1
|
Carleton N, Lee S, Li R, Zou J, Brown DD, Hooda J, Chang A, Kumar R, Klei LR, Rigatti LH, Newsome J, John Mary DJS, Atkinson JM, West RE, Nolin TD, Oberly PJ, Huang Z, Poirier D, Diego EJ, Lucas PC, Tseng G, Lotze MT, McAuliffe PF, Zervantonakis IK, Oesterreich S, Lee AV. Systemic and local chronic inflammation and hormone disposition promote a tumor-permissive environment for breast cancer in older women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.616978. [PMID: 39484485 PMCID: PMC11526964 DOI: 10.1101/2024.10.18.616978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Estrogen receptor positive (ER+) breast cancer is the most common subtype of breast cancer and is an age-related disease. The peak incidence of diagnosis occurs around age 70, even though these post-menopausal patients have low circulating levels of estradiol (E2). Despite the hormone sensitivity of age-related tumors, we have a limited understanding of the interplay between systemic and local hormones, chronic inflammation, and immune changes that contribute to the growth and development of these tumors. Here, we show that aged F344 rats treated with the dimethylbenz(a)anthracene / medroxyprogestrone acetate (DMBA/MPA) carcinogen develop more tumors at faster rates than their younger counterparts, suggesting that the aged environment promotes tumor initiation and impacts growth. Single-nuclei RNA-seq (snRNA-seq) of the tumors showed broad local immune dysfunction that was associated with circulating chronic inflammation. Across a broad cohort of specimens from patients with ER+ breast cancer and age-matched donors of normal breast tissue, we observe that even with an estrone (E1)-predominant estrogen disposition in the systemic circulation, tumors in older patients increase HSD17B7 expression to convert E1 to E2 in the tumor microenvironment (TME) and have local E2 levels similar to pre-menopausal patients. Concurrently, trackable increases in several chemokines, defined most notably by CCL2, promote a chronically inflamed but immune dysfunctional TME. This unique milieu in the aged TME, characterized by high local E2 and chemokine-enriched chronic inflammation, promotes both accumulation of tumor-associated macrophages (TAMs), which serve as signaling hubs, as well as polarization of TAMs towards a CD206+/PD-L1+, immunosuppressive phenotype. Pharmacologic targeting of estrogen signaling (either by HSD17B7 inhibition or with fulvestrant) and chemokine inflammation both decrease local E2 and prevent macrophage polarization. Overall, these findings suggest that chronic inflammation and hormonal disposition are critical contributors to the age-related nature of ER+ breast cancer development and growth and offer potential therapeutic insight to treat these patients. Translational Summary We uncover the unique underpinnings establishing how the systemic host environment contributes to the aged breast tumor microenvironment, characterized by high local estradiol and chronic inflammation with immune dysregulation, and show that targeting avenues of estrogen conversion and chronic inflammation work to restore anti-tumor immunity.
Collapse
|
2
|
Wang F, Eikeland E, Reidunsdatter RJ, Hagen L, Engstrøm MJ, Geisler J, Haanpää M, Hämäläinen E, Giskeødegård GF, Bathen TF. Quantification of multiple steroid hormones in serum and human breast cancer tissue by liquid chromatography-tandem mass spectrometry analysis. Front Oncol 2024; 14:1383104. [PMID: 38863629 PMCID: PMC11165045 DOI: 10.3389/fonc.2024.1383104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Systemic and local steroid hormone levels may function as novel prognostic and predictive biomarkers in breast cancer patients. We aimed at developing a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous measurement of multiple, biologically pivotal steroid hormones in human serum and breast cancer tissue. Methods The quantitative method consisted of liquid-liquid extraction, Sephadex LH-20 chromatography for tissue extracts, and analysis of steroid hormones by liquid-chromatography-tandem mass spectrometry. We analyzed serum and tissue steroid hormone levels in 16 and 40 breast cancer patients, respectively, and assessed their correlations with clinical parameters. Results The method included quantification of nine steroid hormones in serum [including cortisol, cortisone, corticosterone, estrone (E1), 17β-estradiol (E2), 17α-hydroxyprogesterone, androstenedione (A4), testosterone and progesterone) and six (including cortisone, corticosterone, E1, E2, A4, and testosterone) in cancer tissue. The lower limits of quantification were between 0.003-10 ng/ml for serum (250 µl) and 0.038-125 pg/mg for tissue (20 mg), respectively. Accuracy was between 98%-126%, intra-assay coefficient of variations (CV) was below 15%, and inter-assay CV were below 11%. The analytical recoveries for tissue were between 76%-110%. Tissue levels of E1 were positively correlated with tissue E2 levels (p<0.001), and with serum levels of E1, E2 and A4 (p<0.01). Tissue E2 levels were positively associated with serum E1 levels (p=0.02), but not with serum E2 levels (p=0.12). The levels of tissue E2 and ratios of E1 to A4 levels (an index for aromatase activity) were significantly higher in patients with larger tumors (p=0.03 and p=0.02, respectively). Conclusions The method was convenient and suitable for a specific and accurate profiling of clinically important steroid hormones in serum. However, the sensitivity of the profile method in steroid analysis in tissue samples is limited, but it can be used for the analysis of steroids in breast cancer tissues if the size of the sample or its steroid content is sufficient.
Collapse
Affiliation(s)
- Feng Wang
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Breast and Endocrine of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eline Eikeland
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Randi J. Reidunsdatter
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Monica J. Engstrøm
- Department of Breast and Endocrine of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway & Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mikko Haanpää
- HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Esa Hämäläinen
- Department of Clinical Chemistry, University of Eastern Finland, Kuopio, Finland
| | - Guro F. Giskeødegård
- Department of Breast and Endocrine of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tone F. Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
3
|
Pacheco JHL, Elizondo G. Interplay between Estrogen, Kynurenine, and AHR Pathways: An immunosuppressive axis with therapeutic potential for breast cancer treatment. Biochem Pharmacol 2023; 217:115804. [PMID: 37716620 DOI: 10.1016/j.bcp.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer is one of the most common malignancies among women worldwide. Estrogen exposure via endogenous and exogenous sources during a lifetime, together with environmental exposure to estrogenic compounds, represent the most significant risk factor for breast cancer development. As breast tumors establish, multiple pathways are deregulated. Among them is the aryl hydrocarbon receptor (AHR) signaling pathway. AHR, a ligand-activated transcription factor associated with the metabolism of polycyclic aromatic hydrocarbons and estrogens, is overexpressed in breast cancer. Furthermore, AHR and estrogen receptor (ER) cross-talk pathways have been observed. Additionally, the Tryptophan (Trp) catabolizing enzymes indolamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are overexpressed in breast cancer. IDO/TDO catalyzes the formation of Kynurenine (KYN) and other tryptophan-derived metabolites, which are ligands of AHR. Once KYN activates AHR, it stimulates the expression of the IDO enzyme, increases the level of KYN, and activates non-canonical pathways to control inflammation and immunosuppression in breast tumors. The interplay between E2, AHR, and IDO/TDO/KYN pathways and their impact on the immune system represents an immunosuppressive axis on breast cancer. The potential modulation of the immunosuppressive E2-AHR-IDO/TDO/KYN axis has aroused great expectations in oncotherapy. The present article will review the mechanisms implicated in generating the immunosuppressive axis E2-AHR-IDO/TDO/KYN in breast cancer and the current state of knowledge as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
4
|
Poutanen M, Hagberg Thulin M, Härkönen P. Targeting sex steroid biosynthesis for breast and prostate cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00609-y. [PMID: 37684402 DOI: 10.1038/s41568-023-00609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.
- Turku Center for Disease Modelling, University of Turku, Turku, Finland.
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland.
| | - Malin Hagberg Thulin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pirkko Härkönen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Brook N, Dharmarajan A, Chan A, Dass CR. Potential therapeutic role for pigment epithelium-derived factor in post-menopausal breast cancer bone metastasis. J Pharm Pharmacol 2023:7146711. [PMID: 37116213 DOI: 10.1093/jpp/rgad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
OBJECTIVES This review discusses key oestrogens associated with the circulating pre- and post-menopausal milieu and how they may impact intratumoral oestrogen levels and breast cancer (BC) metastasis. It also identifies critical steps in BC metastasis to bone from the viewpoint of pigment epithelium-derived factor (PEDF) function, and discusses the role of several associated pro-metastatic biomarkers in BC bone metastasis. KEY FINDINGS PEDF is regulated by oestrogen in a number of oestrogen-sensitive tissues. Changes in circulating oestrogen levels associated with menopause may enhance the growth of BC bone metastases, leading to the establishment of a pre-metastatic niche. The establishment of such a pre-metastatic niche is driven by several key mediators, with pro-osteoclastic and pro-metastatic function which are upregulated by BC cells. These mediators appear to be regulated by oestrogen, as well as differentially affected by menopausal status. PEDF interacts with several pro-metastatic, pro-osteoclastic biomarkers, including C-X-C motif chemokine receptor 4 (CXCR4) and nuclear factor kappa B (NFκB) in BC bone metastasis. CONCLUSION Mediators such as CXCR4 and MT1-MMP underpin the ability of PEDF to function as an antimetastatic in other cancers such as osteosarcoma, highlighting the possibility that this serpin could be used as a therapeutic against BC metastasis in future.
