1
|
Vancolen S, Chevin M, Allard MJ, Bouzidi N, Robaire B, Sébire G. Androgen Aggravates Chorioamnionitis-Induced White Matter Brain Injury and Neurobehavioral Impairments in Males. Dev Neurosci 2025:1-11. [PMID: 40037305 DOI: 10.1159/000545074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
INTRODUCTION Group B Streptococcus (GBS) colonization leads to placental infection and inflammation, known as chorioamnionitis (CA). Fetal exposure to CA is linked to elevated risks of neurobehavioral impairments in offspring, including autism spectrum disorder, which is more prominent in males than females. In our preclinical model of GBS-induced CA, males exhibited heightened placental inflammation compared to females, correlating with more severe subsequent neurobehavioral impairments. We hypothesize that androgens upregulate the placental immune response in male fetuses, potentially contributing to GBS-induced autistic-like traits in male offspring. Our previous findings demonstrated that there were reduced pro-inflammatory cytokines and polymorphonuclear cell infiltration in flutamide (androgen receptor antagonist) plus GBS-infected compared to vehicle plus GBS-infected placenta. In this study, we investigated the effect of end gestational androgen blockade on brain injury patterns and neurobehavioral outcomes in offspring in utero exposed to GBS CA. METHODS Lewis dams received daily injections of vehicle or flutamide from gestational day (G) 18-21, followed by saline or inactivated GBS injections from G19 to 21. Behavioral assessments were conducted from postnatal day (P) 9-40 and brains were dissected on P50. RESULTS Behavioral assessments revealed impaired social interactions in CA-exposed versus unexposed male rats. These impairments were not observed in flutamide-treated rats. Histological analysis of forebrains at P50 showed lateral forebrain ventricle enlargement and reduced periventricular white matter thickness, namely the corpus callosum and external capsule in offspring exposed to CA contrasting with an improvement in these outcomes observed in flutamide treated rats. Exposure to CA reduced the density of CC-1+ oligodendrocytes in the external capsule whereas flutamide mitigated this reduction in offspring at P50. CONCLUSION These findings suggest a significant role for androgens in the skewed sex ratio observed in developmental impairments resulting from perinatal inflammation, underscoring the need for personalized sex-specific neuroprotective therapies.
Collapse
Affiliation(s)
- Seline Vancolen
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
- Department of Pediatrics, Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Québec, Canada
| | - Mathilde Chevin
- Department of Pediatrics, Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Québec, Canada
| | - Marie-Julie Allard
- Department of Pediatrics, Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Québec, Canada
| | - Nour Bouzidi
- Department of Pediatrics, Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Québec, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| | - Guillaume Sébire
- Department of Pediatrics, Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Québec, Canada
| |
Collapse
|
2
|
Ansere VA, Kim SS, Marino F, Morillo K, Dubal DB, Murphy CT, Suh Y, Benayoun BA. Strategies for studying sex differences in brain aging. Trends Genet 2025:S0168-9525(25)00027-7. [PMID: 40037936 DOI: 10.1016/j.tig.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/06/2025]
Abstract
Studying sex effects and their underlying mechanisms is of major relevance to understanding brain health. Despite growing interests, experimentally studying sex differences, particularly in the context of aging, remains challenging. Since sex chromosomal content influences gonadal development, separating the effects of gonadal hormones and chromosomal factors requires specific model systems. Here, we highlight rodent and tractable models for examining sex dimorphism in brain and cognitive aging. In addition, we discuss multi-omic and bioinformatic approaches that yield biological insights from animal and human studies. This review provides a comprehensive overview of the diverse toolkit now available to advance our understanding of sex differences in brain aging.
Collapse
Affiliation(s)
- Victor A Ansere
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Seung-Soo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesca Marino
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Katherine Morillo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Dena B Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; LSI Genomics, Princeton University, Princeton, NJ, USA.
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA; Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA.
| |
Collapse
|
3
|
Dart DA, Bevan CL, Uysal-Onganer P, Jiang WG. Analysis of androgen receptor expression and activity in the mouse brain. Sci Rep 2024; 14:11115. [PMID: 38750183 PMCID: PMC11096401 DOI: 10.1038/s41598-024-61733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Androgen deprivation therapy (ADT) is the core treatment for advanced prostate cancer (PCa), with a proven survival benefit. ADT lowers circulating testosterone levels throughout the body, but with it comes a variety of reported side effects including fatigue, muscle wastage, weight gain, hot flushes and importantly cognitive impairment, depression, and mood swings. Testosterone has a key role in brain masculinization, but its direct effects are relatively poorly understood, due both to the brain's extreme complexity and the fact that some of testosterone activities are driven via local conversion to oestrogen, especially during embryonic development. The exact roles, function, and location of the androgen receptor (AR) in the adult male brain are still being discovered, and therefore the cognitive side effects of ADT may be unrecognized or under-reported. The age of onset of several neurological diseases overlap with PCa, therefore, there is a need to separate ADT side effects from such co-morbidities. Here we analysed the activity and expression level of the AR in the adult mouse brain, using an ARE-Luc reporter mouse and immunohistochemical staining for AR in all the key brain regions via coronal slices. We further analysed our data by comparing to the Allen Mouse Brain Atlas. AR-driven luciferase activity and distinct nuclear staining for AR were seen in several key brain areas including the thalamus, hypothalamus, olfactory bulb, cerebral cortex, Purkinje cells of the cerebellum and the hindbrain. We describe and discuss the potential role of AR in these areas, to inform and enable extrapolation to potential side effects of ADT in humans.
Collapse
Affiliation(s)
- D Alwyn Dart
- UCL (University College London) Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK.
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, W12 0NN, UK.
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, CF14 4YS, UK.
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, W12 0NN, UK
| | - Pinar Uysal-Onganer
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Wen Guo Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, CF14 4YS, UK
| |
Collapse
|
4
|
Guma E, Beauchamp A, Liu S, Levitis E, Ellegood J, Pham L, Mars RB, Raznahan A, Lerch JP. Comparative neuroimaging of sex differences in human and mouse brain anatomy. eLife 2024; 13:RP92200. [PMID: 38488854 PMCID: PMC10942785 DOI: 10.7554/elife.92200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
In vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-specific brain development, there have been no attempts to formally compare human and mouse neuroanatomical sex differences to ascertain how well they translate. Addressing this question would shed critical light on the use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals. Here, we use structural magnetic resonance imaging to conduct the first comparative neuroimaging study of sex-specific neuroanatomy of the human and mouse brain. In line with previous findings, we observe that in humans, males have significantly larger and more variable total brain volume; these sex differences are not mirrored in mice. After controlling for total brain volume, we observe modest cross-species congruence in the volumetric effect size of sex across 60 homologous regions (r=0.30). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By incorporating regional measures of gene expression in both species, we reveal that cortical regions with greater cross-species congruence in volumetric sex differences also show greater cross-species congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates primary sensory regions with high congruence of sex effects and gene expression from limbic cortices where congruence in both these features was weaker between species. These findings help identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-specific brain development in mice to brain regions that best echo sex-specific brain development in humans.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Antoine Beauchamp
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Elizabeth Levitis
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Jacob Ellegood
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
| | - Linh Pham
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Jason P Lerch
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
5
|
Vosberg DE. Sex and Gender in Population Neuroscience. Curr Top Behav Neurosci 2024; 68:87-105. [PMID: 38509404 DOI: 10.1007/7854_2024_468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
To understand psychiatric and neurological disorders and the structural and functional properties of the human brain, it is essential to consider the roles of sex and gender. In this chapter, I first define sex and gender and describe studies of sex differences in non-human animals. In humans, I describe the sex differences in behavioral and clinical phenotypes and neuroimaging-derived phenotypes, including whole-brain measures, regional subcortical and cortical measures, and structural and functional connectivity. Although structural whole-brain sex differences are large, regional effects (adjusting for whole-brain volumes) are typically much smaller and often fail to replicate. Nevertheless, while an individual neuroimaging feature may have a small effect size, aggregating them in a "maleness/femaleness" score or machine learning multivariate paradigm may prove to be predictive and informative of sex- and gender-related traits. Finally, I conclude by summarizing emerging investigations of gender norms and gender identity and provide methodological recommendations to incorporate sex and gender in population neuroscience research.
Collapse
Affiliation(s)
- Daniel E Vosberg
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada.
- Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
6
|
Guma E, Beauchamp A, Liu S, Levitis E, Ellegood J, Pham L, Mars RB, Raznahan A, Lerch JP. Comparative neuroimaging of sex differences in human and mouse brain anatomy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554334. [PMID: 37662398 PMCID: PMC10473765 DOI: 10.1101/2023.08.23.554334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-biased brain development in mammals, there have been no attempts to formally compare mouse and human sex differences across the whole brain to ascertain how well they translate. Addressing this question would shed critical light on use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals. Here, we use cross-species structural magnetic resonance imaging to carry out the first comparative neuroimaging study of sex-biased neuroanatomical organization of the human and mouse brain. In line with previous findings, we observe that in humans, males have significantly larger and more variable total brain volume; these sex differences are not mirrored in mice. After controlling for total brain volume, we observe modest cross-species congruence in the volumetric effect size of sex across 60 homologous brain regions (r=0.30; e.g.: M>F amygdala, hippocampus, bed nucleus of the stria terminalis, and hypothalamus and F>M anterior cingulate, somatosensory, and primary auditory cortices). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By incorporating regional measures of gene expression in both species, we reveal that cortical regions with greater cross-species congruence in volumetric sex differences also show greater cross-species congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates primary sensory regions with high congruence of sex effects and gene expression from limbic cortices where congruence in both these features was weaker between species. These findings help identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-biased brain development in mice to brain regions that best echo sex-biased brain development in humans.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Antoine Beauchamp
- Mouse Imaging Centre, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Elizabeth Levitis
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Linh Pham
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Abstract
Rapid advances in the neural control of social behavior highlight the role of interconnected nodes engaged in differential information processing to generate behavior. Many innate social behaviors are essential to reproductive fitness and therefore fundamentally different in males and females. Programming these differences occurs early in development in mammals, following gonadal differentiation and copious androgen production by the fetal testis during a critical period. Early-life programming of social behavior and its adult manifestation are separate but yoked processes, yet how they are linked is unknown. This review seeks to highlight that gap by identifying four core mechanisms (epigenetics, cell death, circuit formation, and adult hormonal modulation) that could connect developmental changes to the adult behaviors of mating and aggression. We further propose that a unique social behavior, adolescent play, bridges the preweaning to the postpubertal brain by engaging the same neural networks underpinning adult reproductive and aggressive behaviors.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
8
|
Park CJ, Minabe S, Hess RA, Lin PCP, Zhou S, Bashir ST, Barakat R, Gal A, Ko CJ. Single neonatal estrogen implant sterilizes female animals by decreasing hypothalamic KISS1 expression. Sci Rep 2023; 13:9627. [PMID: 37316510 DOI: 10.1038/s41598-023-36727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Reproductive sterilization by surgical gonadectomy is strongly advocated to help manage animal populations, especially domesticated pets, and to prevent reproductive behaviors and diseases. This study explored the use of a single-injection method to induce sterility in female animals as an alternative to surgical ovariohysterectomy. The idea was based on our recent finding that repetitive daily injection of estrogen into neonatal rats disrupted hypothalamic expression of Kisspeptin (KISS1), the neuropeptide that triggers and regulates pulsatile secretion of GnRH. Neonatal female rats were dosed with estradiol benzoate (EB) either by daily injections for 11 days or by subcutaneous implantation of an EB-containing silicone capsule designed to release EB over 2-3 weeks. Rats treated by either method did not exhibit estrous cyclicity, were anovulatory, and became infertile. The EB-treated rats had fewer hypothalamic Kisspeptin neurons, but the GnRH-LH axis remained responsive to Kisspeptin stimulation. Because it would be desirable to use a biodegradable carrier that is also easier to handle, an injectable EB carrier was developed from PLGA microspheres to provide pharmacokinetics comparable to the EB-containing silicone capsule. A single neonatal injection of EB-microspheres at an equivalent dosage resulted in sterility in the female rat. In neonatal female Beagle dogs, implantation of an EB-containing silicone capsule also reduced ovarian follicle development and significantly inhibited KISS1 expression in the hypothalamus. None of the treatments produced any concerning health effects, other than infertility. Therefore, further development of this technology for sterilization in domestic female animals, such as dogs and cats is worthy of investigation.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Epivara, Inc, Champaign, IL, 61820, USA
| | - Shiori Minabe
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, 028-3694, Japan
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Epivara, Inc, Champaign, IL, 61820, USA
| | - Po-Ching Patrick Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | | | - Shah Tauseef Bashir
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - CheMyong Jay Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
- Epivara, Inc, Champaign, IL, 61820, USA.
| |
Collapse
|
9
|
Liang SL, Liao WL, Chen RS. Perinatal blockade of neuronal glutamine transport sex-differentially alters glutamatergic synaptic transmission and organization of neurons in the ventrolateral ventral media hypothalamus of adult rats. J Neuroendocrinol 2023; 35:e13253. [PMID: 36949648 DOI: 10.1111/jne.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Compared to male pups, perinatal female rats rely heavily on neuronal glutamine (Gln) transport for sustaining glutamatergic synaptic release in neurons of the ventrolateral ventral media nucleus of the hypothalamus (vlVMH). VMH mainly regulates female sexual behavior and increases glutamate release of perinatal hypothalamic neurons, permanently enhances dendrite spine numbers and is associated with brain and behavioral defeminization. We hypothesized that perinatal interruption of neuronal Gln transport may alter the glutamatergic synaptic transmission during adulthood. Perinatal rats of both sexes received an intracerebroventricular injection of a neuronal Gln uptake blocker, alpha-(methylamino) isobutyric acid (MeAIB, 5 mM), and were raised until adulthood. Whole-cell voltage-clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) and evoked EPSCs (eEPSCs) of vlVMH neurons in adult rats with the perinatal pretreatment were conducted and neuron morphology was subjected to post hoc examination. Perinatal MeAIB treatment sex-differentially increased mEPSC frequency in males, but decreased mEPSC amplitude and synaptic Glu release in females. The pretreatment sex-differentially decreased eEPSC amplitude in males but increased AMPA/NMDA current ratio in females, and changed the morphology of vlVMH neurons of adult rats to that of the opposite sex. Most alterations in the glutamatergic synaptic transmission resembled the changes occurring during MeAIB acute exposure in perinatal rats of both sexes. We conclude that perinatal blockade of neuronal Gln transport mediates changes via different presynaptic and postsynaptic mechanisms to induce sex-differential alterations of the glutamatergic synaptic transmission and organization of vlVMH neurons in adult rats. These changes may be permanent and associated with brain and behavior feminization and/or defeminization in rats.
Collapse
Affiliation(s)
- Shu-Ling Liang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wen-Lin Liao
- Institute of Neuroscience, National Chengchi University, Taipei, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
10
|
Valencia-Olvera AC, Maldonado Weng J, Christensen A, LaDu MJ, Pike CJ. Role of estrogen in women's Alzheimer's disease risk as modified by APOE. J Neuroendocrinol 2023; 35:e13209. [PMID: 36420620 PMCID: PMC10049970 DOI: 10.1111/jne.13209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by numerous sexual dimorphisms that impact the development, progression, and probably the strategies to prevent and treat the most common form of dementia. In this review, we consider this topic from a female perspective with a specific focus on how women's vulnerability to the disease is affected by the individual and interactive effects of estrogens and apolipoprotein E (APOE) genotype. Importantly, APOE appears to modulate systemic and neural outcomes of both menopause and estrogen-based hormone therapy. In the brain, dementia risk is greater in APOE4 carriers, and the impacts of hormone therapy on cognitive decline and dementia risk vary according to both outcome measure and APOE genotype. Beyond the CNS, estrogen and APOE genotype affect vulnerability to menopause-associated bone loss, dyslipidemia and cardiovascular disease risk. An emerging concept that may link these relationships is the possibility that the effects of APOE in women interact with estrogen status by mechanisms that may include modulation of estrogen responsiveness. This review highlights the need to consider the key AD risk factors of advancing age in a sex-specific manner to optimize development of therapeutic approaches for AD, a view aligned with the principle of personalized medicine.
Collapse
Affiliation(s)
- AC Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - J Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - A Christensen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| | - MJ LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - CJ Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
11
|
Granata L, Gildawie KR, Ismail N, Brenhouse HC, Kopec AM. Immune signaling as a node of interaction between systems that sex-specifically develop during puberty and adolescence. Dev Cogn Neurosci 2022; 57:101143. [PMID: 35933922 PMCID: PMC9357835 DOI: 10.1016/j.dcn.2022.101143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Adolescence is pivotal for neural and behavioral development across species. During this period, maturation occurs in several biological systems, the most well-recognized being activation of the hypothalamic-pituitary-gonadal axis marking pubertal onset. Increasing comparative studies of sex differences have enriched our understanding of systems integration during neurodevelopment. In recent years, immune signaling has emerged as a key node of interaction between a variety of biological signaling processes. Herein, we review the age- and sex-specific changes that occur in neural, hypothalamic-pituitary, and microbiome systems during adolescence. We then describe how immune signaling interacts with these systems, and review recent preclinical evidence indicating that immune signaling may play a central role in integrating changes in their typical and atypical development during adolescence. Finally, we discuss the translational relevance of these preclinical studies to human health and wellness.
Collapse
Affiliation(s)
- Lauren Granata
- Northeastern University, 125 Nightingale Hall, Boston, MA 02115, USA.
| | - Kelsea R Gildawie
- Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd. North Grafton, MA 01536, USA.
| | - Nafissa Ismail
- University of Ottawa, 136 Jean-Jacques Lussier, Vanier Hall 2076A, Ottawa, ON K1N 6N5 Canada.
| | | | - Ashley M Kopec
- Albany Medical College, 43 New Scotland Ave., Albany, NY 12208, USA.
| |
Collapse
|
12
|
Witchey SK, Doyle MG, Fredenburg JD, St Armour G, Horman B, Odenkirk MT, Aylor DL, Baker ES, Patisaul HB. Impacts of Gestational FireMaster 550 Exposure on the Neonatal Cortex Are Sex Specific and Largely Attributable to the Organophosphate Esters. Neuroendocrinology 2022; 113:1262-1282. [PMID: 36075192 PMCID: PMC9992460 DOI: 10.1159/000526959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Flame retardants (FRs) are common bodily and environmental pollutants, creating concern about their potential toxicity. We and others have found that the commercial mixture FireMaster® 550 (FM 550) or its individual brominated (BFR) and organophosphate ester (OPFR) components are potential developmental neurotoxicants. Using Wistar rats, we previously reported that developmental exposure to FM 550 or its component classes produced sex- and compound-specific effects on adult socioemotional behaviors. The underlying mechanisms driving the behavioral phenotypes are unknown. METHODS To further mechanistic understanding, here we conducted transcriptomics in parallel with a novel lipidomics approach using cortical tissues from newborn siblings of the rats in the published behavioral study. Inclusion of lipid composition is significant because it is rarely examined in developmental neurotoxicity studies. Pups were gestationally exposed via oral dosing to the dam to FM 550 or the BFR or OPFR components at environmentally relevant doses. RESULTS The neonatal cortex was highly sexually dimorphic in lipid and transcriptome composition, and males were more significantly impacted by FR exposure. Multiple adverse modes of action for the BFRs and OPFRs on neurodevelopment were identified, with the OPFRs being more disruptive than the BFRs via multiple mechanisms including dysregulation of mitochondrial function and disruption of cholinergic and glutamatergic systems. Disrupted mitochondrial function by environmental factors has been linked to a higher risk of autism spectrum disorders and neurodegenerative disorders. Impacted lipid classes included ceramides, sphingomyelins, and triacylglycerides. Robust ceramide upregulation in the OPFR females could suggest a heightened risk of brain metabolic disease. CONCLUSIONS This study reveals multiple mechanisms by which the components of a common FR mixture are developmentally neurotoxic and that the OPFRs may be the compounds of greatest concern.
