People's Republic of China
| | - Jing Yang
- a Department of Pediatrics , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , People's Republic of China
| | - Li-Rong Sun
- a Department of Pediatrics , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , People's Republic of China
| |
Collapse
|
13
|
Ohe M, Hashino S, Shida H, Horita T, Sugiura M. A case of Waldenström's macroglobulinemia treated using clarithromycin and prednisolone. Transl Clin Pharmacol 2017; 25:134-137. [PMID: 32095463 PMCID: PMC7033378 DOI: 10.12793/tcp.2017.25.3.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 11/21/2022] Open
Abstract
We report a case of Waldenström's macroglobulinemia (WM) treated using clarithromycin (CAM) and prednisolone (PSL). An 84-year-old woman was admitted to our hospital for bleeding after a tooth extraction and hematuria. Computed tomography showed multiple ill-defined nodules in the omentum (omental cake). Although the cause of the omental cake remained unclear, the patient was diagnosed with WM, based on the detection of M-protein of immunoglobulin (Ig) M in serum and lymphoplasmacytes in bone marrow. The bleeding tendency in the patient may have been due to acquired hemophilia and/or hyper IgM-induced platelet dysfunction. The patient was treated using CAM (800 mg/day) and PSL (10 mg/day). As a result, IgM levels gradually decreased. Because the omental cake contracted along with improvement in IgM, it was thought to be lymphoplasmacytic lymphoma-like lymphoma. This case shows that treatment using CAM and PSL may be effective in some cases of WM.
Collapse
Affiliation(s)
- Masashi Ohe
- Department of Internal Medicine, JCHO Hokkaido Hospital, Sapporo, Japan
| | | | - Haruki Shida
- Department of Internal Medicine, JCHO Hokkaido Hospital, Sapporo, Japan
| | - Tetsuya Horita
- Department of Internal Medicine, JCHO Hokkaido Hospital, Sapporo, Japan
| | - Mitsuru Sugiura
- Department of Diagnostic Radiology, JCHO Hokkaido Hospital, Sapporo, Japan
| |
Collapse
|
14
|
Forero-Castro M, Robledo C, Benito R, Abáigar M, África Martín A, Arefi M, Fuster JL, de las Heras N, Rodríguez JN, Quintero J, Riesco S, Hermosín L, de la Fuente I, Recio I, Ribera J, Labrador J, Alonso JM, Olivier C, Sierra M, Megido M, Corchete-Sánchez LA, Ciudad Pizarro J, García JL, Ribera JM, Hernández-Rivas JM. Genome-Wide DNA Copy Number Analysis of Acute Lymphoblastic Leukemia Identifies New Genetic Markers Associated with Clinical Outcome. PLoS One 2016; 11:e0148972. [PMID: 26872047 PMCID: PMC4752220 DOI: 10.1371/journal.pone.0148972] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/26/2016] [Indexed: 01/13/2023] Open
Abstract
Identifying additional genetic alterations associated with poor prognosis in acute lymphoblastic leukemia (ALL) is still a challenge. Aims: To characterize the presence of additional DNA copy number alterations (CNAs) in children and adults with ALL by whole-genome oligonucleotide array (aCGH) analysis, and to identify their associations with clinical features and outcome. Array-CGH was carried out in 265 newly diagnosed ALLs (142 children and 123 adults). The NimbleGen CGH 12x135K array (Roche) was used to analyze genetic gains and losses. CNAs were analyzed with GISTIC and aCGHweb software. Clinical and biological variables were analyzed. Three of the patients showed chromothripsis (cth6, cth14q and cth15q). CNAs were associated with age, phenotype, genetic subtype and overall survival (OS). In the whole cohort of children, the losses on 14q32.33 (p = 0.019) and 15q13.2 (p = 0.04) were related to shorter OS. In the group of children without good- or poor-risk cytogenetics, the gain on 1p36.11 was a prognostic marker independently associated with shorter OS. In adults, the gains on 19q13.2 (p = 0.001) and Xp21.1 (p = 0.029), and the loss of 17p (p = 0.014) were independent markers of poor prognosis with respect to OS. In summary, CNAs are frequent in ALL and are associated with clinical parameters and survival. Genome-wide DNA copy number analysis allows the identification of genetic markers that predict clinical outcome, suggesting that detection of these genetic lesions will be useful in the management of patients newly diagnosed with ALL.
Collapse
Affiliation(s)
- Maribel Forero-Castro
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
- School of Biological Sciences (GEBIMOL), Pedagogical and Technological University of Colombia (UPTC), Tunja, Colombia
| | - Cristina Robledo
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
| | - Rocío Benito
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
| | - María Abáigar
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
| | - Ana África Martín
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Maryam Arefi
- Department of Hematology, Clinical University Hospital of Valladolid, Valladolid, Spain
| | - José Luis Fuster
- Department of Pediatric Oncohematology, Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | | | - Juan N. Rodríguez
- Department of Hematology, Juan Ramón Jiménez Hospital, Huelva, Spain
| | | | - Susana Riesco
- Department of Pediatric Oncohematology, University Hospital of Salamanca, Salamanca, Spain
| | - Lourdes Hermosín
- Department of Hematology, Jerez Hospital, Jerez de la Frontera, Cádiz, Spain
| | | | - Isabel Recio
- Department of Hematology, Nuestra Señora de Sonsoles Hospital, Avila, Spain
| | - Jordi Ribera
- Department of Hematology, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Badalona, Spain
| | - Jorge Labrador
- Department of Hematology, University Hospital of Burgos, Burgos, Spain
| | - José M. Alonso
- Department of Hematology, Rio Carrión Hospital, Palencia, Spain
| | - Carmen Olivier
- Department of Hematology, General Hospital of Segovia, Segovia, Spain
| | - Magdalena Sierra
- Department of Hematology, Virgen de la Concha Hospital, Zamora, Spain
| | - Marta Megido
- Department of Hematology, Bierzo Hospital, León/Ponferrada, Spain
| | | | - Juana Ciudad Pizarro
- Cytometry Service (NUCLEUS Research Support Platform), University of Salamanca (USAL), Salamanca, Spain
| | - Juan Luis García
- Institute of Health Science Studies of Castile and León (IESCYL), Salamanca, Spain
| | - José M. Ribera
- Department of Hematology, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Badalona, Spain
| | - Jesús M. Hernández-Rivas
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
15
|
Jackson RK, Irving JAE, Veal GJ. Personalization of dexamethasone therapy in childhood acute lymphoblastic leukaemia. Br J Haematol 2016; 173:13-24. [DOI: 10.1111/bjh.13924] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Rosanna K. Jackson
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne UK
| | - Julie A. E. Irving
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne UK
| | - Gareth J. Veal
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne UK
| |
Collapse
|
16
|
Integrative computational in-depth analysis of dysregulated miRNA-mRNA interactions in drug-resistant pediatric acute lymphoblastic leukemia cells: an attempt to obtain new potential gene-miRNA pathways involved in response to treatment. Tumour Biol 2015; 37:7861-72. [DOI: 10.1007/s13277-015-4553-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022] Open
|
17
|
Dong H, Carlton ME, Lerner A, Epstein PM. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells. Front Pharmacol 2015; 6:230. [PMID: 26528184 PMCID: PMC4602131 DOI: 10.3389/fphar.2015.00230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022] Open
Abstract
Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.
