1
|
Chen L, Zhu M, Liu Y, Yang Z, Li H, Mu H, Liu S, Wu B. Perfluorobutanesulfonate exposure induces metabolic disturbances in different regions of mouse gut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161261. [PMID: 36587682 DOI: 10.1016/j.scitotenv.2022.161261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Perfluorobutanesulfonate (PFBS), an alternative to perfluorooctanesulfonate (PFOS), has raised many health concerns. However, PFBS toxicity in the mammalian gut remains unclear. C57BL/6 mice were exposed to 10 μg/L and 500 μg/L PFBS or 500 μg/L PFOS in their water supply for 28 days. PFBS toxicity in the ileum and colon was explored and compared to that of PFOS. Biochemical analysis showed that tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels increased in the ileum exposed to 10 μg/L PFBS, whereas no significant changes were observed in those levels in the colon. Catalase (CAT) activity, malondialdehyde (MDA), TNF-α, and IL-1β levels increased and glutathione (GSH) levels decreased in the ileum of the 500 μg/L-PFBS group, whereas only MDA levels increased in the colon of the 500 μg/L-PFBS group. The results showed that more severe damage occurred in the ileum than in the colon after PFBS exposure, and these align with the 500 μg/L-PFOS group exposure as well. Furthermore, metabolomic analysis revealed glutathione metabolism as a vital factor in inducing PFBS and PFOS toxicities in the ileum. Steroid hormone and amino acid metabolisms were other important factors involved in PFBS and PFOS toxicities, respectively. In the colon, GSH, pyrimidine, and glucose (especially galactose) metabolism was the main contributor to PFBS toxicity, and sulfur amino acid metabolism was the main pathway for PFOS toxicity. This study provides more evidence of the health hazards due to low-dose PFBS exposure in the mammalian gut.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Mengyuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Yafeng Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zhongchao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Huan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Su Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Sourouni M, Götte M, Kiesel L, von Wahlde MK. Effect of 3α-dihydroprogesterone and 5α-dihydroprogesterone on DCIS cells and possible impact for postmenopausal women. Climacteric 2023; 26:275-283. [PMID: 36880551 DOI: 10.1080/13697137.2023.2182678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
OBJECTIVE Progesterone metabolites 5α-dihydroprogesterone (5αP) and 3α-dihydroprogesterone (3αP) have opposite effects on proliferation, apoptosis and metastasis in the breast. Evidence regarding their influence on ductal carcinoma in situ (DCIS) lesions is lacking. METHODS MCF10DCIS.com cells were cultured in a 3D culture system and treated with 5αP or 3αP. After 5 and 12 days of treatment, polymerase chain reaction (PCR) of proliferation, invasion/metastasis, anti-apoptotic or other markers was performed. Cells treated with the tumor-promoting 5αP were observed under the light and confocal microscopes to reveal possible morphological changes that could indicate a transition from an in situ to an invasive phenotype. As a control, the morphology of the MDA-MB-231 invasive cell line was examined. The invasive potential after exposure to 5αP was also assessed using a detachment assay. RESULTS The PCR analysis of the chosen markers showed no statistically significant difference between naive cells and cells treated with 5αP or 3αP. DCIS spheroids retained their in situ morphology after treatment with 5αP. The detachment assay showed no increased potential for invasion after exposure to 5αP. Progesterone metabolites 5αP and 3αP do not facilitate or prohibit tumor promotion/invasion in MCF10DCIS.com cells, respectively. CONCLUSION As oral micronized progesterone has been proved effective for hot flushes in postmenopausal women, first in vitro data propose that progesterone-only therapy could possibly be considered for women after DCIS suffering from hot flushes.
Collapse
Affiliation(s)
- M Sourouni
- Department of Obstetrics and Gynecology, University Hospital Muenster, Muenster, Germany.,Department of Gynecological Endocrinology and Fertility Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - M Götte
- Department of Obstetrics and Gynecology, University Hospital Muenster, Muenster, Germany
| | - L Kiesel
- Department of Obstetrics and Gynecology, University Hospital Muenster, Muenster, Germany
| | - M-K von Wahlde
- Department of Obstetrics and Gynecology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
3
|
Li T, Zhang W, Lin SX. Steroid enzyme and receptor expression and regulations in breast tumor samples - A statistical evaluation of public data. J Steroid Biochem Mol Biol 2020; 196:105494. [PMID: 31610224 DOI: 10.1016/j.jsbmb.2019.105494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
In spite of the significant progress of estrogen-dependent breast cancer (BC) treatment, aromatase inhibitor resistance is a major problem limiting the clinical benefit of this frontier endocrine-therapy. The aim of this study was to determine the differential expression of steroid-converting enzymes between tumor and adjacent normal tissues, as well as their correlation in modulating intratumoral steroid-hormone levels in post-menopausal estrogen-dependent BC. RNA sequencing dataset (n = 1097) of The-Cancer-Genome-Atlas (Breast Invasive Carcinoma) retrieved through the data portal of Genomic Data Commons was used for differential expressions and expression correlation analyses by Mann-Whitney U and Spearman's rank test, respectively. The results showed significant up-regulation of 17β-HSD7 (2.50-fold, p < 0.0001) in BC, supporting its effect in sex-hormone control. Besides, suppression of 11β-HSD1 expression (-8.29-fold, p < 0.0001) and elevation of 11β-HSD2 expression (2.04-fold, p < 0.0001) provide a low glucocorticoid environment diminishing BC anti-proliferation. Furthermore, 3α-HSDs were down-regulated (-1.59-fold, p < 0.01; -8.18-fold, p < 0.0001; -33.96-fold, p < 0.0001; -31.85-fold, p < 0.0001 for type 1-4, respectively), while 5α-reductases were up-regulated (1.41-fold, p < 0.0001; 2.85-fold, p < 0.0001; 1.70-fold, p < 0.0001 for type 1-3, respectively) in BC, reducing cell proliferation suppressers 4-pregnenes, increasing cell proliferation stimulators 5α-pregnanes. Expression analysis indicates significant correlations between 11β-HSD1 with 3α-HSD4 (r = 0.605, p < 0.0001) and 3α-HSD3 (r = 0.537, p < 0.0001). Significant expression correlations between 3α-HSDs were also observed. Our results systematically present the regulation of steroid-converting enzymes and their roles in modulating the intratumoral steroid-hormone levels in BC with a vivid 3D-schema, supporting novel therapy targeting the reductive 17β-HSD7 and proposing a new combined therapy targeting 11β-HSD2 and 17β-HSD7.