Collapse
Affiliation(s)
- Shannah K Witchey
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Michael G Doyle
- Department of Chemistry, NC State University, Raleigh, North Carolina, USA
| | - Jacob D Fredenburg
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Genevieve St Armour
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Brian Horman
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Melanie T Odenkirk
- Department of Chemistry, NC State University, Raleigh, North Carolina, USA
| | - David L Aylor
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
- Center for Human Health and the Environment, NC State University, Raleigh, North Carolina, USA
| | - Erin S Baker
- Department of Chemistry, NC State University, Raleigh, North Carolina, USA
| | - Heather B Patisaul
- Center for Human Health and the Environment, NC State University, Raleigh, North Carolina, USA
| |
Collapse
|
13
|
Abstract
In this systematic review, we highlight the differences between the male and female zebrafish brains to understand their differentiation and their use in studying sex-specific neurological diseases. Male and female brains display subtle differences at the cellular level which may be important in driving sex-specific signaling. Sex differences in the brain have been observed in humans as well as in non-human species. However, the molecular mechanisms of brain sex differentiation remain unclear. The classical model of brain sex differentiation suggests that the steroid hormones derived from the gonads are the primary determinants in establishing male and female neural networks. Recent studies indicate that the developing brain shows sex-specific differences in gene expression prior to gonadal hormone action. Hence, genetic differences may also be responsible for differentiating the brain into male and female types. Understanding the signaling mechanisms involved in brain sex differentiation could help further elucidate the sex-specific incidences of certain neurological diseases. The zebrafish model could be appropriate for enhancing our understanding of brain sex differentiation and the signaling involved in neurological diseases. Zebrafish brains show sex-specific differences at the hormonal level, and recent advances in RNA sequencing have highlighted critical sex-specific differences at the transcript level. The differences are also evident at the cellular and metabolite levels, which could be important in organizing sex-specific neuronal signaling. Furthermore, in addition to having one ortholog for 70% of the human gene, zebrafish also shares brain structural similarities with other higher eukaryotes, including mammals. Hence, deciphering brain sex differentiation in zebrafish will help further enhance the diagnostic and pharmacological intervention of neurological diseases.
Collapse
|
14
|
Vaudin P, Augé C, Just N, Mhaouty-Kodja S, Mortaud S, Pillon D. When pharmaceutical drugs become environmental pollutants: Potential neural effects and underlying mechanisms. ENVIRONMENTAL RESEARCH 2022; 205:112495. [PMID: 34883077 DOI: 10.1016/j.envres.2021.112495] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical drugs have become consumer products, with a daily use for some of them. The volume of production and consumption of drugs is such that they have become environmental pollutants. Their transfer to wastewater through urine, feces or rinsing in case of skin use, associated with partial elimination by wastewater treatment plants generalize pollution in the hydrosphere, including drinking water, sediments, soils, the food chain and plants. Here, we review the potential effects of environmental exposure to three classes of pharmaceutical drugs, i.e. antibiotics, antidepressants and non-steroidal anti-inflammatory drugs, on neurodevelopment. Experimental studies analyzing their underlying modes of action including those related to endocrine disruption, and molecular mechanisms including epigenetic modifications are presented. In addition, the contribution of brain imaging to the assessment of adverse effects of these three classes of pharmaceuticals is approached.
Collapse
Affiliation(s)
- Pascal Vaudin
- Physiologie de La Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| | - Corinne Augé
- UMR 1253, IBrain, University of Tours, INSERM, 37000, Tours, France
| | - Nathalie Just
- Physiologie de La Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Stéphane Mortaud
- Immunologie et Neurogénétique Expérimentales et Moléculaires, UMR7355, CNRS, Université D'Orléans, 45000, Orléans, France
| | - Delphine Pillon
- Physiologie de La Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| |
Collapse
|
15
|
Tran-Guzman A, Culty M. Eicosanoid Biosynthesis in Male Reproductive Development: Effects of Perinatal Exposure to NSAIDs and Analgesic Drugs. FRONTIERS IN TOXICOLOGY 2022; 4:842565. [PMID: 35295224 PMCID: PMC8915844 DOI: 10.3389/ftox.2022.842565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing rates of infertility associated with declining sperm counts and quality, as well as increasing rates of testicular cancer are contemporary issues in the United States and abroad. These conditions are part of the Testicular Dysgenesis Syndrome, which includes a variety of male reproductive disorders hypothesized to share a common origin based on disrupted testicular development during fetal and neonatal stages of life. Male reproductive development is a highly regulated and complex process that relies on an intricate coordination between germ, Leydig, and Sertoli cells as well as other supporting cell types, to ensure proper spermatogenesis, testicular immune privilege, and endocrine function. The eicosanoid system has been reported to be involved in the regulation of fetal and neonatal germ cell development as well as overall testicular homeostasis. Moreover, non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics with abilities to block eicosanoid synthesis by targeting either or both isoforms of cyclooxygenase enzymes, have been found to adversely affect male reproductive development. This review will explore the current body of knowledge on the involvement of the eicosanoid system in male reproductive development, as well as discuss adverse effects of NSAIDs and analgesic drugs administered perinatally, focusing on toxicities reported in the testis and on major testicular cell types. Rodent and epidemiological studies will be corroborated by findings in invertebrate models for a comprehensive report of the state of the field, and to add to our understanding of the potential long-term effects of NSAID and analgesic drug administration in infants.
Collapse
|
16
|
Joglekar R, Cauley M, Lipsich T, Corcoran DL, Patisaul HB, Levin ED, Meyer JN, McCarthy MM, Murphy SK. Developmental nicotine exposure and masculinization of the rat preoptic area. Neurotoxicology 2022; 89:41-54. [PMID: 35026373 PMCID: PMC8917982 DOI: 10.1016/j.neuro.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Nicotine is a neuroteratogenic component of tobacco smoke, e-cigarettes, and other products and can exert sex-specific effects in the developing brain, likely mediated through sex hormones. Estradiol modulates expression of nicotinic acetylcholine receptors in rats, and plays critical roles in neurodevelopmental processes, including sexual differentiation of the brain. Here, we examined the effects of developmental nicotine exposure on the sexual differentiation of the preoptic area (POA), a brain region that normally displays robust structural sexual dimorphisms and controls adult mating behavior in rodents. Using a rat model of gestational exposure, developing pups were exposed to nicotine (2 mg/kg/day) via maternal osmotic minipump (subcutaneously, sc) throughout the critical window for brain sexual differentiation. At postnatal day (PND) 4, a subset of offspring was analyzed for epigenetic effects in the POA. At PND40, all offspring were gonadectomized, implanted with a testosterone-releasing capsule (sc), and assessed for male sexual behavior at PND60. Following sexual behavior assessment, the area of the sexually dimorphic nucleus of the POA (SDN-POA) was measured using immunofluorescent staining techniques. In adults, normal sex differences in male sexual behavior and in the SDN-POA area were eliminated in nicotine-treated animals. Using novel analytical approaches to evaluate overall masculinization of the adult POA, we identified significant masculinization of the nicotine-treated female POA. In neonates (PND4), nicotine exposure induced trending alterations in methylation-dependent masculinizing gene expression and DNA methylation levels at sexually-dimorphic differentially methylated regions, suggesting that developmental nicotine exposure is capable of triggering masculinization of the rat POA via epigenetic mechanisms.
Collapse
Affiliation(s)
- Rashmi Joglekar
- Duke University Nicholas School of the Environment, Durham, NC 27708 USA
| | - Marty Cauley
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC 27708 USA
| | - Taylor Lipsich
- Duke University Medical Center, Department of Obstetrics & Gynecology, Durham, NC 27708 USA
| | - David L. Corcoran
- Duke Center for Genomic and Computational Biology, Durham, NC 27708 USA
| | - Heather B. Patisaul
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695 USA
| | - Edward D. Levin
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC 27708 USA
| | - Joel N. Meyer
- Duke University Nicholas School of the Environment, Durham, NC 27708 USA
| | - Margaret M. McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore, MD 21201 USA
| | - Susan K. Murphy
- Duke University Medical Center, Department of Obstetrics & Gynecology, Durham, NC 27708 USA
| |
Collapse
|
17
|
Male sex bias in early and late onset neurodevelopmental disorders: shared aspects and differences in autism spectrum disorder, attention deficit/hyperactivity disorder, and schizophrenia. Neurosci Biobehav Rev 2022; 135:104577. [DOI: 10.1016/j.neubiorev.2022.104577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/23/2022] [Accepted: 02/11/2022] [Indexed: 12/22/2022]
|
18
|
Johnson CS, Micevych PE, Mermelstein PG. Membrane estrogen signaling in female reproduction and motivation. Front Endocrinol (Lausanne) 2022; 13:1009379. [PMID: 36246891 PMCID: PMC9557733 DOI: 10.3389/fendo.2022.1009379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023] Open
Abstract
Estrogen receptors were initially identified in the uterus, and later throughout the brain and body as intracellular, ligand-regulated transcription factors that affect genomic change upon ligand binding. However, rapid estrogen receptor signaling initiated outside of the nucleus was also known to occur via mechanisms that were less clear. Recent studies indicate that these traditional receptors, estrogen receptor-α and estrogen receptor-β, can also be trafficked to act at the surface membrane. Signaling cascades from these membrane-bound estrogen receptors (mERs) not only rapidly effect cellular excitability, but can and do ultimately affect gene expression, as seen through the phosphorylation of CREB. A principal mechanism of neuronal mER action is through glutamate-independent transactivation of metabotropic glutamate receptors (mGluRs), which elicits multiple signaling outcomes. The interaction of mERs with mGluRs has been shown to be important in many diverse functions in females, including, but not limited to, reproduction and motivation. Here we review membrane-initiated estrogen receptor signaling in females, with a focus on the interactions between these mERs and mGluRs.
Collapse
Affiliation(s)
- Caroline S. Johnson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Caroline S. Johnson,
| | - Paul E Micevych
- Laboratory of Neuroendocrinology, Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul G. Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
19
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
20
|
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and mechanisms of phthalates’ action on neurological processes and neural health: a literature review. Pharmacol Rep 2021; 73:386-404. [DOI: 10.1007/s43440-021-00215-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
|
21
|
Yip SH, Araujo-Lopes R, Szawka RE, York J, Hyland B, Grattan DR, Bunn SJ. Morphological plasticity of the tuberoinfundibular dopaminergic neurones in the rat during the oestrous cycle and lactation. J Neuroendocrinol 2020; 32:e12884. [PMID: 32662600 DOI: 10.1111/jne.12884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/04/2020] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
The hypothalamic tuberoinfundibular dopaminergic (TIDA) neurones are critical with respect to regulating prolactin secretion from the anterior pituitary. Under most physiological conditions, they are stimulated by prolactin to release dopamine into the median eminence which subsequently suppresses further prolactin secretion from the lactotrophs. During lactation, the TIDA neurones are known to undergo both electrophysiological and neurochemical changes that alleviate this negative-feedback, thus allowing circulating prolactin levels to rise. The present study aimed to determine whether TIDA neurone morphology, most notably spine density, is also modified during lactation. This was achieved by stereotaxically injecting the arcuate nucleus of female, tyrosine hydroxylase-promoter driven Cre-recombinase transgenic rats with Cre-dependent adeno-associated virus-expressing Brainbow. This resulted in the highly specifici transfection of between 10% and 30% of the TIDA neurones, thus allowing the morphologies on multiple individual neurones to be examined in a single hypothalamic slice. The transfected neurones exhibited a range of complex forms, including a diversity of soma and location of axonal origin. Neuronal spine counting showed that the density of somatic, but not dendritic, spines was significantly higher during lactation than at any other reproductive stage. There was also a significant fall in somatic spine density across the oestrous cycle from dioestrus to oestrus. Although the functional characteristics of the additional somatic spines have not been determined, if, as might be expected, they represent an increased excitatory input to the TIDA neurones, this could have important physiological implications by perhaps supporting altered neurotransmitter release at their neuroendocrine terminals. Enhanced excitatory input may, for example, favour the release of the opioid peptide enkephalin rather than dopamine, which is potentially significant because the expression of the peptide is known to increase in the TIDA neurones during lactation and, in contrast to dopamine, it stimulates rather than inhibits prolactin secretion from the pituitary.
