1
|
Chan S, Wang Y, Luo Y, Zheng M, Xie F, Xue M, Yang X, Xue P, Zha C, Fang M. Differential Regulation of Male-Hormones-Related Enhancers Revealed by Chromatin Accessibility and Transcriptional Profiles in Pig Liver. Biomolecules 2024; 14:427. [PMID: 38672444 PMCID: PMC11048672 DOI: 10.3390/biom14040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Surgical castration can effectively avoid boar taint and improve pork quality by removing the synthesis of androstenone in the testis, thereby reducing its deposition in adipose tissue. The expression of genes involved in testis-derived hormone metabolism was altered following surgical castration, but the upstream regulatory factors and underlying mechanism remain unclear. In this study, we systematically profiled chromatin accessibility and transcriptional dynamics in liver tissue of castrated and intact full-sibling Yorkshire pigs. First, we identified 897 differentially expressed genes and 6864 differential accessible regions (DARs) using RNA- and ATAC-seq. By integrating the RNA- and ATAC-seq results, 227 genes were identified, and a significant positive correlation was revealed between differential gene expression and the ATAC-seq signal. We constructed a transcription factor regulatory network after motif analysis of DARs and identified a candidate transcription factor (TF) SP1 that targeted the HSD3B1 gene, which was responsible for the metabolism of androstenone. Subsequently, we annotated DARs by incorporating H3K27ac ChIP-seq data, marking 2234 typical enhancers and 245 super enhancers involved in the regulation of all testis-derived hormones. Among these, four typical enhancers associated with HSD3B1 were identified. Furthermore, an in-depth investigation was conducted on the androstenone-related enhancers, and an androstenone-related mutation was identified in a newfound candidatetypical enhancer (andEN) with dual-luciferase assays. These findings provide further insights into how enhancers function as links between phenotypic and non-coding area variations. The discovery of upstream TF and enhancers of HSD3B1 contributes to understanding the regulatory networks of androstenone metabolism and provides an important foundation for improving pork quality.
Collapse
Affiliation(s)
- Shuheng Chan
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
| | - Yubei Wang
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
| | - Meili Zheng
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Fuyin Xie
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
| | - Mingming Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
| | - Xiaoyang Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
| | - Pengxiang Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
| | - Chengwan Zha
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
2
|
Kumar V, Umapathy G. Development of an enzyme immunoassay to measure urinary and faecal 5α-androst-16-en-3-one in pigs. MethodsX 2023; 10:102178. [PMID: 37122363 PMCID: PMC10133744 DOI: 10.1016/j.mex.2023.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/09/2023] [Indexed: 05/02/2023] Open
Abstract
Androstenone, a volatile steroid that possesses pheromonal activity, is responsible for boar taint, sexual interactions, and reproduction in pigs. A wide range of analytical methods has been developed to quantify and detect androstenone in adipose tissue and blood, which are invasive procedures. Therefore, the present study aimed to develop a non-invasive method to detect and quantify the androstenone. We produced group-specific polyclonal androstenone antibody to standardize and validate an enzyme immunoassay to measure faecal and urinary androstenone in Yorkshire boars and sows. Parallelism was performed to determine the immunoreactivity between faecal and urinary immunoreactive androstenone and respective antibody. In boars, urinary and faecal androstenone concentrations were higher on the day of mounting and copulation with sows. In sows, we also measured faecal progesterone metabolites to confirm the oestrus and mating. Faecal androstenone concentrations were peaked on the day of oestrus and mating in sows. Our results suggest that androstenone could be detected and quantified in faecal and urine samples of boars and sows. •Developed an enzyme immunoassay for measuring 5α-androst-16-en-3-one as a marker of boar taint and sex pheromone in urine and faeces of pigs•Detection of 5α-androst-16-en-3-one using a non-invasive method.
Collapse
|
3
|
Olfactory receptor (OR7D4 and OR1I1) expression in stallion testes. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.4.292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
4
|
Bone C, Squires EJ. The Uptake and Deconjugation of Androstenone Sulfate in the Adipose Tissue of the Boar. Animals (Basel) 2021; 11:ani11113158. [PMID: 34827890 PMCID: PMC8614246 DOI: 10.3390/ani11113158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Boars express high testicular levels of sulfotransferase enzymes, and consequently, the boar taint causing compound androstenone predominantly circulates as a steroid sulfate. Androstenone sulfate is suspected to function as a steroid reservoir that can be deconjugated to provide a source of free androstenone for accumulation. Therefore, the purpose of this study was to characterize the uptake and deconjugation of androstenone sulfate in the adipose tissue of the boar. Real-time PCR was used to quantify the expression of steroid sulfatase (STS) and several organic anion transporting polypeptides (OATPs) in the adipose tissue. Additionally, [3H]-androstenone sulfate was incubated with adipocytes or supernatant from homogenized fat to assess steroid uptake and conversion, respectively. A positive correlation existed between OATP-B expression and androstenone sulfate uptake (r = 0.86, p = 0.03), as well as between STS expression and androstenone sulfate conversion (r = 0.76, p < 0.001). Moreover, fat androstenone concentrations were positively correlated (r = 0.85, p < 0.001) with androstenone sulfate conversion and tended to increase with STS expression in early maturing boars. This suggests that androstenone sulfate uptake and deconjugation are mediated by OATP-B and STS, respectively, which may influence the development of boar taint in early maturing animals.
Collapse
|
5
|
Schuler G. Steroid sulfates in domestic mammals and laboratory rodents. Domest Anim Endocrinol 2021; 76:106622. [PMID: 33765496 DOI: 10.1016/j.domaniend.2021.106622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/15/2022]
Abstract
Historically steroid sulfates have been considered predominantly as inactive metabolites. It was later discovered that by cleavage of the sulfate residue by steroid sulfatase (STS), they can be (re-)converted into active forms or into precursors for the local production of active steroids. This sulfatase pathway is now a very active field of research, which has gained considerable interest particularly in connection with the steroid metabolism of human steroid hormone-dependent cancer tissue. In comparison, there is much less information available on the occurrence of the sulfatase pathway in physiological settings, where the targeted uptake of steroid sulfates by specific transporters and their hydrolysis could serve to limit steroid effects to a subgroup of potentially steroid responsive cells. In humans, steroid sulfates of adrenal origin circulate in intriguingly high concentrations throughout most of life. Thus, ample substrate is available for the sulfatase pathway regardless of sex. However, the abundant adrenal output of steroid sulfates is a specific feature of select primates. Compared to humans, in our domestic mammals (dogs, cats, domestic ungulates) and laboratory rodents (mouse, rat) research into the biology of steroid sulfates is still in its infancy and information on the subject has so far been largely limited to punctual observations, which indicate considerable species-specific peculiarities. The aim of this overview is to provide a summary of the relevant information available in the above-mentioned species, predominantly taking into account data on concentrations of steroid sulfates in blood as well as the expression patterns and activities of relevant sulfotransferases and STS.