Collapse
MESH Headings
- 17-Hydroxysteroid Dehydrogenases/genetics
- 17-Hydroxysteroid Dehydrogenases/metabolism
- Breast Neoplasms/epidemiology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cohort Studies
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Databases, Factual/statistics & numerical data
- Estradiol/pharmacology
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gonadal Steroid Hormones/genetics
- Gonadal Steroid Hormones/metabolism
- Humans
- Public Sector/statistics & numerical data
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- Tang Li
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada
| | - Wenfa Zhang
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada.
| |
Collapse
|
4
|
Africander D, Storbeck KH. Steroid metabolism in breast cancer: Where are we and what are we missing? Mol Cell Endocrinol 2018; 466:86-97. [PMID: 28527781 DOI: 10.1016/j.mce.2017.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
It is well-known that breast cancer is hormone-dependent and that steroid hormones exert their mitogenic effects by binding to estrogen, progesterone and androgen receptors. Vital to our understanding and treatment of this malignancy, is the local metabolism of steroid hormones in breast cancer tissue. This review summarises our current knowledge on steroid producing pathways in the adrenal, ovary and breast, while focussing on the availability of specific circulating hormone precursors and steroidogenic enzymes involved in the local synthesis and metabolism of steroid hormones in the breast. Consequently, we highlight alternate pathways that may be instrumental in the etiology of breast cancer.
Collapse
Affiliation(s)
- Donita Africander
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
5
|
Quadalti C, Galli C, Lazzari G. Development of an in vitro test battery for the screening of the receptor-mediated mechanism and the spindle-poison mode of action of estrogenic compounds. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:245-252. [PMID: 27846407 DOI: 10.1016/j.etap.2016.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/24/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
The implementation of the REACH regulation has imposed the urgent need of developing alternative testing methods to screen large number of compounds more quickly and at lower costs. In this study, a battery of tests, suitable for reproductive toxicology testing, was developed with the objective of detecting the mechanism of action of estrogenic and xenoestrogenic compounds. With this aim, two compounds known for their estrogenic activity, diethylstilbestrol and 17β-estradiol, were used to set up four different in vitro tests: 1) bovine oocyte in vitro maturation assay, 2) bovine preimplantation embryo in vitro culture assay and 3) MCF-7 and 4) BALB/3T3 cell lines proliferation and cytotoxicity assay, respectively. The results show that this battery of tests allows to identify and to distinguish between two major mechanisms of action of (xeno)estrogenic compounds: the receptor-mediated mechanism and the spindle-poison effect on microtubules polimerization.
Collapse
Affiliation(s)
- Corinne Quadalti
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona, 26100, Italy; Dept. of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy.
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona, 26100, Italy; Dept. of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy; Fondazione Avantea, Cremona, Italy.
| | - Giovanna Lazzari
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona, 26100, Italy; Fondazione Avantea, Cremona, Italy.
| |
Collapse
|
6
|
Lin VHC, Chen JJ, Liao CC, Lee SS, Chien EJ. The rapid immunosuppression in phytohemagglutinin-activated human T cells is inhibited by the proliferative Ca(2+) influx induced by progesterone and analogs. Steroids 2016; 111:71-78. [PMID: 26808612 DOI: 10.1016/j.steroids.2016.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Progesterone, an endogenous immunomodulator, suppresses human T-cell activation during pregnancy. A sustained Ca(2 +) influx is an important signal for T-cell proliferation after crosslinking of T-cell receptor/CD3 complexes by anti-CD3 antibodies or phytohemagglutinin (PHA). Progesterone targets cell membrane sites inducing rapid responses including elevated intracellular free calcium concentration ([Ca(2+)]i) and suppressed T-cell PHA-activated proliferation. Interestingly, both PHA and progesterone induce [Ca(2+)]i elevation, but it remains unclear whether the PHA-induced Ca(2+) influx is affected by progesterone leading to T-cell immunosuppression. Primary T-cells were isolated from human peripheral blood and the quench effect on intracellular fura-2 fluorescence of Mn(2+) was used to explore the responses to Ca(2+) influx with cell proliferation being determined by MTT assay. PHA-stimulated Ca(2+) influx was dose-dependently suppressed by progesterone and its agonist R5020, which correlated with PHA-activated T-cell proliferation inhibition. A similar dose-dependent suppression effect on cellular Ca(2+) influx and proliferation occurred with the TRPC channel inhibitor BTP2 and selective TRPC3 channel inhibitor Pyr3. In addition, two progesterone analogs, Org OD 02-0 and 20α-hydroxyprogesterone (20α-OHP), also produced dose-dependent suppression of Ca(2+) influx, but had no effect on proliferation. Finally, inhibition of PHA-activated T-cell proliferation by progesterone is further suppressed by 20α-OHP, but not by Org OD 02-0. Overall, progesterone and R5020 are able to rapidly decrease PHA-stimulated sustained Ca(2+) influx, probably via blockade of TRPC3 channels, which suppresses T-cell proliferation. Taken together, the roles of progesterone and its analogs regarding the rapid response Ca(2+) influx need to be further explored in relation to cytokine secretion and proliferation in activated T-cells.