Collapse
Affiliation(s)
- Siew Hoong Yip
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Roberta Araujo-Lopes
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jade York
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Brian Hyland
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Stephen J Bunn
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Krebs Ribeiro DC, Passoni MT, Meldola H, Curi TZ, da Silva GN, Tolouei SEL, Hey GS, Grechi N, dos Santos AC, Souza RIC, Spercoski KM, Ramos ATDA, Martino-Andrade AJ. Prenatal diclofenac exposure delays pubertal development and induces behavioral changes in rats. Reprod Toxicol 2020; 96:380-389. [DOI: 10.1016/j.reprotox.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/19/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022]
|
23
|
Serpa RO, Wagner CK, Wood RI. Developmental exposure to 17α-hydroxyprogesterone caproate impairs adult delayed reinforcement and reversal learning in male and female rats. J Neuroendocrinol 2020; 32:e12862. [PMID: 32485009 PMCID: PMC8130846 DOI: 10.1111/jne.12862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
Women with a history of unexplained miscarriage are frequently prescribed the synthetic progestin, 17α-hydroxyprogesterone caproate (17-OHPC) during the middle trimester of pregnancy. However, little is known about the long-term behavioural effects of 17-OHPC. Work in rodents suggests that the developing brain is sensitive to progestins. Neonatal 17-OHPC impairs adult performance in set-shifting and delay discounting. The present study tested the effects of 17-OHPC (0.5 mg kg-1 ) or vehicle administration from postnatal days 1-14 on cognitive function in adulthood in rats. Cognitive function was assessed in males and females (n = 8-10 per group) by operant responding for sugar pellets, measuring delayed reinforcement or reversal learning. For delayed reinforcement, the rat must wait 15 seconds for pellets after responding on a lever. Delay is signalled by a light or is unsignalled. For reversal learning, the rat must respond on the lever under a stimulus light, and then learn to respond on the unlit lever. For delayed reinforcement, rats earned more pellets under signalled vs unsignalled conditions. Likewise, males made more responses and earned more pellets compared to females. Under signalled conditions, 17-OHPC-treated rats earned fewer pellets than controls. For reversal learning, the results were similar. Females required more trials than males to respond correctly for the new rule, and 17-OHPC-treated rats required more trials than controls. This suggests that 17-OHPC exposure during development may impair cognitive function. Considering that questions have been raised as to the efficacy of 17-OHPC to prevent miscarriage, it may be necessary to rethink the use of progestin therapy during pregnancy.
Collapse
Affiliation(s)
- Rebecka O Serpa
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Ruth I Wood
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Patisaul HB. Achieving CLARITY on bisphenol A, brain and behaviour. J Neuroendocrinol 2020; 32:e12730. [PMID: 31063678 PMCID: PMC10947534 DOI: 10.1111/jne.12730] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022]
Abstract
There is perhaps no endocrine disrupting chemical more controversial than bisphenol A (BPA). Comprising a high-volume production chemical used in a variety of applications, BPA has been linked to a litany of adverse health-related outcomes, including effects on brain sexual differentiation and behaviour. Risk assessors preferentially rely on classical guideline-compliant toxicity studies over studies published by academic scientists, and have generally downplayed concerns about the potential risks that BPA poses to human health. It has been argued, however, that, because traditional toxicity studies rarely contain neural endpoints, and only a paucity of endocrine-sensitive endpoints, they are incapable of fully evaluating harm. To address current controversies on the safety of BPA, the United States National Institute of Environmental Health Sciences, the National Toxicology Program (NTP), and the US Food and Drug Administration established the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA). CLARITY-BPA performed a classical regulatory-style toxicology study (Core study) in conjunction with multiple behavioural, molecular and cellular studies conducted by academic laboratories (grantee studies) using a collaboratively devised experimental framework and the same animals and tissues. This review summarises the results from the grantee studies that focused on brain and behaviour. Evidence of altered neuroendocrine development, including age- and sex-specific expression of oestrogen receptor (ER)α and ERβ, and the abrogation of brain and behavioural sexual dimorphisms, supports the conclusion that developmental BPA exposure, even at doses below what regulatory agencies regard as "safe" for humans, contribute to brain and behavioural change. The consistency and the reproducibility of the effects across CLARITY-BPA and prior studies using the same animal strain and almost identical experimental conditions are compelling. Combined analysis of all of the data from the CLARITY-BPA project is underway at the NTP and a final report expected in late 2019.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
25
|
Loch Batista R, Inácio M, Prado Arnhold IJ, Gomes NL, Diniz Faria JA, Rodrigues de Moraes D, Frade Costa EM, Domenice S, Bilharinho Mendonça B. Psychosexual Aspects, Effects of Prenatal Androgen Exposure, and Gender Change in 46,XY Disorders of Sex Development. J Clin Endocrinol Metab 2019; 104:1160-1170. [PMID: 30388241 DOI: 10.1210/jc.2018-01866] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
CONTEXT In 46,XY disorders of sexual development (DSD) patients, several factors may affect psychosexual development, leading to gender identity discrepancy and gender change later in life. Prenatal sexual steroid exposure and external genital virilization are considered to influence human psychosexual development, but their roles not completely understood yet. DESIGN A total of 144 individuals (18 to 60 years of age) with a clinical/molecular diagnosis of 46,XY DSD from a single tertiary center were enrolled. Psychosexual outcomes (gender role, gender identity, and sexual orientation) were assessed using questionnaires and psychological test. The Sinnecker score was used for genital virilization measurement. Prenatal androgen exposure was estimated according to 46,XY DSD etiology. RESULTS We found a positive association between prenatal androgen exposure and male psychosexual outcomes. Alternatively, prenatal estrogen exposure, age of gonadectomy, and the degree of external genital virilization did not influence any psychosexual outcome. There were 19% (n = 27) with gender change, which was associated with prenatal androgen exposure (P < 0.001) but not with the external genital virilization. The median age of gender change was 15 years, but most of the patients reported the desire for gender change earlier. CONCLUSIONS Prenatal androgen exposure influenced psychosexual development in 46,XY DSD favoring male psychosexuality in all psychosexual outcomes, whereas the degree of external genital virilization did not influence these outcomes. The organizational effect of sexual steroids on psychosexuality at puberty appears to be weak in comparison with the prenatal effects. Prenatal androgen exposure also influenced female-to-male gender change frequency. All 46,XY DSD conditions with prenatal androgen exposure must be followed for gender issues in their management.
Collapse
Affiliation(s)
- Rafael Loch Batista
- Developmental Endocrinology Unit, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marlene Inácio
- Psychology Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ivo Jorge Prado Arnhold
- Developmental Endocrinology Unit, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Nathália Lisboa Gomes
- Developmental Endocrinology Unit, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - José Antônio Diniz Faria
- Developmental Endocrinology Unit, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Daniela Rodrigues de Moraes
- Developmental Endocrinology Unit, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Elaine Maria Frade Costa
- Developmental Endocrinology Unit, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sorahia Domenice
- Developmental Endocrinology Unit, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice Bilharinho Mendonça
- Developmental Endocrinology Unit, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Garbarino VR, Gilman TL, Daws LC, Gould GG. Extreme enhancement or depletion of serotonin transporter function and serotonin availability in autism spectrum disorder. Pharmacol Res 2019; 140:85-99. [PMID: 30009933 PMCID: PMC6345621 DOI: 10.1016/j.phrs.2018.07.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/22/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
Abstract
A variety of human and animal studies support the hypothesis that serotonin (5-hydroxytryptamine or 5-HT) system dysfunction is a contributing factor to the development of autism in some patients. However, many questions remain about how developmental manipulation of various components that influence 5-HT signaling (5-HT synthesis, transport, metabolism) persistently impair social behaviors. This review will summarize key aspects of central 5-HT function important for normal brain development, and review evidence implicating perinatal disruptions in 5-HT signaling in the pathophysiology of autism spectrum disorder. We discuss the importance, and relative dearth, of studies that explore the possible correlation to autism in the interactions between important intrinsic and extrinsic factors that may disrupt 5-HT homeostasis during development. In particular, we focus on exposure to 5-HT transport altering mechanisms such as selective serotonin-reuptake inhibitors or genetic polymorphisms in primary or auxiliary transporters of 5-HT, and how they relate to neurological stores of serotonin and its precursors. A deeper understanding of the many mechanisms by which 5-HT signaling can be disrupted, alone and in concert, may contribute to an improved understanding of the etiologies and heterogeneous nature of this disorder. We postulate that extreme bidirectional perturbations of these factors during development likely compound or synergize to facilitate enduring neurochemical changes resulting in insufficient or excessive 5-HT signaling, that could underlie the persistent behavioral characteristics of autism spectrum disorder.