Collapse
Affiliation(s)
- G Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus-Liebig-University, 35392 Giessen, Germany.
| |
Collapse
|
6
|
Bone C, Squires EJ. The Binding of Free and Sulfated Androstenone in the Plasma of the Boar. Animals (Basel) 2021; 11:ani11051464. [PMID: 34065189 PMCID: PMC8161284 DOI: 10.3390/ani11051464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Boar taint is characterized by an off-odor or off-flavor in heated pork products that is caused by the accumulation of androstenone in the fat. We have previously demonstrated that androstenone is transported to the fat bound by the plasma protein albumin; however, it is unclear if androstenone sulfate, which is more abundant in the circulation, is transported in the same manner and if the transport of androstenone in the plasma influences the degree of accumulation in the fat. In this article, we determined that androstenone sulfate bound minimally in the plasma of the boar and suggested that this may leave it readily available to enter peripheral tissues, such as the fat where it may enzymatically return free androstenone. Additionally, we demonstrated that the binding of androstenone in the plasma varies significantly between boars with high and low concentrations of androstenone in the fat. This suggests that the binding of androstenone to albumin in the plasma affects the transport and distribution of androstenone within the boar. Abstract Androstenone circulates in the plasma bound to albumin before accumulating in the fat, resulting in the development of boar taint. Androstenone sulfate is more abundant in the circulation than free androstenone; however, it is unclear how androstenone sulfate is transported in the plasma and if steroid transport affects the development of boar taint. Therefore, the purpose of this study was to characterize the binding of androstenone sulfate in boar plasma and determine if variability in steroid binding affects the accumulation of androstenone in the fat. [3H]-androstenone sulfate was incubated with plasma and the steroid binding was quantified using gel filtration chromatography. Inter-animal variability was assessed by quantifying androstenone binding specificity in plasma obtained from boars that had high or low fat androstenone concentrations at slaughter. Androstenone sulfate bound minimally in the plasma and to isolated albumin, which suggests that it is transported primarily in solution. The specific binding of androstenone quantified in plasma and isolated albumin from low fat androstenone animals was significantly higher (p = 0.01) than in high fat androstenone boars. These results indicate that the binding of androstenone to albumin varies amongst individual animals and affects the transport of androstenone in the plasma and accumulation in the fat of the boar.
Collapse
|
7
|
Recent genetic advances on boar taint reduction as an alternative to castration: a review. J Appl Genet 2021; 62:137-150. [PMID: 33405214 PMCID: PMC7822767 DOI: 10.1007/s13353-020-00598-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 11/28/2022]
Abstract
Boar taint is an unpleasant odor in male pig meat, mainly caused by androstenone, skatole, and indole, which are deposited in the fat tissue. Piglet castration is the most common practice to prevent boar taint. However, castration is likely to be banished in a few years due to animal welfare concerns. Alternatives to castration, such as genetic selection, have been assessed. Androstenone and skatole have moderate to high heritability, which makes it feasible to select against these compounds. This review presents the latest results obtained on genetic selection against boar taint, on correlation with other traits, on differences in breeds, and on candidate genes related to boar taint. QTLs for androstenone and skatole have been reported mainly on chromosomes 6, 7, and 14. These chromosomes were reported to contain genes responsible for synthesis and degradation of androstenone and skatole. A myriad of work has been done to find markers or genes that can be used to select animals with lower boar taint. The selection against boar taint could decrease performance of some reproduction traits. However, a favorable response on production traits has been observed by selecting against boar taint. Selection results have shown that it is possible to reduce boar taint in few generations. In addition, modifications in diet and environment conditions could be associated with genetic selection to reduce boar taint. Nevertheless, costs to measure and select against boar taint should be rewarded with incentives from the market; otherwise, it would be difficult to implement genetic selection.
Collapse
|
8
|
Poldy J. Volatile Cues Influence Host-Choice in Arthropod Pests. Animals (Basel) 2020; 10:E1984. [PMID: 33126768 PMCID: PMC7692281 DOI: 10.3390/ani10111984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023] Open
Abstract
Many arthropod pests of humans and other animals select their preferred hosts by recognising volatile odour compounds contained in the hosts' 'volatilome'. Although there is prolific literature on chemical emissions from humans, published data on volatiles and vector attraction in other species are more sporadic. Despite several decades since the identification of a small number of critical volatiles underpinning specific host-vector relationships, synthetic chemicals or mixtures still largely fail to reproduce the attractiveness of natural hosts to their disease vectors. This review documents allelochemicals from non-human terrestrial animals and considers where challenges in collection and analysis have left shortfalls in animal volatilome research. A total of 1287 volatile organic compounds were identified from 141 species. Despite comparable diversity of entities in each compound class, no specific chemical is ubiquitous in all species reviewed, and over half are reported as unique to a single species. This review provides a rationale for future enquiries by highlighting research gaps, such as disregard for the contribution of breath volatiles to the whole animal volatilome and evaluating the role of allomones as vector deterrents. New opportunities to improve vector surveillance and disrupt disease transmission may be unveiled by understanding the host-associated stimuli that drive vector-host interactions.
Collapse
Affiliation(s)
- Jacqueline Poldy
- Commonwealth Scientific and Industrial Research Organisation, Health & Biosecurity, Black Mountain Laboratory, Canberra, ACT 2601, Australia
| |
Collapse
|
9
|
Pork Production with Entire Males: Directions for Control of Boar Taint. Animals (Basel) 2020; 10:ani10091665. [PMID: 32947846 PMCID: PMC7552340 DOI: 10.3390/ani10091665] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Castration of male piglets has traditionally been carried out to control boar taint, but animal welfare concerns about surgical castration has brought this practice under scrutiny. In addition, castration decreases growth performance and increases the environmental impact of pork production, so alternatives to castration are needed to control boar taint. In this review, we summarize the current knowledge on boar taint metabolism and outline some key areas that require further study. We also describe some opportunities for controlling the boar taint problem and propose that by defining the differences in metabolic processes and the genetic variations that can lead to boar taint in individual pigs, we can design effective custom solutions for boar taint. Abstract Boar taint is caused by the accumulation of androstenone and skatole and other indoles in the fat; this is regulated by the balance between synthesis and degradation of these compounds and can be affected by a number of factors, including environment and management practices, sexual maturity, nutrition, and genetics. Boar taint can be controlled by immunocastration, but this practice has not been accepted in some countries. Genetics offers a long-term solution to the boar taint problem via selective breeding or genome editing. A number of short-term strategies to control boar taint have been proposed, but these can have inconsistent effects and there is too much variability between breeds and individuals to implement a blanket solution for boar taint. Therefore, we propose a precision livestock management approach to developing solutions for controlling taint. This involves determining the differences in metabolic processes and the genetic variations that cause boar taint in specific groups of pigs and using this information to design custom treatments based on the cause of boar taint. Genetic, proteomic or metabolomic profiling can then be used to identify and implement effective solutions for boar taint for specific populations of animals.