Collapse
Affiliation(s)
- Hongli Dong
- Department of Cell Biology, University of Connecticut Health Center, Farmington CT, USA
| | - Michael E Carlton
- Department of Cell Biology, University of Connecticut Health Center, Farmington CT, USA
| | - Adam Lerner
- Section of Hematology and Oncology, Evans Department of Medicine, Boston Medical Center, Boston MA, USA
| | - Paul M Epstein
- Department of Cell Biology, University of Connecticut Health Center, Farmington CT, USA
| |
Collapse
|
18
|
Abstract
Unlike other steroid hormone receptors, the glucocorticoid receptor (GR) is not considered an oncogene. In breast cancer, the estrogen receptor (ER) drives cell growth, proliferation, and metastasis, and the androgen receptor (AR) plays a similar role in prostate cancer. Accordingly, treatment of these diseases has focused on blocking steroid hormone receptor function. In contrast, glucocorticoids (GCs) work through GR to arrest growth and induce apoptosis in lymphoid tissue. Glucocorticoids are amazingly effective in this role, and have been deployed as the cornerstone of lymphoid cancer treatment for decades. Unfortunately, not all patients respond to GCs and dosage is restricted by immediate and long term side effects. In this chapter we review the treatment protocols that employ glucocorticoids as a curative agent, elaborate on what is known about their mechanism of action in these cancers, and also summarize the palliative uses of glucocorticoids for other cancers.
Collapse
Affiliation(s)
- Miles A Pufall
- Department of Biochemistry, Carver College of Medicine, Holden Comprehensive Cancer Center, 51 Newton Road, Bowen Science Building, Room 4-430, Iowa City, IA, 52242, USA,
| |
Collapse
|
19
|
Cantley AM, Welsch M, Ambesi-Impiombato A, Sanchez-Martin M, Kim MY, Bauer A, Ferrando A, Stockwell BR. Small Molecule that Reverses Dexamethasone Resistance in T-cell Acute Lymphoblastic Leukemia (T-ALL). ACS Med Chem Lett 2014; 5:754-9. [PMID: 25050160 DOI: 10.1021/ml500044g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022] Open
Abstract
Glucocorticoids are one of the most utilized and effective therapies in treating T-cell acute lymphoblastic leukemia. However, patients often develop resistance to glucocorticoids, rendering these therapies ineffective. We screened 9517 compounds, selected for their lead-like properties, chosen from among 3 372 615 compounds, against a dexamethasone-resistant T-ALL cell line to identify small molecules that reverse glucocorticoid resistance. We synthesized analogues of the most effective compound, termed J9, from the screen in order to define the scaffold's structure-activity relationship. Active compounds restored sensitivity to glucocorticoids through upregulation of the glucocorticoid receptor. This compound and mechanism may provide a strategy for overcoming glucocorticoid resistance in patients with T-ALL.
Collapse
Affiliation(s)
- Alexandra M. Cantley
- Department of Biological Sciences, ‡Department of Chemistry, and §Howard Hughes Medical Institute, Columbia University, 1208 Northwest Corner Building, 12th Floor, 550 West 120th Street,
MC 4846, New York, New York 10027 United States
- Department of Systems Biology, Columbia University Medical Center, and ⊥Institute for
Cancer Genetics, Columbia University, New York, New York 10032 United States
- Department of Pathology and ○Department of Pediatrics, Columbia University, New York, New York 10032, United States
| | - Matthew Welsch
- Department of Biological Sciences, ‡Department of Chemistry, and §Howard Hughes Medical Institute, Columbia University, 1208 Northwest Corner Building, 12th Floor, 550 West 120th Street,
MC 4846, New York, New York 10027 United States
- Department of Systems Biology, Columbia University Medical Center, and ⊥Institute for
Cancer Genetics, Columbia University, New York, New York 10032 United States
- Department of Pathology and ○Department of Pediatrics, Columbia University, New York, New York 10032, United States
| | - Alberto Ambesi-Impiombato
- Department of Biological Sciences, ‡Department of Chemistry, and §Howard Hughes Medical Institute, Columbia University, 1208 Northwest Corner Building, 12th Floor, 550 West 120th Street,
MC 4846, New York, New York 10027 United States
- Department of Systems Biology, Columbia University Medical Center, and ⊥Institute for
Cancer Genetics, Columbia University, New York, New York 10032 United States
- Department of Pathology and ○Department of Pediatrics, Columbia University, New York, New York 10032, United States
| | - Marta Sanchez-Martin
- Department of Biological Sciences, ‡Department of Chemistry, and §Howard Hughes Medical Institute, Columbia University, 1208 Northwest Corner Building, 12th Floor, 550 West 120th Street,
MC 4846, New York, New York 10027 United States
- Department of Systems Biology, Columbia University Medical Center, and ⊥Institute for
Cancer Genetics, Columbia University, New York, New York 10032 United States
- Department of Pathology and ○Department of Pediatrics, Columbia University, New York, New York 10032, United States
| | - Mi-Yeon Kim
- Department of Biological Sciences, ‡Department of Chemistry, and §Howard Hughes Medical Institute, Columbia University, 1208 Northwest Corner Building, 12th Floor, 550 West 120th Street,
MC 4846, New York, New York 10027 United States
- Department of Systems Biology, Columbia University Medical Center, and ⊥Institute for
Cancer Genetics, Columbia University, New York, New York 10032 United States
- Department of Pathology and ○Department of Pediatrics, Columbia University, New York, New York 10032, United States
| | - Andras Bauer
- Department of Biological Sciences, ‡Department of Chemistry, and §Howard Hughes Medical Institute, Columbia University, 1208 Northwest Corner Building, 12th Floor, 550 West 120th Street,
MC 4846, New York, New York 10027 United States
- Department of Systems Biology, Columbia University Medical Center, and ⊥Institute for
Cancer Genetics, Columbia University, New York, New York 10032 United States
- Department of Pathology and ○Department of Pediatrics, Columbia University, New York, New York 10032, United States
| | - Adolfo Ferrando
- Department of Biological Sciences, ‡Department of Chemistry, and §Howard Hughes Medical Institute, Columbia University, 1208 Northwest Corner Building, 12th Floor, 550 West 120th Street,
MC 4846, New York, New York 10027 United States
- Department of Systems Biology, Columbia University Medical Center, and ⊥Institute for
Cancer Genetics, Columbia University, New York, New York 10032 United States
- Department of Pathology and ○Department of Pediatrics, Columbia University, New York, New York 10032, United States
| | - Brent R. Stockwell
- Department of Biological Sciences, ‡Department of Chemistry, and §Howard Hughes Medical Institute, Columbia University, 1208 Northwest Corner Building, 12th Floor, 550 West 120th Street,
MC 4846, New York, New York 10027 United States
- Department of Systems Biology, Columbia University Medical Center, and ⊥Institute for
Cancer Genetics, Columbia University, New York, New York 10032 United States
- Department of Pathology and ○Department of Pediatrics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
20
|
Sau S, Agarwalla P, Mukherjee S, Bag I, Sreedhar B, Pal-Bhadra M, Patra CR, Banerjee R. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle. NANOSCALE 2014; 6:6745-54. [PMID: 24824564 DOI: 10.1039/c4nr00974f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of 'exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of 'endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of 'endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.
Collapse
Affiliation(s)
- Samaresh Sau
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Tarnaka, Uppal Road, Hyderabad 500007, India.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Recent advances in acute lymphoblastic leukemia in children and adolescents: an expert panel discussion. Curr Opin Oncol 2014; 25 Suppl 3:S1-13; quiz S14-6. [PMID: 24305505 DOI: 10.1097/cco.0000000000000017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Acute lymphoblastic leukemia (ALL) is the most common form of childhood leukemia, representing 75% to 80% of cases of acute leukemia among children. Dramatic improvements in the cure rates and survival outcomes for children with ALL have been seen over the past several decades; currently the 5-year survival rate for childhood ALL is more than 80%. These improvements have come about because of advances in the understanding of the molecular genetics and pathogenesis of the disease, incorporation of risk-adapted therapy, and the advent of new targeted agents. RECENT FINDINGS Scientific advances have provided new insights into leukemogenesis, drug resistance, and host pharmacogenomics, identified novel subtypes of leukemia, and suggested potential targets for therapy. At the same time novel monoclonal antibodies, small molecule inhibitors, chemotherapeutics, and cell-based treatment strategies have been developed and investigated. SUMMARY In this article, experts will discuss some of the current challenges and future directions in the treatment of pediatric ALL. The authors will offer expert guidance to practicing oncologists on how to best incorporate newer treatment approaches into the care of children and adolescents with ALL. The most important ongoing clinical trials in the area will also be reviewed.