Collapse
Affiliation(s)
- Naomi Brook
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Arun Dharmarajan
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Arlene Chan
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Breast Cancer Research Centre-Western Australia, Hollywood Private Hospital, Nedlands 6009, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
| |
Collapse
|
6
|
Brook N, Gill J, Chih H, Francis K, Dharmarajan A, Chan A, Dass CR. Pigment epithelium-derived factor downregulation in oestrogen receptor positive breast cancer bone metastases is associated with menopause. Mol Cell Endocrinol 2023; 559:111792. [PMID: 36309204 DOI: 10.1016/j.mce.2022.111792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Pigment epithelium-derived factor (PEDF) has a critical role in bone development and anti-tumour function in breast cancer (BC). As the expression and role of PEDF in BC bone metastases is unknown, we aimed to characterise PEDF in primary and metastatic BC. Subcellular PEDF localisation was semi-quantitatively analysed via immunohistochemistry in patient-matched, archived formalin-fixed paraffin-embedded primary BC and liver, lung, and decalcified bone metastases specimens. PEDF localisation was evaluated in 23 metastatic BC patients diagnosed with ER+, human epidermal growth factor receptor-2 (HER2) negative BC or TNBC. Cytoplasmic (p = 0.019) and membrane (p = 0.048) PEDF was lower in bone metastases compared to primary ER+/HER2- BC. In contrast, nuclear PEDF scores were higher in metastases compared to primary TNBC (p = 0.027), and increased membrane PEDF in metastatic tissue had improved disease-free interval (p = 0.016). Nuclear PEDF was decreased in bone metastases compared to primary ER+//HER2- BC in post-menopausal patients (p = 0.029). These novel findings indicate PEDF plays a role in clinical BC metastasis. Significantly lower PEDF levels in the post-menopausal compared to pre-menopausal setting suggests future PEDF research may have greater clinical importance in the post-menopausal ER+/HER2- BC population.
Collapse
Affiliation(s)
- Naomi Brook
- Curtin Medical School, Curtin University, Bentley, 6102, Australia; Curtin Health Innovation Research Institute, Bentley, 6102, Australia
| | - Jespal Gill
- Pathwest, Fiona Stanley Hospital, Murdoch, Australia
| | - HuiJun Chih
- Curtin School of Population Health, Curtin University, Bentley, 6102, Australia
| | - Kate Francis
- Western Diagnostic Pathology, Jandakot, 6164, Australia
| | - Arun Dharmarajan
- Curtin Medical School, Curtin University, Bentley, 6102, Australia; Curtin Health Innovation Research Institute, Bentley, 6102, Australia; Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India
| | - Arlene Chan
- Curtin Medical School, Curtin University, Bentley, 6102, Australia; Breast Cancer Research Centre-Western Australia, Hollywood Private Hospital, Nedlands, 6009, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley, 6102, Australia; Curtin Health Innovation Research Institute, Bentley, 6102, Australia.
| |
Collapse
|
7
|
NFκB-Mediated Mechanisms Drive PEDF Expression and Function in Pre- and Post-Menopausal Oestrogen Levels in Breast Cancer. Int J Mol Sci 2022; 23:ijms232415641. [PMID: 36555293 PMCID: PMC9779285 DOI: 10.3390/ijms232415641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) protein regulates normal bone, with anti-tumour roles in bone and breast cancer (BC). Pre- and post-menopausal oestrogen levels may regulate PEDF expression and function in BC, though the mechanisms behind this remain unknown. In this study, in vitro models simulating pre- and post-menopausal bone microenvironments were used to evaluate if PEDF regulates pro-metastatic biomarker expression and downstream functional effects on BC cells. PEDF treatment reduced phosphorylated-nuclear factor-κB p65 subunit (p-NFκB-p65), tumour necrosis factor-α (TNFα), C-X-C chemokine receptor type-4 (CXCR4), and urokinase plasminogen activator receptor (uPAR) in oestrogen receptor (ER)+/human epidermal growth factor receptor-2 (HER2)- BC cells under post-menopausal oestrogen conditions. In triple negative BC (TNBC) cells, PEDF treatment reduced pNFκB-p65 and uPAR expression under pre-menopausal oestrogen conditions. A potential reciprocal regulatory axis between p-NFκB-65 and PEDF in BC was identified, which was BC subtype-specific and differentially regulated by menopausal oestrogen conditions. The effects of PEDF treatment and NFκB inhibition on BC cell function under menopausal conditions were also compared. PEDF treatment exhibited superior anti-viability effects, while combined PEDF and NFκB-p65 inhibitor treatment was superior in reducing BC cell colony formation in a subtype-specific manner. Lastly, immunohistochemical evaluation of p-NFκB-p65 and PEDF expression in human BC and bone metastases specimens revealed an inverse correlation between nuclear PEDF and NFκB expression in bone metastases. We propose that menopausal status is associated with a PEDF/NFκB reciprocal regulatory axis, which drives PEDF expression and anti-metastatic function in a subtype-specific manner. Altogether, our findings identify pre-menopausal TNBC and post-menopausal ER+/HER2- BC patients as target populations for future PEDF research.
Collapse
|
8
|
Hormonal Homologies between Canine Mammary Cancer and Human Breast Cancer in a Series of Cases. Vet Sci 2022; 9:vetsci9080395. [PMID: 36006309 PMCID: PMC9414677 DOI: 10.3390/vetsci9080395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary There is worldwide interest in understanding the cancerous diseases that are causing increasing deaths in humans. In recent years, interest has grown in finding suitable models of different types of cancer in animals to lead the scientific community to a better understanding of the disease, in order to win the battle against cancer. The aim of this investigation was to compare breast cancer samples and canine mammary tumors from a hormonal point of view to validate the canine species as a model to study human breast cancer. There was a close similarity between premenopausal human breast cancer and canine mammary cancer in terms of hormonal receptors. In both species, all hormones assayed were increased in tumors compared to normal mammary gland samples. This research not only further supports canine mammary cancer as a spontaneous model for the study of human breast cancer but is also important in providing a deeper understanding of the hormonal pathogenesis of breast/mammary cancer in each independent species. Abstract The validity of spontaneous canine mammary cancer (CMC) as a natural model for the study of human breast cancer (HBC) from a hormonal point of view has never been thoroughly investigated. In this study, we analyzed the immunohistochemical expression of aromatase (Arom) and steroid receptors [estrogen receptor α (ER α), estrogen receptor β (ER β), progesterone receptor (PR) and androgen receptor (AR)] and intratumor steroid hormone levels of 17β-estradiol (E2), estrone sulfate (SO4E1), progesterone (P4), androstenedione (A4), dehydroepiandrosterone (DHEA), and testosterone (T) in 78 samples of mammary cancer—51 human breast cancer (HBC) and 27 canine mammary cancer (CMC)—and corresponding controls. Frequency of tumors expressing Arom, ERβ, PR, and AR was similar in both species, whereas ERα+ tumors were less frequent in the canine species. There was a closer similarity between premenopausal HBC and CMC. In HBC and CMC, all hormones assayed were increased in tumors compared to control samples. Intratumor androgen levels were similar in the two species, although levels of progesterone and estrogens were higher in the HBC samples than the CMC samples. Statistical associations among Arom, receptors, and hormones analyzed suggest that the major hormonal influence in both species is estrogenic through the ER, being the α isoform predominant in the human samples. Our findings further support CMC as a spontaneous model for the study of HBC, especially premenopausal HBC, although several differences, such as the more prevalent ERα immunoexpression and higher intratumor levels of estrogens and P4 in HBC, should be taken into account in comparative hormonal studies.
Collapse
|
9
|
Estrogens, Cancer and Immunity. Cancers (Basel) 2022; 14:cancers14092265. [PMID: 35565393 PMCID: PMC9101338 DOI: 10.3390/cancers14092265] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Sex hormones are included in many physiological and pathological pathways. Estrogens belong to steroid hormones active in female sex. Estradiol (E2) is the strongest female sex hormone and, with its receptors, contributes to oncogenesis, cancer progression and response to treatment. In recent years, a role of immunosurveillance and suppression of immune response in malignancy has been well defined, forming the basis for cancer immunotherapy. The interplay of sex hormones with cancer immunity, as well as the response to immune checkpoint inhibitors, is of interest. In this review, we investigate the impact of sex hormones on natural immune response with respect to main active elements in anticancer immune surveillance: dendritic cells, macrophages, lymphocytes and checkpoint molecules. We describe the main sex-dependent tumors and the contribution of estrogen in their progression, response to treatment and especially modulation of anticancer immune response.
Collapse
|
10
|
Li J, Li C, Feng Z, Liu L, Zhang L, Kang W, Liu Y, Ma B, Li H, Huang Y, Zheng H, Song F, Song F, Chen K. Effect of estradiol as a continuous variable on breast cancer survival by menopausal status: a cohort study in China. Breast Cancer Res Treat 2022; 194:103-111. [PMID: 35467315 DOI: 10.1007/s10549-022-06593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/31/2022] [Indexed: 11/26/2022]
Abstract
High levels of circulating estradiol (E2) are associated with increased risk of breast cancer, whereas its relationship with breast cancer prognosis is still unclear. We evaluated the effect of E2 concentration on survival endpoints among 8766 breast cancer cases diagnosed between 2005 and 2017 from the Tianjin Breast Cancer Cases Cohort. Levels of serum E2 were measured in pre-menopausal and post-menopausal women. Multivariable-adjusted Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (95% CI) between quartile of E2 levels and overall survival (OS) and progression-free survival (PFS) of breast cancer. The penalized spline was then used to test for non-linear relationships between E2 (continuous variable) and survival endpoints. 612 deaths and 982 progressions occurred over follow-up through 2017. Compared to women in the quartile 3, the highest quartile of E2 was associated with reduced risk of both PFS in pre-menopausal women (HR 1.79, 95% CI 1.17-2.75, P = 0.008) and OS in post-menopausal women (HR 1.35, 95% CI 1.04-1.74, P = 0.023). OS and PFS in pre-menopausal women exhibited a nonlinear relation ("L-shaped" and "U-shaped", respectively) with E2 levels. However, there was a linear relationship in post-menopausal women. Moreover, patients with estrogen receptor-negative (ER-negative) breast cancer showed a "U-shaped" relationship with OS and PFS in pre-menopausal women. Pre-menopausal breast cancer patients have a plateau stage of prognosis at the intermediate concentrations of E2, whereas post-menopausal patients have no apparent threshold, and ER status may have an impact on this relationship.
