1
|
Cai X, Cai J, Fang L, Xu S, Zhu H, Wu S, Chen Y, Fang S. Design, synthesis and molecular modeling of novel D-ring substituted steroidal 4,5-dihydropyrazole thiazolinone derivatives as anti-inflammatory agents by inhibition of COX-2/iNOS production and down-regulation of NF-κB/MAPKs in LPS-induced RAW264.7 macrophage cells. Eur J Med Chem 2024; 272:116460. [PMID: 38704943 DOI: 10.1016/j.ejmech.2024.116460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
It has been reported that 4,5-dihydropyrazole and thiazole derivatives have many biological functions, especially in the aspect of anti-inflammation. According to the strategy of pharmacophore combination, we introduced thiazolinone and dihydropyrazole moiety into steroid skeleton to design and synthesize a novel series of D-ring substituted steroidal 4,5-dihydropyrazole thiazolinone derivatives, and assessed their in vitro anti-inflammatory profiles against Lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. The anti-inflammatory activities assay demonstrated that compound 12e was considered as the most effective anti-inflammatory drug, which suppressed the expression of pro-inflammatory mediators including nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), it also dose-dependently inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-induced RAW 264.7 macrophage cells. Furthermore, the results of the Western blot analysis showed a correlation between the inhibition of the Nuclear factor-kappa B (NF-κB) and Mitogen-activated protein kinases (MAPKs) signaling pathways and the suppressive effects of compound 12e on pro-inflammatory cytokines. Molecular docking studies of compound 12e into the COX-2 protein receptor (PDB ID: 5IKQ) active site was performed to rationalize their COX-2 inhibitory potency. The results were found to be in line with the biological findings as they exerted more favorable interactions compared to that of dexamethasone (DXM), explaining their remarkable COX-2 inhibitory activity. The findings revealed that these candidates could be identified as potent anti-inflammatory agents, compound 12e could be a promising drug for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xiaorui Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jianfeng Cai
- Department of Interventional Therapy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ling Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Siqi Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Huide Zhu
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shuteng Wu
- Department of Pharmacy, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Shuopo Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
2
|
Lardone MC, Reyes IN, Ortiz E, Piottante A, Palma C, Ebensperger M, Castro A. Testicular steroid sulfatase overexpression is associated with Leydig cell dysfunction in primary spermatogenic failure. Andrology 2020; 9:657-664. [PMID: 33290605 DOI: 10.1111/andr.12950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/24/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Decreased testosterone (T) to LH ratio and increased 17β-estradiol (E2) serum concentrations represent a common finding among patients with severe spermatogenic failure, suggesting a concurrent Leydig cell steroidogenic dysfunction. Aromatase overexpression has been associated with increased serum and intratesticular E2 in these patients. However, it is unknown whether the sulfatase pathway contributes to the increased availability of active estrogens in patients with primary spermatogenic failure. OBJECTIVES To assess estrogen sulfotransferase (SULT1E1) and steroid sulfatase (STS) mRNA abundance in testicular tissue of patients with Sertoli cell-only syndrome (SCOS) and normal tissues, its association with serum and intratesticular hormone levels, and to explore the mRNA and protein testicular localization of both enzymes. MATERIALS AND METHODS Testicular tissues of 23 subjects with SCOS (cases) and 22 patients with obstructive azoospermia and normal spermatogenesis (controls) were obtained after biopsy. SULT1E1 and STS transcripts accumulation was quantified by RT-qPCR. For mRNA and protein localization, we performed RT-qPCR in Leydig cell clusters and seminiferous tubules isolated by laser-capture microdissection and immunofluorescence in testicular tissues. Serum and intratesticular hormones were measured by immunoradiometric assays. RESULTS SULT1E1 mRNA accumulation was similar in both groups. The amount of STS mRNA was higher in cases (p = 0.007) and inversely correlated with T/LH ratio (r = -0.402; p = 0.02). Also, a near significant correlation was observed with intratesticular E2 (r = 0.329, p = 0.057), in agreement with higher intratesticular E2 in cases (p < 0.001). Strong STS immunoreaction was localized in the wall of small blood vessels but not in Leydig cells. Both SULT1E1 and STS mRNA abundance was similar in Leydig cell clusters and the tubular compartment, except for lower SUTL1E1 mRNA in the seminiferous tubules of SCOS patients (p = 0.001). CONCLUSIONS Our results suggest that an unbalance of the STS/SULT1E1 pathway contributes to the testicular hyperestrogenic microenvironment in patients with primary spermatogenic failure and Leydig cell dysfunction.