Collapse
Affiliation(s)
- Valentina R Garbarino
- Department of Cellular and Integrative Physiology, United States; The Sam and Ann Barshop Institute for Longevity and Aging Studies, United States.
| | - T Lee Gilman
- Department of Cellular and Integrative Physiology, United States; Addiction Research, Treatment & Training Center of Excellence, United States.
| | - Lynette C Daws
- Department of Cellular and Integrative Physiology, United States; Addiction Research, Treatment & Training Center of Excellence, United States; Department of Pharmacology, United States.
| | - Georgianna G Gould
- Department of Cellular and Integrative Physiology, United States; Center for Biomedical Neuroscience, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
27
|
Pradhan A, Olsson PE. Germ cell depletion in zebrafish leads to incomplete masculinization of the brain. Gen Comp Endocrinol 2018; 265:15-21. [PMID: 29408375 DOI: 10.1016/j.ygcen.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 11/15/2022]
Abstract
Zebrafish sex differentiation is under the control of multiple genes, but also relies on germ cell number for gonadal development. Morpholino and chemical mediated germ cell depletion leads to sterile male development in zebrafish. In this study we produced sterile males, using a dead end gene morpholino, to determine gonadal-brain interactions. Germ cell depletion following dnd inhibition downregulated the germ cell markers, vasa and ziwi, and later the larvae developed as sterile males. Despite lacking proper testis, the gonadal 11-ketotestosterone (11-KT) and estradiol (E2) levels of sterile males were similar to wild type males. Qualitative analysis of sexual behavior of sterile males demonstrated that they behaved like wild type males. Furthermore, we observed that brain 11-KT and E2 levels in sterile males remained the same as in the wild type males. In female brain, 11-KT was lower in comparison to wild type males and sterile males, while E2 was higher when compared to wild type males. qRT-PCR analysis revealed that the liver transcript profile of sterile adult males was similar to wild type males while the brain transcript profile was similar to wild type females. The results demonstrate that proper testis development may not be a prerequisite for male brain development in zebrafish but that it may be needed to fully masculinize the brain.
Collapse
Affiliation(s)
- Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
28
|
The Neural Mechanisms of Sexually Dimorphic Aggressive Behaviors. Trends Genet 2018; 34:755-776. [PMID: 30173869 DOI: 10.1016/j.tig.2018.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Aggression is a fundamental social behavior that is essential for competing for resources and protecting oneself and families in both males and females. As a result of natural selection, aggression is often displayed differentially between the sexes, typically at a higher level in males than females. Here, we highlight the behavioral differences between male and female aggression in rodents. We further outline the aggression circuits in males and females, and compare their differences at each circuit node. Lastly, we summarize our current understanding regarding the generation of sexually dimorphic aggression circuits during development and their maintenance during adulthood. In both cases, gonadal steroid hormones appear to play crucial roles in differentiating the circuits by impacting on the survival, morphology, and intrinsic properties of relevant cells. Many other factors, such as environment and experience, may also contribute to sex differences in aggression and remain to be investigated in future studies.
Collapse
|
29
|
Forger NG, Ruszkowski E, Jacobs A, Wallen K. Effects of sex and prenatal androgen manipulations on Onuf's nucleus of rhesus macaques. Horm Behav 2018; 100:39-46. [PMID: 29510099 PMCID: PMC6084473 DOI: 10.1016/j.yhbeh.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Accepted: 03/02/2018] [Indexed: 10/17/2022]
Abstract
The role of gonadal steroids in sexual differentiation of the central nervous system (CNS) is well established in rodents, but no study to date has manipulated androgens prenatally and examined their effects on any CNS structure in a primate. Onuf's nucleus is a column of motoneurons in the sacral spinal cord that innervates the striated perineal muscles. This cell group is larger in males than in females of many species, due to androgens acting during a sensitive perinatal period. Here, we examined Onuf's nucleus in 21 adult rhesus monkeys, including control males and females, as well as males whose mothers had been treated with an anti-androgen or testosterone during gestation. We found a robust sex difference, with more motoneurons in control males than in females. The soma size of Onuf's nucleus motoneurons was also marginally larger in males. Treatment with the anti-androgen flutamide for 35-40 days during early gestation partially blocked masculinization of Onuf's nucleus: motoneuron number in flutamide-treated males was decreased relative to control and testosterone-treated males, but remained greater than in females, with no effect on cell size. A control motor nucleus that innervates foot muscles (Pes9) showed no difference in motoneuron number or size between control males and females. Prenatal testosterone treatment of males did not alter Onuf's nucleus motoneuron number, but did increase the size of both Onuf's and Pes9 motoneurons. Thus, prenatal androgen manipulations cause cellular-level changes in the primate CNS, which may underlie previously observed effects of these manipulations on behavior.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.
| | - Elara Ruszkowski
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Andrew Jacobs
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Kim Wallen
- Department of Psychology, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Neurodevelopmental disorders disproportionately affect males. The mechanisms underlying male vulnerability or female protection are not known and remain understudied. Determining the processes involved is crucial to understanding the etiology and advancing treatment of neurodevelopmental disorders. Here, we review current findings and theories that contribute to male preponderance of neurodevelopmental disorders, with a focus on autism. RECENT FINDINGS Recent work on the biological basis of the male preponderance of autism and other neurodevelopmental disorders includes discussion of a higher genetic burden in females and sex-specific gene mutations or epigenetic changes that differentially confer risk to males or protection to females. Other mechanisms discussed are sex chromosome and sex hormone involvement. Specifically, fetal testosterone is involved in many aspects of development and may interact with neurotransmitter, neuropeptide, or immune pathways to contribute to male vulnerability. Finally, the possibilities of female underdiagnosis and a multi-hit hypothesis are discussed. This review highlights current theories of male bias in developmental disorders. Topics include environmental, genetic, and epigenetic mechanisms; theories of sex chromosomes, hormones, neuroendocrine, and immune function; underdiagnosis of females; and a multi-hit hypothesis.
Collapse
Affiliation(s)
- Sarah L. Ferri
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, IA 52242 USA
| | - Ted Abel
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, IA 52242 USA
| | - Edward S. Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2202, Philadelphia, PA 19104-3403 USA
| |
Collapse
|
31
|
Patisaul HB. Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours. Proc Nutr Soc 2017; 76:130-144. [PMID: 27389644 PMCID: PMC5646220 DOI: 10.1017/s0029665116000677] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A wide range of health benefits have been ascribed to soya intake including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms. Because it is a hormonally active diet, however, soya can also be endocrine disrupting, suggesting that intake has the potential to cause adverse health effects in certain circumstances, particularly when exposure occurs during development. Consequently, the question of whether or not soya phyto-oestrogens are beneficial or harmful to human health is neither straightforward nor universally applicable to all groups. Possible benefits and risks depend on age, health status, and even the presence or absence of specific gut microflora. As global consumption increases, greater awareness and consideration of the endocrine-disrupting properties of soya by nutrition specialists and other health practitioners is needed. Consumption by infants and small children is of particular concern because their hormone-sensitive organs, including the brain and reproductive system, are still undergoing sexual differentiation and maturation. Thus, their susceptibility to the endocrine-disrupting activities of soya phyto-oestrogens may be especially high. As oestrogen receptor partial agonists with molecular and cellular properties similar to anthropogenic endocrine disruptors such as bisphenol A, the soya phyto-oestrogens provide an interesting model for how attitudes about what is 'synthetic' v. what is 'natural,' shapes understanding and perception of what it means for a compound to be endocrine disrupting and/or potentially harmful. This review describes the endocrine-disrupting properties of soya phyto-oestrogens with a focus on neuroendocrine development and behaviour.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences,Center for Human Health and the Environment,NC State University,Raleigh,NC 27695,USA
| |
Collapse
|
32
|
Meerts SH, Anderson KS, Farry-Thorn ME, Johnson EG, Taxier L. Prepubertal ovariectomy modulates paced mating behavior but not sexual preference or conditioned place preference for mating in female rats. Physiol Behav 2017; 171:142-148. [PMID: 28082246 DOI: 10.1016/j.physbeh.2017.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/07/2017] [Accepted: 01/07/2017] [Indexed: 11/24/2022]
Abstract
The present study investigated whether the presence or absence of peripubertal ovarian hormones affects sexual preference and conditioned place preference for paced mating in adult female rats primed with 10μg estradiol benzoate and 1mg progesterone. Ovariectomy (OVX) occurred either before or after pubertal development, and 4weeks later rats began a series of behavioral tests. Rats with ovaries removed before the pubertal timeframe (Prepubertal OVX) were more active, more likely to withdrawal from the male compartment, and did not discriminate between mounts and intromissions during paced mating relative to rats with ovaries during puberty (Adult OVX). Both Adult OVX and Prepubertal OVX rats showed a higher preference for the male when hormone primed vs. oil treated and a conditioned place preference for paced mating behavior. The results of the present study demonstrate that some, but not all, aspects of female sexual behavior require ovarian hormones during puberty.
Collapse
Affiliation(s)
- Sarah H Meerts
- Department of Psychology, Carleton College, Northfield, MN 55057, United States.
| | - Kelly S Anderson
- Department of Psychology, Carleton College, Northfield, MN 55057, United States
| | - Molly E Farry-Thorn
- Department of Psychology, Carleton College, Northfield, MN 55057, United States
| | - Elliott G Johnson
- Department of Psychology, Carleton College, Northfield, MN 55057, United States
| | - Lisa Taxier
- Department of Psychology, Carleton College, Northfield, MN 55057, United States
| |
Collapse
|
33
|
Montelli S, Suman M, Corain L, Cozzi B, Peruffo A. Sexually Diergic Trophic Effects of Estradiol Exposure on Developing Bovine Cerebellar Granule Cells. Neuroendocrinology 2017; 104:51-71. [PMID: 26882349 DOI: 10.1159/000444528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/06/2016] [Indexed: 11/19/2022]
Abstract
In the mammalian brain, the differentiation of neural cells and the developmental organization of the underlying circuitry are influenced by steroid hormones. The estrogen 17-β estradiol (E2) is one of the most potent regulators of neural growth during prenatal life, synthetized locally from steroid precursors including prenatal testicular testosterone. Estradiol promotes brain differentiation counting sexually dimorphic neural circuits by binding to the estrogen receptors, ER-α and ER-β. The cerebellum has been described as a site of estrogen action and a potentially sexually dimorphic area. The goal of this study was to analyze the capacity of E2 to affect the growth of male and female fetal bovine cerebellar granule. We performed primary cultures of fetal cerebellar granules, and verified the mRNA expression of the ER-α and ER-β in both sexes. Moreover, the distribution of ERs in the male and female cerebellar granules of the second fetal stage was characterized by immunohistochemistry. We measured morphological parameters in presence (or absence) of estradiol administration, focusing on the variations of the dendritic branching pattern of granule neurons. By using the nonparametric combination and permutation testing approach, we proposed a sophisticated multivariate statistical analysis to demonstrate that E2 induces multifarious and dimorphic changes in the granule cells. E2 exerts trophic effects in both female and male granules and this effect is stronger in female. Male granules treated with E2 became similar to female control granule. Bos taurus species has a long gestation and a large brain that offers an interesting alternative in comparative neuroscience.