Collapse
|
10
|
du Toit T, Swart AC. The 11β-hydroxyandrostenedione pathway and C11-oxy C 21 backdoor pathway are active in benign prostatic hyperplasia yielding 11keto-testosterone and 11keto-progesterone. J Steroid Biochem Mol Biol 2020; 196:105497. [PMID: 31626910 DOI: 10.1016/j.jsbmb.2019.105497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
Abstract
In clinical approaches to benign prostatic hyperplasia (BPH) and prostate cancer (PCa), steroidogenesis or the disruption thereof is the main thrust in treatments restricting active androgen production. Extensive studies have been undertaken focusing on testosterone and dihydrotestosterone (DHT). However, the adrenal C11-oxy C19 steroid, 11β-hydroxyandrostenedione (11OHA4), also contributes to the active androgen pool in the prostate microenvironment, and while it has been shown to impact castration resistant prostate cancer, the C11-oxy C19 steroids together with the C11-oxy C21 steroids have not been studied in BPH. The study firstly investigated the metabolism of these adrenal steroids in the BPH-1 model. Comprehensive profiles identified 11keto-testosterone as the predominant active androgen in the metabolism of the C11-oxy C19 steroids, and we identified, for the first time, 11β-hydroxy-5α-androstane-3α,17β-diol, a novel steroid in the 11OHA4-pathway. Analysis of the inactivation and reactivation of the metabolites showed that DHT is more readily inactivated than 11keto-dihydrotestosterone (11KDHT). The conversion of 11β-hydroxyprogesterone (11βOHPROG) yielded 11keto-progesterone (11KPROG), while the latter yielded 11keto-dihydroprogesterone (11KDHPROG). BPH tissue analysis identified high levels of 11β-hydroxyandrosterone (4-14 ng/g) and 11keto-androsterone (9-160 ng/g), together with androstenedione (A4; ∼7.5 ng/g). The major C11-oxy C21 steroids detected were 11βOHPROG (∼46 ng/g), 11KPROG (∼130 ng/g) as well as 11KDHPROG (∼282 ng/g). While circulatory 11βOHPROG was detected below the limit of quantification, 11KPROG and 11KDHPROG were detected at 6 and 8.5 nmol/L, respectively. Glucuronide derivatives of both 11KPROG and pregnanetriol were also detected. 11OHA4 was the major free androgen in circulation at 85.9 nmol/L, ±12-fold higher than A4, together with 5α-androstane-3α,17β-diol quantified at 69.3 nmol/L. Circulatory C11-oxy C19 steroids levels were also significantly higher (8-fold) than the C11-oxy C21 steroid levels, while the former were similar to the C19 steroid levels, in contrast to levels in PCa. The study highlights the contribution of adrenal C11-oxy steroids to the androgen pool in BPH underscoring their limited reactivation and elimination, and significant inter-individual variations regarding steroid levels and conjugation. Targeted steroid metabolome analysis is critical to understanding prostate steroidogenesis and disease progression, and analysis of circulatory C11-oxy C19 and C11-oxy C21 steroids, together with intraprostatic levels, add to our current understanding of BPH.
Collapse
Affiliation(s)
- Therina du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
11
|
Laderoute H, Bone C, Brewer D, Squires EJ. The synthesis of 16-androstene sulfoconjugates from primary porcine Leydig cell culture. Steroids 2019; 146:14-20. [PMID: 30904503 DOI: 10.1016/j.steroids.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 11/22/2022]
Abstract
Increased public interest in the welfare of pigs reared for pork production has led to an enhanced effort in finding alternatives to castration for controlling the unpleasant odour and flavour from heated pork products known as boar taint. The purpose of this study was to investigate the testicular metabolism of androstenone, one of the major components of boar taint. Leydig cells were isolated from mature boars and incubated with radiolabeled androstenone for 10 min, 1 h, 4 h, 8 h, and 12 h. Steroid profiles were analyzed by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS/MS). Sulfoconjugated, but not glucuronidated steroids were produced by Leydig cells. Approximately 85% of androstenone was converted into sulfoconjugated metabolites in Leydig cell incubations after 8 h. This sulfoconjugate fraction included androstenol-3-sulfate and two major sulfated forms of androstenone. Following removal of the sulfate group, these two sulfated forms of androstenone returned the parent compound androstenone, and not a hydroxylated metabolite. These findings provided direct evidence for the testicular production of sulfoconjugated forms of androstenone and androstenol in the boar. The high proportion of sulfoconjugates produced by the Leydig cells emphasizes the importance of steroid conjugation, which serves to regulate the amount of unconjugated steroid hormones available for accumulation in adipose tissue.
Collapse
Affiliation(s)
- Heidi Laderoute
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Christine Bone
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Dyanne Brewer
- Advanced Analysis Centre, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - E James Squires
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada.
| |
Collapse
|
12
|
Tissue steroid levels in response to reduced testicular estrogen synthesis in the male pig, Sus scrofa. PLoS One 2019; 14:e0215390. [PMID: 30986232 PMCID: PMC6464225 DOI: 10.1371/journal.pone.0215390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
Production of steroid hormones is complex and dependent upon steroidogenic enzymes, cofactors, receptors, and transporters expressed within a tissue. Collectively, these factors create an environment for tissue-specific steroid hormone profiles and potentially tissue-specific responses to drug administration. Our objective was to assess steroid production, including sulfated steroid metabolites in the boar testis, prostate, and liver following inhibition of aromatase, the enzyme that converts androgen precursors to estrogens. Boars were treated with the aromatase inhibitor, letrozole from 11 to 16 weeks of age and littermate boars received the canola oil vehicle. Steroid profiles were evaluated in testes, prostate, and livers of 16, 20, and 40 week old boars using liquid chromatography/mass spectrometry. Testis, prostate, and liver had unique steroid profiles in vehicle-treated animals. Only C18 steroid hormones were altered by treatment with the aromatase inhibitor, letrozole; no significant differences were detected in any of the C19 or C21 steroids evaluated. Testis was the only tissue with significantly decreased free estrogens following treatment with the aromatase inhibitor; estrone and estradiol concentrations were lower (p < 0.05) in testes from 16, 20, and 40 week letrozole-treated boars. However, concentrations of the sulfated conjugates, estrone-sulfate and estradiol-sulfate, were significantly decreased (p<0.05) in 16 and 20 week boar testes, prostates, and livers from letrozole-treated boars. Hence, the distribution of estrogens between the free and conjugated forms was altered in a tissue-specific manner following inhibition of aromatase. The results suggest sulfated testicular estrogens are important estrogen precursors for the prostate, potentially enabling peripheral target tissues to synthesize free estrogens in the male pig.
