1
|
Pavlik T, Konchekov E, Shimanovskii N. Antitumor progestins activity: Cytostatic effect and immune response. Steroids 2024; 210:109474. [PMID: 39048056 DOI: 10.1016/j.steroids.2024.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Progestins are used to treat some hormone-sensitive tumors. This review discusses the mechanisms of progestins' effects on tumor cells, the differences in the effects of progesterone and its analogs on different tumor types, and the influence of progestins on the antitumor immune response. Progestins cause a cytostatic effect, but at the same time they can suppress the antitumor immune response, and this can promote the proliferation and metastasis of tumor cells. Such progestins as dienogest, megestrol acetate and levonorgestrel increase the activity of NK-cells, which play a major role in the body's fight against tumor cells. The use of existing progestins and the development of new drugs with gestagenic activity may hold promise in oncotherapy.
Collapse
Affiliation(s)
- T Pavlik
- Pirogov Russian National Research Medical University, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia.
| | - E Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia; Peoples Friendship University of Russia (RUDN University), Russia
| | - N Shimanovskii
- Pirogov Russian National Research Medical University, Russia
| |
Collapse
|
2
|
Decidual cell FKBP51-progesterone receptor binding mediates maternal stress-induced preterm birth. Proc Natl Acad Sci U S A 2021; 118:2010282118. [PMID: 33836562 PMCID: PMC7980401 DOI: 10.1073/pnas.2010282118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Depression and posttraumatic stress disorder increase the risk of idiopathic preterm birth (iPTB); however, the exact molecular mechanism is unknown. Depression and stress-related disorders are linked to increased FK506-binding protein 51 (FKBP51) expression levels in the brain and/or FKBP5 gene polymorphisms. Fkbp5-deficient (Fkbp5 -/-) mice resist stress-induced depressive and anxiety-like behaviors. FKBP51 binding to progesterone (P4) receptors (PRs) inhibits PR function. Moreover, reduced PR activity and/or expression stimulates human labor. We report enhanced in situ FKBP51 expression and increased nuclear FKBP51-PR binding in decidual cells of women with iPTB versus gestational age-matched controls. In Fkbp5 +/+ mice, maternal restraint stress did not accelerate systemic P4 withdrawal but increased Fkbp5, decreased PR, and elevated AKR1C18 expression in uteri at E17.25 followed by reduced P4 levels and increased oxytocin receptor (Oxtr) expression at 18.25 in uteri resulting in PTB. These changes correlate with inhibition of uterine PR function by maternal stress-induced FKBP51. In contrast, Fkbp5 -/- mice exhibit prolonged gestation and are completely resistant to maternal stress-induced PTB and labor-inducing uterine changes detected in stressed Fkbp5 +/+ mice. Collectively, these results uncover a functional P4 withdrawal mechanism mediated by maternal stress-induced enhanced uterine FKBP51 expression and FKPB51-PR binding, resulting in iPTB.
Collapse
|
3
|
Baig MH, Adil M, Khan R, Dhadi S, Ahmad K, Rabbani G, Bashir T, Imran MA, Husain FM, Lee EJ, Kamal MA, Choi I. Enzyme targeting strategies for prevention and treatment of cancer: Implications for cancer therapy. Semin Cancer Biol 2019; 56:1-11. [DOI: 10.1016/j.semcancer.2017.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/22/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
|
4
|
Role of Gender in Regulation of Redox Homeostasis in Pulmonary Arterial Hypertension. Antioxidants (Basel) 2019; 8:antiox8050135. [PMID: 31100969 PMCID: PMC6562572 DOI: 10.3390/antiox8050135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is one of the diseases with a well-established gender dimorphism. The prevalence of PAH is increased in females with a ratio of 4:1, while poor survival prognosis is associated with the male gender. Nevertheless, the specific contribution of gender in disease development and progression is unclear due to the complex nature of the PAH. Oxidative and nitrosative stresses are important contributors in PAH pathogenesis; however, the role of gender in redox homeostasis has been understudied. This review is aimed to overview the possible sex-specific mechanisms responsible for the regulation of the balance between oxidants and antioxidants in relation to PAH pathobiology.