Collapse
Affiliation(s)
- Junxian Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Chenyang Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Ziwei Feng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Luyang Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Liwen Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Wenjuan Kang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Ya Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Baoshan Ma
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Haixin Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Yubei Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China.
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
11
|
Carleton N, Nasrazadani A, Gade K, Beriwal S, Barry PN, Brufsky AM, Bhargava R, Berg WA, Zuley ML, van Londen GJ, Marroquin OC, Thull DL, Mai PL, Diego EJ, Lotze MT, Oesterreich S, McAuliffe PF, Lee AV. Personalising therapy for early-stage oestrogen receptor-positive breast cancer in older women. THE LANCET. HEALTHY LONGEVITY 2022; 3:e54-e66. [PMID: 35047868 PMCID: PMC8765742 DOI: 10.1016/s2666-7568(21)00280-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Age is one of the most important risk factors for the development of breast cancer. Nearly a third of all breast cancer cases occur in older women (aged ≥70 years), with most cases being oestrogen receptor-positive (ER+). Such tumours are often indolent and unlikely to be the ultimate cause of death for older women, particularly when considering other comorbidities. This Review focuses on unique clinical considerations for screening, detection, and treatment regimens for older women who develop ER+ breast cancers-specifically, we focus on recent trends for de-implementation of screening, staging, surgery, and adjuvant therapies along the continuum of care. Additionally, we also review emerging basic and translational research that will further uncover the unique underlying biology of these tumours, which develop in the context of systemic age-related inflammation and changing hormone profiles. With prevailing trends of clinical de-implementation, new insights into mechanistic biology might provide an opportunity for precision medicine approaches to treat patients with well tolerated, low-toxicity agents to extend patients' lives with a higher quality of life, prevent tumour recurrences, and reduce cancer-related burdens.
Collapse
Affiliation(s)
- Neil Carleton
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Azadeh Nasrazadani
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Kristine Gade
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Sushil Beriwal
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Parul N Barry
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Adam M Brufsky
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Rohit Bhargava
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Wendie A Berg
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Margarita L Zuley
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - G J van Londen
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Oscar C Marroquin
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Darcy L Thull
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Phuong L Mai
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Emilia J Diego
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Michael T Lotze
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Steffi Oesterreich
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Priscilla F McAuliffe
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| | - Adrian V Lee
- (N Carleton BS, Prof S Oesterreich PhD, P F McAuliffe MD, Prof A V Lee PhD) (S Beriwal MD, P N Barry MD), (N Carleton, Prof S Oesterreich, P F McAuliffe, Prof A V Lee); (A Nasrazadani MD, K Gade MD, Prof A M Brufksy MD, G J van Londen MD), (Prof R Bhargava MD), (D L Thull MS, P L Mai MD), (E J Diego MD, Prof M T Lotze MD, P F McAuliffe), (Prof M T Lotze), (Prof M T Lotze), (Prof S Oesterreich, Prof A V Lee), (Prof W A Berg MD, Prof M L Zuley MD); (O C Marroquin MD)
| |
Collapse
|
12
|
Sun SY, Ding Y, Li Z, Nie L, Liao C, Liu Y, Zhang J, Zhang D. Multiparameter MRI Model With DCE-MRI, DWI, and Synthetic MRI Improves the Diagnostic Performance of BI-RADS 4 Lesions. Front Oncol 2021; 11:699127. [PMID: 34722246 PMCID: PMC8554332 DOI: 10.3389/fonc.2021.699127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives To evaluate the value of synthetic magnetic resonance imaging (syMRI), diffusion-weighted imaging (DWI), DCE-MRI, and clinical features in breast imaging–reporting and data system (BI-RADS) 4 lesions, and develop an efficient method to help patients avoid unnecessary biopsy. Methods A total of 75 patients with breast diseases classified as BI-RADS 4 (45 with malignant lesions and 30 with benign lesions) were prospectively enrolled in this study. T1-weighted imaging (T1WI), T2WI, DWI, and syMRI were performed at 3.0 T. Relaxation time (T1 and T2), apparent diffusion coefficient (ADC), conventional MRI features, and clinical features were assessed. “T” represents the relaxation time value of the region of interest pre-contrast scanning, and “T+” represents the value post-contrast scanning. The rate of change in the T value between pre- and post-contrast scanning was represented by ΔT%. Results ΔT1%, T2, ADC, age, body mass index (BMI), menopause, irregular margins, and heterogeneous internal enhancement pattern were significantly associated with a breast cancer diagnosis in the multivariable logistic regression analysis. Based on the above parameters, four models were established: model 1 (BI-RADS model, including all conventional MRI features recommended by BI-RADS lexicon), model 2 (relaxation time model, including ΔT1% and T2), model 3 [multi-parameter (mp)MRI model, including ΔT1%, T2, ADC, margin, and internal enhancement pattern], and model 4 (combined image and clinical model, including ΔT1%, T2, ADC, margin, internal enhancement pattern, age, BMI, and menopausal state). Among these, model 4 has the best diagnostic performance, followed by models 3, 2, and 1. Conclusions The mpMRI model with DCE-MRI, DWI, and syMRI is a robust tool for evaluating the malignancies in BI-RADS 4 lesions. The clinical features could further improve the diagnostic performance of the model.
Collapse
Affiliation(s)
- Shi Yun Sun
- Department of Radiology, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Yingying Ding
- Department of Radiology, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Zhuolin Li
- Department of Radiology, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Lisha Nie
- Magnetic Resonance Imaging Research, General Electric Healthcare (China), Beijing, China
| | - Chengde Liao
- Department of Radiology, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Yifan Liu
- Department of Radiology, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Jia Zhang
- Department of Radiology, Third People's Hospital of Yunnan Province, Kunming, China
| | - Dongxue Zhang
- Department of Radiology, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
13
|
Lønning PE. Letter to the Editor. J Steroid Biochem Mol Biol 2021; 212:105919. [PMID: 34023394 DOI: 10.1016/j.jsbmb.2021.105919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
|
14
|
Anđelković M, Djordjevic AB, Miljaković EA, Javorac D, Čolaković N, Oprić S, Petričević S, Granić M, Kotur-Stevuljević J, Antonijević B, Bulat Z. Cadmium tissue level in women diagnosed with breast cancer - A case control study. ENVIRONMENTAL RESEARCH 2021; 199:111300. [PMID: 34015299 DOI: 10.1016/j.envres.2021.111300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 05/25/2023]
Abstract
Breast cancer is at the forefront of female malignancy and the leading cause of cancer death among women. Gender, age, hormone therapy, smoking, exposure to endocrine disruptors and family history are significant breast cancer risk factors according to epidemiological data. Considering metalloestrogenic Cd property and a plethora of research work on hormone involvement in breast cancer the study aimed to determine Cd concentration in three compartments of breast cancer patients in relation to their blood hormone status. Further, as oxidative stress is a critical mechanism of Cd toxicity, the objective of this study was to determine potential changes in oxidative status homeostasis. The study enrolled 55 patients with breast cancer diagnosis and 41 healthy women with benign breast changes. Concentration of Cd was determined using graphite furnace atomic absorption spectrometry. Cadmium concentration in tumor tissue was significantly higher than control and almost four times higher than Cd concentration in the healthy surrounding tissue. Strong positive correlation was observed between Cd concentrations in changed breast tissue and FSH and LH levels, while the correlation was negative with estradiol level. Cancer patients had significantly increased blood total antioxidative status while total oxidative status did not significantly differ between study groups. The study revealed Cd implication in breast cancer onset following a significant odd ratio for Cd levels in changed tissue samples. Moreover, presented data confirmed sex hormone and oxidative status imbalance caused by Cd presence, closely related to cancer development.
Collapse
Affiliation(s)
- Milena Anđelković
- Health Center Kosovska Mitrovica, 38220, Kosovska Mitrovica, Serbia; Department of Toxicology ″Akademik Danilo Soldatović″, Faculty of Pharmacy, University of Belgrade, 11211, Belgrade, Serbia.
| | - Aleksandra Buha Djordjevic
- Department of Toxicology ″Akademik Danilo Soldatović″, Faculty of Pharmacy, University of Belgrade, 11211, Belgrade, Serbia.
| | - Evica Antonijević Miljaković
- Department of Toxicology ″Akademik Danilo Soldatović″, Faculty of Pharmacy, University of Belgrade, 11211, Belgrade, Serbia.
| | - Dragana Javorac
- Department of Toxicology ″Akademik Danilo Soldatović″, Faculty of Pharmacy, University of Belgrade, 11211, Belgrade, Serbia.
| | - Nataša Čolaković
- University Hospital Medical Center Bezanijska Kosa, 11080, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, 11211, Belgrade, Serbia.
| | - Svetlana Oprić
- University Hospital Medical Center Bezanijska Kosa, 11080, Belgrade, Serbia; Faculty of Dentistry Pančevo, University Business Academy Novi Sad, 26000, Pančevo, Serbia.
| | - Simona Petričević
- University Hospital Medical Center Bezanijska Kosa, 11080, Belgrade, Serbia.
| | - Miroslav Granić
- University Hospital Medical Center Bezanijska Kosa, 11080, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, 11211, Belgrade, Serbia.