Collapse
Affiliation(s)
- Maria C Lardone
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Ian N Reyes
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Eliana Ortiz
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | | | - Cristián Palma
- Urology Department, José Joaquín Aguirre Clinical Hospital, School of Medicine, University of Chile, Santiago, Chile.,Urology Department, Clínica Las Condes, Santiago, Chile
| | - Mauricio Ebensperger
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile.,Urology Department, San Borja Arriarán Clinical Hospital, Santiago, Chile
| | - Andrea Castro
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
3
|
Elattar KM, El‐Mekabaty A. Heterocyclic steroids: Synthetic routes and biological characteristics of steroidal fused bicyclic pyrimidines. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Khaled M. Elattar
- Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| | - Ahmed El‐Mekabaty
- Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| |
Collapse
|
4
|
Sanchez LD, Pontini L, Marinozzi M, Sanchez-Aranguren LC, Reis A, Dias IHK. Cholesterol and oxysterol sulfates: Pathophysiological roles and analytical challenges. Br J Pharmacol 2020; 178:3327-3341. [PMID: 32762060 DOI: 10.1111/bph.15227] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023] Open
Abstract
Cholesterol and oxysterol sulfates are important regulators of lipid metabolism, inflammation, cell apoptosis, and cell survival. Among the sulfate-based lipids, cholesterol sulfate (CS) is the most studied lipid both quantitatively and functionally. Despite the importance, very few studies have analysed and linked the actions of oxysterol sulfates to their physiological and pathophysiological roles. Overexpression of sulfotransferases confirmed the formation of a range of oxysterol sulfates and their antagonistic effects on liver X receptors (LXRs) prompting further investigations how are the changes to oxysterol/oxysterol sulfate homeostasis can contribute to LXR activity in the physiological milieu. Here, we aim to bring together for novel roles of oxysterol sulfates, the available techniques and the challenges associated with their analysis. Understanding the oxysterol/oxysterol sulfate levels and their pathophysiological mechanisms could lead to new therapeutic targets for metabolic diseases. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
| | - Lorenzo Pontini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maura Marinozzi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Ana Reis
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
5
|
Monier M, El-Mekabaty A, Abdel-Latif D, Doğru Mert B, Elattar KM. Heterocyclic steroids: Efficient routes for annulation of pentacyclic steroidal pyrimidines. Steroids 2020; 154:108548. [PMID: 31805293 DOI: 10.1016/j.steroids.2019.108548] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/09/2019] [Accepted: 11/24/2019] [Indexed: 01/01/2023]
Abstract
Steroids are components of cell membranes, signaling molecules and are a type of secondary metabolites as a result of their high impact of biological significance. The present review described the literature reports of pentacyclic steroidal pyrimidines as a type of heterocyclic steroids. The main sections included the synthesis of the investigated steroids fused at rings-A or B or D of steroid skeleton, synthesis of binary or linked-type pyrimidines, pyrimidine oxides, macromolecules and mono- or di- or tri-peptides linked-steroidal pyrimidines. Besides, the present research highlighted the biological significance of steroidal pyrimidines, in which the compounds revealed potent anticancer, antioxidant, antibacterial, and anti-Alzheimer agents. In addition, some hetero-steroids were screened for binding DNA assay and gene expression analysis. It was settled that the incorporation of pyrimidine scaffold into steroid basic skeleton is crucial for better biological results.
Collapse
Affiliation(s)
- M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Al-Bahr, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
| | - Ahmed El-Mekabaty
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
| | - Doaa Abdel-Latif
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Al-Bahr, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
| | - Başak Doğru Mert
- Adana Alparslan Türkeş Science and Technology University, Department of Energy Systems Engineering, 01250 Adana, Turkey
| | - Khaled M Elattar
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt.
| |
Collapse
|
6
|
Duncan KA. Estrogen Formation and Inactivation Following TBI: What we Know and Where we Could go. Front Endocrinol (Lausanne) 2020; 11:345. [PMID: 32547495 PMCID: PMC7272601 DOI: 10.3389/fendo.2020.00345] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/04/2020] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury (TBI) is responsible for various neuronal and cognitive deficits as well as psychosocial dysfunction. Characterized by damage inducing neuroinflammation, this response can cause an acute secondary injury that leads to widespread neurodegeneration and loss of neurological function. Estrogens decrease injury induced neuroinflammation and increase cell survival and neuroprotection and thus are a potential target for use following TBI. While much is known about the role of estrogens as a neuroprotective agent following TBI, less is known regarding their formation and inactivation following damage to the brain. Specifically, very little is known surrounding the majority of enzymes responsible for the production of estrogens. These estrogen metabolizing enzymes (EME) include aromatase, steroid sulfatase (STS), estrogen sulfotransferase (EST/SULT1E1), and some forms of 17β-hydroxysteroid dehydrogenase (HSD17B) and are involved in both the initial conversion and interconversion of estrogens from precursors. This article will review and offer new prospective and ideas on the expression of EMEs following TBI.