Collapse
|
5
|
Atwood CS, Ekstein SF. Human versus non-human sex steroid use in hormone replacement therapies part 1: Preclinical data. Mol Cell Endocrinol 2019; 480:12-35. [PMID: 30308266 DOI: 10.1016/j.mce.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 03/12/2018] [Accepted: 10/04/2018] [Indexed: 11/24/2022]
Abstract
Prior to 2002, hormone replacement therapy (HRT) was considered to be an important component of postmenopausal healthcare. This was based on a plethora of basic, epidemiological and clinical studies demonstrating the health benefits of supplementation with human sex steroids. However, adverse findings from the Women's Health Initiative (WHI) studies that examined the 2 major forms of HRT in use in the US at that time - Premarin (conjugated equine estrogens; CEE) and Prempro (CEE + medroxyprogesterone acetate; MPA), cast a shadow over the use of any form of HRT. Here we review the biochemical and physiological differences between the non-human WHI study hormones - CEE and MPA, and their respective human counterparts 17β-estradiol (E2) and progesterone (P4). Preclinical data from the last 30 years demonstrate clear differences between human and non-human sex steroids on numerous molecular, physiological and functional parameters in brain, heart and reproductive tissue. In contrast to CEE supplementation, which is not always detrimental although certainly not as optimal as E2 supplementation, MPA is clearly not equivalent to P4, having detrimental effects on cognitive, cardiac and reproductive function. Moreover, unlike P4, MPA is clearly antagonistic of the positive effects of E2 and CEE on tissue function. These data indicate that minor chemical changes to human sex steroids result in physiologically distinct actions that are not optimal for tissue health and functioning.
Collapse
Affiliation(s)
- Craig S Atwood
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI, 53705, USA; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027, WA, Australia.
| | - Samuel F Ekstein
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, USA
| |
Collapse
|
6
|
Shi XJ, Yu B, Wang JW, Qi PP, Tang K, Huang X, Liu HM. Structurally novel steroidal spirooxindole by241 potently inhibits tumor growth mainly through ROS-mediated mechanisms. Sci Rep 2016; 6:31607. [PMID: 27527552 PMCID: PMC4985843 DOI: 10.1038/srep31607] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/21/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer cells always have increased ROS levels, thus making them more vulnerable to persistent endogenous oxidative stress. The biochemical difference between cancer and normal cells could be exploited to achieve selective cancer cell killing by exogenous ROS-producing agents. Herein we described a structurally novel steroidal spirooxindole by241 and its anticancer efficacy. By241 exhibited potent inhibition against human cancer cells and less toxic to normal cells. By241 concentration-dependently induced apoptosis of MGC-803 and EC9706 cells, accompanied with the mitochondrial dysfunction and increased ROS levels. NAC can completely restore the decreased cell viability of MGC-803 cells caused by by241, suggesting ROS-mediated mechanisms. The expression levels of proteins involved in the mitochondrion-related pathways were detected, showing increased expression of proapoptotic proteins and decreased expression of anti-apoptotic proteins, and activation of caspases-9/-3, but without activating caspase-8 expression. Pretreatment with Z-VAD-FMK partially rescued by241-induced apoptosis of MGC-803 cells. Additionally, by241 inhibited mTOR, activated p53 and its downstream proteins, cleaved MDM2 and PI3K/AKT as well as NF-κB signaling pathway. In vivo experiments showed that by241 did not have significant acute oral toxicity and exerted good anticancer efficacy against MGC-803 bearing mice models. Therefore, by241 may serve as a lead for further development for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Jing Shi
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Wei Wang
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Ping-Ping Qi
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Tang
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Huang
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Pongkittiphan V, Chavasiri W, Supabphol R. Antioxidant Effect of Berberine and its Phenolic Derivatives Against Human Fibrosarcoma Cells. Asian Pac J Cancer Prev 2016. [PMID: 26225680 DOI: 10.7314/apjcp.2015.16.13.5371] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Berberine (B1), isolated from stems of Coscinium fenestratum (Goetgh.) Colebr, was used as a principle structure to synthesize three phenolic derivatives: berberrubine (B2) with a single phenolic group, berberrubine chloride (B3) as a chloride counter ion derivative, and 2,3,9,10-tetra-hydroxyberberine chloride (B4) with four phenolic groups, to investigate their direct and indirect antioxidant activities. For DPPH assay, compounds B4, B3, and B2 showed good direct antioxidant activity (IC50 values=10.7±1.76, 55.2±2.24, and 87.4±6.65 μM, respectively) whereas the IC50 value of berberine was higher than 500 μM. Moreover, compound B4 exhibited a better DPPH scavenging activity than BHT as a standard antioxidant (IC50=72.7±7.22 μM) due to the ortho position of hydroxyl groups and its capacity to undergo intramolecular hydrogen bonding. For