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11221, Belgrade, Serbia.
| | - Biljana Antonijević
- Department of Toxicology ″Akademik Danilo Soldatović″, Faculty of Pharmacy, University of Belgrade, 11211, Belgrade, Serbia.
| | - Zorica Bulat
- Department of Toxicology ″Akademik Danilo Soldatović″, Faculty of Pharmacy, University of Belgrade, 11211, Belgrade, Serbia.
| |
Collapse
|
15
|
Bertelsen BE, Kellmann R, Viste K, Bjørnevik AT, Eikesdal HP, Lønning PE, Sagen JV, Almås B. An Ultrasensitive Routine LC-MS/MS Method for Estradiol and Estrone in the Clinically Relevant Sub-Picomolar Range. J Endocr Soc 2020; 4:bvaa047. [PMID: 32500111 PMCID: PMC7252770 DOI: 10.1210/jendso/bvaa047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/20/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Current analytical routine methods lack the sensitivity to monitor plasma estrogen levels in breast cancer patients treated with aromatase inhibitors. Such monitoring is warranted for premenopausal patients treated with an aromatase inhibitor and an LH-releasing hormone analogue in particular. Therefore, we aimed to develop a routine tandem mass spectroscopy combined with liquid chromatography (LC-MS/MS) method for estradiol (E2) and estrone (E1) for use in the sub-picomolar range. METHOD Calibrators, quality controls (QC), or serum samples were spiked with isotope-labeled internal standard and purified by liquid-liquid extraction. The reconstituted extracts were analyzed by LC-MS/MS in negative electrospray ionization mode. QCs at 6 levels made from pooled patient sera were used to validate the accuracy, sensitivity, and precision of the method. RESULTS We achieved limits of quantification of 0.6 pmol/L (0.16 pg/mL) for E2 and 0.3 pmol/L (0.07 pg/mL) for E1. The coefficient of variation was below 9.0% at all QC levels for E2 (range, 1.7-153 pmol/L), and below 7.8% for E1 (range, 1.7-143 pmol/L). The method is traceable to the E2 reference standard BCR576. Reference ranges for E2 and E1 in healthy, postmenopausal women were obtained, for E2: 3.8 to 36 pmol/L, for E1: 22 to 122 pmol/L. We measured and confirmed ultra-low E2 and E1 concentrations in sera from patients on the aromatase inhibitors letrozole or exemestane. CONCLUSION This ultrasensitive LC-MS/MS method is suitable for routine assessment of serum E1 and E2 levels in breast cancer patients during estrogen suppression therapy. The method satisfies all requirements for measurement of E2 in the clinical setting as stated by the Endocrine Society in 2013. PRECIS We report an ultrasensitive LCMS/MS routine assay that measures pretreatment and suppressed levels of estradiol/estrone during aromatase inhibitor treatment of postmenopausal breast cancer patients.
Collapse
Affiliation(s)
| | - Ralf Kellmann
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Kristin Viste
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | | | - Hans Petter Eikesdal
- Department of Oncology Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Norway
| | - Per Eystein Lønning
- Department of Oncology Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Norway
| | - Jørn V Sagen
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Norway
| | - Bjørg Almås
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
16
|
The novel microRNAs hsa-miR-nov7 and hsa-miR-nov3 are over-expressed in locally advanced breast cancer. PLoS One 2020; 15:e0225357. [PMID: 32298266 PMCID: PMC7162276 DOI: 10.1371/journal.pone.0225357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
miRNAs are an important class of small non-coding RNAs, which play a versatile role in gene regulation at the post-transcriptional level. Expression of miRNAs is often deregulated in human cancers. We analyzed small RNA massive parallel sequencing data from 50 locally advanced breast cancers aiming to identify novel breast cancer related miRNAs. We successfully predicted 10 novel miRNAs, out of which 2 (hsa-miR-nov3 and hsa-miR-nov7) were recurrent. Applying high sensitivity qPCR, we detected these two microRNAs in 206 and 214 out of 223 patients in the study from which the initial cohort of 50 samples were drawn. We found hsa-miR-nov3 and hsa-miR-nov7 both to be overexpressed in tumor versus normal breast tissue in a separate set of 13 patients (p = 0.009 and p = 0.016, respectively) from whom both tumor tissue and normal tissue were available. We observed hsa-miR-nov3 to be expressed at higher levels in ER-positive compared to ER-negative tumors (p = 0.037). Further stratifications revealed particularly low levels in the her2-like and basal-like cancers compared to other subtypes (p = 0.009 and 0.040, respectively). We predicted target genes for the 2 microRNAs and identified inversely correlated genes in mRNA expression array data available from 203 out of the 223 patients. Applying the KEGG and GO annotations to target genes revealed pathways essential to cell development, communication and homeostasis. Although a weak association between high expression levels of hsa-miR-nov7 and poor survival was observed, this did not reach statistical significance. hsa-miR-nov3 expression levels had no impact on patient survival.
Collapse
|
17
|
Pedersen L, Panahandeh P, Siraji MI, Knappskog S, Lønning PE, Gordillo R, Scherer PE, Molven A, Teigen K, Halberg N. Golgi-Localized PAQR4 Mediates Antiapoptotic Ceramidase Activity in Breast Cancer. Cancer Res 2020; 80:2163-2174. [PMID: 32291319 DOI: 10.1158/0008-5472.can-19-3177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/02/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022]
Abstract
The metabolic network of sphingolipids plays important roles in cancer biology. Prominent sphingolipids include ceramides and sphingosine-1-phosphate that regulate multiple aspects of growth, apoptosis, and cellular signaling. Although a significant number of enzymatic regulators of the sphingolipid pathway have been described in detail, many remained poorly characterized. Here we applied a patient-derived systemic approach to identify and molecularly define progestin and adipoQ receptor family member IV (PAQR4) as a Golgi-localized ceramidase. PAQR4 was approximately 5-fold upregulated in breast cancer compared with matched control tissue and its overexpression correlated with disease-specific survival rates in breast cancer. Induction of PAQR4 in breast tumors was found to be subtype-independent and correlated with increased ceramidase activity. These findings establish PAQR4 as Golgi-localized ceramidase required for cellular growth in breast cancer. SIGNIFICANCE: Induction of and cellular dependency on de novo sphingolipid synthesis via PAQR4 highlights a central vulnerability in breast cancer that may serve as a viable therapeutic target.
Collapse
Affiliation(s)
- Line Pedersen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | - Stian Knappskog
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Per Eystein Lønning
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Ruth Gordillo
- Touchstone Diabetes Center, Departments of Internal Medicine and Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philipp E Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Knut Teigen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
18
|
Lu J, Shang X, Zhong W, Xu Y, Shi R, Wang X. New insights of CYP1A in endogenous metabolism: a focus on single nucleotide polymorphisms and diseases. Acta Pharm Sin B 2020; 10:91-104. [PMID: 31998606 PMCID: PMC6984740 DOI: 10.1016/j.apsb.2019.11.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Cytochrome P450 1A (CYP1A), one of the major CYP subfamily in humans, not only metabolizes xenobiotics including clinical drugs and pollutants in the environment, but also mediates the biotransformation of important endogenous substances. In particular, some single nucleotide polymorphisms (SNPs) for CYP1A genes may affect the metabolic ability of endogenous substances, leading to some physiological or pathological changes in humans. This review first summarizes the metabolism of endogenous substances by CYP1A, and then introduces the research progress of CYP1A SNPs, especially the research related to human diseases. Finally, the relationship between SNPs and diseases is discussed. In addition, potential animal models for CYP1A gene editing are summarized. In conclusion, CYP1A plays an important role in maintaining the health in the body.