Collapse
Affiliation(s)
- Veronica Hui-Chen Lin
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | - Jiann-Jong Chen
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei City 23143, Taiwan, ROC
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | - Shinn-Shing Lee
- Department of Medicine, Cheng Hsin General Hospital, Taipei 11220, Taiwan, ROC.
| | - Eileen Jea Chien
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, ROC; Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC; Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan, ROC.
| |
Collapse
|
7
|
Salazar M, Lerma-Ortiz A, Hooks GM, Ashley AK, Ashley RL. Progestin-mediated activation of MAPK and AKT in nuclear progesterone receptor negative breast epithelial cells: The role of membrane progesterone receptors. Gene 2016; 591:6-13. [PMID: 27349565 DOI: 10.1016/j.gene.2016.06.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/19/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022]
Abstract
Progesterone (P4), a steroid produced during estrous cycles and gestation for maintenance of pregnancy, also plays key roles in breast development to allow lactation post-parturition. Progestins (P4 and related steroids) are also implicated in breast cancer etiology. Hormone replacement therapy containing both estrogen and progestins increases breast cancer incidence while estrogen hormone therapy lowers breast cancer risk. P4 signaling via nuclear P4 receptors (PRs) has been extensively studied in breast cancer, however, progestin signaling via non-classical membrane bound progestin receptors (MPRs and PGRMC1) remains unclear. Moreover, P4 metabolites and synthetic progestins may bind membrane progestin receptors. We hypothesized that PR-negative breast epithelial cells express non-classical progestin receptors, which activate intracellular signaling pathways differently depending on nature of progestin. Therefore, our objectives for the current study were to determine expression of MPRs and PGRMC1 in two PR-negative non-tumorigenic breast epithelial cell lines, assess progestin-mediated signaling and biological functions. We determined five MPR isoforms and PGRMC1 were present in MCF10A cells and all progestin receptors but MPRβ in MCF12A cells. MCF10A and MCF12A cells were treated with P4, select P4 metabolites (5αP and 3αHP), medroxyprogesterone acetate (MPA), or a specific MPR-Agonist (MPR-Ag) and phosphorylation of ERK, p38, JNK, and AKT was characterized following treatment. To our knowledge this is the first report of ERK and JNK activation in MCF10A and MCF12A cells with P4, P4 metabolites, MPA, and MPR-Ag. Activation of ERK and JNK in cells treated with MPR-Ag implicates MPRs may serve as the receptors responsible for their activation. In contrast, p38 activation varied with cell type and with progestin treatment. P4 and MPA promoted AKT phosphorylation in the MCF12A cell line only whereas no activation was observed in MCF10A cells. Interestingly, cellular proliferation increased in MCF10A cells treated with MPA or 5αP, while MPR-Ag tended to slightly decrease proliferation. Collectively, our data highlights the importance of investigating the effects of synthetic progestins in breast cancer biology. Our results add to the understanding that various progestins have on breast epithelial cells and underscores the importance of considering both membrane bound receptors and progestin type in breast cancer development.
Collapse
Affiliation(s)
- Monica Salazar
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States.
| | - Alejandra Lerma-Ortiz
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States.
| | - Grace M Hooks
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States.
| | - Amanda K Ashley
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States.
| | - Ryan L Ashley
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States.
| |
Collapse
|
8
|
Trabert B, Falk RT, Stanczyk FZ, McGlynn KA, Brinton LA, Xu X. Reproducibility of an assay to measure serum progesterone metabolites that may be related to breast cancer risk using liquid chromatography-tandem mass spectrometry. Horm Mol Biol Clin Investig 2016; 23:79-84. [PMID: 26353176 DOI: 10.1515/hmbci-2015-0026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/17/2015] [Indexed: 12/26/2022]
Abstract
Recent data suggest a novel role of progesterone in breast cancer etiology involving the progesterone metabolites 3α-dihydroprogesterone (3αHP), 5α-dihydroprogesterone (5αP), and 20α-dihydroprogesterone (20αHP). Accurate and precise measures of progesterone metabolites are needed for etiologic studies of hormonally related cancers. We have developed a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method to measure five hormones, including progesterone, its precursor pregnenolone, and three progesterone metabolites, 5αP, 3αHP, and 20αHP. Hormone levels were measured in serum from 20 healthy volunteers (7 men, 5 premenopausal women, and 8 postmenopausal women). Two blinded, randomized aliquots per individual were assayed in each of four batches. The coefficients of variation (CV) and intraclass correlation coefficients (ICC) were calculated from the individual components of variance. The overall laboratory CVs were <3% and ICCs were uniformly high (>98%) for all hormones measured across sex/menopausal status groups. Our HPLC-MS/MS assay of progesterone metabolites demonstrated excellent sensitivity, laboratory reproducibility, and interindividual variation, suggesting that this serum assay is suitable for epidemiologic research. The high sensitivity of the assay, and thus the ability to quantify concentrations among postmenopausal women and men, further supports that this novel assay is suitable for studies of serum progesterone metabolite concentrations and risk of breast cancer or other hormonally related cancer.