Collapse
Affiliation(s)
- Stefano Montelli
- Department of Comparative Biomedicine and Food Science of the University of Padova, Legnaro, taly
| | | | | | | | | |
Collapse
|
34
|
Enduring, Sexually Dimorphic Impact of In Utero Exposure to Elevated Levels of Glucocorticoids on Midbrain Dopaminergic Populations. Brain Sci 2016; 7:brainsci7010005. [PMID: 28042822 PMCID: PMC5297294 DOI: 10.3390/brainsci7010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid hormones (GCs) released from the fetal/maternal glands during late gestation are required for normal development of mammalian organs and tissues. Accordingly, synthetic glucocorticoids have proven to be invaluable in perinatal medicine where they are widely used to accelerate fetal lung maturation when there is risk of pre-term birth and to promote infant survival. However, clinical and pre-clinical studies have demonstrated that inappropriate exposure of the developing brain to elevated levels of GCs, either as a result of clinical over-use or after stress-induced activation of the fetal/maternal adrenal cortex, is linked with significant effects on brain structure, neurological function and behaviour in later life. In order to understand the underlying neural processes, particular interest has focused on the midbrain dopaminergic systems, which are critical regulators of normal adaptive behaviours, cognitive and sensorimotor functions. Specifically, using a rodent model of GC exposure in late gestation (approximating human brain development at late second/early third trimester), we demonstrated enduring effects on the shape and volume of the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) (origins of the mesocorticolimbic and nigrostriatal dopaminergic pathways) on the topographical organisation and size of the dopaminergic neuronal populations and astrocytes within these nuclei and on target innervation density and neurochemical markers of dopaminergic transmission (receptors, transporters, basal and amphetamine-stimulated dopamine release at striatal and prefrontal cortical sites) that impact on the adult brain. The effects of antenatal GC treatment (AGT) were both profound and sexually-dimorphic, not only in terms of quantitative change but also qualitatively, with several parameters affected in the opposite direction in males and females. Although such substantial neurobiological changes might presage marked behavioural effects, in utero GC exposure had only a modest or no effect, depending on sex, on a range of conditioned and unconditioned behaviours known to depend on midbrain dopaminergic transmission. Collectively, these findings suggest that apparent behavioural normality in certain tests, but not others, arises from AGT-induced adaptations or compensatory mechanisms within the midbrain dopaminergic systems, which preserve some, but not all functions. Furthermore, the capacities for molecular adaptations to early environmental challenge are different, even opponent, in males and females, which may account for their differential resilience or failure to perform adequately in behavioural tests. Behavioural "normality" is thus achieved by the midbrain dopaminergic network operating outside its normal limits (in a state of allostasis), rendering it at greater risk to malfunction when challenged in later life. Sex-specific neurobiological programming of midbrain dopaminergic systems may, therefore, have psychopathological relevance for the sex bias commonly found in brain disorders associated with these systems, and which have a neurodevelopmental component, including schizophrenia, ADHD (attention/deficit hyperactivity disorders), autism, depression and substance abuse.
Collapse
|
35
|
Romano E, Cosentino L, Laviola G, De Filippis B. Genes and sex hormones interaction in neurodevelopmental disorders. Neurosci Biobehav Rev 2016; 67:9-24. [DOI: 10.1016/j.neubiorev.2016.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
|
36
|
Govindaraj V, Rao AJ. Proteomic identification of non-erythrocytic alpha-spectrin-1 down-regulation in the pre-optic area of neonatally estradiol-17β treated female adult rats. Horm Mol Biol Clin Investig 2016; 26:165-72. [PMID: 27166725 DOI: 10.1515/hmbci-2016-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/21/2016] [Indexed: 11/15/2022]
Abstract
It is well established that sexually dimorphic brain regions, which are critical for reproductive physiology and behavior, are organized by steroid hormones during the first 2 weeks after birth in the rodents. In our recent observation, neonatal exposure to estradiol-17β (E2) in the female rat revealed increase in cyclooxygenase 2 (COX-2) level, sexually dimorphic nucleus (SDN)-pre-optic area (POA) size and down-regulation of synaptogenesis related genes in POA in the adult stage. In the present study, using the same animal model, the protein profile of control and neonatally E2-treated POA was compared by 1D-SDS-PAGE, and the protein that shows a change in abundance was identified by LC-MS/MS analysis. Results indicated that there was a single protein band, which was down-regulation in E2-treated POA and it was identified as spectrin alpha chain, non-erythrocytic 1 (SPTAN1). Consistently, the down-regulation of SPTAN1 expression was also confirmed by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. The SPTAN1 was identified as a cytoskeletal protein that is involved in stabilization of the plasma membrane and organizes intracellular organelles, and it has been implicated in cellular functions including DNA repair and cell cycle regulation. The evidence shows that any mutation in spectrins causes impairment of synaptogenesis and other neurological disorders. Also, protein-protein interaction analysis of SPTAN1 revealed a strong association with proteins such as kirrel, actinin, alpha 4 (ACTN4) and vinculin (VCL) which are implicated in sexual behavior, masculinization and defeminization. Our results indicate that SPTAN1 expression in the developing rat brain is sexually dimorphic, and we suggest that this gene may mediate E2-17β-induced masculinization and defeminization, and disrupted reproductive function in the adult stage.
Collapse
|
37
|
Siddiqui AN, Siddiqui N, Khan RA, Kalam A, Jabir NR, Kamal MA, Firoz CK, Tabrez S. Neuroprotective Role of Steroidal Sex Hormones: An Overview. CNS Neurosci Ther 2016; 22:342-50. [PMID: 27012165 PMCID: PMC6492877 DOI: 10.1111/cns.12538] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/21/2016] [Accepted: 02/21/2016] [Indexed: 12/11/2022] Open
Abstract
Progesterone, estrogens, and testosterone are the well-known steroidal sex hormones, which have been reported to have "nonreproductive "effects in the brain, specifically in the neuroprotection and neurotrophy. In the last one decade, there has been a surge in the research on the role of these hormones in neuroprotection and their positive impact on different brain injuries. The said interest has been sparked by a desire to understand the action and mechanisms of these steroidal sex hormones throughout the body. The aim of this article was to highlight the potential outcome of the steroidal hormones, viz. progesterone, estrogens, and testosterone in terms of their role in neuroprotection and other brain injuries. Their possible mechanism of action at both genomic and nongenomic level will be also discussed. As far as our knowledge goes, we are for the first time reporting neuroprotective effect and possible mechanism of action of these hormones in a single article.
Collapse
Affiliation(s)
- Ali Nasir Siddiqui
- Department of Pharmaceutical Medicine, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Nahida Siddiqui
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Rashid Ali Khan
- Department of Pharmaceutical Medicine, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Abul Kalam
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Nasimudeen R Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW, Australia
| | | | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
38
|
Naulé L, Marie-Luce C, Parmentier C, Martini M, Albac C, Trouillet AC, Keller M, Hardin-Pouzet H, Mhaouty-Kodja S. Revisiting the neural role of estrogen receptor beta in male sexual behavior by conditional mutagenesis. Horm Behav 2016; 80:1-9. [PMID: 26836767 DOI: 10.1016/j.yhbeh.2016.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/28/2015] [Accepted: 01/29/2016] [Indexed: 01/17/2023]
Abstract
Estradiol derived from neural aromatization of gonadal testosterone plays a key role in the perinatal organization of the neural circuitry underlying male sexual behavior. The aim of this study was to investigate the contribution of neural estrogen receptor (ER) β in estradiol-induced effects without interfering with its peripheral functions. For this purpose, male mice lacking ERβ in the nervous system were generated. Analyses of males in two consecutive tests with a time interval of two weeks showed an effect of experience, but not of genotype, on the latencies to the first mount, intromission, pelvic thrusting and ejaculation. Similarly, there was an effect of experience, but not of genotype, on the number of thrusts and mating length. Neural ERβ deletion had no effect on the ability of males to adopt a lordosis posture in response to male mounts, after castration and priming with estradiol and progesterone. Indeed, only low percentages of both genotypes exhibited a low lordosis quotient. It also did not affect their olfactory preference. Quantification of tyrosine hydroxylase- and kisspeptin-immunoreactive neurons in the preoptic area showed unaffected sexual dimorphism of both populations in mutants. By contrast, the number of androgen receptor- and ERα-immunoreactive cells was significantly increased in the bed nucleus of stria terminalis of mutant males. These data show that neural ERβ does not play a crucial role in the organization and activation of the neural circuitry underlying male sexual behavior. These discrepancies with the phenotype of global ERβ knockout models are discussed.
Collapse
Affiliation(s)
- Lydie Naulé
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France; Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France; Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Clarisse Marie-Luce
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France; Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France; Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Caroline Parmentier
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France; Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France; Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Mariangela Martini
- UMR 85, Institut National de la Recherche Agronomique, Nouzilly, France; UMR7247, Centre National de la Recherche Scientifique, Nouzilly, France; Université François Rabelais, Tours, France; Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Christelle Albac
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France; Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France; Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Anne-Charlotte Trouillet
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France; Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France; Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Matthieu Keller
- UMR 85, Institut National de la Recherche Agronomique, Nouzilly, France; UMR7247, Centre National de la Recherche Scientifique, Nouzilly, France; Université François Rabelais, Tours, France; Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Hélène Hardin-Pouzet
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France; Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France; Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Sakina Mhaouty-Kodja
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France; Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France; Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France.
| |
Collapse
|
39
|
Radhika NS, Govindaraj V, Sarangi SK, Rao AJ. Neonatal exposure to 17β-estradiol down-regulates the expression of synaptogenesis related genes in selected brain regions of adult female rats. Life Sci 2015; 141:1-7. [PMID: 26409312 DOI: 10.1016/j.lfs.2015.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/07/2015] [Accepted: 09/21/2015] [Indexed: 12/19/2022]
Abstract
AIMS Administration of estradiol or compounds with estrogenic activity to newborn female rats results in irreversible masculinization as well as defeminization in the brain and the animals exhibit altered reproductive behavior as adults. The cellular and molecular mechanism involved in inducing the irreversible changes is largely unknown. In the present study, we have monitored the changes in the expression of selected synaptogenesis related genes in the sexually dimorphic brain regions such as POA, hypothalamus and pituitary following 17β-estradiol administration to neonatal female rats. MAIN METHODS Female Wistar rats which were administered 17β-estradiol on day 2 and 3 after birth were sacrificed 120days later and the expression levels of genes implicated in synaptogenesis were monitored by semi-quantitative reverse transcription PCR. Since estradiol induced up-regulation of COX-2 in POA is a marker for estradiol induced masculinization as well as defeminization, in the present study only animals in which the increase in expression of COX-2 gene was observed in POA were included in the study. KEY FINDINGS Down-regulation of genes such as NMDA-2B, NETRIN-1, BDNF, MT-5 MMP and TNF-α was observed in the pre-optic area of neonatally E2 treated female rat brain but not in hypothalamus and pituitary compared to the vehicle- treated controls as assessed by RT-PCR and Western blot analysis. SIGNIFICANCE Our results suggest a possibility that down-regulation of genes associated with synaptogenesis in POA, may be resulting in disruption of the cyclical regulation of hormone secretion by pituitary the consequence of which could be infertility and altered reproductive behavior.