cytotoxicity assay against human fibrosarcoma cells (HT1080) using MTT reagent, the sequence of IC50 value at 7-day treatment stated that B1<B4<B2 (0.44±0.03, 2.88±0.23, and 6.05±0.64 μM, respectively). Berberine derivatives, B2 and B4, showed approximately the same level of CAT expression and significant up-regulation of SOD expression in a dose-dependent manner compared to berberine treatment for 7-day exposure using reverse transcription- polymerase chain reaction (RT-PCR) assays. Our findings show a better direct-antioxidant activity of the derivatives containing phenolic groups than berberine in a cell-free system. For cell-based system, berberine was able to exert better cytotoxic activity than its derivatives. Berberine derivatives containing a single and four phenolic groups showed improved up-regulation of SOD gene expression. Cytotoxic action might not be the main effect of berberine derivatives. Other pharmacological targets of these derivatives should be further investigated to confirm the medical benefit of phenolic groups introduced into the berberine molecule.
Collapse
Affiliation(s)
- Veerachai Pongkittiphan
- Natural Products Research Unit, Department of Chemistry, Chulalongkorn University, Pathumwan, Thailand E-mail :
| | | | | |
Collapse
|
8
|
Glorieux C, Zamocky M, Sandoval JM, Verrax J, Calderon PB. Regulation of catalase expression in healthy and cancerous cells. Free Radic Biol Med 2015; 87:84-97. [PMID: 26117330 DOI: 10.1016/j.freeradbiomed.2015.06.017] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 11/28/2022]
Abstract
Catalase is an important antioxidant enzyme that dismutates hydrogen peroxide into water and molecular oxygen. The catalase gene has all the characteristics of a housekeeping gene (no TATA box, no initiator element sequence, high GC content in promoter) and a core promoter that is highly conserved among species. We demonstrate in this review that within this core promoter, the presence of DNA binding sites for transcription factors, such as NF-Y and Sp1, plays an essential role in the positive regulation of catalase expression. Additional transcription factors, such as FoxO3a, are also involved in this regulatory process. There is strong evidence that the protein Akt/PKB in the PI3K signaling pathway plays a major role in the expression of catalase by modulating the activity of FoxO3a. Over the past decade, other transcription factors (PPARγ, Oct-1, etc.), as well as genetic, epigenetic, and posttranscriptional processes, have emerged as crucial contributors to the regulation of catalase expression. Altered expression levels of catalase have been reported in cancer tissues compared to their normal counterparts. Deciphering the molecular mechanisms that regulate catalase expression could, therefore, be of crucial importance for the future development of pro-oxidant cancer chemotherapy.
Collapse
Affiliation(s)
- Christophe Glorieux
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Marcel Zamocky
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), A-1190 Vienna, Austria; Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| | - Juan Marcelo Sandoval
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Julien Verrax
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Pedro Buc Calderon
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium; Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile.
| |
Collapse
|
9
|
Enhanced Human Decidual Cell-Expressed FKBP51 May Promote Labor-Related Functional Progesterone Withdrawal. THE AMERICAN JOURNAL OF PATHOLOGY 2015. [PMID: 26207680 DOI: 10.1016/j.ajpath.2015.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sustained plasma progesterone (P4) levels suggest initiation of human term labor by functional P4 withdrawal, reflecting reduced progesterone receptor (PR) and/or glucocorticoid receptor (GR) expression or activity. The steroid-induced immunophilin cochaperone FKBP51 inhibits PR- and GR-mediated transcription, suggesting a labor-initiating role. Gestational age-matched decidual sections were immunostained for FKBP51 and decidual cell (DC) and interstitial trophoblast (IT) markers, vimentin and cytokeratin, respectively. Term DC cultures were incubated with vehicle (control), estradiol (E2) with or without medroxyprogesterone acetate, dexamethasone (Dex), or Organon 2058. FKBP51 histologic scoring was significantly higher in DC nuclei during labor versus prelabor decidua, whereas FKBP51 immunostaining was undetected in interstitial trophoblasts (P < 0.05). In term DC cultures, E2 + medroxyprogesterone acetate or E2 + Dex enhanced FKBP51 expression (P < 0.01), whereas E2 + Organon 2058 inhibited PR expression (P < 0.05), and E2 + Dex inhibited GR expression (P < 0.05). Unlike term DCs, FKBP51 was undetected in control or Dex-treated cultured third-trimester trophoblasts. Electrophoretic mobility shift assays revealed that FKPB51 overexpression or silencing in cultured DCs altered PR-DNA binding. Increased FKBP51 levels in term DCs during labor complement our prior in situ observations of significantly lower PR in labor versus prelabor DCs. In a milieu of sustained plasma P4 levels, these reciprocal changes will amplify functional P4 withdrawal in DCs via FKBP51-mediated PR resistance coupled with declining PR levels, whereas the lack of FKBP51 expression in interstitial trophoblasts suggests unopposed constitutive GR action.