Collapse
|
9
|
Wiebe JP, Pawlak KJ, Kwok A. Mechanism of action of the breast cancer-promoter hormone, 5α-dihydroprogesterone (5αP), involves plasma membrane-associated receptors and MAPK activation. J Steroid Biochem Mol Biol 2016; 155:166-76. [PMID: 26519986 DOI: 10.1016/j.jsbmb.2015.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 12/20/2022]
Abstract
Previous studies have shown that breast tissues and breast cell lines can convert progesterone to 5α-pregnane-3,20-dione (5aP), and that 5αP stimulates breast cell proliferation and detachment in vitro, and tumor formation in vivo, regardless of presence or absence of receptors for progesterone (PR) or estrogen (ER). Recently it was demonstrated, both in vitro and in vivo, that pro-cancer actions attributed to administered progesterone are due to the in situ produced 5αP. Because of the significant role of 5αP in breast cancers, it is important to understand its molecular mechanisms of action. The aims of the current studies were to identify 5αP binding sites and to determine if the mechanisms of action of 5αP involve the mitogen-activated protein kinase (MAPK), extracellular signal-regulated protein kinases (ERK1/2) pathway. Binding studies, using tritium-labeled 5αP ([(3)H]5αP), carried out on membrane, cytosol and nuclear fractions from human breast cells (MCF-7, PR/ER-positive; MDA-MB-231, PR/ER-negative) and on highly enriched membrane fractions, identified the plasma membrane as the site of ligand specific 5αP receptors. Localization of 5αP receptors to the cell membrane was confirmed visually with fluorescently labeled conjugate (5αP-BSA-FITC). Treatment of cells with either 5αP or membrane-impermeable 5αP-BSA resulted in significant increases in cell proliferation and detachment. 5αP and 5αP-BSA equally activated the MAPK/ERK1/2 pathway as evidenced by phosphorylation of ERK1/2. Inhibitors (PD98059, mevastatin and genistein) of specific sites along the Ras/Raf/MEK/ERK signaling pathway, blocked the phosphorylation and concomitantly inhibited 5αP-induced stimulation of cell proliferation and detachment. The study has identified high affinity, stereo-specific binding sites for 5αP that have the characteristics of a functional membrane 5αP receptor, and has shown that the cancer-promoter actions of 5αP are mediated from the liganded receptor via the MAPK/ERK1/2 signaling cascade. The findings enhance our understanding of the role of the progesterone metabolite 5αP in breast cancer and should promote new approaches to the development of breast cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- John P Wiebe
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada.
| | - Kevin J Pawlak
- Department of Physiology, School of Medicine, Zirve University, Gaziantep, Turkey
| | - Arthur Kwok
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
10
|
Pasqualini JR, Chetrite GS. Biological responses of progestogen metabolites in normal and cancerous human breast. Horm Mol Biol Clin Investig 2015; 3:427-35. [PMID: 25961215 DOI: 10.1515/hmbci.2010.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
At present, more than 200 progestogen molecules are available, but their biological response is a function of various factors: affinity to progesterone or other receptors, their structure, the target tissues considered, biological response, experimental conditions, dose, method of administration and metabolic transformations. Metabolic transformation is of huge importance because in various biological processes the metabolic product(s) not only control the activity of the maternal hormone but also have an important activity of its own. In this regard, it was observed that the 20-dihydro derivative of the progestogen dydrogesterone (Duphaston®) is significantly more active than the parent compound in inhibiting sulfatase and 17β-hydroxysteroid dehydrogenase in human breast cancer cells. Estrone sulfatase activity is also inhibited by norelgestromin, a norgestimate metabolite. Interesting information was obtained with a similar progestogen, tibolone, which is rapidly metabolized into the active 3α/3β-hydroxy and 4-ene metabolites. All these metabolites can inhibit sulfatase and 17β-hydroxysteroid dehydrogenase and stimulate sulfotransferase in human breast cancer cells. Another attractive aspect is the metabolic transformation of progesterone itself in human breast tissues. In the normal breast progesterone is mainly converted to 4-ene derivatives, whereas in the tumor tissue it is converted mostly to 5α-pregnane derivatives. 20α-Dihydroprogesterone is found mainly in normal breast tissue and possesses antiproliferative properties as well as the ability to act as an anti-aromatase agent. Consequently, this progesterone metabolite could be involved in the control of estradiol production in the normal breast and therefore implicated in one of the multifactorial mechanisms of the breast carcinogenesis process. In conclusion, a better understanding of both natural and synthetic hormone metabolic transformations and their control could potentially provide attractive new therapies for the treatment of hormone-dependent pathologies.
Collapse
|
11
|
Wiebe JP, Rivas MA, Mercogliano MF, Elizalde PV, Schillaci R. Progesterone-induced stimulation of mammary tumorigenesis is due to the progesterone metabolite, 5α-dihydroprogesterone (5αP) and can be suppressed by the 5α-reductase inhibitor, finasteride. J Steroid Biochem Mol Biol 2015; 149:27-34. [PMID: 25595041 DOI: 10.1016/j.jsbmb.2015.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/02/2014] [Accepted: 01/12/2015] [Indexed: 11/29/2022]
Abstract
Progesterone has long been linked to breast cancer but its actual role as a cancer promoter has remained in dispute. Previous in vitro studies have shown that progesterone is converted to 5α-dihydroprogesterone (5αP) in breast tissue and human breast cell lines by the action of 5α-reductase, and that 5αP acts as a cancer-promoter hormone. Also studies with human breast cell lines in which the conversion of progesterone to 5αP is blocked by a 5α-reductase inhibitor, have shown that the in vitro stimulation in cell proliferation with progesterone treatments are not due to progesterone itself but to the metabolite 5αP. No similar in vivo study has been previously reported. The objective of the current studies was to determine in an in vivo mouse model if the presumptive progesterone-induced mammary tumorigenesis is due to the progesterone metabolite, 5αP. BALB/c mice were challenged with C4HD murine mammary cells, which have been shown to form tumors when treated with progesterone or the progestin, medroxyprogesterone acetate. Cells and mice were treated with various doses and combinations of progesterone, 5αP and/or the 5α-reductase inhibitor, finasteride, and the effects on cell proliferation and induction and growth of tumors were monitored. Hormone levels in serum and tumors were measured by specific RIA and ELISA tests. Proliferation of C4HD cells and induction and growth of tumors was stimulated by treatment with either progesterone or 5αP. The progesterone-induced stimulation was blocked by finasteride and reinstated by concomitant treatment with 5αP. The 5αP-induced tumors expressed high levels of ER, PR and ErbB-2. Hormone measurements showed significantly higher levels of 5αP in serum from mice with tumors than from mice without tumors, regardless of treatments, and 5αP levels were significantly higher (about 4-fold) in tumors than in respective sera, while progesterone levels did not differ between the compartments. The results indicate that the stimulation of C4HD tumor growth in BALB/c mice treated with progesterone is due to the progesterone metabolite 5αP formed at elevated levels in mammary cells as a result of the 5α-reductase action on progesterone. The results provide the first in vivo demonstration that stimulation of breast cell tumorigenesis and tumor growth accompanying progesterone treatment is due to the progesterone metabolite 5αP, and that breast tumorigenesis can be blocked with the 5α-reductase inhibitor, finasteride.