Collapse
Affiliation(s)
- N S Radhika
- Department of Microbiology and Biotechnology, Bangalore University, Bangalore, India
| | | | - S K Sarangi
- Department of Microbiology and Biotechnology, Bangalore University, Bangalore, India
| | - A J Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
40
|
Hormonal programming of rat social play behavior: Standardized techniques will aid synthesis and translation to human health. Neurosci Biobehav Rev 2015; 55:184-97. [DOI: 10.1016/j.neubiorev.2015.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/02/2015] [Accepted: 04/29/2015] [Indexed: 12/21/2022]
|
41
|
Fukushima A, Hagiwara H, Fujioka H, Kimura F, Akema T, Funabashi T. Sex differences in feeding behavior in rats: the relationship with neuronal activation in the hypothalamus. Front Neurosci 2015; 9:88. [PMID: 25870535 PMCID: PMC4378303 DOI: 10.3389/fnins.2015.00088] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/02/2015] [Indexed: 01/21/2023] Open
Abstract
There is general agreement that the central nervous system in rodents differs between sexes due to the presence of gonadal steroid hormone during differentiation. Sex differences in feeding seem to occur among species, and responses to fasting (i.e., starvation), gonadal steroids (i.e., testosterone and estradiol), and diet (i.e., western-style diet) vary significantly between sexes. The hypothalamus is the center for controlling feeding behavior. We examined the activation of feeding-related peptides in neurons in the hypothalamus. Phosphorylation of cyclic AMP response element-binding protein (CREB) is a good marker for neural activation, as is the Fos antigen. Therefore, we predicted that sex differences in the activity of melanin-concentrating hormone (MCH) neurons would be associated with feeding behavior. We determined the response of MCH neurons to glucose in the lateral hypothalamic area (LHA) and our results suggested MCH neurons play an important role in sex differences in feeding behavior. In addition, fasting increased the number of orexin neurons harboring phosphorylated CREB in female rats (regardless of the estrous day), but not male rats. Glucose injection decreased the number of these neurons with phosphorylated CREB in fasted female rats. Finally, under normal spontaneous food intake, MCH neurons, but not orexin neurons, expressed phosphorylated CREB. These sex differences in response to fasting and glucose, as well as under normal conditions, suggest a vulnerability to metabolic challenges in females.
Collapse
Affiliation(s)
- Atsushi Fukushima
- Department of Physiology, St. Marianna University School of Medicine Kawasaki, Japan
| | - Hiroko Hagiwara
- Department of Physiology, St. Marianna University School of Medicine Kawasaki, Japan ; Department of Physiology, Yokohama City University Graduate School of Medicine Yokohama, Japan
| | - Hitomi Fujioka
- Department of Physiology, St. Marianna University School of Medicine Kawasaki, Japan
| | - Fukuko Kimura
- Department of Physiology, Yokohama City University Graduate School of Medicine Yokohama, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University School of Medicine Kawasaki, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine Kawasaki, Japan ; Department of Physiology, Yokohama City University Graduate School of Medicine Yokohama, Japan
| |
Collapse
|
42
|
Yamada H, Takeda T, Koga T, Ishii Y. [Role of the critical period in sex and brain differentiation: learning from dioxin-induced disorders in next generations]. YAKUGAKU ZASSHI 2014; 134:529-35. [PMID: 24694814 DOI: 10.1248/yakushi.13-00251-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sexual differentiation of animal fetuses and infants needs stimuli by sex steroids, which are produced in their own gonads, during a short window ('critical period') of pre- and post-natal periods. Our laboratory has conducted a series of studies focusing on the damage to next generations by dioxins. When pregnant rats are exposed to a prototype of dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 1 μg/kg), sexual immaturity such as defects in copulation behavior as well as growth retardation emerges in their pups. We have provided evidence that such disorders are evoked, if not all, from a transient reduction in the gonadal synthesis of sex steroids in fetuses/infants during the critical period. Our studies also revealed that TCDD initially reduces the pituitary expression of luteinizing hormone (LH) to exert the effect on steroidogenesis. Several mechanisms seem to be involved in a TCDD-induced reduction in LH expression. For example, a change in epigenetic regulation in the pituitary and impaired energy production in the hypothalamus are suggested to contribute to the above reduction. Current our study has demonstrated that a transient reduction in the pituitary-gonad axis fixes the lowered expression of hypothalamic gonadotropin-releasing hormone, resulting in defects in sexual behavior. Through these topics, we discuss the role of the critical period in differentiation and development.
Collapse
Affiliation(s)
- Hideyuki Yamada
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | | |
Collapse
|
43
|
Rodriguez-Gomez A, Filice F, Gotti S, Panzica G. Perinatal exposure to genistein affects the normal development of anxiety and aggressive behaviors and nitric oxide system in CD1 male mice. Physiol Behav 2014; 133:107-14. [PMID: 24874775 DOI: 10.1016/j.physbeh.2014.05.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/17/2014] [Accepted: 05/18/2014] [Indexed: 11/26/2022]
Abstract
Genistein is a phytoestrogen, particularly abundant in soybeans, that is able to bind estrogen receptors exerting both estrogenic and antiestrogenic activities. Genistein is largely present in the human diet even during pregnancy. Embryos and fetuses are therefore, commonly exposed to genistein during the development and after birth. In the present study, we used a murine model as a test end-point to investigate the effects of early exposure to genistein on adult male behavior and related neural circuits. Daily exposure of dams to genistein (100 μg/g of body weight) during late pregnancy and early lactation, produced in male offspring, when adults, significant changes in anxiety and aggressive behaviors. Moreover, we found statistically significant variations in the number of neuronal nitric-oxide synthase positive cells in the amygdala. In conclusions, these data indicate that early exposure to phytoestrogens may induce life-long effects on the differentiation of brain structures and behaviors.
Collapse
Affiliation(s)
- Alicia Rodriguez-Gomez
- Department of Neuroscience, University of Torino, Corso M. D'Azeglio 52, 10126 Torino, Italy; Neuroscience Institute Cavalieri-Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino, Italy
| | - Federica Filice
- Department of Neuroscience, University of Torino, Corso M. D'Azeglio 52, 10126 Torino, Italy; Neuroscience Institute Cavalieri-Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino, Italy
| | - Stefano Gotti
- Department of Neuroscience, University of Torino, Corso M. D'Azeglio 52, 10126 Torino, Italy; Neuroscience Institute Cavalieri-Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino, Italy
| | - GianCarlo Panzica
- Department of Neuroscience, University of Torino, Corso M. D'Azeglio 52, 10126 Torino, Italy; Neuroscience Institute Cavalieri-Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino, Italy.
| |
Collapse
|
44
|
Rebuli ME, Cao J, Sluzas E, Delclos KB, Camacho L, Lewis SM, Vanlandingham MM, Patisaul HB. Investigation of the effects of subchronic low dose oral exposure to bisphenol A (BPA) and ethinyl estradiol (EE) on estrogen receptor expression in the juvenile and adult female rat hypothalamus. Toxicol Sci 2014; 140:190-203. [PMID: 24752507 DOI: 10.1093/toxsci/kfu074] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Concerns have been raised regarding the long-term impacts of early life exposure to the ubiquitous environmental contaminant bisphenol A (BPA) on brain organization. Because BPA has been reported to affect estrogen signaling, and steroid hormones play a critical role in brain sexual differentiation, there is also concern that BPA exposure could alter neural sex differences. Here, we examine the impact of subchronic exposure from gestation to adulthood to oral doses of BPA below the current no-observed-adverse-effect level (NOAEL) of 5 mg/kg body weight (bw)/day on estrogen receptor (ESR) expression in sexually dimorphic brain regions of prepubertal and adult female rats. The dams were gavaged daily with vehicle (0.3% carboxymethylcellulose), 2.5, 25, 260, or 2700 μg BPA/kg bw/day, or 0.5 or 5.0 μg ethinyl estradiol (EE)/kg bw/day from gestational day 6 until labor began. Offspring were then gavaged directly from the day after birth until the day before scheduled sacrifice on postnatal days 21 or 90. Using in situ hybridization, one or more BPA doses produced significant decreases in Esr1 expression in the juvenile female rat anteroventral periventricular nucleus (AVPV) of the hypothalamus and significant decreases in Esr2 expression in the adult female rat AVPV and medial preoptic area (MPOA), relative to vehicle controls. BPA did not simply reproduce EE effects, indicating that BPA is not acting solely as an estrogen mimic. The possible consequences of long-term changes in hypothalamic ESR expression resulting from subchronic low dose BPA exposure on neuroendocrine effects are discussed and being addressed in ongoing, related work.