Collapse
|
13
|
Zimmer B, Tenbusch L, Klymiuk MC, Dezhkam Y, Schuler G. SULFATION PATHWAYS: Expression of SULT2A1, SULT2B1 and HSD3B1 in the porcine testis and epididymis. J Mol Endocrinol 2018; 61:M41-M55. [PMID: 29588428 DOI: 10.1530/jme-17-0277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 01/01/2023]
Abstract
In the porcine testis, in addition to estrogen sulfates, the formation of numerous sulfonated neutral hydroxysteroids has been observed. However, their functions and the underlying synthetic pathways are still widely unclear. To obtain further information on their formation in postpubertal boars, the expression of sulfotransferases considered relevant for neutral hydroxysteroids (SULT2A1, SULT2B1) was investigated in the testis and defined segments of the epididymis applying real-time RT-qPCR, Western blot and immunohistochemistry (IHC). Sulfotransferase activities were assessed in tissue homogenates or cytosolic preparations applying dehydroepiandrosterone and pregnenolone as substrates. A high SULT2A1 expression was confirmed in the testis and localized in Leydig cells by IHC. In the epididymis, SULT2A1 expression was virtually confined to the body. SULT2B1 expression was absent or low in the testis but increased significantly along the epididymis. Immunohistochemical observations indicate that both enzymes are secreted into the ductal lumen via an apocrine mechanism. The results from the characterization of expression patterns and activity measurements suggest that SULT2A1 is the prevailing enzyme for the sulfonation of hydroxysteroids in the testis, whereas SULT2B1 may catalyze the formation of sterol sulfates in the epididymis. In order to obtain information on the overall steroidogenic capacity of the porcine epididymis, the expression of important steroidogenic enzymes (CYP11A1, CYP17A1, CYP19, HSD3B1, HSD17B3, SRD5A2) was monitored in the defined epididymal segments applying real-time RT-qPCR. Surprisingly, in addition to a high expression of SRD5A2 in the epididymal head, a substantial expression of HSD3B1 was detected, which increased along the organ.
Collapse
Affiliation(s)
- B Zimmer
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - L Tenbusch
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - M C Klymiuk
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - Y Dezhkam
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - G Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
14
|
Klymiuk MC, Neunzig J, Bernhardt R, Sánchez-Guijo A, Hartmann MF, Wudy SA, Schuler G. Efficiency of the sulfate pathway in comparison to the Δ4- and Δ5-pathway of steroidogenesis in the porcine testis. J Steroid Biochem Mol Biol 2018; 179:64-72. [PMID: 29107177 DOI: 10.1016/j.jsbmb.2017.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Sulfonated steroids are increasingly recognized as a circulating reservoir of precursors for the local production of active steroids in certain target tissues. As an alternative to sulfonation of unconjugated steroids by cytosolic sulfotransferases, their direct formation from sulfonated precursors has been described. However, productivity and physiological relevance of this sulfate pathway of steroidogenesis are still widely unclear. Applying the porcine testis as a model, conversion of pregnenolone sulfate (P5S, sulfate pathway) by CYP17A1 was assessed in comparison to the parallel conversions of pregnenolone (P5, Δ5-pathway) and progesterone (P4, Δ4-pathway). To characterize conversions in the virtual absence of competing enzyme activities, in a first series of experiments porcine recombinant CYP17A1 was incubated with the respective substrate in the presence of bovine recombinant cytochrome P450 oxidoreductase (CPR) and cytochrome b5 (b5). Moreover, porcine testicular microsomal fractions were used as a source of homologous CYP17A1, CPR and b5. Invariably 17α-hydroxylation of P5S was, if at all, only minimal and no formation of dehydroepiandrosterone sulfate from P5S was detectable. Consistent with earlier studies porcine CYP17A1 efficiently metabolized P4 and P5 in both assay systems. Metabolism of P4 and P5 by testicular microsomal protein varied substantially between the five animals tested. In conclusion, a physiologically relevant sulfate pathway for the production of C19-steroids from P5S via CYP17A1 is very unlikely in the porcine testis.
Collapse
Affiliation(s)
- M C Klymiuk
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - J Neunzig
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, Saarbruecken, Germany
| | - R Bernhardt
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, Saarbruecken, Germany
| | - A Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, Giessen, Germany
| | - M F Hartmann
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, Giessen, Germany
| | - S A Wudy
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, Giessen, Germany
| | - G Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
15
|
Schuler G, Sánchez-Guijo A, Hartmann MF, Wudy SA. Simultaneous profiles of sulfonated androgens, sulfonated estrogens and sulfonated progestogens in postpubertal boars (sus scrofa domestica) measured by LC-MS/MS. J Steroid Biochem Mol Biol 2018; 179:55-63. [PMID: 29030154 DOI: 10.1016/j.jsbmb.2017.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
Sulfonated steroids (s-St) have been usually regarded as inactive metabolites but are progressively considered as precursors for the intra-tissue formation of bioactive steroids. Moreover, independent effects without preceding removal of the sulfate group have been observed. We use the porcine testicular-epididymal compartment as a model to investigate the still largely unknown s-St physiology as the boar exhibits an intriguingly broad s-St spectrum predominantly originating from the testis. The application of LC-MS/MS in steroidomics enables the determination of unconjugated and intact sulfonated steroids with currently highest specificity and good sensitivity, allowing the concurrent measuring of numerous analytes in larger quantities of samples. Profiles (6h, 20min intervals) were generated for sulfonated 5-androstene-3ß,17ß-diol (Adiol-S), androsterone (A-S), dehydroepiandrosterone (DHEA-S), epiandrosterone (EA-S), epitestosterone (ET-S), estrone (E1-S), estradiol-17β (E2-S), pregnenolone (P5-S), 17αOH-pregnenolone (OHP5-S) and unconjugated testosterone (T) in four unstimulated and four hCG-stimulated boars. Moreover, concentrations were measured in individual samples collected from testicular afferent and efferent blood to differentiate between testicular vs. extratesticular origin. Highest concentrations were found for EA-S, followed by ET-S, Adiol-S and DHEA-S, which mostly exceeded the levels of E1-S and A-S. Lowest concentrations were obtained for E2-S, P5-S and OHP5-S. The analytical profile also included sulfonated T, 5α-dihydrotestosterone and cholesterol. However, their concentrations were below the limit of quantification. Profiles of quantifiable s-St were consistent with a wave-like pattern associated with T pulses. In postpartal females (n=5) concentrations of all analytes assessed were undetectable, suggesting that in pigs the adrenals are not a quantitatively significant source of s-St.