Collapse
Affiliation(s)
- John P Wiebe
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada.
| | - Martin A Rivas
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires, Argentina
| | - Maria F Mercogliano
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires, Argentina
| |
Collapse
|
12
|
Wiebe JP, Zhang G, Welch I, Cadieux-Pitre HAT. Progesterone metabolites regulate induction, growth, and suppression of estrogen- and progesterone receptor-negative human breast cell tumors. Breast Cancer Res 2013; 15:R38. [PMID: 25927181 PMCID: PMC3706910 DOI: 10.1186/bcr3422] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/16/2013] [Accepted: 05/11/2013] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Of the nearly 1.4 million new cases of breast cancer diagnosed each year, a large proportion is characterized as hormone receptor negative, lacking estrogen receptors (ER) and/or progesterone receptors (PR). Patients with receptor-negative tumors do not respond to current steroid hormone-based therapies and generally have significantly higher risk of recurrence and mortality compared with patients with tumors that are ER- and/or PR-positive. Previous in vitro studies had shown that the progesterone metabolites, 5α-dihydroprogesterone (5αP) and 3α-dihydroprogesterone (3αHP), respectively, exhibit procancer and anticancer effects on receptor-negative human breast cell lines. Here in vivo studies were conducted to investigate the ability of 5αP and 3αHP to control initiation, growth, and regression of ER/PR-negative human breast cell tumors. METHODS ER/PR-negative human breast cells (MDA-MB-231) were implanted into mammary fat pads of immunosuppressed mice, and the effects of 5αP and 3αHP treatments on tumor initiation, growth, suppression/regression, and histopathology were assessed in five separate experiments. Specific radioimmunoassays and gas chromatography-mass spectrometry were used to measure 5αP, 3αHP, and progesterone in mouse serum and tumors. RESULTS Onset and growth of ER/PR-negative human breast cell tumors were significantly stimulated by 5αP and inhibited by 3αHP. When both hormones were applied simultaneously, the stimulatory effects of 5αP were abrogated by the inhibitory effects of 3αHP and vice versa. Treatment with 3αHP subsequent to 5αP-induced tumor initiation resulted in suppression of further tumorigenesis and regression of existing tumors. The levels of 5αP in tumors, regardless of treatment, were about 10-fold higher than the levels of 3αHP, and the 5αP:3αHP ratios were about fivefold higher than in serum, indicating significant changes in endogenous synthesis of these hormones in tumorous breast tissues. CONCLUSIONS The studies showed that estrogen/progesterone-insensitive breast tumors are sensitive to, and controlled by, the progesterone metabolites 5αP and 3αHP. Tumorigenesis of ER/PR-negative breast cells is significantly enhanced by 5αP and suppressed by 3αHP, the outcome depending on the relative concentrations of these two hormones in the microenvironment in the breast regions. The findings show that the production of 5αP greatly exceeds that of 3αHP in ER/PR-negative tumors and that treatment with 3αHP can effectively block tumorigenesis and cause existing tumors to regress. The results provide the first hormonal theory to explain tumorigenesis of ER/PR-negative breast tissues and support the hypothesis that a high 3αHP-to-5αP concentration ratio in the microenvironment may foster normalcy in noncancerous breast regions. The findings suggest new diagnostics based on the relative levels of these hormones and new approaches to prevention and treatment of breast cancers based on regulating the levels and action mechanisms of anti- and pro-cancer progesterone metabolites.
Collapse
Affiliation(s)
- John P Wiebe
- Department of Biology, The University of Western Ontario, London, Ontario, N6A5B7, Canada.
| | - Guihua Zhang
- Department of Biology, The University of Western Ontario, London, Ontario, N6A5B7, Canada. .,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | - Ian Welch
- Department of Animal Care & Veterinary Services and Department of Physiology and Pharmacology, Medical Sciences Building, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | - Heather-Anne T Cadieux-Pitre
- Department of Animal Care & Veterinary Services, Medical Sciences Building, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
13
|
Lee KL, Dai Q, Hansen EL, Saner CN, Price TM. Modulation of ATP-induced calcium signaling by progesterone in T47D-Y breast cancer cells. Mol Cell Endocrinol 2010; 319:109-15. [PMID: 20079401 PMCID: PMC2837125 DOI: 10.1016/j.mce.2010.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/06/2010] [Accepted: 01/06/2010] [Indexed: 11/28/2022]
Abstract
Extracellular ATP activates purinergic (P(2)) receptors with an increase in intracellular calcium and phosphorylation of MAPK. In this study we have investigated the effect of progesterone/progestin on ATP-induced calcium mobilization and phosphorylation of the kinase ERK in the T47D-Y breast cancer cell line that exhibits no detectable nuclear progesterone receptor expression. Brief pretreatment with progesterone/progestin results in a dose dependent inhibition of ATP-induced intracellular calcium mobilization, and inhibition of ERK phosphorylation. Response to a cell impermeable ligand and inhibition of the response by an inactivating antibody suggests a mechanism of action at the plasma membrane. These results in T47D-Y cells strongly suggest that progesterone can act in a rapid non-nuclear manner to inhibit extracellular ATP effects on intracellular calcium mobilization and ERK activation. This research provides an example of progesterone action in a breast cancer cell line lacking expression of the classical nuclear progesterone receptors.