Collapse
|
22
|
Apoptosis: the intrinsic pathway. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Shah DS, Kumar R. Steroid resistance in leukemia. World J Exp Med 2013; 3:21-25. [PMID: 24520542 PMCID: PMC3905587 DOI: 10.5493/wjem.v3.i2.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/02/2013] [Accepted: 06/20/2013] [Indexed: 02/06/2023] Open
Abstract
There are several types of leukemia which are characterized by the abnormal growth of cells from the myeloid or lymphoid lineage. Because of their lympholytic actions, glucocorticoids (GCs) are included in many therapeutic regimens for the treatment of various forms of leukemia. Although a significant number of acute lymphoblastic leukemia patients respond well to GC treatment during initial phases; prolonged treatments sometimes results in steroid-resistance. The exact mechanism of this resistance has yet not been completely elucidated, but a correlation between functional GC receptor expression levels and steroid-resistance in patients has been found. In recent years, several other mechanisms of action have been reported that could play an important role in the development of such drug resistances in leukemia. Therefore, a better understanding of how leukemic patients develop drug resistance should result in drugs designed appropriately to treat these patients.
Collapse
|
24
|
Luca F, Maranville JC, Richards AL, Witonsky DB, Stephens M, Di Rienzo A. Genetic, functional and molecular features of glucocorticoid receptor binding. PLoS One 2013; 8:e61654. [PMID: 23637875 PMCID: PMC3640037 DOI: 10.1371/journal.pone.0061654] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/12/2013] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are key mediators of stress response and are widely used as pharmacological agents to treat immune diseases, such as asthma and inflammatory bowel disease, and certain types of cancer. GCs act mainly by activating the GC receptor (GR), which interacts with other transcription factors to regulate gene expression. Here, we combined different functional genomics approaches to gain molecular insights into the mechanisms of action of GC. By profiling the transcriptional response to GC over time in 4 Yoruba (YRI) and 4 Tuscans (TSI) lymphoblastoid cell lines (LCLs), we suggest that the transcriptional response to GC is variable not only in time, but also in direction (positive or negative) depending on the presence of specific interacting transcription factors. Accordingly, when we performed ChIP-seq for GR and NF-κB in two YRI LCLs treated with GC or with vehicle control, we observed that features of GR binding sites differ for up- and down-regulated genes. Finally, we show that eQTLs that affect expression patterns only in the presence of GC are 1.9-fold more likely to occur in GR binding sites, compared to eQTLs that affect expression only in its absence. Our results indicate that genetic variation at GR and interacting transcription factors binding sites influences variability in gene expression, and attest to the power of combining different functional genomic approaches.
Collapse
Affiliation(s)
- Francesca Luca
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Joseph C. Maranville
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Allison L. Richards
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - David B. Witonsky
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
25
|
AngII-induced glomerular mesangial cell proliferation inhibited by losartan via changes in intracellular calcium ion concentration. Clin Exp Med 2013; 14:169-76. [PMID: 23459786 PMCID: PMC4000622 DOI: 10.1007/s10238-013-0232-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/21/2013] [Indexed: 11/24/2022]
Abstract
This study investigated the changes in intracellular [Ca2+]i (intracellular calcium ion concentration) and TRPC6 (transient receptor potential channel 6) expression during angiotensin II (AngII)-induced glomerular mesangial cell (GMC) proliferation, as well as the inhibitory effect of losartan. GMC cultures were split into four groups treated for 24 h: Group N (blank control group), Group A (10−7 mol/L AngII), Group LT (10−7 mol/L AngII and 10−5 mol/L losartan), and Group Pred (10−7 mol/L AngII and 10−5 mol/L prednisone). GMCs proliferation was measured by the MTT and trypan blue assays. The distribution of TRPC6 was monitored by immunofluorescence, the expression of TRPC6 was detected by RT-PCR and Western blotting, and [Ca2+]i was measured by laser scanning confocal microscopy. The results showed that the maximal proliferation of GMCs was induced by treatment with 10−7 mol/L AngII for 24 h. In Group A, the distribution of TRPC6 was not uniform in the cell membrane, there was increased accumulation of this protein within the cytoplasm, and the increased expression of TRPC6 and [Ca2+]i was consistent with the proliferation of cells. In Group LT, losartan inhibited the proliferation of GMCs significantly, the levels of TRPC6 and [Ca2+]i were diminished, and the distribution of TRPC6 was improved. Prednisone also significantly inhibited the proliferation of GMCs and had no effects on the expression of TRPC6 and [Ca2+]i in Group Pred. These findings suggested that AngII could enhance the expression of TRPC6, increase [Ca2+]i, and demonstrate a time–dose–response relationship with the proliferation of GMCs, while losartan reversed the effect of AngII on GMC proliferation.
Collapse
|
26
|
Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes. Cell Death Dis 2013; 4:e453. [PMID: 23303127 PMCID: PMC3563981 DOI: 10.1038/cddis.2012.193] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expressing the GR-A, -B, or -C, but not the GR-D, isoform. cDNA microarray analyses of cells sensitive (GR-C3) and insensitive (GR-D3) to DEX revealed glucocorticoid-induced proapoptotic transcriptomes. Genes that were regulated by the proapoptotic GR-C3, but not by the GR-D3, isoform likely contributed to glucocorticoid-induced apoptosis. The identified genes include those that are directly involved in apoptosis and those that facilitate cell killing. Chromatin immunoprecipitation assays demonstrated that distinct chromatin modification abilities may underlie the distinct functions of GR isoforms. Interestingly, all GR isoforms, including the GR-D3 isoform, suppressed mitogen-stimulated cytokines. Furthermore, the GR-C isoforms were selectively upregulated in mitogen-activated primary T cells and DEX treatment induced GR-C target genes in activated T cells. Cell-specific expressions and functions of GR isoforms may help to explain the tissue- and individual-selective actions of glucocorticoids and may provide a basis for developing improved glucocorticoids.
Collapse
|
27
|
Ohe M, Hashino S, Hattori A. Successful treatment of diffuse large B-cell lymphoma with clarithromycin and prednisolone. THE KOREAN JOURNAL OF HEMATOLOGY 2012; 47:293-7. [PMID: 23320009 PMCID: PMC3538802 DOI: 10.5045/kjh.2012.47.4.293] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/11/2012] [Accepted: 10/09/2012] [Indexed: 11/17/2022]
Abstract
We report a case of diffuse large B-cell lymphoma (DLBCL) treated successfully with clarithromycin (CAM) and prednisolone (PSL). A 71-year-old woman presented with fever and cervical pain. DLBCL was diagnosed based on histological results from lymph node biopsy. Cervical pain was thought to be caused by the invasion of lymphoma cells into the cervical vertebrae. She initially received radiotherapy for the cervical lesion. She did not receive conventional chemotherapy because of the risk of recurrent non-tuberculous mycobacteria infection; therefore, she was treated with 20 mg/day PSL and 800 mg/day CAM to induce apoptosis in lymphoma cells. Complete remission was achieved after 6 months. The present findings suggest that CAM and PSL may be effective in some cases of DLBCL.