Collapse
Affiliation(s)
- G Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany.
| | - A Sánchez-Guijo
- Steroid Research and Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - M F Hartmann
- Steroid Research and Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - S A Wudy
- Steroid Research and Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| |
Collapse
|
16
|
Differential expression and co-expression gene networks reveal candidate biomarkers of boar taint in non-castrated pigs. Sci Rep 2017; 7:12205. [PMID: 28939879 PMCID: PMC5610188 DOI: 10.1038/s41598-017-11928-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 09/01/2017] [Indexed: 11/08/2022] Open
Abstract
Boar taint (BT) is an offensive odour or taste observed in pork from a proportion of non-castrated male pigs. Surgical castration is effective in avoiding BT, but animal welfare issues have created an incentive for alternatives such as genomic selection. In order to find candidate biomarkers, gene expression profiles were analysed from tissues of non-castrated pigs grouped by their genetic merit of BT. Differential expression analysis revealed substantial changes with log-transformed fold changes of liver and testis from -3.39 to 2.96 and -7.51 to 3.53, respectively. Co-expression network analysis revealed one module with a correlation of -0.27 in liver and three modules with correlations of 0.31, -0.44 and -0.49 in testis. Differential expression and co-expression analysis revealed candidate biomarkers with varying biological functions: phase I (COQ3, COX6C, CYP2J2, CYP2B6, ACOX2) and phase II metabolism (GSTO1, GSR, FMO3) of skatole and androstenone in liver to steroidgenesis (HSD17B7, HSD17B8, CYP27A1), regulation of steroidgenesis (STARD10, CYB5R3) and GnRH signalling (MAPK3, MAP2K2, MAP3K2) in testis. Overrepresented pathways included "Ribosome", "Protein export" and "Oxidative phosphorylation" in liver and "Steroid hormone biosynthesis" and "Gap junction" in testis. Future work should evaluate the biomarkers in large populations to ensure their usefulness in genomic selection programs.
Collapse
|
17
|
Geyer J, Bakhaus K, Bernhardt R, Blaschka C, Dezhkam Y, Fietz D, Grosser G, Hartmann K, Hartmann MF, Neunzig J, Papadopoulos D, Sánchez-Guijo A, Scheiner-Bobis G, Schuler G, Shihan M, Wrenzycki C, Wudy SA, Bergmann M. The role of sulfated steroid hormones in reproductive processes. J Steroid Biochem Mol Biol 2017; 172:207-221. [PMID: 27392637 DOI: 10.1016/j.jsbmb.2016.07.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Sulfated steroid hormones, such as dehydroepiandrosterone sulfate or estrone-3-sulfate, have long been regarded as inactive metabolites as they cannot activate classical steroid receptors. Some of them are present in the blood circulation at quite high concentrations, but generally sulfated steroids exhibit low membrane permeation due to their hydrophilic properties. However, sulfated steroid hormones can actively be imported into specific target cells via uptake carriers, such as the sodium-dependent organic anion transporter SOAT, and, after hydrolysis by the steroid sulfatase (so-called sulfatase pathway), contribute to the overall regulation of steroid responsive organs. To investigate the biological significance of sulfated steroid hormones for reproductive processes in humans and animals, the research group "Sulfated Steroids in Reproduction" was established by the German Research Foundation DFG (FOR1369). Projects of this group deal with transport of sulfated steroids, sulfation of free steroids, desulfation by the steroid sulfatase, effects of sulfated steroids on steroid biosynthesis and membrane receptors as well as MS-based profiling of sulfated steroids in biological samples. This review and concept paper presents key findings from all these projects and provides a broad overview over the current research on sulfated steroid hormones in the field of reproduction.
Collapse
Affiliation(s)
- Joachim Geyer
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany.
| | - Katharina Bakhaus
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Carina Blaschka
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Yaser Dezhkam
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Daniela Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Gary Grosser
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Katja Hartmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Michaela F Hartmann
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Jens Neunzig
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Dimitrios Papadopoulos
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Alberto Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Gerhard Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Mazen Shihan
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Christine Wrenzycki
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Martin Bergmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
18
|
Metabolism of androstenone, 17β-estradiol and dihydrotestosterone in primary cultured pig hepatocytes and the role of 3β-hydroxysteroid dehydrogenase in this process. PLoS One 2015; 10:e113194. [PMID: 25590624 PMCID: PMC4295843 DOI: 10.1371/journal.pone.0113194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/20/2014] [Indexed: 11/30/2022] Open
Abstract
Steroids metabolism plays an important role in mammals and contributes to quality of pig meat. The main objective of this study was to identify metabolites of androstenone, 17β-estradiol and dihydrotestosterone using primary cultured pig hepatocytes as a model system. The role of 3β-hydroxysteroid dehydrogenase (3βHSD) in regulation of steroid metabolism was also validated using trilostane, a specific 3βHSD inhibitor. Steroid glucuronide conjugated metabolites were detected by liquid chromatography time of flight mass spectrometry (LC-TOF-MS). 3βHSD enzyme was essential for metabolism of androstenone to 5α-androst-16-en-3β-ol, which then formed androstenone glucuronide conjugate. Metabolism of 17β-estradiol was accompanied by formation of glucuronide-conjugated estrone and glucuronide-conjugated estradiol. The ratio of the two metabolites was around 5∶1. 3βHSD enzyme was not involved in 17β-estradiol metabolism. 5α-Dihydrotestosterone-17β-glucuronide was identified as a dihydrotestosterone metabolite, and this metabolism was related to 3βHSD enzyme activity as demonstrated by inhibition study.
Collapse
|
19
|
Schuler G, Dezhkam Y, Bingsohn L, Hoffmann B, Failing K, Galuska CE, Hartmann MF, Sánchez-Guijo A, Wudy SA. Free and sulfated steroids secretion in postpubertal boars (Sus scrofa domestica). Reproduction 2014; 148:303-14. [DOI: 10.1530/rep-14-0193] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sulfated steroids have been traditionally regarded as inactive metabolites. However, they may also serve as precursors for the production of active free steroids in target cells. In this study, we used the boar as a model to study the metabolism, transport, and function of steroid sulfates due to their high production in the porcine testicular–epididymal compartment, of which the role is unknown. To characterize the secretion of free and sulfated steroids, plasma samples were collected from six postpubertal boars over 6 h every 20 min from the jugular vein. Long-term secretion profiles were also established in seven boars stimulated with human chorionic gonadotropin. To directly characterize the testicular output, samples were collected from superficial testicular arterial and venous blood vessels. Testosterone, androstenedione and sulfated pregnenolone, DHEA, estrone (E1), and estradiol-17β (E2) were determined by liquid chromatography–tandem mass spectrometry. Free E1 and E2 were measured by RIA. Irrespective of a high variability between individuals, the results suggest that i) all steroids assessed are primarily produced in the testis, ii) they exhibit similar profiles pointing to a pulsatile secretion with low frequency (three to five pulses per day), and iii) after synthesis at least a major proportion is immediately released into peripheral circulation. The fact that all steroid sulfates assessed are original testicular products and their high correlations with one another suggest their role as being intermediates of testicular steroidogenesis rather than as being inactivated end products. Moreover, a substantial use of sulfated steroids in porcine testicular steroidogenesis would assign a crucial regulatory role to steroid sulfatase, which is highly expressed in Leydig cells.