Collapse
Affiliation(s)
| | | | | | | | - Thomas M Price
- Corresponding author: Thomas M. Price, MD, Box 3928, DUMC, Durham, NC 27710, Tel: 919 681-3579, Fax: 919 484-0461,
| |
Collapse
|
14
|
Wiebe JP, Beausoleil M, Zhang G, Cialacu V. Opposing actions of the progesterone metabolites, 5alpha-dihydroprogesterone (5alphaP) and 3alpha-dihydroprogesterone (3alphaHP) on mitosis, apoptosis, and expression of Bcl-2, Bax and p21 in human breast cell lines. J Steroid Biochem Mol Biol 2010; 118:125-32. [PMID: 19931389 DOI: 10.1016/j.jsbmb.2009.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 12/13/2022]
Abstract
Previous studies have shown that breast tissues and breast cell lines convert progesterone (P) to 5alpha-dihydroprogesterone (5alphaP) and 3alpha-dihydroprogesterone (3alphaHP) and that 3alphaHP suppresses, whereas 5alphaP promotes, cell proliferation and detachment. The objectives of the current studies were to determine if the 5alphaP- and 3alphaHP-induced changes in cell numbers are due to altered rates of mitosis and/or apoptosis, and if 3alphaHP and 5alphaP act on tumorigenic and non-tumorigenic cells, regardless of estrogen (E) and P receptor status. The studies were conducted on tumorigenic (MCF-7, MDA-MB-231, T47D) and non-tumorigenic (MCF-10A) human breast cell lines, employing several methods to assess the effects of the hormones on cell proliferation, mitosis, apoptosis and expression of Bcl-2, Bax and p21. In all four cell lines, 5alphaP increased, whereas 3alphaHP decreased cell numbers, [(3)H]thymidine uptake and mitotic index. Apoptosis was stimulated by 3alphaHP and suppressed by 5alphaP. 5alphaP resulted in increases in Bcl-2/Bax ratio, indicating decreased apoptosis; 3alphaHP resulted in decreases in Bcl-2/Bax ratio, indicating increased apoptosis. The effects of either 3alphaHP or 5alphaP on cell numbers, [(3)H]thymidine uptake, mitosis, apoptosis, and Bcl-2/Bax ratio, were abrogated when cells were treated simultaneously with both hormones. The expression of p21 was increased by 3alphaHP, and was unaffected by 5alphaP. The results provide the first evidence that 5alphaP stimulates mitosis and suppresses apoptosis, whereas 3alphaHP inhibits mitosis and stimulates apoptosis. The opposing effects of 5alphaP and 3alphaHP were observed in all four breast cell lines examined and the data suggest that all breast cancers (estrogen-responsive and unresponsive) might be suppressed by blocking 5alphaP formation and/or increasing 3alphaHP. The findings further support the hypothesis that progesterone metabolites are key regulatory hormones and that changes in their relative concentrations in the breast microenvironment determine whether breast tissues remain normal or become cancerous.
Collapse
Affiliation(s)
- John P Wiebe
- Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | | | | | | |
Collapse
|
15
|
Pasqualini JR. Breast cancer and steroid metabolizing enzymes: The role of progestogens. Maturitas 2009; 65 Suppl 1:S17-21. [DOI: 10.1016/j.maturitas.2009.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 01/08/2023]
|
16
|
Chesnoy-Marchais D. Progesterone and allopregnanolone enhance the miniature synaptic release of glycine in the rat hypoglossal nucleus. Eur J Neurosci 2009; 30:2100-11. [PMID: 19930400 DOI: 10.1111/j.1460-9568.2009.07013.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is well known that progesterone is synthesised and metabolised within the nervous system, and that one of its metabolites, allopregnanolone, potentiates the activity of GABA receptor anionic channels and modulates GABAergic neurotransmission. Progesterone is now under clinical trial for its neuroprotective properties, but its possible effects on neurotransmission have not yet been fully explored. The present study investigated acute effects of progesterone on the other major type of synaptic inhibition, glycinergic neurotransmission. Spontaneous glycinergic miniature currents were recorded in hypoglossal motoneurons, using the whole-cell patch-clamp technique in rat brainstem slices. A 20-min superfusion with progesterone (1 mum) triggered an increase in the frequency of glycinergic miniatures, whereas no effect of progesterone was observed after block with finasteride (5 mum) of 5alpha -reductase, the first enzymatic step leading from progesterone to allopregnanolone. The effect of progesterone could be mimicked by superfusion with allopregnanolone (0.3 mum), whereas no effect was induced by epiallopregnanolone. Thus, progesterone can increase the synaptic miniature release of glycine and this effect appears to be indirect, resulting from its metabolism into 5alpha-reduced derivatives, in particular into allopregnanolone. A low concentration of an exogenous GABA(A) agonist can also increase the frequency of inhibitory miniature currents in hypoglossal motoneurons. Thus, the effects of progesterone and allopregnanolone on glycine release can be at least partly explained by the potentiation of the activity of depolarizing presynaptic GABA receptor channels. The increase in the tonic synaptic release of a major inhibitory neurotransmitter should reduce the excitability of the neurons and contribute to their protection against excitotoxicity.
Collapse
Affiliation(s)
- Dominique Chesnoy-Marchais
- UMR 788 INSERM-University Paris-Sud 11 Steroids, neuroprotection and neuroregeneration, Bâtiment Grégory Pincus, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cedex, France.
| |
Collapse
|
17
|
Behera MA, Dai Q, Garde R, Saner C, Jungheim E, Price TM. Progesterone stimulates mitochondrial activity with subsequent inhibition of apoptosis in MCF-10A benign breast epithelial cells. Am J Physiol Endocrinol Metab 2009; 297:E1089-96. [PMID: 19690070 PMCID: PMC2781356 DOI: 10.1152/ajpendo.00209.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of progesterone on breast epithelial cells remain poorly defined with observations showing both proliferative and antiproliferative effects. As an example, progesterone levels correlate with increased epithelial cell proliferation, but there is discordance between the dividing cells and the cells with nuclear progesterone receptor expression. The release of paracrine growth factors from nuclear receptor-positive cells has been postulated as a mechanism, since in vitro studies show a lack of growth effect by progesterone in breast epithelial cells lacking nuclear receptors. This study examined possible nongenomic effects of progesterone in breast epithelia by using MCF-10A cells known to lack nuclear progesterone receptor expression. Treatment for 30-60 min with progesterone or the progestin, R5020, increased mitochondrial activity as shown by an increase in mitochondrial membrane potential (hyperpolarization) with a concordant increase in total cellular ATP. The reaction was inhibited by a specific progesterone receptor antagonist and not affected by the translation inhibitor cycloheximide. Progestin treatment inhibited apoptosis induced by activation of the FasL pathway, as shown by a decrease in sub-G(1) cell fraction during fluorescence-activated cell sorting and a decrease in caspase 3/7 levels. Progestin treatment did not alter the cell cycle over 48 h. Our study demonstrates a nongenomic action of progesterone on benign breast epithelial cells, resulting in enhanced cellular respiration and protection from apoptosis.