Collapse
|
7
|
Maiti S, Nazmeen A. Impaired redox regulation of estrogen metabolizing proteins is important determinant of human breast cancers. Cancer Cell Int 2019; 19:111. [PMID: 31114446 PMCID: PMC6518504 DOI: 10.1186/s12935-019-0826-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023] Open
Abstract
Estrogen evidently involves critically in the pathogenesis of gynaecological-cancers. Reports reveal that interference in estrogen-signalling can influence cell-cycle associated regulatory-processes in female reproductive-organs. The major determinants that influence E2-signallings are estrogen-receptor (ER), estrogen-sulfotransferase (SULT1E1), sulfatase (STS), and a formylglycine-generating-enzyme (FGE) which regulates STS activity. The purpose of this mini review was to critically analyze the correlation between oxidative-threats and redox-regulation in the process of estrogen signalling. It is extensively investigated and reported that oxidative-stress is linked to cancer. But no definite mechanism has been explored till date. The adverse effects of oxidative-threat/free-radicals (like genotoxic-effects, gene-regulation, and mitochondrial impairment) have been linked to several diseases like diabetes/cardiovascular-syndrome/stroke and cancer. However, a significant correlation between oxidative-stress and gynaecological-cancers are repeatedly reported without pointing a definite mechanism. For the first time in our study we have investigated the relationship between oxidative stress and the regulation of estrogen via estrogen metabolizing proteins. Reports reveal that ER, SULT1E1, STS and FGE are target-molecules of oxidative-stress and may function differently in oxidizing and reducing environment. In addition, estrogen itself can induce oxidative-stress. This fact necessitates identifying the critical connecting events between oxidative-stress and regulation of estrogen-associated-molecules (ER, SULT1E1, STS, and FGE) that favors tumorigenesis/carcinogenesis. The current review focus is on unique redox-regulation of estrogen and its regulatory-molecules via oxidative-stress. This mechanistic-layout may identify new therapeutic-targets and open further scopes to treat gynecological-cancers more effectively.
Collapse
Affiliation(s)
- Smarajit Maiti
- Dept. of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, 721101 India
- Department of Biochemistry and Biotechnology, Cell & Molecular Therapeutics Lab, OIST, Midnapore, 721102 India
| | - Aarifa Nazmeen
- Dept. of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, 721101 India
| |
Collapse
|
8
|
Sethi A, Bhatia A, Singh RP, Srivastava A. Synthesis and Evaluation of Some Novel Pregnane Derivatives as Anti-Hyperlipidemic and Anti-Oxidant Agents. LETT ORG CHEM 2018. [DOI: 10.2174/1570178615666180806123719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present paper, synthesis of few novel pregnane derivatives and their evaluation as potential
anti-hyperlipidemic and anti-oxidant agents has been reported. The synthesis of 3β-hydroxy-
16α-methoxy pregn-5-en-20-one (4) was achieved by reaction of 3β-hydroxy-5,16-pregnadiene-20-one
(3) with KOH/MeOH under reflux. Compound 4 on treatment with succinic and phthalic anhydride afforded
compound 6 and 7, respectively. The reaction of the C-20-oxime-pregnadiene (8) with 1,5-
dibromohexane yielded 20-(O-6-bromo hexyl)-oximino-3β-hydroxy-pregn-5, 16-diene (9). A novel
heterocyclic derivative 3β-hydroxy-androst-5-en [17,16-c]-2′-methyl-7′ bromo-3′,4′-dihydro quinoline
(16) was synthesized by reaction of 3 with 3-bromoaniline. However, attempted synthesis of other heterocyclic
derivatives by reaction of (3) with other halogenated amine led to Aza-Michael addition
products (10-14). The synthesized compounds were also evaluated for their anti-hyperlipidemic and
anti-oxidant activities. Compounds 6 and 14 were found to exhibit more lipid lowering and antioxidant
activities in comparison to other compounds.
Collapse
Affiliation(s)
- Arun Sethi
- Department of Chemistry, University of Lucknow, Lucknow-226007, India
| | - Akriti Bhatia
- Department of Chemistry, University of Lucknow, Lucknow-226007, India
| | | | - Atul Srivastava
- Bio-Chemistry Division, Central Drugs Research Institute, Lucknow-226031, India
| |
Collapse
|
9
|
Piccinato CA, Malvezzi H, Gibson DA, Saunders PTK. SULFATION PATHWAYS: Contribution of intracrine oestrogens to the aetiology of endometriosis. J Mol Endocrinol 2018; 61:T253-T270. [PMID: 30030390 DOI: 10.1530/jme-17-0297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
Abstract
Endometriosis is an incurable hormone-dependent inflammatory disease that causes chronic pelvic pain and infertility characterized by implantation and growth of endometrial tissue outside the uterine cavity. Symptoms have a major impact on the quality of life of patients resulting in socioeconomic, physical and psychological burdens. Although the immune system and environmental factors may play a role in the aetiology of endometriosis, oestrogen dependency is still considered a hallmark of the disorder. The impact of oestrogens such as oestrone and particularly, oestradiol, on the endometrium or endometriotic lesions may be mediated by steroids originating from ovarian steroidogenesis or local intra-tissue production (intracrinology) dependent upon the expression and activity of enzymes that regulate oestrogen biosynthesis and metabolism. Two key pathways have been implicated: while there is contradictory data on the participation of the aromatase enzyme (encoded by CYP19A1), there is increasing evidence that the steroid sulphatase pathway plays a role in both the aetiology and pathology of endometriosis. In this review, we consider the evidence related to the pathways leading to oestrogen accumulation in endometriotic lesions and how this might inform the development of new therapeutic strategies to treat endometriosis without causing the undesirable side effects of current regimes that suppress ovarian hormone production.