Collapse
|
20
|
Gunawan A, Sahadevan S, Neuhoff C, Große-Brinkhaus C, Gad A, Frieden L, Tesfaye D, Tholen E, Looft C, Uddin MJ, Schellander K, Cinar MU. RNA deep sequencing reveals novel candidate genes and polymorphisms in boar testis and liver tissues with divergent androstenone levels. PLoS One 2013; 8:e63259. [PMID: 23696805 PMCID: PMC3655983 DOI: 10.1371/journal.pone.0063259] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/02/2013] [Indexed: 12/21/2022] Open
Abstract
Boar taint is an unpleasant smell and taste of pork meat derived from some entire male pigs. The main causes of boar taint are the two compounds androstenone (5α-androst-16-en-3-one) and skatole (3-methylindole). It is crucial to understand the genetic mechanism of boar taint to select pigs for lower androstenone levels and thus reduce boar taint. The aim of the present study was to investigate transcriptome differences in boar testis and liver tissues with divergent androstenone levels using RNA deep sequencing (RNA-Seq). The total number of reads produced for each testis and liver sample ranged from 13,221,550 to 33,206,723 and 12,755,487 to 46,050,468, respectively. In testis samples 46 genes were differentially regulated whereas 25 genes showed differential expression in the liver. The fold change values ranged from −4.68 to 2.90 in testis samples and −2.86 to 3.89 in liver samples. Differentially regulated genes in high androstenone testis and liver samples were enriched in metabolic processes such as lipid metabolism, small molecule biochemistry and molecular transport. This study provides evidence for transcriptome profile and gene polymorphisms of boars with divergent androstenone level using RNA-Seq technology. Digital gene expression analysis identified candidate genes in flavin monooxygenease family, cytochrome P450 family and hydroxysteroid dehydrogenase family. Moreover, polymorphism and association analysis revealed mutation in IRG6, MX1, IFIT2, CYP7A1, FMO5 and KRT18 genes could be potential candidate markers for androstenone levels in boars. Further studies are required for proving the role of candidate genes to be used in genomic selection against boar taint in pig breeding programs.
Collapse
Affiliation(s)
- Asep Gunawan
- Institute of Animal Science, University of Bonn, Bonn, Germany
- Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, Indonesia
| | | | | | | | - Ahmed Gad
- Institute of Animal Science, University of Bonn, Bonn, Germany
- Department of Animal Production, Faculty of Agricultural, Cairo University, Giza, Egypt
| | - Luc Frieden
- Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Christian Looft
- Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Muhammad Jasim Uddin
- Institute of Animal Science, University of Bonn, Bonn, Germany
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Mehmet Ulas Cinar
- Institute of Animal Science, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
21
|
Gray MA, Squires EJ. Effects of nuclear receptor transactivation on steroid hormone synthesis and gene expression in porcine Leydig cells. J Steroid Biochem Mol Biol 2013; 133:93-100. [PMID: 23000191 DOI: 10.1016/j.jsbmb.2012.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 11/20/2022]
Abstract
Male pigs are routinely castrated at a young age to prevent the formation of androstenone, a 16-androstene testicular steroid that is a major component of boar taint. The practice of castration has been increasingly viewed as unfavorable, due to both economic considerations and animal welfare concerns. Other means of controlling boar taint, including reducing the synthesis of androstenone in the testes, would eliminate the need for castration. In this study, we determined the effects of transactivation of three nuclear receptors, the constitutive androstane receptor (CAR), pregnane X receptor (PXR), and farnesoid X receptor (FXR), on gene expression and steroid hormone metabolism in primary porcine Leydig cells. Primary cells were isolated from mature boars, and transcript expression levels were assayed using real-time PCR. The transcripts of interest included porcine orthologs of common phase I and phase II metabolic enzymes, enzymes involved in steroidogenesis, and transcripts previously shown to be differentially expressed in boars with high androstenone and boar taint levels. Transactivation of CAR, PXR, or FXR increased the expression of several genes involved in steroidogenesis, including cytochrome B5A (CYB5A) and cytochrome B5 reductase 1 (CYB5R1), as well as hydroxysteroid (17-beta) dehydrogenase 4 (HSD17B4) and retinol dehydrogenase 12 (RDH12). Treatment with (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO), a CAR agonist, or rifampicin (RIF), a PXR agonist, resulted in significantly (p<0.05) decreased sex steroid production and significantly (p<0.05) increased production of 16-androstene steroids. Treatment with the FXR agonist chenodeoxycholic acid (CDCA) resulted in significantly (p<0.05) decreased sex steroid production. These results indicate that transactivation of these nuclear receptors may lead to increased levels of 16-androstene steroids, likely by altering the activity of CYP17A1 through CYB5A and CYB5R1 to the andien-β synthase reaction and away from the 17α-hydroxylase and C17, 20 lyase reactions.
Collapse
Affiliation(s)
- Matthew A Gray
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G2W1
| | | |
Collapse
|
22
|
Abstract
Pork odour is to a great extent affected by the presence of malodorous compounds, mainly androstenone and skatole. The present review outlines the current state of knowledge about factors involved in the regulation of androstenone and skatole in entire male pigs. Androstenone is a pheromonal steroid synthesised in the testes and metabolised in the liver. Part of androstenone accumulates in adipose tissue causing a urine-like odour. Skatole is produced in the large intestine by bacterial degradation of tryptophan and metabolised by hepatic cytochrome P450 enzymes and sulphotransferase. The un-metabolised part accumulates in adipose tissue, causing faecal-like odour. Androstenone levels are mostly determined by genetic factors and stage of puberty, whereas skatole levels in addition to genetic background and hormonal status of the pigs are also controlled by nutritional and environmental factors. To reduce the risk of tainted carcasses entering the market, male pigs are surgically castrated in many countries. However, entire males compared to castrates have superior production characteristics: higher growth rate, better feed efficiency and leaner carcasses. Additionally, animal welfare aspects are currently of particular importance in light of increasing consumers' concerns. Nutrition, hormonal status, genetic influence on boar taint compounds and the methods to develop genetic markers are discussed. Boar taint due to high levels of skatole and androstenone is moderately heritable and not all market weight entire males have boar taint; it should thus be possible to select for pigs that do not have boar taint. In these studies, it is critical to assess the steroidogenic potential of the pigs in order to separate late-maturing pigs from those with a low genetic potential for boar taint. A number of candidate genes for boar taint have been identified and work is continuing to develop genetic markers for low boar taint. More research is needed to clarify the factors involved in the development of boar taint and to develop additional methods to prevent the accumulation of high concentrations of skatole and androstenone in fat. This review proposes those areas requiring further research.