Collapse
|
18
|
Progestins in the menopause in healthy women and breast cancer patients. Maturitas 2009; 62:343-8. [PMID: 19179024 DOI: 10.1016/j.maturitas.2008.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 11/24/2022]
Abstract
At present, more than 200 progestin compounds are synthetized, but their biological effects are different: this is function of their structure, receptor affinity, metabolic transformations, the target tissues considered, dose. The action of progestins in breast cancer is controversial; some studies indicate an increase in breast cancer incidence, others show no differences, and yet others indicate a decrease. Many studies agree that treatment with progestins plus estrogens at a low dose and during a limited period (less than 5 years) can have beneficial effects in peri- and post-menopausal women. It was demonstrated that various progestins (e.g. nomegestrol acetate, medrogestone, promegestone), as well as tibolone and its metabolites, can block the enzymes involved in estradiol bioformation (sulfatase, 17beta-hydroxysteroid dehydrogenase) in breast cancer. Progesterone is converted into various metabolic products: in normal breast tissue the transformation is mainly to 4-ene derivatives, whereas in the tumor tissue 5alpha-pregane derivatives are predominant. Aromatase activity is the last step in the formation of estrogens by the conversion of androgens. In recent studies it was shown that 20alpha-dihydroprogesterone, a metabolite found mainly in normal breast tissue and having anti-proliferative properties, can act as an anti-aromatase agent. The data suggest the possible utilization of this compound in breast cancer prevention. In conclusion, in order to clarify and better understand the response of progestins in breast cancer (incidence and mortality), as well as in hormone replacement therapy or in endocrine dysfunction, new clinical trials are necessary using other progestins in function of the dose and period of treatment.
Collapse
|
19
|
Pawlak KJ, Wiebe JP. Regulation of estrogen receptor (ER) levels in MCF-7 cells by progesterone metabolites. J Steroid Biochem Mol Biol 2007; 107:172-9. [PMID: 17683929 DOI: 10.1016/j.jsbmb.2007.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 05/02/2007] [Indexed: 12/22/2022]
Abstract
Estradiol-17beta (E2) may participate in carcinoma of mammary cells containing estradiol receptors (ER) at sufficient levels. Hence, the regulation of ER levels may be important for the progression of estrogen-dependent mammary carcinomas. Our previous findings that the progesterone metabolite, 5alpha-pregnane-3,20-dione (5alphaP), exhibits marked mitogenic and metastatic properties, whereas the progesterone metabolites, 4-pregnen-3alpha-ol-20-one (3alphaHP) and 4-pregnen-20alpha-ol-3-one (20alphaHP), oppose these actions, prompted examination of the possible effects of these progesterone metabolites on ER concentration in MCF-7 breast cancer cells. Cells were exposed for 24h to 0 (control) or 10(-10) to 10(-6)M E2, 5alphaP, 3alphaHP, 20alphaHP or combinations of these steroids, and ER concentrations were determined for intracellular estrogen receptors by specific binding of [(3)H]E2. The total ER number (nuclear plus cytosolic) in control samples was 2551+/-164 per cell. E2 and 5alphaP resulted in significant dose-dependent increases in total ER numbers ( approximately 1.6-fold and approximately 2.2-fold at 10(-6)M, respectively). In combination, E2+5alphaP resulted in additive increases in ER numbers. Individually, 3alphaHP and 20alphaHP each resulted in dose-dependent decreases (43% and 54% at 10(-6)M, respectively) in total ER numbers and inhibited the E2- or 5alphaP-induced increases in ER levels. In combination, 3alphaHP+20alphaHP resulted in dose-dependent additive suppression of ER levels. Treatment with cycloheximide or actinomycin D indicated that both transcription and translation are involved in 5alphaP and 3alphaHP action on ER numbers. Real time RT-PCR showed increases in expression of ERalpha transcripts due to 5alphaP and increases in expression of ERbeta due to 3alphaHP; expression levels of either ERalpha or ERbeta were not significantly altered when cells were treated with 5alphaP+3alphaHP. The results are the first to show that the pro- and anti-cancer progesterone metabolites also have marked selective (up or down) regulatory effects on ER levels in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- K J Pawlak
- Hormonal Regulatory Mechanisms Laboratory, Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | |
Collapse
|
20
|
Opinion of the Scientific Panel on contaminants in the food chain (CONTAM) related to hormone residues in bovine meat and meat products. EFSA J 2007. [DOI: 10.2903/j.efsa.2007.510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
21
|
Fu D, Roufogalis BD. Actin disruption inhibits endosomal traffic of P-glycoprotein-EGFP and resistance to daunorubicin accumulation. Am J Physiol Cell Physiol 2007; 292:C1543-52. [PMID: 17122416 DOI: 10.1152/ajpcell.00068.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intracellular traffic of human P-glycoprotein (P-gp), a membrane transporter responsible for multidrug resistance in cancer chemotherapy, was investigated using a P-gp and enhanced green fluorescent fusion protein (P-gp-EGFP) in human breast cancer MCF-7 cells. The stably expressed P-gp-EGFP from a clonal cell population was functional as a drug efflux pump, as demonstrated by the inhibition of daunorubicin accumulation and the conferring of resistance of the cells to colchicine and daunorubicin. Colocalization experiments demonstrated that a small fraction of the total P-gp-EGFP expressed was localized intracellularly and was present in early endosome and lysosome compartments. P-gp-EGFP traffic was shown to occur via early endosome transport to the plasma membrane. Subsequent movement of P-gp-EGFP away from the plasma membrane occurred by endocytosis to the early endosome and lysosome. The component of the cytoskeleton responsible for P-gp-EGFP traffic was demonstrated to be actin rather than microtubules. In functional studies it was shown that in parallel with the interruption of the traffic of P-gp-EGFP, cellular accumulation of the P-gp substrate daunorubicin was increased after cells were treated with actin inhibitors, and cell proliferation was inhibited to a greater extent than in the presence of daunorubicin alone. The actin dependence of P-gp traffic and the parallel changes in cytotoxic drug accumulation demonstrated in this study delineates the pathways of P-gp traffic and may provide a new approach to overcoming multidrug resistance in cancer chemotherapy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Actins/metabolism