Collapse
Affiliation(s)
- Masashi Ohe
- Department of General Medicine, Hokkaido Social Insurance Hospital, Sapporo, Japan
| | | | | |
Collapse
|
28
|
Schwartz JR, Sarvaiya PJ, Leiva LE, Velez MC, Singleton TC, Yu LC, Vedeckis WV. A facile, branched DNA assay to quantitatively measure glucocorticoid receptor auto-regulation in T-cell acute lymphoblastic leukemia. CHINESE JOURNAL OF CANCER 2012; 31:381-91. [PMID: 22739263 PMCID: PMC3777508 DOI: 10.5732/cjc.012.10044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glucocorticoid (GC) steroid hormones are used to treat acute lymphoblastic leukemia (ALL) because of their pro-apoptotic effects in hematopoietic cells. However, not all leukemia cells are sensitive to GC, and no assay to stratify patients is available. In the GC-sensitive T-cell ALL cell line CEM-C7, auto-up-regulation of RNA transcripts for the glucocorticoid receptor (GR) correlates with increased apoptotic response. This study aimed to determine if a facile assay of GR transcript levels might be promising for stratifying ALL patients into hormone-sensitive and hormone-resistant populations. The GR transcript profiles of various lymphoid cell lines and 4 bone marrow samples from patients with T-cell ALL were analyzed using both an optimized branched DNA (bDNA) assay and a real-time quantitative reverse transcription-polymerase chain reaction assay. There were significant correlations between both assay platforms when measuring total GR (exon 5/6) transcripts in various cell lines and patient samples, but not for a probe set that detects a specific, low abundance GR transcript (exon 1A3). Our results suggest that the bDNA platform is reproducible and precise when measuring total GR transcripts and, with further development, may ultimately offer a simple clinical assay to aid in the prediction of GC-sensitivity in ALL patients.
Collapse
Affiliation(s)
- Jason R Schwartz
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Yang A, Ma J, Wu M, Qin W, Zhao B, Shi Y, Jin Y, Xie Y. Aberrant microRNA-182 expression is associated with glucocorticoid resistance in lymphoblastic malignancies. Leuk Lymphoma 2012; 53:2465-73. [DOI: 10.3109/10428194.2012.693178] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Haskins WE, Eedala S, Jadhav YA, Labhan MS, Pericherla VC, Perlman EJ. Insights on neoplastic stem cells from gel-based proteomics of childhood germ cell tumors. Pediatr Blood Cancer 2012; 58:722-8. [PMID: 21793190 PMCID: PMC3204330 DOI: 10.1002/pbc.23282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/22/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Childhood germ cell tumors (cGCTs), believed to arise from transformed primordial germ cells by an unknown mechanism, provide a unique model system for investigating cell signaling, pluripotency, and the microenvironment of neoplastic stem cells (NSCs) in vivo. This is the first report of proteomics of cGCTs. PROCEDURE Four dysgerminomas (DYSs) and four childhood endodermal sinus tumors (cESTs), resembling self-renewing and differentiating NSCs, respectively, were selected. Proteomic studies were performed by 2-DE, SDS-PAGE, and cLC/MS/MS with protein database searching. RESULTS 2-DE: 9 of 941 spots were differentially regulated with greater than a twofold change in spot volume for at least three of four gels in each group. Two of nine spots had P values for the t-test analysis of comparisons less than 0.001, while the remaining spots had P values from 0.013 to 0.191. Top-ranked proteins were identified in nine of nine spots with 4.0-38% sequence coverage. APOA1, CRK, and PDIA3 were up-regulated in cESTs. TFG, TYMP, VCP, RBBP, FKBP4, and BiP were up-regulated in DYSs. SDS-PAGE: Up-regulation of NF45 and FKBP4 was observed in four of four cESTs and DYSs, respectively. The fold-changes observed correspond with characteristic genetic changes. CONCLUSION Differential regulation of FKBP4 and NF45, combined with previous research on immunosuppressant binding, suggests that glucocorticoid receptor signaling merits further investigation in cGCTs and NSCs.
Collapse
Affiliation(s)
- William E. Haskins
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, Department of RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Medicine, Division of Hematology & Medical Oncology, Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229,Correspondence: William E. Haskins, Ph.D., Dept. of Biology-BSE 3.108A, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0662, , Phone: (210)563-4492, Fax: (210)458-5658
| | - Sruthi Eedala
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, Department of RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Y.L. Avinash Jadhav
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, Department of RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Manbir S. Labhan
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, Department of RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Vidya C. Pericherla
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, Department of RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Elizabeth J. Perlman
- Department of Pathology, Northwestern University’s Feinberg School of Medicine and Robert H. Lurie Cancer Center, Chicago, IL, 60614
| |
Collapse
|
31
|
Rainer J, Lelong J, Bindreither D, Mantinger C, Ploner C, Geley S, Kofler R. Research resource: transcriptional response to glucocorticoids in childhood acute lymphoblastic leukemia. Mol Endocrinol 2011; 26:178-93. [PMID: 22074950 DOI: 10.1210/me.2011-1213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Glucocorticoids (GC) induce apoptosis in lymphoblasts and are thus essential in the treatment of acute lymphoblastic leukemia (ALL). Their effects result from gene regulations via the GC receptor (NR3C1/GR), but it is unknown how these changes evolve, what the primary GR targets are, and to what extent responses differ between ALL subtypes and nonlymphoid malignancies. We delineated the transcriptional response to GC on the exon level in a time-resolved manner in a precursor B- and a T childhood ALL model employing Exon microarrays and combined this with genome-wide NR3C1-binding site detection using chromatin immunoprecipitation-on-chip technology. This integrative approach showed that the response was strongly influenced by kinetics and extent of GR autoinduction in both models. Although remarkable differences between the ALL systems were apparent, we defined a set of common response genes enriched in apoptosis-related processes. Globally, GR binding was higher for GC-induced vs. -repressed genes, suggesting that GR mediates gene repression by interaction with distant enhancers or by cross talk with other transcription factors. Exon level analysis defined several new GC-regulated transcript variants of genes, including ATP4B, GPR98, TBCD, and ZBTB16. Our study provides unprecedented insight into the transcriptional response to GC in ALL cells, essential to understand this biologically and clinically important phenomenon. We found evidence of cell type-specific as well as common responses, possibly related to apoptosis induction, and detected induction of novel transcript variants by GC in the investigated systems. Finally, we implemented a bioinformatic framework that might be useful for high-density microarray analyses to identify alternative transcript variant expression.
Collapse
Affiliation(s)
- Johannes Rainer
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
32
|
Lv M, Zhang X, Jia H, Li D, Zhang B, Zhang H, Hong M, Jiang T, Jiang Q, Lu J, Huang X, Huang B. An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-α and cAMP/PKA pathways. Leukemia 2011; 26:769-77. [PMID: 21979877 DOI: 10.1038/leu.2011.273] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are a family of 19-24 nucleotide non-coding RNAs with posttranscriptional regulatory functions. The involvement of miRNAs in normal hematopoiesis implies that deregulated miRNAs might contribute to leukemogenesis. To date, although certain miRNAs have been established a clear oncogenic role in hematological malignancies, other individual miRNAs potentially involved in human leukemogenesis still remain elusive. In this report, we showed that miR-142-3p was upregulated in human T-leukemic cell lines and primary T-leukemic cells isolated from T-cell acute lymphoblastic leukemia (T-ALL) patients and its expressive levels were correlated with patients' prognosis. Such an oncogenic role of miR-142-3p could be explained by its targeting cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and glucocorticoid receptor alpha (GRα). High levels of miR-142-3p resulted in low levels of cAMP and weak activity of PKA, thus relieving the inhibitory effect of PKA on T-leukemic cell proliferation. Meanwhile, miR-142-3p decreased GRα protein expression by directly targeting the 3'-untranslational region of GRα mRNA, leading to glucocorticoid resistance. Transfection of the miR-142-3p inhibitor effectively converted glucocorticoid resistance, because of the resultant increase of GRα expression and PKA activity. These findings suggest that miR-142-3p is critical in T-cell leukemogenesis and may serve as a potential therapeutic target in T-ALL patients.