Collapse
Key Words
- CYP, cytochrome P450
- CYP1A
- EOAs, cis-epoxyoctadecenoics
- Endogenous substances
- FSH, follicle stimulating hormone
- HODEs, hydroxyoctadecdienoic acids
- IQ, 2-amino-3-methylimidazo [4,5-f] quinoline
- KO, knockout
- LIF/STAT3, inhibiting leukemia inhibitory factor/signal transducer and activator of transcription 3
- Metabolism and disease
- PhIP, 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine
- SNPs
- SNPs, single nucleotide polymorphisms
- WT, wild type
- Xenobiotics
- t-RA, all-trans-retinoic acid
- t-ROH, all-trans-retinol
Collapse
Affiliation(s)
- Jian Lu
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xuyang Shang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiguo Zhong
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Yuan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Rong Shi
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
19
|
Liu R, Yu X, Chen X, Zhong H, Liang C, Xu X, Xu W, Cheng Y, Wang W, Yu L, Wu Y, Yan N, Hu X. Individual factors define the overall effects of dietary genistein exposure on breast cancer patients. Nutr Res 2019; 67:1-16. [DOI: 10.1016/j.nutres.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/03/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
|
20
|
Pre-diagnostic sex hormone levels and survival among breast cancer patients. Breast Cancer Res Treat 2019; 174:749-758. [PMID: 30604001 DOI: 10.1007/s10549-018-05121-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Higher levels of circulating sex steroid hormones are associated with increased breast cancer risk, though their association with prognosis remains unclear. We evaluated the association between circulating sex hormone levels and breast cancer survival in two large cohorts. METHODS We evaluated this association among 2073 breast cancer cases from the Nurses' Health Study (NHS) and Nurses' Health Study II (NHSII) cohorts. Women in this analysis provided a blood sample in 1989-1990 (NHS) or in 1996-1999 (NHSII) and were subsequently diagnosed with breast cancer. Levels of estradiol (postmenopausal women only), testosterone, dehydroepiandrosterone-sulfate (DHEAS), and sex hormone-binding globulin (SHBG) were measured in plasma. Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (95% CI) for survival, adjusting for patient and tumor characteristics. RESULTS A total of 639 deaths and 160 breast cancer deaths occurred over follow-up through 2015. Compared to women in the lowest quartile, postmenopausal women in the highest quartile of estradiol experienced a 1.43-fold overall mortality rate (HR 1.43, 95% CI 1.03-1.97, P-trend = 0.04) and a nonsignificantly higher breast cancer mortality rate (HR 1.50, 95% CI 0.75-2.98, P-trend = 0.12). Higher DHEAS levels were nonsignificantly associated with better overall survival (HRQ4vsQ1=0.79, 95% CI 0.57-1.10, P-trend = 0.05), though not with breast cancer survival. No associations were observed between testosterone or SHBG and survival. CONCLUSIONS Pre-diagnostic postmenopausal circulating estradiol levels were modestly associated with worse survival among breast cancer patients. Further studies should evaluate whether circulating hormone levels at diagnosis predict cancer prognosis or treatment response.
Collapse
|
21
|
Wege AK, Chittka D, Buchholz S, Klinkhammer-Schalke M, Diermeier-Daucher S, Zeman F, Ortmann O, Brockhoff G. HER4 expression in estrogen receptor-positive breast cancer is associated with decreased sensitivity to tamoxifen treatment and reduced overall survival of postmenopausal women. Breast Cancer Res 2018; 20:139. [PMID: 30458882 PMCID: PMC6247692 DOI: 10.1186/s13058-018-1072-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The sensitivity of estrogen receptor-positive breast cancers to tamoxifen treatment varies considerably, and the molecular mechanisms affecting the response rates are manifold. The human epidermal growth factor receptor-related receptor HER2 is known to trigger intracellular signaling cascades that modulate the activity of coregulators of the estrogen receptor which, in turn, reduces the cell sensitivity to tamoxifen treatment. However, the impact of HER2-related receptor tyrosine kinases HER1, HER3, and, in particular, HER4 on endocrine treatment is largely unknown. METHODS Here, we retrospectively evaluated the importance of HER4 expression on the outcome of tamoxifen- and aromatase inhibitor-treated estrogen receptor-positive breast cancer patients (n = 258). In addition, we experimentally analyzed the efficiency of tamoxifen treatment as a function of HER4 co-expression in vitro. RESULTS We found a significantly improved survival in tamoxifen-treated postmenopausal breast cancer patients in the absence of HER4 compared with those with pronounced HER4 expression. In accordance with this finding, the sensitivity to tamoxifen treatment of estrogen and HER4 receptor-positive ZR-75-1 breast cancer cells can be significantly enhanced by HER4 knockdown. CONCLUSION We suggest an HER4/estrogen receptor interaction that impedes tamoxifen binding to the estrogen receptor and reduces treatment efficiency. Whether the sensitivity to tamoxifen treatment can be enhanced by anti-HER4 targeting needs to be prospectively evaluated.
Collapse
Affiliation(s)
- Anja Kathrin Wege
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - Dominik Chittka
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany.,Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Buchholz
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | | | | | - Florian Zeman
- Center for Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | - Olaf Ortmann
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - Gero Brockhoff
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany.
| |
Collapse
|
22
|
Suzuki M, Murakami M, Shirai M, Hashimoto O, Kawada T, Matsui T, Funaba M. Role of estradiol and testosterone in Ucp1
expression in brown/beige adipocytes. Cell Biochem Funct 2018; 36:450-456. [DOI: 10.1002/cbf.3366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/05/2018] [Accepted: 10/16/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Mika Suzuki
- Division of Applied Biosciences; Kyoto University Graduate School of Agriculture; Kyoto Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology; Azabu University School of Veterinary Medicine; Sagamihara Japan
| | - Mitsuyuki Shirai
- Laboratory of Veterinary Pharmacology; Azabu University School of Veterinary Medicine; Sagamihara Japan
| | - Osamu Hashimoto
- Laboratory of Experimental Animal Science; Kitasato University School of Veterinary Medicine; Towada Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology; Kyoto University Graduate School of Agriculture; Kyoto Japan
| | - Tohru Matsui
- Division of Applied Biosciences; Kyoto University Graduate School of Agriculture; Kyoto Japan
| | - Masayuki Funaba
- Division of Applied Biosciences; Kyoto University Graduate School of Agriculture; Kyoto Japan
| |
Collapse
|
23
|
Kensler KH, Beca F, Baker GM, Heng YJ, Beck AH, Schnitt SJ, Hazra A, Rosner BA, Eliassen AH, Hankinson SE, Brown M, Tamimi RM. Androgen receptor expression in normal breast tissue and subsequent breast cancer risk. NPJ Breast Cancer 2018; 4:33. [PMID: 30276234 PMCID: PMC6155011 DOI: 10.1038/s41523-018-0085-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 01/09/2023] Open
Abstract
Sex steroid hormone signaling is critical in the development of breast cancers, although the role of the androgen receptor remains unclear. This study evaluated androgen receptor (AR) expression in normal breast tissue as a potential marker of breast cancer risk. We conducted a nested case-control study of women with benign breast disease (BBD) within the Nurses' Health Studies. Epithelial AR expression was assessed by immunohistochemistry in normal tissue from the BBD biopsy and the percent of positive nuclei was estimated in ordinal categories of 10% for 78 breast cancer cases and 276 controls. Logistic regression models adjusting for the matching factors and BBD lesion type were used to calculate odds ratios (ORs) for the association between AR expression (tertiles: ≤10%, 11-30%, and >30%) and breast cancer risk. AR expression in normal breast tissue was not associated with subsequent breast cancer risk (ORT3vsT1 = 0.9, 95% CI = 0.4-1.8, p trend = 0.68). In comparison with low AR/low ER women, ORs of 0.4 (95% CI = 0.1-1.2) for high AR/high ER women, 1.8 (95% CI = 0.4-7.8) for low AR/high ER women, and 0.7 (95% CI = 0.3-1.6) for high AR/low ER women were observed (p interaction = 0.21). Ki67 did not modify the association between AR expression and breast cancer risk (p interaction = 0.75). There was little evidence for an overall association between AR expression in normal breast tissue and breast cancer risk. These findings did not show that the AR association varied by Ki67 expression in normal breast tissue, though there was suggestive heterogeneity by ER expression.
Collapse
Affiliation(s)
- Kevin H Kensler
- 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA.,2Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Francisco Beca
- 3Department of Pathology, Stanford University School of Medicine, Stanford, CA 94035 USA
| | - Gabrielle M Baker
- 4Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA.,5Harvard Medical School, Boston, MA 02215 USA
| | - Yujing J Heng
- 4Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA.,5Harvard Medical School, Boston, MA 02215 USA
| | | | - Stuart J Schnitt
- 5Harvard Medical School, Boston, MA 02215 USA.,7Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115 USA
| | - Aditi Hazra
- 5Harvard Medical School, Boston, MA 02215 USA.,8Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115 USA
| | - Bernard A Rosner
- 5Harvard Medical School, Boston, MA 02215 USA.,9Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA.,10Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - A Heather Eliassen
- 2Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA.,9Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Susan E Hankinson
- 2Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA.,5Harvard Medical School, Boston, MA 02215 USA.,9Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA.,11Department of Biostatistics and Epidemiology, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA 01003 USA
| | - Myles Brown
- 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA.,5Harvard Medical School, Boston, MA 02215 USA
| | - Rulla M Tamimi
- 2Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA.,9Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
24
|
Lee O, Heinz RE, Ivancic D, Muzzio M, Chatterton RT, Zalles CM, Keeney K, Phan B, Liu D, Scholtens D, Fackler MJ, Stearns V, Sukumar S, Khan SA. Breast Hormone Concentrations in Random Fine-Needle Aspirates of Healthy Women Associate with Cytological Atypia and Gene Methylation. Cancer Prev Res (Phila) 2018; 11:557-568. [PMID: 29954758 DOI: 10.1158/1940-6207.capr-17-0323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
Abstract
Sex steroid hormones contribute to breast cancer development, but data on concentrations of these within breast tissue are limited. We performed simultaneous multiparameter measurement of breast sex steroids, breast epithelial cytology, and DNA methylation in 119 healthy women (54 pre- and 65 postmenopausal) without a history of breast cancer. Random fine-needle aspiration (rFNA) of the breast was performed simultaneously with blood collection. Breast samples were analyzed by LC/MS-MS for estrone, estradiol, progesterone, androstenedione, and testosterone. Blood samples were assayed for estradiol and progesterone by immunoassay. Cytomorphology was classified using the Masood Score, and DNA methylation of eight genes was analyzed using quantitative multiplexed methylation-specific PCR, and expressed as the cumulative methylation index (CMI). Serum and breast concentrations of estradiol and progesterone showed significant correlation (Spearman r = 0.34, Padj = 0.001 and r = 0.69, Padj < 0.0006, respectively). Progesterone concentration was significantly higher in the premenopausal breast (Padj < 0.0008), and showed a luteal surge. Breast estrone and estradiol concentrations did not differ significantly by menopause, but androstenedione concentration was higher in the breasts of postmenopausal women (P = 0.026 and Padj = 0.208). Breast androgens were significantly correlated with breast density (Spearman r = 0.27, Padj = 0.02 for testosterone) and CMI (Spearman r = 0.3, Padj = 0.038 for androstenedione). Our data indicate that future larger studies of breast steroid hormones along with other parameters are feasible. Significant associations of breast androgen concentrations with breast density and gene methylation warrant future study. Cancer Prev Res; 11(9); 557-68. ©2018 AACR.