Collapse
Affiliation(s)
| | - Helena Malvezzi
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Douglas A Gibson
- MRC Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
10
|
Mungenast F, Aust S, Vergote I, Vanderstichele A, Sehouli J, Braicu E, Mahner S, Castillo-Tong DC, Zeillinger R, Thalhammer T. Clinical significance of the estrogen-modifying enzymes steroid sulfatase and estrogen sulfotransferase in epithelial ovarian cancer. Oncol Lett 2017; 13:4047-4054. [PMID: 28588698 PMCID: PMC5452883 DOI: 10.3892/ol.2017.5969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/13/2017] [Indexed: 12/04/2022] Open
Abstract
17β-estradiol (E2) can contribute to the progression of epithelial ovarian cancer (EOC). Although the majority of patients with EOC are postmenopausal woman, when de novo estrogen production in the ovary has ceased, ovarian cancer cells remain exposed to estrogens synthesized locally in the cancer cells from inactive sulfonated steroid hormone precursors-such as estrone sulfate taken up from the circulation via the sulfatase pathway. An abundance of the estrogen-modifying enzymes, including estrogen-activating steroid sulfatase (STS) and estrogen-inactivating estrogen-sulfotransferase (SULT1E1), is important for providing active estrogen to EOC cells. Therefore, the present study determined the levels of SULT1E1, STS and estrogen receptor α (ERα) protein in paraffin-embedded specimens from 206 patients with Federation of Gynecology and Obstetrics stage II–IV EOC treated with debulking surgery and standard platinum-based adjuvant chemotherapy. The levels of STS, SULT1E1 and ERα were assessed by automated quantitative microscopy-based image analysis subsequent to immunohistochemical staining. Significantly higher SULT1E1 levels were observed in better differentiated EOC tumors compared to grade 3 EOC tumors (P=0.001). STS and SULT1E1 levels were positively associated with ERα abundance (P<0.001 and P=0.001, respectively). In advanced stage high-grade serous EOC (HGSOC; n=132), the most frequent and lethal type of ovarian cancer, SULT1E1 expression was significantly associated with a better overall survival rate (hazard ratio 0.66, 95% confidence interval, 0.45–0.94; P=0.005). These results highlight the importance of SULT1E1-mediated estrogen inactivation in EOC, particularly HGSOC. Therefore, targeting the sulfatase pathway is a potential endocrine therapeutic intervention for certain patients with estrogen-responsive EOC.
Collapse
Affiliation(s)
- Felicitas Mungenast
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Stefanie Aust
- Department of Gynaecology and Gynaecological Oncology, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ignace Vergote
- Division of Gynaecological Oncology, Department of Obstetrics and Gynaecology, Catholic University of Leuven, University Hospital, B-3000 Leuven, Belgium
| | - Adriaan Vanderstichele
- Division of Gynaecological Oncology, Department of Obstetrics and Gynaecology, Catholic University of Leuven, University Hospital, B-3000 Leuven, Belgium
| | - Jalid Sehouli
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Virchow Clinic Campus, Medical University of Berlin, D-13353 Berlin, Germany
| | - Elena Braicu
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Virchow Clinic Campus, Medical University of Berlin, D-13353 Berlin, Germany
| | - Sven Mahner
- Department of Gynaecology and Obstetrics, University of Munich, D-80539 Munich, Germany
| | - Dan Cacsire Castillo-Tong
- Translational Gynaecology Group, Department of Obstetrics and Gynaecology, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynaecology, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
11
|
Gilligan LC, Gondal A, Tang V, Hussain MT, Arvaniti A, Hewitt AM, Foster PA. Estrone Sulfate Transport and Steroid Sulfatase Activity in Colorectal Cancer: Implications for Hormone Replacement Therapy. Front Pharmacol 2017; 8:103. [PMID: 28326039 PMCID: PMC5339229 DOI: 10.3389/fphar.2017.00103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Hormone replacement therapy (HRT) affects the incidence and potential progression of colorectal cancer (CRC). As HRT primarily consists of estrone sulfate (E1S), understanding whether this conjugated estrogen is transported and metabolized in CRC will define its potential effect in this malignancy. Here, we show that a panel of CRC cell lines (Colo205, Caco2, HCT116, HT-29) have steroid sulfatase (STS) activity, and thus can hydrolyze E1S. STS activity is significantly higher in CRC cell lysate, suggesting the importance of E1S transport in intracellular STS substrate availability. As E1S transport is regulated by the expression pattern of certain solute carrier organic anion transporter polypeptides, we show that in CRC OATP4A1 is the most abundantly expressed transporter. All four CRC cell lines rapidly transported E1S into cells, with this effect significantly inhibited by the competitive OATP inhibitor BSP. Transient knockdown of OATP4A1 significantly disrupted E1S uptake. Examination of estrogen receptor status showed ERα was present in Colo205 and Caco2 cells. None of the cells expressed ERβ. Intriguingly, HCT116 and HT29 cells strongly expressed the G protein coupled estrogen receptor (GPER), and that stimulation of this receptor with estradiol (E2) and G1, a GPER agonist, significantly (p < 0.01) increased STS activity. Furthermore, tamoxifen and fulvestrant, known GPER agonist, also increased CRC STS activity, with this effect inhibited by the GPER antagonist G15. These results suggest that CRC can take up and hydrolyze E1S, and that subsequent GPER stimulation increases STS activity in a potentially novel positive feedback loop. As elevated STS expression is associated with poor prognosis in CRC, these results suggest HRT, tamoxifen and fulvestrant may negatively impact CRC patient outcomes.