Collapse
|
23
|
A validated ultra-high performance liquid chromatography coupled to high resolution mass spectrometry analysis for the simultaneous quantification of the three known boar taint compounds. J Chromatogr A 2012; 1239:49-55. [DOI: 10.1016/j.chroma.2012.03.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/15/2022]
|
24
|
Ramos AM, Duijvesteijn N, Knol EF, Merks JWM, Bovenhuis H, Crooijmans RPMA, Groenen MAM, Harlizius B. The distal end of porcine chromosome 6p is involved in the regulation of skatole levels in boars. BMC Genet 2011; 12:35. [PMID: 21507230 PMCID: PMC3111395 DOI: 10.1186/1471-2156-12-35] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 04/20/2011] [Indexed: 11/20/2022] Open
Abstract
Background Boar taint is an unpleasant condition of pork, mainly due to the accumulation of androstenone and skatole in male pigs at onset of puberty. This condition is the cause of considerable economic losses in the pig industry and the most common practice to control it is to castrate male piglets. Because of the economic and animal welfare concerns there is interest in developing genetic markers that could be used in selection schemes to decrease the incidence of boar taint. The Porcine 60 K SNP Beadchip was used to genotype 891 pigs from a composite Duroc sire line, for which skatole levels in fat had been collected. Results The genome-wide association study revealed that 16 SNPs (single nucleotide polymorphisms) located on the proximal region of chromosome 6 were significantly associated with skatole levels. These SNPs are grouped in three separate clusters located in the initial 6 Mb region of chromosome 6. The differences observed between the homozygote genotypes for SNPs in the three clusters were substantial, including a difference of 102.8 ng/g skatole in melted fat between the homozygotes for the ALGA0107039 marker. Single SNPs explain up to 22% of the phenotypic variance. No obvious candidate genes could be pinpointed in the region, which may be due to the need of further annotation of the pig genome. Conclusions This study demonstrated new SNP markers significantly associated with skatole levels in the distal region of chromosome 6p. These markers defined three independent clusters in the region, which contain a low number of protein-coding genes. The considerable differences observed between the homozygous genotypes for several SNPs may be used in future selection schemes to reduce skatole levels in pigs
Collapse
Affiliation(s)
- António M Ramos
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen G, Ren L, Yang S, Qiu J, Kamal-Eldin A, Lundström K. Determination of androstenone levels in porcine plasma by LC-MS/MS. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.03.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Duijvesteijn N, Knol EF, Merks JWM, Crooijmans RPMA, Groenen MAM, Bovenhuis H, Harlizius B. A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6. BMC Genet 2010; 11:42. [PMID: 20487517 PMCID: PMC2889844 DOI: 10.1186/1471-2156-11-42] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In many countries, male piglets are castrated shortly after birth because a proportion of un-castrated male pigs produce meat with an unpleasant flavour and odour. Main compounds of boar taint are androstenone and skatole. The aim of this high-density genome-wide association study was to identify single nucleotide polymorphisms (SNPs) associated with androstenone levels in a commercial sire line of pigs. The identification of major genetic effects causing boar taint would accelerate the reduction of boar taint through breeding to finally eliminate the need for castration. RESULTS The Illumina Porcine 60K+SNP Beadchip was genotyped on 987 pigs divergent for androstenone concentration from a commercial Duroc-based sire line. The association analysis with 47,897 SNPs revealed that androstenone levels in fat tissue were significantly affected by 37 SNPs on pig chromosomes SSC1 and SSC6. Among them, the 5 most significant SNPs explained together 13.7% of the genetic variance in androstenone. On SSC6, a larger region of 10 Mb was shown to be associated with androstenone covering several candidate genes potentially involved in the synthesis and metabolism of androgens. Besides known candidate genes, such as cytochrome P450 A19 (CYP2A19), sulfotransferases SULT2A1, and SULT2B1, also new members of the cytochrome P450 CYP2 gene subfamilies and of the hydroxysteroid-dehydrogenases (HSD17B14) were found. In addition, the gene encoding the ss-chain of the luteinizing hormone (LHB) which induces steroid synthesis in the Leydig cells of the testis at onset of puberty maps to this area on SSC6. Interestingly, the gene encoding the alpha-chain of LH is also located in one of the highly significant areas on SSC1. CONCLUSIONS This study reveals several areas of the genome at high resolution responsible for variation of androstenone levels in intact boars. Major genetic factors on SSC1 and SSC6 showing moderate to large effects on androstenone concentration were identified in this commercial breeding line of pigs. Known and new candidate genes cluster especially on SSC6. For one of the most significant SNP variants, the difference in the proportion of animals surpassing the threshold of consumer acceptance between the two homozygous genotypes was as much as 15.6%.
Collapse
Affiliation(s)
- Naomi Duijvesteijn
- IPG, Institute for Pig Genetics B.V., PO Box 43, 6640AA, Beuningen, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Zamaratskaia G, Dahl E, Madej A, Squires EJ, Andresen O. Studies on 5alpha-androst-16-en-3-one binding to porcine serum, plasma and testicular cytosolic fraction and to human serum. J Steroid Biochem Mol Biol 2008; 111:24-8. [PMID: 18511263 DOI: 10.1016/j.jsbmb.2008.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 02/05/2008] [Indexed: 11/20/2022]
Abstract
The present study evaluated whether a specific androstenone-binding protein is present in porcine and human serum, and in the cytosolic fraction of porcine testis. The binding of [(3)H]-androstenone to serum and testicular cytosol was measured in the absence (total binding) and presence (non-specific binding) of unlabelled androstenone. The optimization of the assay is described. As a part of the assay validation, the binding of [(3)H]-dihydrotestosterone ([(3)H]-DHT) to porcine and human serum was also examined. As expected, specific binding of [(3)H]-DHT was detected in human serum, but not in porcine serum. No specific androstenone-binding protein was detected, either in porcine or human serum, or in the cytosolic fraction of porcine testis. The amount of non-specific binding of [(3)H]-androstenone was slightly lower in porcine serum compared to human serum. Between-animal variations in [(3)H]-androstenone binding were studied in plasma samples from 15 animals with androstenone concentrations ranging from 1.1 to 23.1 ng/mL. Mean values+/-standard deviations of binding in these samples were 15.2+/-0.9% for total binding and 15.9+/-0.8% for non-specific bindings. Low between-animal variations indicate that androstenone binding does not affect androstenone accumulation in fat.
Collapse
Affiliation(s)
- Galia Zamaratskaia
- Department of Food Science, Swedish University of Agricultural Sciences, P.O. Box 7051, SE-750 07 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
28
|
Wang G, Li YY, Li DS, Tang YJ. Determination of 5α-androst-16-en-3α-ol in truffle fermentation broth by solid-phase extraction coupled with gas chromatography–flame ionization detector/electron impact mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 870:209-15. [DOI: 10.1016/j.jchromb.2008.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/28/2008] [Accepted: 06/08/2008] [Indexed: 10/21/2022]
|
29
|
Robic A, Larzul C, Bonneau M. Genetic and metabolic aspects of androstenone and skatole deposition in pig adipose tissue: A review (Open Access publication). Genet Sel Evol 2008. [DOI: 10.1051/gse:2007040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Raeside JI, Christie HL. The presence of 19-norandrostenedione and its sulphate form in yolk-sac fluid of the early equine conceptus. J Steroid Biochem Mol Biol 2008; 108:149-54. [PMID: 17980578 DOI: 10.1016/j.jsbmb.2007.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
Abstract
C(18) neutral steroid formation by cytochrome P450 aromatase has been recorded for several equine and porcine tissues. High activity of P450 aromatase is reflected in the quantities of estrogens in yolk-sac (y-s) fluid of early equine conceptuses. In a previous study of y-s fluid we detected large amounts of androgens by radioimmunoassay (RIA), using an antiserum for androstenedione (A(4)). Here, we report that RIA, following chromatography, gave tentative identification of the major peak as norandrostenedione (19-norA) not as A(4). Furthermore, even greater quantities of 19-norA seemed to be present in y-s fluid as a sulphoconjugate, as noted from extraction, solvolysis, HPLC, followed by RIA. Confirmation of these unusual findings was attained after further purification with two HPLC systems and definitive identification by LC-MS with an authentic standard of 19-norA. Initial extraction of the steroid sulphate as a methylene-blue complex also yielded 19-norA suggesting that the 3-enol form had enabled sulphoconjugation. The biological significance of retention mainly as a sulphate is not known; however, the large amounts of 19-norA found in the fluid accords well with reports on the catalytic activity shown in vitro by the blastocyst isozyme of P450 aromatase in the pig and horse.