Collapse
Affiliation(s)
- Oukseub Lee
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard E Heinz
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David Ivancic
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Miguel Muzzio
- Illinois Institute of Technology Research Institute, Chicago, Illinois
| | - Robert T Chatterton
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Kara Keeney
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Belinda Phan
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Dachao Liu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Denise Scholtens
- Preventive Medicine of Northwestern University, Chicago, Illinois
| | - Mary Jo Fackler
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vered Stearns
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Saraswati Sukumar
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Seema A Khan
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
25
|
Choi MH. Mass spectrometry-based metabolic signatures of sex steroids in breast cancer. Mol Cell Endocrinol 2018; 466:81-85. [PMID: 28928086 DOI: 10.1016/j.mce.2017.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022]
Abstract
Owing to controversy over the effects of steroids on breast cancer pathophysiology, comprehensive quantification of steroid hormones has been extensively considered in both clinical practice and biomarker discovery studies. In contrast to the traditional immunoaffinity-based assays, which show cross-reactivity and have poor validity at low levels of sex steroids, mass spectrometry is becoming a promising tool for measuring steroid levels in complex biological specimens. The Endocrine Society has announced and continuously updated on technical advances to apply high-quality breakthroughs in the clinical sciences. To avoid incorrect estimation of the steroids of interest, however, further emphasis should be made on the efficient separation by chromatography, such as gas and liquid chromatography, prior to mass spectrometric (MS) detection. Recent advances in MS-based analysis of sex steroids associated with breast cancer enable accurate quantification of circulating as well as localized steroids from frozen tissue slices, allowing these assays to be more powerful in clinical practice.
Collapse
Affiliation(s)
- Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea.
| |
Collapse
|
26
|
McNamara KM, Guestini F, Sauer T, Touma J, Bukholm IR, Lindstrøm JC, Sasano H, Geisler J. In breast cancer subtypes steroid sulfatase (STS) is associated with less aggressive tumour characteristics. Br J Cancer 2018; 118:1208-1216. [PMID: 29563635 PMCID: PMC5943586 DOI: 10.1038/s41416-018-0034-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The majority of breast cancer cases are steroid dependent neoplasms, with hormonal manipulation of either CYP19/aromatase or oestrogen receptor alpha axis being the most common therapy. Alternate pathways of steroid actions are documented, but their interconnections and correlations to BC subtypes and clinical outcome could be further explored. METHODS We evaluated selected steroid receptors (Androgen Receptor, Oestrogen Receptor alpha and Beta, Glucocorticoid Receptor) and oestrogen pathways (steroid sulfatase (STS), 17β-hydroxysteroid dehydrogenase 2 (17βHSD2) and aromatase) in a cohort of 139 BC cases from Norway. Using logistic and cox regression analysis, we examined interactions between these and clinical outcomes such as distant metastasis, local relapse and survival. RESULTS Our principal finding is an impact of STS expression on the risk for distant metastasis (p<0.001) and local relapses (p <0.001), HER2 subtype (p<0.015), and survival (p<0.001). The suggestion of a beneficial effect of alternative oestrogen synthesis pathways was strengthened by inverted, but non-significant findings for 17βHSD2. CONCLUSIONS Increased intratumoural metabolism of oestrogens through STS is associated with significantly lower incidence of relapse and/or distant metastasis and correspondingly improved prognosis. The enrichment of STS in the HER2 overexpressing subtype is intriguing, especially given the possible role of HER-2 over-expression in endocrine resistance.
Collapse
Affiliation(s)
- Keely M McNamara
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University Japan, Sendai, Japan.
| | - Fouzia Guestini
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University Japan, Sendai, Japan
| | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Joel Touma
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Breast- and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Ida Rashida Bukholm
- Department of Breast- and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Jonas C Lindstrøm
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Helse Sør-Øst Health Services Research Centre, Akershus University Hospital, Lørenskog, Norway
| | - Hironobu Sasano
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University Japan, Sendai, Japan
| | - Jürgen Geisler
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
27
|
González-González A, Mediavilla MD, Sánchez-Barceló EJ. Melatonin: A Molecule for Reducing Breast Cancer Risk. Molecules 2018; 23:E336. [PMID: 29415446 PMCID: PMC6017232 DOI: 10.3390/molecules23020336] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 01/10/2023] Open
Abstract
The objective of this article is to review the basis supporting the usefulness of melatonin as an adjuvant therapy for breast cancer (BC) prevention in several groups of individuals at high risk for this disease. Melatonin, as a result of its antiestrogenic and antioxidant properties, as well as its ability to improve the efficacy and reduce the side effects of conventional antiestrogens, could safely be associated with the antiestrogenic drugs presently in use. In individuals at risk of BC due to night shift work, the light-induced inhibition of melatonin secretion, with the consequent loss of its antiestrogenic effects, would be countered by administering this neurohormone. BC risk from exposure to metalloestrogens, such as cadmium, could be treated with melatonin supplements to individuals at risk of BC due to exposure to this xenoestrogen. The BC risk related to obesity may be reduced by melatonin which decrease body fat mass, inhibits the enhanced aromatase expression in obese women, increases adiponectin secretion, counteracts the oncogenic effects of elevated concentrations of leptin; and decreases blood glucose levels and insulin resistance. Despite compelling experimental evidence of melatonin's oncostatic actions being susceptible to lowering BC risk, there is still a paucity of clinical trials focused on this subject.
Collapse
Affiliation(s)
- Alicia González-González
- Department of Physiology and Pharmacology, School of Medicina, University of Cantabria, 39011 Santander, Spain.
| | - María Dolores Mediavilla
- Department of Physiology and Pharmacology, School of Medicina, University of Cantabria, 39011 Santander, Spain.
| | - Emilio J Sánchez-Barceló
- Department of Physiology and Pharmacology, School of Medicina, University of Cantabria, 39011 Santander, Spain.
| |
Collapse
|
28
|
Deshmukh SK, Srivastava SK, Tyagi N, Ahmad A, Singh AP, Ghadhban AAL, Dyess DL, Carter JE, Dugger K, Singh S. Emerging evidence for the role of differential tumor microenvironment in breast cancer racial disparity: a closer look at the surroundings. Carcinogenesis 2017; 38:757-765. [PMID: 28430867 DOI: 10.1093/carcin/bgx037] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/28/2017] [Indexed: 12/24/2022] Open
Abstract
Although increased awareness leading to early detection and prevention, as well as advancements in treatment strategies, have resulted in superior clinical outcomes, African American women with breast cancer continue to have greater mortality rates, compared to Caucasian American counterparts. Moreover, African American women are more likely to have breast cancer at a younger age and be diagnosed with aggressive tumor sub-types. Such racial disparities can be attributed to socioeconomic differences, but it is increasingly being recognized that these disparities may indeed be due to certain genetic and other non-genetic biological differences. Tumor microenvironment, which provides a favorable niche for the growth of tumor cells, is comprised of several types of stromal cells and the various proteins secreted as a consequence of bi-directional tumor-stromal cross-talk. Emerging evidence suggests inherent biological differences in the tumor microenvironment of breast cancer patients from different racial backgrounds. Tumor microenvironment components, affected by the genetic make-up of the tumor cells as well as other non-tumor-associated factors, may also render patients more susceptible to the development of aggressive tumors and faster progression of disease resulting in early onset, thus adversely affecting patients' survival. This review provides an overview of breast cancer racial disparity and discusses the existence of race-associated differential tumor microenvironment and its underlying genetic and non-genetic causal factors. A better understanding of these aspects would help further research on effective cancer management and improved approaches for reducing the racial disparities gaps in breast cancer patients.
Collapse
Affiliation(s)
- Sachin Kumar Deshmukh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.,Division of Cell Biology and Genetics, Tatva Biosciences, Coastal Innovation Hub, 600 Clinic Drive, 3rd Floor, Mobile, AL 36688, USA
| | - Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ahmed A L Ghadhban
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Donna L Dyess
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - James E Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA
| | - Kari Dugger
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
29
|
Lønning PE. Comment on "Towards a personalized approach to aromatase inhibitor therapy: a digital microfluidic platform for rapid analysis of estradiol in core-needle-biopsies" by S. Abdulwahab, A. H. C. Ng, M. D. Chamberlain, H. Ahmado, L.-A. Behan, H. Gomaa, R. F. Casper and A. R. Wheeler, Lab Chip, 2017, 17, 1594. LAB ON A CHIP 2017; 17:3186-3187. [PMID: 28816306 DOI: 10.1039/c7lc00617a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This comment on an article that appeared in Lab on a Chip (Abdulwahab et al., Lab Chip, 2017, 17, 1594) highlights the need for further validation of the proposed method.