Collapse
Affiliation(s)
- Lorna C Gilligan
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham Birmingham, UK
| | - Ali Gondal
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham Birmingham, UK
| | - Vivien Tang
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham Birmingham, UK
| | - Maryam T Hussain
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham Birmingham, UK
| | - Anastasia Arvaniti
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham Birmingham, UK
| | - Anne-Marie Hewitt
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham Birmingham, UK
| | - Paul A Foster
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of BirminghamBirmingham, UK; Centre for Endocrinology, Diabetes, and Metabolism, Birmingham Health PartnersBirmingham, UK
| |
Collapse
|
12
|
Steroid sulfatase is increased in the placentas and whole blood of women with early-onset preeclampsia. Placenta 2016; 48:72-79. [PMID: 27871476 DOI: 10.1016/j.placenta.2016.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Preeclampsia is a serious complication of pregnancy affecting 5% of pregnancies. Our team identified 137 genes highly expressed in placenta relative to other human tissues. Here, we have explored a role for steroid sulfatase (STS) in preeclampsia by characterising STS expression and the functional effects of STS on primary placental trophoblasts. METHODS Characterisation of STS was performed on preterm preeclamptic and gestation-matched normotensive preterm controls who delivered at <34 weeks gestation. We characterised placental and maternal whole blood STS mRNA and placental protein expression via qRT-PCR, immunohistochemistry and Western Blot. To assess whether STS is involved in sFlt1 secretion and syncytialisation, we administered siRNA to silence STS in primary trophoblasts before measuring sFlt1 and hCG secretion and E-Cadherin expression. RESULTS A custom array containing 45 placental specific genes identified 10 genes significantly altered in the placentas of preeclamptic patients relative to normotensive gestation-matched controls. Of these genes, qRT-PCR and western blot on a larger cohort confirmed that the expression of STS was significantly elevated in preeclamptic placentas (n = 44) relative to gestation matched controls (n = 26). Given placental RNA leaks in to the maternal circulation, we also assessed STS mRNA expression in the whole blood of patients with preeclampsia and found it was significantly increased relative to normotensive controls. siRNA knockdown of STS in primary trophoblast resulted in a modest but significant reduction in sFlt1 secretion, but had no affect on hCG secretion or E-Cadherin protein expression. DISCUSSION STS is increased in preeclamptic placentas and maternal whole blood. Our data suggests that STS may affect sFlt1 secretion by regulating sFlt1-i13 transcription, and not via alterations in syncytialisation.
Collapse
|
13
|
Rižner TL. The Important Roles of Steroid Sulfatase and Sulfotransferases in Gynecological Diseases. Front Pharmacol 2016; 7:30. [PMID: 26924986 PMCID: PMC4757672 DOI: 10.3389/fphar.2016.00030] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/03/2016] [Indexed: 01/08/2023] Open
Abstract
Gynecological diseases such as endometriosis, adenomyosis and uterine fibroids, and gynecological cancers including endometrial cancer and ovarian cancer, affect a large proportion of women. These diseases are estrogen dependent, and their progression often depends on local estrogen formation. In peripheral tissues, estrogens can be formed from the inactive precursors dehydroepiandrosterone sulfate and estrone sulfate. Sulfatase and sulfotransferases have pivotal roles in these processes, where sulfatase hydrolyzes estrone sulfate to estrone, and dehydroepiandrosterone sulfate to dehydroepiandrosterone, and sulfotransferases catalyze the reverse reactions. Further activation of estrone to the most potent estrogen, estradiol, is catalyzed by 17-ketosteroid reductases, while estradiol can also be formed from dehydroepiandrosterone by the sequential actions of 3β-hydroxysteroid dehydrogenase-Δ4-isomerase, aromatase, and 17-ketosteroid reductase. This review introduces the sulfatase and sulfotransferase enzymes, in terms of their structures and reaction mechanisms, and the regulation and different transcripts of their genes, together with the importance of their currently known single nucleotide polymorphisms. Data on expression of sulfatase and sulfotransferases in gynecological diseases are also reviewed. There are often unchanged mRNA and protein levels in diseased tissue, with higher sulfatase activities in cancerous endometrium, ovarian cancer cell lines, and adenomyosis. This can be indicative of a disturbed balance between the sulfatase and sulfotransferases enzymes, defining the potential for sulfatase as a drug target for treatment of gynecological diseases. Finally, clinical trials with sulfatase inhibitors are discussed, where two inhibitors have already concluded phase II trials, although so far with no convincing clinical outcomes for patients with endometrial cancer and endometriosis.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| |