Collapse
|
10
|
Stark J, Varbiro S, Sipos M, Tulassay Z, Sara L, Adler I, Dinya E, Magyar Z, Szekacs B, Marczell I, Kloosterboer HJ, Racz K, Bekesi G. Antioxidant effect of the active metabolites of tibolone. Gynecol Endocrinol 2015; 31:31-35. [PMID: 25054375 DOI: 10.3109/09513590.2014.943727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Certain steroidal compounds have an antioxidant effect in humans. Our aim was to test whether the synthetic steroid tibolone and its metabolites are also able to display such a property. For this, granulocytes from healthy men and women were incubated for two hours with different concentrations (10(-7), 10(-8), 10(-9 )M) of either estradiol, tibolone, 3α-hydroxytibolone, 3β-hydroxytibolone, Δ(4)-tibolone, 3α-sulfated-tibolone, 3α-17β-disulfated-tibolone, 3β-sulfated-tibolone or 3β-17β-disulfated-tibolone. Superoxide anion generation of neutrophils was measured by photometry. Results of different steroids were given as percentages of their controls. A more simple superoxide generating system, the xanthine-xanthine oxidase reaction was also tested. We found that granulocyte superoxide production did not differ from the control using 10(-9 )M of steroids. Using 10(-8 )M concentration: estradiol (80.9 ± 2.5%); 3β-sulfated-tibolone (83.3 ± 4.7%); 3β-17β-disulfated-tibolone (81.0 ± 4.2%) caused a significant decrease in superoxide production, compared to the control. In addition at 10(-7 )M, 3β-hydroxytibolone and 3α-sulfated-tibolone also showed antioxidant effects. In the xanthine-xanthine oxidase system estradiol (67.4 ± 1.0%), 3α-sulfated-tibolone (85.8 ± 5.3%), 3α-17β-disulfated-tibolone (71.9 ± 2.5%), 3β-sulfated-tibolone (73.9 ± 5.0%), and 3β-17β-disulfated-tibolone (65.8 ± 3.4%) caused a significant decrease in superoxide production. Conclusively, although tibolone itself did not show significant antioxidant capacity, most of its active metabolites have antioxidant effects.
Collapse
Affiliation(s)
- Julia Stark
- 2nd Department of Internal Medicine, Faculty of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Khan MA, Chen HC, Wan XX, Tania M, Xu AH, Chen FZ, Zhang DZ. Regulatory effects of resveratrol on antioxidant enzymes: a mechanism of growth inhibition and apoptosis induction in cancer cells. Mol Cells 2013; 35:219-225. [PMID: 23456297 PMCID: PMC3887918 DOI: 10.1007/s10059-013-2259-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 12/13/2022] Open
Abstract
Resveratrol (RSV) is a natural polyphenol that is known as a powerful chemopreventive and chemotherapeutic anticancer molecule. This study focused on the effects of RSV on the activities and expression levels of antioxidant enzymes in the cancer cells. Prostate cancer PC-3 cells, hepatic cancer HepG2 cells, breast cancer MCF-7 cells and the non-cancerous HEK293T kidney epithelial cells were treated with a wide range of RSV concentrations (10-100 μM) for 24-72 h. Cell growth was estimated by trypan blue staining, activities of the antioxidant enzymes were measured spectrophotometrically, expression levels of the antioxidant enzymes were quantified by digitalizing the protein band intensities on Western blots, and the percentage of apoptotic cells was determined by flow cytometry. Treatment with a low concentration of RSV (25 μM) significantly increased superoxide dismutase (SOD) activity in PC-3, HepG2 and MCF-7 cells, but not in HEK293T cells. Catalase (CAT) activity was increased in HepG2 cells, but no effect was found on glutathione peroxidase (GPX) upon RSV treatment. RSV-induced SOD2 expression was observed in cancer cells, although the expression of SOD1, CAT and GPX1 was unaffected. Apoptosis increased upon RSV treatment of cancer cells, especially in PC-3 and HepG2 cells. Together, our data demonstrated that RSV inhibits cancer cell growth with minimal effects on non-cancerous cells. We postulate that the disproportional up-regulation of SOD, CAT and GPX expression and enzymatic activity in cancer cells results in the mitochondrial accumulation of H2O2, which in turn induces cancer cell apoptosis.