Collapse
Affiliation(s)
- J I Raeside
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
31
|
Moe M, Meuwissen T, Lien S, Bendixen C, Wang X, Conley LN, Berget I, Tajet H, Grindflek E. Gene expression profiles in testis of pigs with extreme high and low levels of androstenone. BMC Genomics 2007; 8:405. [PMID: 17988377 PMCID: PMC2204014 DOI: 10.1186/1471-2164-8-405] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 11/07/2007] [Indexed: 01/06/2023] Open
Abstract
Background: Boar taint is a major obstacle when using uncastrated male pigs for swine production. One of the main compounds causing this taint is androstenone, a pheromone produced in porcine testis. Here we use microarrays to study the expression of thousands of genes simultaneously in testis of high and low androstenone boars. The study allows identification of genes and pathways associated with elevated androstenone levels, which is essential for recognising potential molecular markers for breeding purposes. Results: Testicular tissue was collected from 60 boars, 30 with extreme high and 30 with extreme low levels of androstenone, from each of the two breeds Duroc and Norwegian Landrace. The samples were hybridised to porcine arrays containing 26,877 cDNA clones, detecting 563 and 160 genes that were differentially expressed (p < 0.01) in Duroc and Norwegian Landrace, respectively. Of these significantly up- and down-regulated clones, 72 were found to be common for the two breeds, suggesting the possibility of both general and breed specific mechanisms in regulation of, or response to androstenone levels in boars. Ten genes were chosen for verification of expression patterns by quantitative real competitive PCR and real-time PCR. As expected, our results point towards steroid hormone metabolism and biosynthesis as important biological processes for the androstenone levels, but other potential pathways were identified as well. Among these were oxidoreductase activity, ferric iron binding, iron ion binding and electron transport activities. Genes belonging to the cytochrome P450 and hydroxysteroid dehydrogenase families were highly up-regulated, in addition to several genes encoding different families of conjugation enzymes. Furthermore, a number of genes encoding transcription factors were found both up- and down-regulated. The high number of clones belonging to ferric iron and iron ion binding suggests an importance of these genes, and the association between these pathways and androstenone levels is not previously described. Conclusion: This study contributes to the understanding of the complex genetic system controlling and responding to androstenone levels in pig testis. The identification of new pathways and genes involved in the biosynthesis and metabolism of androstenone is an important first step towards finding molecular markers to reduce boar taint.
Collapse
Affiliation(s)
- Maren Moe
- The Norwegian Pig Breeders Association (NORSVIN), Hamar, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zamaratskaia G, Lou Y, Chen G, Andresen Ø, Lundström K, Squires EJ. Effect of hCG Stimulation on Plasma Androstenone Concentrations and Cytochrome b5 Levels in Testicular Tissue. Reprod Domest Anim 2007; 42:105-8. [PMID: 17214783 DOI: 10.1111/j.1439-0531.2006.00740.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of Human chorionic gonadotropin (hCG) stimulation on the concentrations of free and conjugated androstenone in plasma was studied in 34 crossbred entire male pigs (Landrace x Swedish Yorkshire). Seventeen pigs were treated with hCG 4 days prior to slaughter and the remaining pigs were treated with sterile saline and served as controls. Blood samples were taken prior to hCG or saline injection and on the day before slaughter and analysed for concentrations of free and conjugated androstenone. Testicular tissue samples were taken at slaughter and analysed for the levels of cytochrome b5 (cyb5) protein. Here we have demonstrated for the first time that hCG stimulation causes an increase in the plasma levels of both free and conjugated androstenone. Not all animals responded in the same way to hCG treatment regarding levels of free and conjugated androstenone demonstrating that individual animals can have differences in their capacity to produce free and conjugated androstenone. We suggest that hCG treatment is a good way to determine the potential for androstenone conjugation when androstenone synthesis in the testis is high. The levels of cyb5 protein in the testis were slightly related (r=0.41, p < 0.10) to free androstenone levels in the pigs after hCG administration, although levels of cyb5 protein were not affected by hCG treatment.
Collapse
Affiliation(s)
- G Zamaratskaia
- Department of Food Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
33
|
Chen G, Zamaratskaia G, Andersson H, Lundström K. Effects of raw potato starch and live weight on fat and plasma skatole, indole and androstenone levels measured by different methods in entire male pigs. Food Chem 2007. [DOI: 10.1016/j.foodchem.2005.11.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
|
35
|
Sinclair PA, Hancock S, Gilmore WJ, Squires EJ. Metabolism of the 16-androstene steroids in primary cultured porcine hepatocytes. J Steroid Biochem Mol Biol 2005; 96:79-87. [PMID: 15896952 DOI: 10.1016/j.jsbmb.2005.01.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 01/24/2005] [Indexed: 11/20/2022]
Abstract
The hepatic metabolism of the 16-androstene steroids was investigated using isolated porcine hepatocytes. This study demonstrated that the liver is capable of producing both phase I and phase II steroid metabolites from 16-androstene steroid precursors. 16-Androstene metabolites were recovered by solid-phase extraction and identified by gas chromatography-mass spectrometry (GC-MS). When 5alpha-androstenone was provided as a substrate, both 3beta- and 3alpha-androstenol were produced as well as a metabolite that showed evidence of hydroxylation. Incubations with the various 16-androstene steroids produced metabolic profiles which suggested that the major role of the liver is phase II conjugation. Sulfoconjugated 16-androstene steroids included androstadienol, 5alpha-androstenone, 3beta-, 3alpha-androstenol, and possibly the hydroxylated metabolite of 5alpha-androstenone. It was determined that hydroxysteroid sulfotransferase (HST) is the likely candidate for the sulfoconjugation of the 16-androstene steroids within the liver. Despite the capacity of the hepatocytes to sulfoconjugate the 16-androstene steroids, the principle metabolites produced from incubations with 5alpha-androstenone, 3beta-, and 3alpha-androstenol were glucuronide conjugates, accounting for approximately 68% of all phase II metabolism. These findings underline the importance of steroid conjugation and suggest that hepatic metabolism of the 16-androstene steroids may influence the levels of 5alpha-androstenone present in the circulation, and thus, capable of accumulating in fat.
Collapse
Affiliation(s)
- P A Sinclair
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|