Collapse
|
14
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
15
|
Mohareb RM, Abbas NS, Abdelaziz MA. Heterocyclic ring extension of androstenedione: synthesis and cytotoxicity of fused pyran, pyrimidine and thiazole derivatives. Steroids 2014; 86:45-55. [PMID: 24793334 DOI: 10.1016/j.steroids.2014.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/05/2014] [Accepted: 04/14/2014] [Indexed: 11/30/2022]
Abstract
The reaction of androstenedione with either malononitrile or ethyl cyanoacetate and aromatic aldehydes 2a-c gave the pyran derivatives 4a-f, respectively. On the other hand, the reaction of androstenedione with thiourea and the aromatic aldehydes 2a-c gave the pyrimidine derivatives 6a-c, respectively. Compound 6b reacted with 2-bromo-1-arylethanone derivatives 7a-d to give the indeno[2,1-e]thiazole derivatives 8a-d. Some of the produced compounds were used for further heterocyclization reactions. The cytotoxicity of the newly obtained products was evaluated against some cancer cell lines and a normal cell line.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| | - Nermeen S Abbas
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, Tabuk University, P.O. Box 741, Tabuk 71491, Kingdom of Saudi Arabia; Basic Science Department, Modern Academy For Engineering and Technology in Maadi, Egypt
| |
Collapse
|
16
|
Matsumoto J, Ariyoshi N, Ishii I, Kitada M. Functional characterization of seven single-nucleotide polymorphisms of the steroid sulfatase gene found in a Japanese population. J Hum Genet 2013; 58:267-72. [PMID: 23466819 DOI: 10.1038/jhg.2013.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Steroid sulfatase (STS) is an enzyme that hydrolyzes steroid sulfates such as dehydroepiandrosterone sulfate (DHEA-S) and estrone sulfate. STS has a key role in the synthesis of steroid hormones in placenta and breast cancer cells. Recently, we have identified six novel single-nucleotide polymorphisms (SNPs) and one nonsynonymous SNP (V476M) in the STS gene in a Japanese population. To clarify the effects of SNPs in the 5'-flanking region or 5' untranslated region on transcriptional activity, a reporter gene assay was conducted. In addition, DHEA-S desulfatase activity of a variant (Met at codon 476)-type enzyme was compared with that of the wild (Wd)-type enzyme in COS-1 cells. The transcriptional activities were significantly decreased (155A) and increased (-2837A and -1588C) in MCF-7 cells. On the other hand, no significant difference was found in expression levels of STS protein or specific activities of DHEA-S desulfation between Wd and the variant enzymes. This is the first report on the effects of various SNPs in the STS gene detected in Japanese healthy subjects.
Collapse
Affiliation(s)
- Jun Matsumoto
- Department of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | | | |
Collapse
|
17
|
Secky L, Svoboda M, Klameth L, Bajna E, Hamilton G, Zeillinger R, Jäger W, Thalhammer T. The sulfatase pathway for estrogen formation: targets for the treatment and diagnosis of hormone-associated tumors. JOURNAL OF DRUG DELIVERY 2013; 2013:957605. [PMID: 23476785 PMCID: PMC3586502 DOI: 10.1155/2013/957605] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/17/2012] [Indexed: 12/15/2022]
Abstract
The extragonadal synthesis of biological active steroid hormones from their inactive precursors in target tissues is named "intracrinology." Of particular importance for the progression of estrogen-dependent cancers is the in situ formation of the biological most active estrogen, 17beta-estradiol (E2). In cancer cells, conversion of inactive steroid hormone precursors to E2 is accomplished from inactive, sulfated estrogens in the "sulfatase pathway" and from androgens in the "aromatase pathway." Here, we provide an overview about expression and function of enzymes of the "sulfatase pathway," particularly steroid sulfatase (STS) that activates estrogens and estrogen sulfotransferase (SULT1E1) that converts active estrone (E1) and other estrogens to their inactive sulfates. High expression of STS and low expression of SULT1E1 will increase levels of active estrogens in malignant tumor cells leading to the stimulation of cell proliferation and cancer progression. Therefore, blocking the "sulfatase pathway" by STS inhibitors may offer an attractive strategy to reduce levels of active estrogens. STS inhibitors either applied in combination with aromatase inhibitors or as novel, dual aromatase-steroid sulfatase inhibiting drugs are currently under investigation. Furthermore, STS inhibitors are also suitable as enzyme-based cancer imaging agents applied in the biomedical imaging technique positron emission tomography (PET) for cancer diagnosis.