Collapse
Affiliation(s)
- Md. Asaduzzaman Khan
- Department of Biochemistry, School of Biological Science and Technology, Central South University, Changsha, Hunan 410013,
China
| | - Han-chun Chen
- Department of Biochemistry, School of Biological Science and Technology, Central South University, Changsha, Hunan 410013,
China
| | - Xin-xing Wan
- Department of Biochemistry, School of Biological Science and Technology, Central South University, Changsha, Hunan 410013,
China
| | - Mousumi Tania
- Department of Biochemistry, School of Biological Science and Technology, Central South University, Changsha, Hunan 410013,
China
| | - Ai-hua Xu
- Department of Biochemistry, School of Biological Science and Technology, Central South University, Changsha, Hunan 410013,
China
| | - Fang-zhi Chen
- Department of Urology, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011,
China
| | - Dian-zheng Zhang
- Department of Biochemistry, School of Biological Science and Technology, Central South University, Changsha, Hunan 410013,
China
- Department of Biochemistry/Molecular Biology, Philadelphia College of Osteopathic Medicine, Philadelphia, PA19131,
USA
| |
Collapse
|
12
|
Fedotcheva TA, Kruglov AG, Teplova VV, Fedotcheva NI, Rzheznikov VM, Shimanovskii NL. Effect of steroid hormones on production of reactive oxygen species in mitochondria. Biophysics (Nagoya-shi) 2013. [DOI: 10.1134/s0006350912060061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Abrahim NN, Kanthimathi MS, Abdul-Aziz A. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:220. [PMID: 23153283 PMCID: PMC3533855 DOI: 10.1186/1472-6882-12-220] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/07/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. METHODS The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. RESULTS Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. CONCLUSIONS Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense system, potentially contributing towards the anti-proliferative effect. There is great potential for the ethyl acetate extract of P. betle leaf as a source of natural antioxidants and to be developed as therapeutics in cancer treatment.
Collapse
Affiliation(s)
- Noor Nazirahanie Abrahim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - M S Kanthimathi
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Azlina Abdul-Aziz
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Khan JA, Amazit L, Bellance C, Guiochon-Mantel A, Lombès M, Loosfelt H. p38 and p42/44 MAPKs differentially regulate progesterone receptor A and B isoform stabilization. Mol Endocrinol 2011; 25:1710-24. [PMID: 21816898 DOI: 10.1210/me.2011-1042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Progesterone receptor (PR) isoforms (PRA and PRB) are implicated in the progression of breast cancers frequently associated with imbalanced PRA/PRB expression ratio. Antiprogestins represent potential antitumorigenic agents for such hormone-dependent cancers. To investigate the mechanism(s) controlling PR isoforms degradation/stability in the context of agonist and antagonist ligands, we used endometrial and mammary cancer cells stably expressing PRA and/or PRB. We found that the antiprogestin RU486 inhibited the agonist-induced turnover of PR isoforms through active mechanism(s) involving distinct MAPK-dependent phosphorylations. p42/44 MAPK activity inhibited proteasome-mediated degradation of RU486-bound PRB but not PRA in both cell lines. Ligand-induced PRB turnover required neosynthesis of a mandatory down-regulating partner whose interaction/function is negatively controlled by p42/44 MAPK. Such regulation strongly influenced expression of various endogenous PRB target genes in a selective manner, supporting functional relevance of the mechanism. Interestingly, in contrast to PRB, PRA stability was specifically increased by MAPK kinase kinase 1-induced p38 MAPK activation. Selective inhibition of p42/p44 or p38 activity resulted in opposite variations of the PRA/PRB expression ratio. Moreover, MAPK-dependent PR isoforms stability was independent of PR serine-294 phosphorylation previously proposed as a major sensor of PR down-regulation. In sum, we demonstrate that MAPK-mediated cell signaling differentially controls PRA/PRB expression ratio at posttranslational level through ligand-sensitive processes. Imbalance in PRA/PRB ratio frequently associated with carcinogenesis might be a direct consequence of disorders in MAPK signaling that might switch cellular responses to hormonal stimuli and contribute towards pathogenesis.