Collapse
Affiliation(s)
- M Lv
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Beach JA, Nary LJ, Hirakawa Y, Holland E, Hovanessian R, Medh RD. E4BP4 facilitates glucocorticoid-evoked apoptosis of human leukemic CEM cells via upregulation of Bim. J Mol Signal 2011; 6:13. [PMID: 21975218 PMCID: PMC3197565 DOI: 10.1186/1750-2187-6-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/05/2011] [Indexed: 12/02/2022] Open
Abstract
Background Synthetic GCs serve as therapeutic agents for some lymphoid leukemias because of their ability to induce transcriptional changes via the GC receptor (GR) and trigger apoptosis. Upregulation of the BH3-only member of Bcl-2 family proteins, Bim, has been shown to be essential for GC-evoked apoptosis of leukemic lymphoblasts. Using human T cell leukemic sister clones CEM-C7-14 and CEM-C1-15, we have previously shown that the bZIP transcriptional repressor, E4BP4, is preferentially upregulated by GCs in CEM-C7-14 cells that are susceptible to GC-evoked apoptosis, but not in refractory CEM-C1-15 cells. E4BP4 is an evolutionarily conserved member of the PAR family of bZIP transcription factors related to the C. elegans death specification gene ces2. Results Mouse E4BP4 was ectopically expressed in CEM-C1-15 cells, resulting in sensitization to GC-evoked apoptosis in correlation with restoration of E4BP4 and Bim upregulation. shRNA mediated modest knockdown of E4BP4 in CEM-C7-14 cells resulted in concomitant reduction in Bim expression, although GC-evoked fold-induction and sensitivity to apoptosis was similar to parental cells. Conclusion Data presented here suggest that GC-mediated upregulation of E4BP4 facilitates Bim upregulation and apoptosis of CEM cells. Since the Bim promoter does not contain any consensus GRE or EBPRE sequences, induction of Bim may be a secondary response.
Collapse
Affiliation(s)
- Jessica A Beach
- Department of Biology, California State University Northridge, Northridge, CA 91330-8303, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Sai S, Nakagawa Y, Yamaguchi R, Suzuki M, Sakaguchi K, Okada S, Seckl JR, Ohzeki T, Chapman KE. Expression of 11beta-hydroxysteroid dehydrogenase 2 contributes to glucocorticoid resistance in lymphoblastic leukemia cells. Leuk Res 2011; 35:1644-8. [PMID: 21794917 DOI: 10.1016/j.leukres.2011.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/23/2011] [Accepted: 07/01/2011] [Indexed: 01/02/2023]
Abstract
Synthetic glucocorticoids (GCs) form a crucial first-line treatment for childhood acute lymphoblastic leukemia (ALL). However prolonged GC therapy frequently leads to GC-resistance with an unclear molecular mechanism. 11β-hydroxysteroid dehydrogenase (11β-HSD) 2 inactivates GCs within cells. Here, we show the association between GC sensitivity and 11β-HSD2 expression in human T-cell leukemic cell lines. 11β-HSD2 mRNA and protein levels were considerably higher in GC-resistant MOLT4F cells than in GC-sensitive CCRF-CEM cells. The 11β-HSD inhibitor, carbenoxolone pre-treatment resulted in greater cell death with prednisolone assessed by methyl-thiazol-tetrazolium assay and caspase-3/7 assay, suggesting that 11β-HSD2 is a cause of GC-resistance in ALL.
Collapse
Affiliation(s)
- Shuji Sai
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Maranville JC, Luca F, Richards AL, Wen X, Witonsky DB, Baxter S, Stephens M, Di Rienzo A. Interactions between glucocorticoid treatment and cis-regulatory polymorphisms contribute to cellular response phenotypes. PLoS Genet 2011; 7:e1002162. [PMID: 21750684 PMCID: PMC3131293 DOI: 10.1371/journal.pgen.1002162] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/15/2011] [Indexed: 01/14/2023] Open
Abstract
Glucocorticoids (GCs) mediate physiological responses to environmental stress and are commonly used as pharmaceuticals. GCs act primarily through the GC receptor (GR, a transcription factor). Despite their clear biomedical importance, little is known about the genetic architecture of variation in GC response. Here we provide an initial assessment of variability in the cellular response to GC treatment by profiling gene expression and protein secretion in 114 EBV-transformed B lymphocytes of African and European ancestry. We found that genetic variation affects the response of nearby genes and exhibits distinctive patterns of genotype-treatment interactions, with genotypic effects evident in either only GC-treated or only control-treated conditions. Using a novel statistical framework, we identified interactions that influence the expression of 26 genes known to play central roles in GC-related pathways (e.g. NQO1, AIRE, and SGK1) and that influence the secretion of IL6.
Collapse
Affiliation(s)
- Joseph C. Maranville
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Francesca Luca
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Allison L. Richards
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Xiaoquan Wen
- Department of Statistics, The University of Chicago, Chicago, Illinois, United States of America
| | - David B. Witonsky
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Shaneen Baxter
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Matthew Stephens
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
- Department of Statistics, The University of Chicago, Chicago, Illinois, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
36
|
Role of GILZ in immune regulation, glucocorticoid actions and rheumatoid arthritis. Nat Rev Rheumatol 2011; 7:340-8. [PMID: 21556028 DOI: 10.1038/nrrheum.2011.59] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glucocorticoids have been exploited therapeutically for more than six decades through the use of synthetic glucocorticoids as anti-inflammatory agents, and are still used in as many as 50% of patients suffering from inflammatory diseases such as rheumatoid arthritis (RA). Better understanding of the mechanisms of action of glucocorticoids could enable the development of therapies that dissociate the broad-spectrum benefits of glucocorticoids from their adverse metabolic effects. The glucocorticoid-induced leucine zipper protein (GILZ; also known as TSC22 domain family protein 3) is a glucocorticoid-responsive molecule whose interactions with signal transduction pathways, many of which are operative in RA and other inflammatory diseases, suggest that it is a key endogenous regulator of the immune response. The overlap between the observed effects of GILZ on the immune system and those of glucocorticoids strongly suggest GILZ as a critical mediator of the therapeutic effects of glucocorticoids. Observations of the immunomodulatory effects of GILZ in human RA synovial cells, and in an in vivo model of RA, support the hypothesis that GILZ is a key glucocorticoid-induced regulator of inflammation in RA. Moreover, evidence that the effect of GILZ on bone loss might be in contrast to those of glucocorticoids suggests manipulation of GILZ as a potential means of dissociating the beneficial anti-inflammatory effects of glucocorticoids from their negative metabolic repercussions.
Collapse
|
37
|
|
38
|
Geng CD, Vedeckis WV. A new, lineage specific, autoup-regulation mechanism for human glucocorticoid receptor gene expression in 697 pre-B-acute lymphoblastic leukemia cells. Mol Endocrinol 2010; 25:44-57. [PMID: 21084380 DOI: 10.1210/me.2010-0249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoid (GC) steroid hormones induce apoptosis in acute lymphoblastic leukemia (ALL). Autoup-regulation of human GC receptor (hGR) levels is associated with sensitivity to GC-mediated apoptosis. Among the major hGR promoters expressed in 697 pre-B-ALL cells (1A, 1B, 1C, and 1D), only promoters 1C and 1D are selectively activated by the hormone. Promoter 1B is unresponsive, and promoter 1A is down-regulated by dexamethasone (Dex) in 697 cells, whereas they are both up-regulated in CEM-C7 T-ALL cells. Autoup-regulation of promoter 1C and 1D in 697 cells requires sequences containing GC response units (GRUs) (1C GRU, -2915/-2956; 1D GRU, -4525/-4559) that were identified previously in CEM-C7 cells. These GRUs potentially bind GR, c-myeloblastosis (c-Myb), and E-twenty six (Ets) proteins; 697 cells express high levels of c-Myb protein, as well as the E-twenty six family protein members, PU.1 and Spi-B. Dex treatment in 697 cells elevates the expression of c-Myb and decreases levels of both Spi-B and PU.1. Chromatin immunoprecipitation assays revealed the specific recruitment of GR, c-Myb, and cAMP response element-binding protein binding protein to the 1C and 1D GRUs upon Dex treatment, correlating to observed autoup-regulated activity in these two promoters. These data suggest a hormone activated, lineage-specific mechanism to control the autoup-regulation of hGR gene expression in 697 pre-B-ALL cells via steroid-mediated changes in GR coregulator expression. These findings may be helpful in understanding the mechanism that determines the sensitivity of B-ALL leukemia cells to hormone-induced apoptosis.