Collapse
Affiliation(s)
- Lena Secky
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Martin Svoboda
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Lukas Klameth
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Cluster Translational Oncology, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Erika Bajna
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gerhard Hamilton
- Ludwig Boltzmann Cluster Translational Oncology, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Robert Zeillinger
- Ludwig Boltzmann Cluster Translational Oncology, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, 1090 Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
18
|
Suzuki T, Miki Y, Nakamura Y, Ito K, Sasano H. Steroid sulfatase and estrogen sulfotransferase in human carcinomas. Mol Cell Endocrinol 2011; 340:148-53. [PMID: 21073915 DOI: 10.1016/j.mce.2010.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 10/06/2010] [Accepted: 11/01/2010] [Indexed: 01/23/2023]
Abstract
Estrogens are closely involved in the development of hormone-dependent carcinomas. Estrone is locally produced from circulating inactive estrone sulfate by steroid sulfatase (STS), while estrone is inversely inactivated into estrone sulfate by estrogen sulfotransferase (EST). Recent studies suggested importance of this STS pathway in various human carcinomas. Therefore, in this review, we summarized recent results of STS and EST in several estrogen-dependent carcinomas. STS and EST expressions were detected in the breast and endometrial carcinomas, and activation of STS pathway due to increment in STS and/or decrement in EST expressions plays important role in their estrogen-dependent growth. STS expression was also reported in the ovarian and prostate carcinomas. STS/EST status was associated with intratumoral estrogen level in the colon carcinoma, and STS-negative/EST-positive colon carcinoma patients had longer survival. Therefore, STS pathway and estrogen actions may play an important role in the development of these carcinomas, and further investigations are required.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University, Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | |
Collapse
|
19
|
Brookes KJ, Hawi Z, Park J, Scott S, Gill M, Kent L. Polymorphisms of the steroid sulfatase (STS) gene are associated with attention deficit hyperactivity disorder and influence brain tissue mRNA expression. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1417-24. [PMID: 20862695 PMCID: PMC3132592 DOI: 10.1002/ajmg.b.31120] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 08/03/2010] [Indexed: 11/09/2022]
Abstract
Previous studies in animals and humans have implicated the X-chromosome STS gene in the etiology of attentional difficulties and attention deficit hyperactivity disorder (ADHD). This family based association study has fine mapped a region of the STS gene across intron 1 and 2 previously associated with ADHD, in an extended sample of 450 ADHD probands and their parents. Significant association across this region is demonstrated individually with 7 of the 12 genotyped SNPs, as well as an allele specific haplotype of the 12 SNPs. The over transmitted risk allele of rs12861247 was also associated with reduced STS mRNA expression in normal human post-mortem frontal cortex brain tissue compared to the non-risk allele (P = 0.01). These results are consistent with the hypothesis arising from previous literature demonstrating that boys with deletions of the STS gene, and hence no STS protein are at a significantly increased risk of developing ADHD. Furthermore, this study has established the brain tissue transcript of STS, which except from adipose tissue, differs from that seen in all other tissues investigated. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- KJ Brookes
- Bute Medical School, University of St AndrewsSt Andrews, Scotland, UK
| | - Z Hawi
- Department of Psychiatry, Trinity Centre for Health Sciences, St James's HospitalDublin, Ireland
| | - J Park
- Bute Medical School, University of St AndrewsSt Andrews, Scotland, UK
| | - S Scott
- Bute Medical School, University of St AndrewsSt Andrews, Scotland, UK
| | - M Gill
- Department of Psychiatry, Trinity Centre for Health Sciences, St James's HospitalDublin, Ireland
| | - L Kent
- Bute Medical School, University of St AndrewsSt Andrews, Scotland, UK,*Correspondence to: L. Kent, Bute Medical School, University of St Andrews, St Andrews, Scotland KY16 9TS, UK. E-mail:
| |
Collapse
|
20
|
Khan SA, Chatterton RT. Cellular and hormonal content of breast nipple aspirate fluid in relation to the risk of breast cancer. Biomark Med 2010; 2:479-93. [PMID: 20477425 DOI: 10.2217/17520363.2.5.479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In research settings, the measurement of serum and urine hormone concentrations has shown modest positive relationships with breast cancer risk in postmenopausal women. However, the local production of sex steroids in the breast is a significant contributor to the hormonal environment of the breast. Nipple aspiration fluid provides a window into this environment and allows the measurement of hormone and protein content which may show stronger relations to breast cancer risk, and therefore enable both more accurate risk assessment, and the use of preventive measures directed to the lowering of local breast hormonal exposure.
Collapse
Affiliation(s)
- Seema A Khan
- Department of Surgery & the Robert H Lurie Comprehensive Cancer of Northwestern University, 301 East Superior Street, Chicago, IL, USA.
| | | |
Collapse
|
21
|
Nardi A, Pomari E, Zambon D, Belvedere P, Colombo L, Dalla Valle L. Transcriptional control of human steroid sulfatase. J Steroid Biochem Mol Biol 2009; 115:68-74. [PMID: 19429462 DOI: 10.1016/j.jsbmb.2009.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/19/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
Steroid sulfatase (STS) is a membrane-bound microsomal enzyme that hydrolyzes various alkyl and aryl steroid sulfates, leading to the in situ formation of biologically active hormones. The entire human STS gene spans over approximately 200kbp of which the first 100kbp include the regulatory region, while the STS-coding region is located downstream. Previous studies indicated that STS expression, in different human tissues, could be regulated by at least six different promoters associated with alternative first exons. Here, we describe two new splicing patterns: the first, found in the prostatic cell line PC3, is based upon a partially coding new first exon (0d) that is spliced to a new second exon (1e). The second variant was found in the ovary and it is characterized by the novel splicing of the untranslated exon 0b to exon 0c, which is then spliced to the common exon 1b. We also report the results of a multiplex ligation-dependent probe amplification (RT-MLPA) analysis for the simultaneous detection, in qualitative and/or semi-quantitative terms, of the transcription patterns of STS in different tissues.