- Antibiotics, Antineoplastic/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- Cell Membrane/metabolism
- Cell Proliferation/drug effects
- Colchicine/pharmacology
- Cycloheximide/pharmacology
- Cytochalasin D/pharmacology
- Daunorubicin/metabolism
- Daunorubicin/pharmacology
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Endosomes/metabolism
- Endosomes/ultrastructure
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Lysosomes/metabolism
- Lysosomes/ultrastructure
- Microtubules/metabolism
- Protein Synthesis Inhibitors/pharmacology
- Protein Transport
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Thiazolidines/pharmacology
Collapse
Affiliation(s)
- Dong Fu
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
22
|
Brozic P, Smuc T, Gobec S, Rizner TL. Phytoestrogens as inhibitors of the human progesterone metabolizing enzyme AKR1C1. Mol Cell Endocrinol 2006; 259:30-42. [PMID: 16962702 DOI: 10.1016/j.mce.2006.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 07/06/2006] [Accepted: 08/02/2006] [Indexed: 11/30/2022]
Abstract
Phytoestrogens are plant-derived, non-steroidal constituents of our diets. They can act as agonists or antagonists of estrogen receptors, and they can modulate the activities of the key enzymes in estrogen biosynthesis. Much less is known about their actions on the androgen and progesterone metabolizing enzymes. We have examined the inhibitory action of phytoestrogens on the key human progesterone-metabolizing enzyme, 20alpha-hydroxysteroid dehydrogenase (AKR1C1). This enzyme inactivates progesterone and the neuroactive 3alpha,5alpha-tetrahydroprogesterone, to form their less active counterparts, 20alpha-hydroxyprogesterone and 5alpha-pregnane-3alpha,20alpha-diol, respectively. We overexpressed recombinant human AKR1C1 in Escherichia coli, purified it to homogeneity, and examined the selected phytoestrogens as inhibitors of NADPH-dependent reduction of a common AKR substrate, 9,10-phenantrenequinone, and progesterone. The most potent inhibitors were 7-hydroxyflavone, 3,7-dihydroxyflavone and flavanone naringenin with IC(50) values in the low microM range. Docking of the flavones in the active site of AKR1C1 revealed their possible binding modes, in which they are sandwiched between the Leu308 and Trp227 of AKR1C1.
Collapse
Affiliation(s)
- Petra Brozic
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
23
|
Wiebe JP, Souter L, Zhang G. Dutasteride affects progesterone metabolizing enzyme activity/expression in human breast cell lines resulting in suppression of cell proliferation and detachment. J Steroid Biochem Mol Biol 2006; 100:129-40. [PMID: 16806904 DOI: 10.1016/j.jsbmb.2006.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 03/30/2006] [Indexed: 11/26/2022]
Abstract
Recent evidence indicates that progesterone metabolites play important roles in regulating breast cancer. Previous studies have shown that breast carcinoma and tumorigenic breast cell lines have higher 5alpha-reductase and lower 3alpha-hydroxysteroid oxidoreductase (3alpha-HSO) and 20alpha-HSO activities and mRNA expression levels than normal tissue and non-tumorigenic cell lines. The 5alpha-reduced progesterone metabolites such as 5alpha-dihydroprogesterone (5alphaP) promote both mitogenic and metastatic activity in breast cell lines in culture, whereas the 4-pregnene metabolites, 4-pregnen-3alpha-ol-20-one (3alphaHP) and 4-pregnen-20alpha-ol-3-one (20alphaHP) have the opposite (anti-cancer-like) effects. The 5alpha-reductase inhibitor dutasteride has been shown to inhibit 5alpha-reduction of testosterone to 5alpha-dihydrotestosterone in prostate tissue, resulting in decreased prostate volume. The aim of this study was to determine if dutasteride is an effective inhibitor of progesterone 5alpha-reduction in human breast cell lines and if such inhibition reduces mammary cell proliferation and detachment. The effect of dutasteride on progesterone metabolizing enzyme activities and mRNA expression were examined in tumorigenic MCF-7 and non-tumorigenic MCF-10A human breast cell lines. Dutasteride (10(-6)M) inhibited progesterone conversion to 5alpha-pregnanes by >95% and increased 4-pregnene production. The results indicated that effects of dutasteride on the progesterone metabolizing enzymes are due to direct inhibition of 5alpha-reductase activity and to altered levels of expression of 5alpha-reductase and HSO mRNAs. Treatment of cells with progesterone without medium change for 72 h resulted in significant conversion to 5alpha-pregnanes and increases in cell proliferation and detachment. The increases in proliferation and detachment were blocked by dutasteride and were reinstated by concomitant treatment with 5alphaP, providing proof-of-principle that the effects were due not to progesterone but to the 5alpha-reduced metabolites. This study provides the first evidence that dutasteride is a potent progesterone 5alpha-reductase inhibitor and that such inhibition may be beneficial in breast cancer.
Collapse
Affiliation(s)
- J P Wiebe
- Department of Biology, Hormonal Regulatory Mechanisms Laboratory, University of Western Ontario, London, Ont., N6A 5B7 Canada.
| | | | | |
Collapse
|