Collapse
Affiliation(s)
- Chuan-dong Geng
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | |
Collapse
|
39
|
Hosono N, Kishi S, Iho S, Urasaki Y, Yoshida A, Kurooka H, Yokota Y, Ueda T. Glutathione S-transferase M1 inhibits dexamethasone-induced apoptosis in association with the suppression of Bim through dual mechanisms in a lymphoblastic leukemia cell line. Cancer Sci 2010; 101:767-73. [PMID: 20067466 PMCID: PMC11159052 DOI: 10.1111/j.1349-7006.2009.01432.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glutathione S-transferase mu (GSTM1) is mainly known as a detoxification enzyme but it has also been shown to be a negative regulator of apoptosis-related signaling cascades. Recently GSTM1 has been reported to be a significant risk factor for hematological relapse in childhood acute lymphoblastic leukemia, although the underlying mechanism remains largely unknown. Glucocorticoids play a crucial role in the treatment of childhood acute lymphoblastic leukemia, therefore we hypothesized that GSTM1 plays important roles in glucocorticoid-induced apoptotic pathways. To clarify the relationship between GSTM1 and drug resistance, GSTM1 was transfected into a T-acute lymphoblastic leukemia cell line, CCRF-CEM (CEM), and we established the GSTM1-expressing cell lines CEM/M1-4 and CEM/M1-9. Transduction of GSTM1 into CEM selectively decreased cellular sensitivity to dexamethasone in a manner that was independent of glutathione conjugation, but was due to apoptosis inhibition. Dexamethasone-induced p38-MAPK and Bim activation were concomitantly suppressed. Interestingly, nuclear factor kappa b (NF-kappaB) p50 activity was upregulated in GSTM1-expressing CEM. Inhibition of NF-kappaB by the pharmacological agent BAY11-7082 greatly enhanced the sensitivity of the GSTM1-expressing CEM to dexamethasone and was accompanied by an increase in Bim expression. Thus, we propose that GSTM1, a novel regulator of dexamethasone-induced apoptosis, causes dexamethasone resistance by suppression of Bim through dual mechanisms of both downregulation of p38-MAPK and upregulation of NF-kappaB p50.
Collapse
Affiliation(s)
- Naoko Hosono
- First Department of Internal Medicine, University of Fukui, Matsuoka, Eiheiji, Fukui, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bjelaković G, Stojanović I, Jevtović Stoimenov T, Pavlović D, Kocić G, Rossi S, Tabolacci C, Nikolić J, Sokolović D, Bjelakovic L. Metabolic correlations of glucocorticoids and polyamines in inflammation and apoptosis. Amino Acids 2010; 39:29-43. [PMID: 20169375 DOI: 10.1007/s00726-010-0489-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 01/16/2010] [Indexed: 01/28/2023]
Abstract
Glucocorticoid hormones (GC) are essential in all aspects of human health and disease. Their anti-inflammatory and immunosuppressive properties are reasons for therapeutic application in several diseases. GC suppress immune activation and uncontrolled overproduction and release of cytokines. GC inhibit the release of pro-inflammatory cytokines and stimulate the production of anti-inflammatory cytokines. Investigation of GC's mechanism of action, suggested that polyamines (PA) may act as mediators or messengers of their effects. Beside glucocorticoids, spermine (Spm) is one of endogenous inhibitors of cytokine production. There are many similarities in the metabolic actions of GC and PA. The major mechanism of GC effects involves the regulation of gene expression. PA are essential for maintaining higher order organization of chromatin in vivo. Spermidine and Spm stabilize chromatin and nuclear enzymes, due to their ability to form complexes with negatively charged groups on DNA, RNA and proteins. Also, there is an increasing body of evidence that GC and PA change the chromatin structure especially through acetylation and deacetylation of histones. GC display potent immunomodulatory activities, including the ability to induce T and B lymphocyte apoptosis, mediated via production of reactive oxygen species (ROS) in the mitochondrial pathway. The by-products of PA catabolic pathways (hydrogen peroxide, amino aldehydes, acrolein) produce ROS, well-known cytotoxic agents involved in programmed cell death (PCD) or apoptosis. This review is an attempt in the better understanding of relation between GC and PA, naturally occurring compounds of all eukaryotic cells, anti-inflammatory and apoptotic agents in physiological and pathological conditions connected to oxidative stress or PCD.
Collapse
Affiliation(s)
- G Bjelaković
- Faculty of Medicine, Institute of Biochemistry, University of Nis, Nis, Serbia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lynch JT, Rajendran R, Xenaki G, Berrou I, Demonacos C, Krstic-Demonacos M. The role of glucocorticoid receptor phosphorylation in Mcl-1 and NOXA gene expression. Mol Cancer 2010; 9:38. [PMID: 20156337 PMCID: PMC2834612 DOI: 10.1186/1476-4598-9-38] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 02/15/2010] [Indexed: 01/22/2023] Open
Abstract
Background The cyclin-dependent kinase (CDK) and mitogen-activated protein kinase (MAPK) mediated phosphorylation of glucocorticoid receptor (GR) exerts opposite effects on GR transcriptional activity and affects other posttranslational modifications within this protein. The major phosphorylation site of human GR targeted by MAPK family is the serine 226 and multiple kinase complexes phosphorylate receptor at the serine 211 residue. We hypothesize that GR posttranslational modifications are involved in the determination of the cellular fate in human lymphoblastic leukemia cells. We investigated whether UV signalling through alternative GR phosphorylation determined the cell type specificity of glucocorticoids (GCs) mediated apoptosis. Results We have identified putative Glucocorticoid Response Elements (GREs) within the promoter regulatory regions of the Bcl-2 family members NOXA and Mcl-1 indicating that they are direct GR transcriptional targets. These genes were differentially regulated in CEM-C7-14, CEM-C1-15 and A549 cells by glucocorticoids and JNK pathway. In addition, our results revealed that the S211 phosphorylation was dominant in CEM-C7-14, whereas the opposite was the case in CEM-C1-15 where prevalence of S226 GR phosphorylation was observed. Furthermore, multiple GR isoforms with cell line specific patterns were identified in CEM-C7-14 cells compared to CEM-C1-15 and A549 cell lines with the same antibodies. Conclusions GR phosphorylation status kinetics, and site specificity as well as isoform variability differ in CEM-C7-14, CEM-C1-15, and A549 cells. The positive or negative response to GCs induced apoptosis in these cell lines is a consequence of the variable equilibrium of NOXA and Mcl-1 gene expression potentially mediated by alternatively phosphorylated GR, as well as the balance of MAPK/CDK pathways controlling GR phosphorylation pattern. Our results provide molecular base and valuable knowledge for improving the GC based therapies of leukaemia.