Collapse
Affiliation(s)
- Junaid A Khan
- Institut National de la Santé et de la Recherche Médicale Unité 693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
15
|
Verschoor ML, Wilson LA, Singh G. Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer. Can J Physiol Pharmacol 2011; 88:204-19. [PMID: 20393586 DOI: 10.1139/y09-135] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mitochondria are unique cellular organelles that contain their own genome and, in conjunction with the nucleus, are able to transcribe and translate genes encoding components of the electron transport chain (ETC). To do so, the mitochondria must communicate with the nucleus via the production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), which are produced as a byproduct of aerobic respiration within the mitochondria. Mitochondrial signaling is proposed to be altered in cancer cells, where the mitochondria are frequently found to harbor mutations within their genome and display altered functional characteristics leading to increased glycolysis. As signaling molecules, ROS oxidize and inhibit MAPK phosphatases resulting in enhanced proliferation and survival, an effect particularly advantageous to cancer cells. In terms of transcriptional regulation, ROS affect the phosphorylation, activation, oxidation, and DNA binding of transcription factors such as AP-1, NF-kappaB, p53, and HIF-1alpha, leading to changes in target gene expression. Increased ROS production by defective cancer cell mitochondria also results in the upregulation of the transcription factor Ets-1, a factor that has been increasingly associated with aggressive cancers.
Collapse
Affiliation(s)
- Meghan L Verschoor
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | | |
Collapse
|
16
|
Asaduzzaman Khan M, Tania M, Zhang DZ, Chen HC. Antioxidant enzymes and cancer. Chin J Cancer Res 2010; 22:87-92. [DOI: 10.1007/s11670-010-0087-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
17
|
Kumtepe Y, Borekci B, Karaca M, Salman S, Alp HH, Suleyman H. Effect of acute and chronic administration of progesterone, estrogen, FSH and LH on oxidant and antioxidant parameters in rat gastric tissue. Chem Biol Interact 2009; 182:1-6. [PMID: 19729004 DOI: 10.1016/j.cbi.2009.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/24/2009] [Accepted: 08/26/2009] [Indexed: 12/12/2022]
Abstract
This study was conducted to investigate whether gastro-protective and gastro-toxic effects of acute and chronic administration of progesterone, estrogen, FSH and LH were related to oxidant and antioxidant parameters. Chronic administration of progesterone at a low dose (1mg/kg), which probably could not stimulate progesterone receptors (PRs), inhibited oxidative stress of FSH in gastric tissue by suppressing FSH. Progesterone (5mg/kg) may have been caused oxidative stress as reflected by PR stimulation. FSH may have decreased antioxidant parameters and increased oxidant parameters via PRs. Chronic administration of low dose of estrogen (1mg/kg) inhibited LH and but could not stimulate alpha-2 adrenergic receptors, which resulted in oxidative stress in gastric tissue. The higher dose of estrogen (5mg/kg), however, could stimulate alpha-2 receptors, exhibited antioxidant activity in acute and chronic administration. While antioxidant activity of estrogen and LH was blocked with yohimbine (an alpha-2 adrenergic receptor blocker), mifepristone prevented the oxidative stress of progesterone and FSH in gastric tissue. It is concluded that low doses of progesterone may inhibit FSH, whereas high doses of estrogen may stimulate alpha-2 receptors, suggesting that LH could have protective and antioxidant hormone effects.
Collapse
Affiliation(s)
- Yakup Kumtepe
- Atatürk University, Faculty of Medicine, Department of Obstetrics and Gynecology, Erzurum, Turkey
| | | | | | | | | | | |
Collapse
|