Collapse
|
22
|
Pfeiler G, Treeck O, Wenzel G, Goerse R, Hartmann A, Schmitz G, Ortmann O. Correlation of body mass index and menopausal status with the intra-tumoral estrogen system in invasive breast cancer. Gynecol Endocrinol 2009; 25:183-7. [PMID: 19347708 DOI: 10.1080/09513590802549825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Obesity increases breast cancer risk in post-menopausal women. This is, in part, due to elevated non-glandular aromatase activity, resulting in higher estradiol serum levels. We tested the hypothesis that obesity and menopausal status influence the intra-tumoral estrogen system of breast cancer tissue. DESIGN Breast cancer tissue and fasting serum were collected from 26 female patients. After microdissection of the frozen samples, RNA was isolated, and expression of estrogen receptor (ER)alpha, ERbeta1, ERbeta2, ERbeta5, CYP19 aromatase and steroid sulfatase was measured on mRNA level by means of real time RT-PCR. Fasting estradiol serum levels were analysed by ELISA. RESULTS Post-menopausal women older than 70 years exhibited a significantly higher expression both of steroid sulfatase and ERalpha than did pre-menopausal women younger than 50 years. We identified a significant positive correlation between body mass index (BMI) and lymphovascular/vascular invasion. A significant inverse correlation between ERalpha and ERbeta2 expression was identified in invasive breast cancer tissue irrespective of BMI or menopausal status. CONCLUSION In conclusion, we report an association between menopausal status - but not BMI - and the intra-tumoral expression of steroid sulfatase and ERalpha. Our observation that BMI was associated with invasiveness supports the hypothesis that metabolic factors are able to affect essential features of breast cancer.
Collapse
Affiliation(s)
- Georg Pfeiler
- Department of Obstetrics and Gynecology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Tiefenbacher K, Daxenbichler G. The Role of Androgens in Normal and Malignant Breast Tissue. Breast Care (Basel) 2008; 3:325-331. [PMID: 20824027 DOI: 10.1159/000158055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Androgens, like estrogens, can be synthesized in the breast. As both active androgens and their corresponding receptors are present in breast tissue, we conclude that they play a role in breast physiology. This is supported by the fact that insufficient androgen production or sensitivity results in the development of gynecomastia. Complete androgen insensitivity due to receptor defects leads to normal female breast development in these XY women. While breast development is completely inhibited by male testosterone levels, partial but not total degradation of a developed breast by androgen treatment appears to be possible. Breast cancer in early stages seems to fulfill the prerequisites of androgen responsiveness. Androgen treatment of advanced breast cancer has shown similar effectiveness as anti-estrogen or estrogen-ablative therapy, but also considerable side effects. It has been speculated that the use of selective androgen modulators (SARMs), either alone or preferably in addition to anti-estrogens or aromatase inhibitors, may be a promising alternative to current therapy modalities in hormone-dependent breast cancer. In addition, future studies on the use of SARMs in prophylactic settings seem to be justified.
Collapse
|
24
|
Woolcott CG, SenGupta SK, Hanna WM, Aronson KJ. Estrogen and progesterone receptor levels in nonneoplastic breast epithelium of breast cancer cases versus benign breast biopsy controls. BMC Cancer 2008; 8:130. [PMID: 18466613 PMCID: PMC2397427 DOI: 10.1186/1471-2407-8-130] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 05/08/2008] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Previous studies and biological mechanisms of carcinogenesis suggest that the steroid receptor content of benign breast epithelium may be related to breast cancer risk. The objective in this study was to compare the levels of estrogen receptor-alpha (ER) and progesterone receptor (PR) in nonneoplastic breast epithelium between breast cancer cases and biopsy controls. METHODS Between 1995 and 1997 at two sites (Women's College Hospital in Toronto and Kingston General Hospital), 667 women who were scheduled for diagnostic excisional breast biopsies completed a questionnaire providing personal information and agreed to allow analysis of routinely resected tissue. Histological slides with nonneoplastic epithelium were available for 101 cancer cases and 200 biopsy controls in Toronto and for 105 cancer cases and 119 controls in Kingston. Nonneoplastic epithelium was examined with immunohistochemical assays to determine the percent of epithelial cells staining for ER and PR. Unconditional logistic regression was used to calculate odds ratios (OR) stratified by study site. RESULTS The ER content of nonneoplastic tissue was higher in cases than biopsy controls in unadjusted analyses; after adjustment for age, however, a weak association remained in only one of the study sites. After adjustment for age, the PR content of nonneoplastic tissue was slightly lower in breast cancer cases than controls in one study site. Furthermore, this inverse association was confined to women with PR negative breast cancer in comparison to the controls. No interaction between ER and PR content of nonneoplastic tissue was observed in relation to the odds of having breast cancer. CONCLUSION The results of this study are consistent with only a slight indication of increased ER levels in nonneoplastic tissue in breast cancer cases relative to controls. This study contributes to the understanding of breast cancer by examining both ER and PR in nonneoplastic tissue. Limitations remain, however, such as the necessity of using as controls women with benign breast changes, difficulties in selecting the appropriate tissue for analysis, and tissue sampling concurrent to diagnosis.
Collapse
Affiliation(s)
- Christy G Woolcott
- 1Cancer Research Center of Hawaii, University of Hawaii, Honolulu, Hawaii, 96813, USA.
| | | | | | | |
Collapse
|