Collapse
Affiliation(s)
- James T Lynch
- School of Pharmacy and Pharmaceutical Sciences, The University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
42
|
Dong H, Zitt C, Auriga C, Hatzelmann A, Epstein PM. Inhibition of PDE3, PDE4 and PDE7 potentiates glucocorticoid-induced apoptosis and overcomes glucocorticoid resistance in CEM T leukemic cells. Biochem Pharmacol 2009; 79:321-9. [PMID: 19737543 DOI: 10.1016/j.bcp.2009.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 11/26/2022]
Abstract
Stimulation of the cAMP signaling pathway has been shown to induce apoptosis and augment the effects of glucocorticoids in inducing apoptosis in leukemic cells. We recently reported that in primary B cell chronic lymphocytic leukemic (B-CLL) cells, apoptosis could be induced by stimulating the cAMP signaling pathway with a phosphodiesterase4 (PDE4) inhibitor alone; while in contrast, in the CEM T leukemic cell line, PDE4 inhibitors alone were ineffective, and concurrent stimulation of adenylyl cyclase was required to see effects [Tiwari et al. (2005)]. We report here that in the CEM and Jurkat T leukemic cell lines, the most abundantly expressed PDEs are PDE3B, PDE4A, PDE4D, PDE7A, and PDE8A. Selective inhibition of PDE3, PDE4 or PDE7 alone produces little effect on cell viability, but inhibition of all three of these PDEs together dramatically enhances glucocorticoid-induced apoptosis in CEM cells, and overcomes glucocorticoid resistance in a glucocorticoid-resistant CEM cell line. These studies indicate that for some leukemic cell types, a desired therapeutic effect may be achieved by inhibiting more than one form of PDE.
Collapse
Affiliation(s)
- Hongli Dong
- Signal Transduction Laboratory, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-6125, USA
| | | | | | | | | |
Collapse
|
43
|
Hirakawa Y, Nary LJ, Medh RD. Glucocorticoid evoked upregulation of RCAN1-1 in human leukemic CEM cells susceptible to apoptosis. J Mol Signal 2009; 4:6. [PMID: 19725972 PMCID: PMC2745384 DOI: 10.1186/1750-2187-4-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 09/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucocorticoid hormones (GCs) induce apoptosis of leukemic T-cells by transcriptional regulation via the GC receptor, GR. In the human leukemic CEM cell culture model, RCAN1 has been identified as one of the genes that is specifically upregulated only in the GC-sensitive CEM C7-14 cells, but not in the GC-resistant CEM-C1-15 sister cells in correlation with GC-evoked apoptosis. RCAN1 gene encodes two major protein isoforms of the regulator of calcineurin (RCAN1), RCAN1-1 and RCAN1-4 via alternative splicing of exons 1 and 4 respectively, to exons 5-7. Studies reported here evaluated the differential regulation and function of the two transcripts and protein products of RCAN1 by the synthetic GC dexamethasone (Dex), and by modulators of calcium signaling. RESULTS Dex selectively upregulates transcript specific for RCAN 1-1 in glucocorticoid (GC)-susceptible human leukemic CEM-C7-14 cells but not in GC-refractory CEM-C1-15 sister cells. Expression of the second major transcript, RCAN1-4, is upregulated by [Ca2+]i inducers, thapsigargin and A23187, but not by Dex, suggesting a mutually exclusive regulatory pathway for both RCAN1 transcripts. GC-mediated upregulation of RCAN1-1 transcript and RCAN1-1 protein was kinase dependent, and was blocked by staurosporine and the p38 MAP kinase inhibitor SB 202190. RCAN1-1 coimmunoprecipitates with calcineurin PP3C and Dex-mediated RCAN1-1 upregulation correlated with reduction in calcineurin PP3C activity. CONCLUSION Data presented here suggest that GCs specifically upregulate RCAN1-1 transcript and protein while inducers of [Ca2+]i selectively upregulate RCAN1-4. GC-mediated increase in RCAN1-1 abundance and binding possibly inhibits calcineurin activity and modulates apoptosis in CEM-C7-14 cells.
Collapse
Affiliation(s)
- Yasuko Hirakawa
- Department of Biology, California State University Northridge, Northridge, CA 91330-8303, USA.
| | | | | |
Collapse
|
44
|
Moraes-Fontes MF, Rebelo M, Caramalho I, Zelenay S, Bergman ML, Coutinho A, Demengeot J. Steroid treatments in mice do not alter the number and function of regulatory T cells, but amplify cyclophosphamide-induced autoimmune disease. J Autoimmun 2009; 33:109-20. [PMID: 19362805 DOI: 10.1016/j.jaut.2009.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/22/2009] [Accepted: 03/08/2009] [Indexed: 01/22/2023]
Abstract
Corticosteroids are commonly used in the therapy of autoimmune disease (AID), although they are rarely, if ever, curative. This failure may result from their deleterious effects on regulatory T cells (Treg). In this work, we directly tested the effects of hydrocortisone (HC) administration on Treg number and function in established mouse models of multiple sclerosis and colitis. Treatment with pertussis toxin (Ptx) or Cyclophosphamide (Cyp), two compounds known to affect Treg function served as controls. We first show that contrarily to Ptx, HC administration to mice transgenic for a TCR specific to myelin basic protein induces a mild lymphopenia, without selective depletion of Treg, nor induction of experimental autoimmune encephalomyelitis (EAE). We next report that HC administration to normal mice has no effect on Treg suppressive function tested in vitro. Moreover, we document that Treg isolated from HC-treated animals maintain their capacity to prevent T cell-induced colitis. In contrast, the combined administration of HC and Cyp, as is frequently used in the therapy of severe AID, dramatically enhanced the deleterious effect of Cyp on Treg number and function. Our analysis indicates that while a short course of corticosteroids alone is not deleterious to immune regulation, combined therapies, notably with Cyp, should be avoided.
Collapse
|
45
|
Selective cancer targeting via aberrant behavior of cancer cell-associated glucocorticoid receptor. Mol Ther 2009; 17:623-31. [PMID: 19223869 DOI: 10.1038/mt.2009.4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glucocorticoid receptors (GRs) are ubiquitous, nuclear hormone receptors residing in cell types of both cancer and noncancerous origin. It is not known whether cancer cell-associated GR alone can be selectively manipulated for delivery of exogenous genes to its nucleus for eliciting anticancer effect. We find that GR ligand, dexamethasone (Dex) in association with cationic lipoplex (termed as targeted lipoplex) could selectively manipulate GR in cancer cells alone for the delivery of transgenes in the nucleus, a phenomenon that remained unobserved in normal cells. The targeted lipoplex (i) showed GR-targeted transfections in all cancer cells experimented (P < 0.01), (ii) significantly diminished transfection in cancer cells when GR is downregulated (P < 0.01), and (iii) elicited specific nuclear translocation of targeted lipoplex in cancer cells, followed by upregulated transactivation of glucocorticoid response element (GRE)- promoted gene. Using anticancer gene, targeted lipoplex induced significant tumor growth retardation in mice in comparison to different control groups (P < 0.05). Interestingly, cell surface-associated Hsp90 in cancer cells assisted the intracellular uptake of GR-targeted lipoplex. Moreover, selective inhibition of Hsp90 in noncancer cells resulted in cancer cell-like, aberrant, GR activation. The current study discovers a therapeutically important, unique property of cancer cell associated-GR that may be linked to a compromised role of Hsp90.Molecular Therapy (2009) 17 4, 623-631 doi:10.1038/mt.2009.4.