Collapse
Affiliation(s)
- Per E Lønning
- Department of Clinical Science, Faculty of Medicine, University of Bergen and Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
30
|
Brown KA, Iyengar NM, Zhou XK, Gucalp A, Subbaramaiah K, Wang H, Giri DD, Morrow M, Falcone DJ, Wendel NK, Winston LA, Pollak M, Dierickx A, Hudis CA, Dannenberg AJ. Menopause Is a Determinant of Breast Aromatase Expression and Its Associations With BMI, Inflammation, and Systemic Markers. J Clin Endocrinol Metab 2017; 102:1692-1701. [PMID: 28323914 PMCID: PMC5443335 DOI: 10.1210/jc.2016-3606] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022]
Abstract
CONTEXT Most estrogen-dependent breast cancers occur after menopause, despite low levels of circulating estrogens. Breast expression of the estrogen-biosynthetic enzyme, aromatase, is proposed to drive breast cancer development after menopause. However, the effects of menopause on breast aromatase expression are unknown. OBJECTIVE To determine the effect of menopause on breast aromatase expression in relation to body mass index (BMI), white adipose tissue inflammation (WATi), and systemic markers of metabolic dysfunction. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional study of 102 premenopausal (age 27 to 56) and 59 postmenopausal (age 45 to 74) women who underwent mastectomy for breast cancer treatment/prevention. OUTCOME Breast tissue was assessed for the presence of crown-like structures and the expression and activity of aromatase. Systemic markers examined include interleukin (IL)-6, insulin, glucose, leptin, adiponectin, high-sensitivity C-reactive protein (hsCRP), cholesterol, and triglycerides. Multivariable analysis was performed for aromatase messenger RNA (mRNA) in relation to BMI, WATi, and blood markers. RESULTS Postmenopausal women had higher BMI and more breast WATi than premenopausal women. Fasting levels of IL-6, glucose, leptin, hsCRP, and homeostatic model assessment 2 insulin resistance score were higher in the postmenopausal group. BMI was positively correlated with aromatase mRNA in both pre- and postmenopausal women. Aromatase levels were higher in breast tissue of postmenopausal women, with levels being higher in inflamed vs noninflamed, independent of BMI. Adipocyte diameter and levels of leptin, hsCRP, adiponectin, and high-density lipoprotein cholesterol were more strongly correlated with aromatase in postmenopausal than premenopausal women. CONCLUSIONS Elevated aromatase in the setting of adipose dysfunction provides a possible mechanism for the higher incidence of hormone-dependent breast cancer in obese women after menopause.
Collapse
Affiliation(s)
- Kristy A. Brown
- Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, and Monash University, Clayton, Victoria 3168, Australia
| | - Neil M. Iyengar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Xi Kathy Zhou
- Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, New York 10065
| | - Ayca Gucalp
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Kotha Subbaramaiah
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Hanhan Wang
- Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, New York 10065
| | - Dilip D. Giri
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Monica Morrow
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Domenick J. Falcone
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Nils K. Wendel
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Lisle A. Winston
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Michael Pollak
- Departments of Medicine and Oncology, McGill University, Montreal, Quebec, Canada H3T 1E2
| | - Anneloor Dierickx
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Clifford A. Hudis
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | | |
Collapse
|
31
|
Robarge JD, Desta Z, Nguyen AT, Li L, Hertz D, Rae JM, Hayes DF, Storniolo AM, Stearns V, Flockhart DA, Skaar TC, Henry NL. Effects of exemestane and letrozole therapy on plasma concentrations of estrogens in a randomized trial of postmenopausal women with breast cancer. Breast Cancer Res Treat 2017; 161:453-461. [PMID: 27943008 PMCID: PMC5429096 DOI: 10.1007/s10549-016-4077-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022]
Abstract
PURPOSE Inter-individual differences in estrogen concentrations during treatment with aromatase inhibitors (AIs) may contribute to therapeutic response and toxicity. The aim of this study was to determine plasma concentrations of estradiol (E2), estrone (E1), and estrone sulfate (E1S) in a large cohort of AI-treated breast cancer patients. METHODS In a randomized, multicenter trial of postmenopausal women with early-stage breast cancer starting treatment with letrozole (n = 241) or exemestane (n = 228), plasma estrogen concentrations at baseline and after 3 months were quantitated using a sensitive mass spectrometry-based assay. Concentrations and suppression below the lower limit of quantification (LLOQ) were compared between estrogens and between drugs. RESULTS The ranges of baseline estrogen concentrations were CONCLUSIONS Letrozole had greater suppression of plasma E1 and E1S than exemestane, though the response was highly variable among patients. Additional research is required to examine the clinical relevance of differential estrogen suppression.
Collapse
Affiliation(s)
- Jason D Robarge
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zereunesay Desta
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anne T Nguyen
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lang Li
- Center for Computational Biology and Bioinformatics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel Hertz
- Breast Oncology Program, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - James M Rae
- Breast Oncology Program, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - Daniel F Hayes
- Breast Oncology Program, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - Anna M Storniolo
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Vered Stearns
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - David A Flockhart
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Todd C Skaar
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N Lynn Henry
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Dr #3362, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
32
|
Associations of obesity and physical activity with serum and intratumoral sex steroid hormone levels among postmenopausal women with breast cancer: analysis of paired serum and tumor tissue samples. Breast Cancer Res Treat 2017; 162:115-125. [PMID: 28044214 DOI: 10.1007/s10549-016-4094-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE It has been hypothesized that intratumoral estrogens may play important roles in the growth of breast cancer. However, few studies have investigated such intratumoral hormones, or their association with risk factors of breast cancer. METHODS In this cross-sectional study, hormone levels in paired serum and tumor tissue samples from 146 postmenopausal women with breast cancer were measured by liquid chromatography-tandem mass spectrometry and compared between estrogen/progesterone (ER/PgR) subtypes. The associations of risk factors including body mass index (BMI) and other lifestyle factors with these hormone levels were investigated using analysis of covariance. RESULTS The level of estradiol (E2) in tumor tissue was extremely high in women with ER+ (geometric mean 95.6 pg/g) relative to women with ER-/PgR- (8.9 pg/g), whereas serum E2 level did not differ much between the two groups (3.1 and 2.8 pg/ml, respectively). Serum levels of precursors for E2, including testosterone (T) and androstenedione (Adione), and tissue Adione level, were high among women with ER+. After adjustment for confounding variables, BMI was found to be positively associated with tissue levels of E2, estrone (E1), T, and Adione among women with ER+ (P trend < 0.0001 for E2; 0.0016 for E1; 0.0002 for T; and 0.03 for Adione). CONCLUSION The data suggest that tissue E2 is related to the growth of receptor-positive breast cancer and that risk factors such as BMI affect tissue levels of E2 and its precursors. Understanding of hormonal environments within tumor tissue may be important for elucidating hormonal etiology of breast cancer and improving the prognosis of patients.
Collapse
|
33
|
Rezvanpour A, Don-Wauchope AC. Clinical implications of estrone sulfate measurement in laboratory medicine. Crit Rev Clin Lab Sci 2016; 54:73-86. [DOI: 10.1080/10408363.2016.1252310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Atoosa Rezvanpour
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario,Canada and
| | - Andrew C. Don-Wauchope
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario,Canada and
- Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
| |
Collapse
|
34
|
Lønning PE. Comments on paper: "Quantitative determination of estrone by liquid chromatography-tandem mass spectrometry in subcutaneous adipose tissue from the breast in postmenopausal women" by Vihma et al. J Steroid Biochem Mol Biol 2016; 159:72. [PMID: 26925928 DOI: 10.1016/j.jsbmb.2016.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/03/2016] [Accepted: 02/22/2016] [Indexed: 11/22/2022]
Affiliation(s)
- Per Eystein Lønning
- Department of Clinical Science, University of Bergen, Jonas Lies vei 86, N-5021 Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
35
|
Vihma V, Tikkanen MJ, Hämäläinen E. Response to the comments by Per E. Lønning. J Steroid Biochem Mol Biol 2016; 159:70-1. [PMID: 26925930 DOI: 10.1016/j.jsbmb.2016.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Veera Vihma
- University of Helsinki and Folkhälsan Research Center, Helsinki, Finland.
| | - Matti J Tikkanen
- University of Helsinki and Folkhälsan Research Center, Helsinki, Finland
| | - Esa Hämäläinen
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
36
|
Estrogens Correlate with PELP1 Expression in ER Positive Breast Cancer. PLoS One 2015; 10:e0134351. [PMID: 26247365 PMCID: PMC4527840 DOI: 10.1371/journal.pone.0134351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/09/2015] [Indexed: 11/19/2022] Open
Abstract
The Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) is an estrogen receptor (ER) coactivator and a proto-oncogene known to be deregulated in endocrine cancers. In breast cancer, PELP1 overexpression has been associated with endocrine therapy resistance. Although PELP1 is known to be regulated by estrogens in vitro, its association with estrogen levels within the tissue of breast cancer patients has not previously been assessed. Here, we determined PELP1 mRNA expression levels in paired samples of normal and malignant breast tissue obtained from 32 postmenopausal and 11 premenopausal women. In the total sample set, PELP1 levels were higher in tumors compared to normal breast tissue (P = 0.041). Among postmenopausal women, PELP1 tumor levels correlated positively with estrone (E1) and estradiol (E2) levels in both normal tissue (r = 0.543, P = 0.003 and r = 0.601, P = 0.001, respectively) and plasma (r = 0.392, P = 0.053 and r = 0.403, P = 0.046, respectively). Analyzing all ER+ tumors (n = 26), PELP1 correlated positively with E1 and E2 in tumor tissue (r = 0.562, P = 0.003 and r = 0.411, P = 0.037, respectively) and normal tissue (r = 0.461, P = 0.018 and r = 0.427, P = 0.030, respectively) in addition to plasma E1, E2 and estrone sulphate (E1S) concentrations (r = 0.576, P = 0.003, r = 0.456, P = 0.025 and r = 0.406, P = 0.049, respectively). Finally, PELP1 correlated positively with ER mRNA (ESR1) (r = 0.553, P = 0.026) in ER+ tumors, whereas a negative association between PELP1 and ESR1 (r = -0.733, P = 0.010) was observed in ER- breast tumors. Taken together, tumor PELP1 mRNA expression is associated with estrogen levels in breast cancer, suggesting a potentially important role of PELP1 in ER+ breast cancer growth in vivo.