Collapse
Affiliation(s)
- Meghan E Rebuli
- Department of Biology, North Carolina State University, Raleigh, North Carolina 27695 Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Jinyan Cao
- Department of Biology, North Carolina State University, Raleigh, North Carolina 27695 Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Emily Sluzas
- Department of Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - K Barry Delclos
- National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Luísa Camacho
- National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Sherry M Lewis
- National Center for Toxicological Research, Jefferson, Arkansas 72079
| | | | - Heather B Patisaul
- Department of Biology, North Carolina State University, Raleigh, North Carolina 27695 Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
45
|
Peruffo A, Giacomello M, Montelli S, Panin M, Cozzi B. Expression profile of the pore-forming subunits α1A and α1D in the foetal bovine hypothalamus: a mammal with a long gestation. Neurosci Lett 2013; 556:124-8. [PMID: 24148303 DOI: 10.1016/j.neulet.2013.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 01/27/2023]
Abstract
This study describes the expression of the voltage operated calcium channels (VOCCs) subunits α1A (typical of the P/Q family) and α1D (of the L family) in the bovine hypothalamus. The expression of both P/Q and L families has been characterized in the brain of adult mammals. However, their distribution and expression during foetal neuronal differentiation have not yet been determined. The expression profile of the α1A and α1D pore-forming subunits was investigated during four embryonic stages in bovine foetuses. Our data suggest that the expressions of α1A and α1D are correlated during development, with an increase only in males that peaks on the last period of gestation. Bovine male hypothalami showed significantly higher α1A and α1D expression values in comparison to female ones during the whole developmental period. In the females, the expression profiles of both genes were constant during all the developmental time. Immunohistochemical studies confirmed the presence of the α1A and α1D protein subunits in foetal hypothalamic neurones starting from the third foetal stage. Our data provide new information on the hypothalamic expression of α1A and α1D subunits during development in a mammal with a long gestation period and a large and convoluted brain.
Collapse
Affiliation(s)
- A Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padova, Vialedell'Università 16, 35020 Legnaro, PD, Italy.
| | | | | | | | | |
Collapse
|
46
|
Peña CJ, Neugut YD, Champagne FA. Developmental timing of the effects of maternal care on gene expression and epigenetic regulation of hormone receptor levels in female rats. Endocrinology 2013; 154:4340-51. [PMID: 24002038 PMCID: PMC3800762 DOI: 10.1210/en.2013-1595] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal care experienced during postnatal development has enduring effects on neuroendocrine function and behavior. Previous studies in rats have illustrated the effect of maternal licking/grooming (LG) on hormone receptors and maternal behavior of adult female offspring associated with altered DNA methylation. However, the developmental timing of these effects, which provide insight into the cellular and molecular pathways through which early experience alters later behavior, had not been explored. Here, we demonstrate the developmental emergence of these outcomes and use cross-fostering to identify sensitive periods for these effects. Estrogen receptor (ER)α and ERβ mRNA levels within the medial preoptic area (MPOA) of the hypothalamus were increased by postnatal day (PN)21 in female offspring of high LG dams; LG-associated increases in oxytocin receptor mRNA levels were observed beyond the weaning period. Quantification of ERα-immunoreactivity indicated a high degree of neuroanatomical specificity of LG effects within the MPOA that were observed by PN6. Reduced DNA methylation and histone 3 lysine 9 tri-methylation and increased histone 3 lysine 4 tri-methylation at the ERα gene promoter (Esr1) were detected at PN21 in high LG female offspring. Latency to engage in maternal behavior toward donor pups was significantly shorter among high LG females. Cross-fostering revealed that maternal sensitization and MPOA ERα levels are sensitive to maternal care experienced before but not after PN10. Differential windows of plasticity were identified for ERβ and oxytocin receptor mRNA levels. These studies contribute significantly to our understanding of the molecular, neurobiological, and behavioral pathways through which variation in maternal behavior is transmitted from one generation to the next.
Collapse
Affiliation(s)
- Catherine Jensen Peña
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Avenue, New York, New York 10027.
| | | | | |
Collapse
|
47
|
Goddings AL, Mills KL, Clasen LS, Giedd JN, Viner RM, Blakemore SJ. The influence of puberty on subcortical brain development. Neuroimage 2013; 88:242-51. [PMID: 24121203 PMCID: PMC3991320 DOI: 10.1016/j.neuroimage.2013.09.073] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/27/2013] [Accepted: 09/30/2013] [Indexed: 12/15/2022] Open
Abstract
Puberty is characterized by hormonal, physical and psychological transformation. The human brain undergoes significant changes between childhood and adulthood, but little is known about how puberty influences its structural development. Using a longitudinal sample of 711 magnetic resonance imaging scans from 275 individuals aged 7–20 years, we examined how subcortical brain regions change in relation to puberty. Our regions of interest included the amygdala, hippocampus and corpus striatum including the nucleus accumbens (NA), caudate, putamen and globus pallidus (GP). Pubertal development was significantly related to structural volume in all six regions in both sexes. Pubertal development and age had both independent and interactive influences on volume for the amygdala, hippocampus and putamen in both sexes, and the caudate in females. There was an interactive puberty-by-age effect on volume for the NA and GP in both sexes, and the caudate in males. These findings suggest a significant role for puberty in structural brain development. Subcortical regions continue to develop through puberty in females and males. The developmental trajectories vary between subcortical regions. Puberty and age have independent and interactive influences on this development.
Collapse
Affiliation(s)
- Anne-Lise Goddings
- UCL Institute of Child Health, University College London, London, WC1N 1EH, UK; UCL Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK.
| | - Kathryn L Mills
- UCL Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK; Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liv S Clasen
- Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jay N Giedd
- Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Russell M Viner
- UCL Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Sarah-Jayne Blakemore
- UCL Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK
| |
Collapse
|
48
|
Fukushima A, Furuta M, Kimura F, Akema T, Funabashi T. Testosterone exposure during the critical period decreases corticotropin-releasing hormone-immunoreactive neurons in the bed nucleus of the stria terminalis of female rats. Neurosci Lett 2013; 534:64-8. [DOI: 10.1016/j.neulet.2012.11.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 10/16/2012] [Accepted: 11/16/2012] [Indexed: 11/25/2022]
|
49
|
Koga T, Ishida T, Takeda T, Ishii Y, Uchi H, Tsukimori K, Yamamoto M, Himeno M, Furue M, Yamada H. Restoration of dioxin-induced damage to fetal steroidogenesis and gonadotropin formation by maternal co-treatment with α-lipoic acid. PLoS One 2012; 7:e40322. [PMID: 22911699 PMCID: PMC3401201 DOI: 10.1371/journal.pone.0040322] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 06/06/2012] [Indexed: 11/18/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an endocrine disruptor, causes reproductive and developmental toxic effects in pups following maternal exposure in a number of animal models. Our previous studies have demonstrated that TCDD imprints sexual immaturity by suppressing the expression of fetal pituitary gonadotropins, the regulators of gonadal steroidogenesis. In the present study, we discovered that all TCDD-produced damage to fetal production of pituitary gonadotropins as well as testicular steroidogenesis can be repaired by co-treating pregnant rats with α-lipoic acid (LA), an obligate co-factor for intermediary metabolism including energy production. While LA also acts as an anti-oxidant, other anti-oxidants; i.e., ascorbic acid, butylated hydroxyanisole and edaravone, failed to exhibit any beneficial effects. Neither wasting syndrome nor CYP1A1 induction in the fetal brain caused through the activation of aryl hydrocarbon receptor (AhR) could be attenuated by LA. These lines of evidence suggest that oxidative stress makes only a minor contribution to the TCDD-induced disorder of fetal steroidogenesis, and LA has a restorative effect by targeting on mechanism(s) other than AhR activation. Following a metabolomic analysis, it was found that TCDD caused a more marked change in the hypothalamus, a pituitary regulator, than in the pituitary itself. Although the components of the tricarboxylic acid cycle and the ATP content of the fetal hypothalamus were significantly changed by TCDD, all these changes were again rectified by exogenous LA. We also provided evidence that the fetal hypothalamic content of endogenous LA is significantly reduced following maternal exposure to TCDD. Thus, the data obtained strongly suggest that TCDD reduces the expression of fetal pituitary gonadotropins to imprint sexual immaturity or disturb development by suppressing the level of LA, one of the key players serving energy production.
Collapse
Affiliation(s)
- Takayuki Koga
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takumi Ishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Tomoki Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Uchi
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
| | - Kiyomi Tsukimori
- Department of Obstetrics, Fukuoka Children’s Hospital, Fukuoka, Japan
| | - Midori Yamamoto
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| | - Masaru Himeno
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| | - Masutaka Furue
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Yamada
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
50
|
Gonzales KL, Quadros-Mennella P, Tetel MJ, Wagner CK. Anatomically-specific actions of oestrogen receptor in the developing female rat brain: effects of oestradiol and selective oestrogen receptor modulators on progestin receptor expression. J Neuroendocrinol 2012; 24:285-91. [PMID: 21981076 PMCID: PMC3385411 DOI: 10.1111/j.1365-2826.2011.02232.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Steroid hormones largely exert their actions by activating nuclear receptors, which, as transcription factors, powerfully influence fundamental processes of neural development. Often, steroid receptor action demonstrates remarkable specificity under different developmental, anatomical or hormonal conditions. Yet, the mechanisms underlying such specificity are poorly understood. The present study examined the anatomically-specific regulation of progestin receptor (PR) expression by oestrogen receptor (ER) activation in the ventromedial nucleus (VMN) of the hypothalamus and the medial preoptic nucleus (MPN) of the neonatal female rat brain, using the selective oestrogen receptor modulators (SERMs), tamoxifen and ICI 182780 (ICI), in the presence or absence of oestradiol benzoate (EB) treatment. The results demonstrate that PR immunoreactivity (PR-ir) in the neonatal female MPN was significantly increased by EB and this increase was abolished by either tamoxifen or ICI treatment. In contrast, within the VMN of the same animals, EB had no effect on PR-ir and the SERMs only modestly decreased PR-ir. Interestingly, ICI acted as a true antagonist regardless of EB treatment, whereas tamoxifen acted as an ER agonist in the absence of EB in the MPN, but not the VMN, representing one of the first in vivo demonstrations of tissue-specific and oestradiol-independent effects of tamoxifen on ER activation. The present results indicate that PR expression is highly dependent on oestradiol and its receptor in the MPN, although it is independent of both oestradiol and ER activation within the neonatal VMN. These findings demonstrate the anatomically-specific actions of oestradiol and its receptor to induce PR in two brain regions controlling different aspects of female reproductive behaviours in adulthood.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Brain/anatomy & histology
- Brain/drug effects
- Brain/growth & development
- Brain/metabolism
- Estradiol/pharmacology
- Female
- Gene Expression Regulation, Developmental/drug effects
- Organ Specificity/drug effects
- Organ Specificity/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/physiology
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Reproduction/drug effects
- Reproduction/genetics
- Reproduction/physiology
- Selective Estrogen Receptor Modulators/pharmacology
- Sex Characteristics
- Sexual Maturation/drug effects
- Sexual Maturation/genetics
- Sexual Maturation/physiology
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- K L Gonzales
- Department of Psychology, Behavioral Neuroscience Program, University at Albany - State University of New York, Albany, NY 12222, USA.
| | | | | | | |
Collapse
|