Collapse
|
46
|
Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood 2008; 113:2014-21. [PMID: 18978206 DOI: 10.1182/blood-2008-05-157842] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Treatment failure in pediatric acute lymphoblastic leukemia (ALL) is related to cellular resistance to glucocorticoids (eg, prednisolone). Recently, we demonstrated that genes associated with glucose metabolism are differentially expressed between prednisolone-sensitive and prednisolone-resistant precursor B-lineage leukemic patients. Here, we show that prednisolone resistance is associated with increased glucose consumption and that inhibition of glycolysis sensitizes prednisolone-resistant ALL cell lines to glucocorticoids. Treatment of prednisolone-resistant Jurkat and Molt4 cells with 2-deoxy-D-glucose (2-DG), lonidamine (LND), or 3-bromopyruvate (3-BrPA) increased the in vitro sensitivity to glucocorticoids, while treatment of the prednisolone-sensitive cell lines Tom-1 and RS4; 11 did not influence drug cytotoxicity. This sensitizing effect of the glycolysis inhibitors in glucocorticoid-resistant ALL cells was not found for other classes of antileukemic drugs (ie, vincristine and daunorubicin). Moreover, down-regulation of the expression of GAPDH by RNA interference also sensitized to prednisolone, comparable with treatment with glycolytic inhibitors. Importantly, the ability of 2-DG to reverse glucocorticoid resistance was not limited to cell lines, but was also observed in isolated primary ALL cells from patients. Together, these findings indicate the importance of the glycolytic pathway in glucocorticoid resistance in ALL and suggest that targeting glycolysis is a viable strategy for modulating prednisolone resistance in ALL.
Collapse
|
47
|
Geng CD, Schwartz JR, Vedeckis WV. A conserved molecular mechanism is responsible for the auto-up-regulation of glucocorticoid receptor gene promoters. Mol Endocrinol 2008; 22:2624-42. [PMID: 18945813 DOI: 10.1210/me.2008-0157] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoid (GC) hormones are widely used in the treatment of acute lymphoblastic leukemia (ALL). Whereas a high level of GC receptor (GR) protein is associated with the sensitivity of ALL cells to steroid-mediated apoptosis, the auto-up-regulation of human (h)GR mRNA and protein is also found in hormone-sensitive ALL cell lines. We have characterized the hGR gene-proximal promoters for DNA sequences and transcription factors required for hormone responsiveness in T lymphoblasts. Sequences at -4559/-4525 and -2956/-2916, relative to the translation start site, function as strong composite GC response units (GRUs). Both GRUs include adjacent protein recognition sequences for the c-Myb transcription factor and the GR as a DNA cassette. An Ets-binding sequence overlaps the GR-binding site in the -4559/-4525 GRU, whereas an Ets-binding site present in the -2956/-2916 GRU does not overlap the GR/c-Myb-binding cassette. The Ets protein family member, PU.1, blocks hormonal activation of the -4559/-4525 GR/c-Myb-binding cassette but does not interfere with the responsiveness of the -2956/-2916 GRU. Thus, the hGR 1A GRU (described previously), the -4559/-4525 GRU, and the -2956/-2916 GRU have a similar structure and can mediate cell type-specific hormonal auto-up-regulation of hGR promoter activity in steroid-sensitive ALL cells. However, subtle differences in the GRU architecture result in differential sensitivity of the promoters to Ets family members such as PU.1. The architecture of the GRU and the spectrum of specific transcription factors present in different types of ALL might allow the development of a tailored therapy to enhance steroid sensitivity in ALL patients.
Collapse
Affiliation(s)
- Chuan-dong Geng
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
48
|
Molecular mechanisms involved in chemoresistance in paediatric acute lymphoblastic leukaemia. SRP ARK CELOK LEK 2008; 136:187-92. [DOI: 10.2298/sarh0804187s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common paediatric cancer. Despite cure rates approaching 80%, resistance to treatment and disease relapse remain a significant clinical problem. Identification of the genes and biological pathways responsible for chemoresistance is therefore crucial for the design of novel therapeutic approaches aiming to improve patient survival. Mutations in the membrane transporter P-glycoprotein genes, genetic variations in drug-metabolising enzymes and defects in apoptotic pathways are mechanisms of chemoresistance common to a wide spectrum of cancers and also play a role in paediatric ALL. In addition, several recent microarray studies have identified transcriptional profiles specifically associated with chemoresistance and pointed to a number of potentially novel therapeutic targets. These microarray studies have shown that genes discriminating between clinically responsive and resistant leukaemias tend to be involved in cellular processes such as regulation of cell cycle, proliferation, and DNA repair. Here we review the outcomes of these microarray studies and also present our own investigations into apoptotic resistance to DNA double strand breaks (DSBs) in paediatric ALL. We present stratification of paediatric ALL by the profile of DNA damage response following ionising radiation (IR) in vitro. This approach allows classification of ALL tumours at presentation into IR-apoptotic sensitive and IR-apoptotic resistant. Furthermore, apoptotic resistant leukaemias exhibit abnormal response of NFkB pathway following irradiation and inhibition of this pathway can sensitise leukaemic cells to IR-induced DSBs.
Collapse
|
49
|
Voutsas IF, Gritzapis AD, Alexis MN, Katsanou ES, Perez S, Baxevanis CN, Papamichail M. A novel quantitative flow cytometric method for measuring glucocorticoid receptor (GR) in cell lines: correlation with the biochemical determination of GR. J Immunol Methods 2007; 324:110-9. [PMID: 17582432 DOI: 10.1016/j.jim.2007.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 04/11/2007] [Accepted: 05/11/2007] [Indexed: 01/01/2023]
Abstract
Currently, a time consuming biochemical method is used for GR quantification. Here we compare the biochemical approach with a newly developed flow cytometric method of measuring GR in cell lines, which is less time consuming and does not requires the use of radioactive materials. The biochemical assay is easy to apply but the cells need to be grown in media free of endogenous glucocorticoids, in order to prevent them from interfering with radiolabelled hormone binding to the receptor. The presence of endogenous GR ligands is known to reduce receptor levels and to often produce false negative results. The immunofluorescent method is free of such limitations, as it depends entirely on detecting the receptor using a highly specific monoclonal antibody. Additionally, the biochemical assay cannot measure heterogeneity in individual cells, in contrast the flow cytometric one enables the enumeration of the receptor on a per cell basis, allowing exact description of differences in receptor levels amongst intact cells. Our results demonstrate that the flow cytometric method is of similar accuracy but of higher precision compared to the biochemical one. Also, the data we obtained using the immunofluorescent method correlated well with the biochemical one (R(2)=0.9712). In conclusion, flow cytometric method requires small cell numbers, is more accurate and lesser time consuming than the biochemical one. Thus, it could be useful for the quantification of GR in lymphocyte subpopulations, in lymphoproliferative disorders and in tumor cells from cancer patients, in order to design more efficient clinical treatment protocols.
Collapse
Affiliation(s)
- Ioannis F Voutsas
- Cancer Immunology and Immunotherapy Center, Saint Savvas Cancer Hospital, 171 Alexandras Ave., 11522 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
50
|
Herr I, Gassler N, Friess H, Büchler MW. Regulation of differential pro- and anti-apoptotic signaling by glucocorticoids. Apoptosis 2007; 12:271-291. [PMID: 17191112 DOI: 10.1007/s10495-006-0624-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
More than a quarter of a century ago, the phenomenon of glucocorticoid-induced apoptosis in the majority of hematological cells was first recognized. More recently, glucocorticoid-induced antiapoptotic signaling associated with apoptosis resistance has been identified in cells of epithelial origin, most of malignant solid tumors and some other tissues. Despite these huge amount of data demonstrating differential pro- and anti-apoptotic effects of glucocorticoids, the underlying mechanisms of cell type specific glucocorticoid signaling are just beginning to be described. This review summarizes our present understanding of cell type-specific pro- and anti-apoptotic signaling induced by glucocorticoids. In the first section we give a summary and update of known glucocorticoid-induced pathways mediating apoptosis in hematological cells. We shortly introduce mechanisms of glucocorticoid resistance of hematological cells. We highlight and discuss the emerging molecular evidence of a general induction of survival signaling in epithelial cells and carcinoma cells by glucocorticoids. We provide a model for glucocorticoid-induced resistance in cells growing in a tissue formation. Thus, attachment to the extracellular matrix and cell-cell contacts typical for e.g. epithelial and tumor cells may be crucially involved in switching the balance of several interacting pathways to survival upon treatment with glucocorticoids.
Collapse
Affiliation(s)
- Ingrid Herr
- Department of Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|