Collapse
|
37
|
Honma N, Hosoi T, Arai T, Takubo K. Estrogen and cancers of the colorectum, breast, and lung in postmenopausal women. Pathol Int 2015; 65:451-9. [PMID: 26126901 DOI: 10.1111/pin.12326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 05/28/2015] [Indexed: 01/01/2023]
Abstract
As estrogens play an important role in maintaining physiological function in various organs, the estrogen decrease after menopause is thought to cause various diseases frequently observed in postmenopausal or elderly women. With the aging of society and a decrease in infectious or vascular diseases, neoplasms have now become the most frequent cause of death in Japan. Cancers of the colorectum, breast, and lung have been rapidly increasing both in incidence and death, especially among postmenopausal women. Interestingly, all three of these cancers are associated with estrogens. In premenopausal women, ovarian estrogens plays major roles in the female reproductive organs through the classic estrogen receptor, ER-α. In postmenopausal women, however, estrogens produced/activated by peripherally localized estrogen-metabolizing enzymes such as aromatase, which converts androgen into estrogens, are thought to play physiologically and pathobiologically important roles in various organs through second ER, namely ER-β, distributing systemically. In this article, the association of estrogens with these cancers in postmenopausal or elderly women are reviewed, especially focusing on the role of ER-β and peripheral estrogen metabolism. The possibility of prevention or treatment of these diseases through estrogenic control is also discussed.
Collapse
Affiliation(s)
- Naoko Honma
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takayuki Hosoi
- Kenkoin Clinic, Institute for Preventive Medicine, Kenkoin Medical Corporation, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
38
|
Stanczyk FZ, Mathews BW, Sherman ME. Relationships of sex steroid hormone levels in benign and cancerous breast tissue and blood: A critical appraisal of current science. Steroids 2015; 99:91-102. [PMID: 25554581 DOI: 10.1016/j.steroids.2014.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
A systematic review of the literature on sex steroid measurement in breast tissue identified only 19 articles meeting the following criteria: menopausal status given; steroids measured in tissue homogenates by conventional RIA with a purification step or by mass spectrometry; and values reported per g tissue or per g protein. Twelve articles were analyzed in detail for: ratios of sex steroid hormone levels in cancerous or benign tissues to blood levels, stratified by menopausal status; ratios between the different hormone levels within tissues or within blood; and difference in these ratios between tissue and blood compartments. Estrogen and androgen concentrations varied greatly in benign and cancerous tissues and in blood between individuals. Postmenopausal, but not premenopausal, estradiol concentrations were significantly higher in cancerous compared to benign breast tissue. The estradiol/estrone ratio was lowest in premenopausal benign tissue, and substantially higher in premenopausal cancerous tissue and postmenopausal benign and cancerous tissues. Estradiol and estrone levels were considerably higher in tissue than in plasma in both premenopausal and postmenopausal women. Androgen levels were generally higher in the benign than the cancerous tissue, and tissue androgen levels were higher than in plasma, suggesting in situ aromatization of androgens to estrogens in breast cancer tissue. Limited available data on levels of hydroxylated estrogens in breast tissue compared to corresponding levels in plasma or urine were reviewed, but due to the paucity of studies no conclusions can presently be drawn regarding the relationship of the 2-hydroxyestrone:16α-hydroxyestrone ratio to breast cancer risk and genotoxic effects of 4-hydroxylated estrogens. Finally, data on hormone levels in breast adipose tissue were analyzed; high levels of androstenedione and testosterone and significant estrone and estradiol levels in breast adipocytes from postmenopausal breast cancer patients are consistent with an obesity-inflammation-aromatase axis occurring locally in breast tissue. The controversies regarding the source of intratumoral estrogens in the breast are summarized.
Collapse
Affiliation(s)
- Frank Z Stanczyk
- Departments of Obstetrics and Gynecology, and Preventive Medicine, University of Southern California Keck School of Medicine, 1321 N. Mission Rd., Los Angeles, CA 90033, USA.
| | - Brett W Mathews
- University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Mark E Sherman
- National Cancer Institute, Division of Cancer Prevention, 9609 Medical Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Abstract
Plasma estrogen measurement with use of radioimmunoassays has been instrumental in the development of aromatase inhibitors for endocrine therapy of postmenopausal breast cancer. However, due to low plasma estrogen concentrations in postmenopausal women, direct radioimmunoassays lack the sensitivity required. While certain laboratories have developed highly sensitive assays for research purposes revealing plasma estrogen suppression consistent with results from tracer studies, such assays are time and labor-consuming due to need for pre-analytical chromatographic purification, sample concentration and sometimes conversion of precursors to products. While novel chromatographic methods involving mass spectrometry analysis are likely to replace such radioimmunoassays in the future, so far a limited number of laboratories have developed suitable assays with a detection limit (around 1 pM) that is required for analyzing plasma estrogen levels in patients during treatment with potent aromatase inhibitors.
Collapse
Affiliation(s)
- Per Eystein Lønning
- Institute of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
40
|
Normal breast tissue estrogen levels. Maturitas 2015; 81:327. [DOI: 10.1016/j.maturitas.2015.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 11/21/2022]
|
41
|
Depypere H. Answer to the comment by Per Eystein Lønning on “The serum estradiol concentration is the main determinant of the estradiol concentration in normal breast tissue”. Maturitas 2015; 81:328. [DOI: 10.1016/j.maturitas.2015.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/01/2022]
|
42
|
Straume AH, Knappskog S, Lønning PE. Effects of SNP variants in the 17β-HSD2 and 17β-HSD7 genes and 17β-HSD7 copy number on gene transcript and estradiol levels in breast cancer tissue. J Steroid Biochem Mol Biol 2014; 143:192-8. [PMID: 24560990 DOI: 10.1016/j.jsbmb.2014.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/16/2014] [Accepted: 02/08/2014] [Indexed: 01/11/2023]
Abstract
Breast cancers reveal elevated E2 levels compared to plasma and normal breast tissue. Previously, we reported intra-tumour E2 to be negatively correlated to transcription levels of 17β-HSD2 but positively correlated to 17β-HSD7. Here, we explored these mechanisms further by analysing the same breast tumours for 17β-HSD2 and -7 SNPs, as well as 17β-HSD7 gene copy number. Among the SNPs detected, we found the 17β-HSD2 rs4445895_T allele to be associated with lower intra-tumour mRNA (p=0.039) and an elevated intra-tumour E2 level (p=0.006). In contrast, we found the 17β-HSD7 rs1704754_C allele to be associated with elevated mRNA (p=0.050) but not to E2 levels in breast tumour tissue. Surprisingly, 17β-HSD7 - gene copy number was elevated in 19 out of 46 breast tumours examined. Elevated copy number was associated with an increased mRNA expression level (p=0.013) and elevated tumour E2 (p=0.025). Interestingly, elevated 17β-HSD7 - gene copy number was associated with increased expression not only of 17β-HSD7, but the 17β-HSD7_II pseudogene as well (p=0.019). Expression level of 17β-HSD7 and its pseudogene was significantly correlated both in tumour tissue (rs=0.457, p=0.001) and in normal tissue (rs=0.453, p=0.002). While in vitro transfection experiments revealed no direct impact of 17β-HSD7 expression on pseudogene level, the fact that 17β-HSD7 and 17β-HSD7_II share a 95.6% sequence identity suggests the two transcripts may be subject to common regulatory mechanisms. In conclusion, genetic variants of 17β-HSD2 and 17β-HSD7 may affect intra-tumour gene expression as well as breast cancer E2 levels in postmenopausal women.
Collapse
Affiliation(s)
- Anne Hege Straume
- Section of Oncology, Department of Clinical Science, University of Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Per Eystein Lønning
- Section of Oncology, Department of Clinical Science, University of Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
43
|
Santen RJ. Menopausal hormone therapy and breast cancer. J Steroid Biochem Mol Biol 2014; 142:52-61. [PMID: 23871991 DOI: 10.1016/j.jsbmb.2013.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 06/13/2013] [Accepted: 06/28/2013] [Indexed: 12/11/2022]
Abstract
Observational and randomized controlled trial data have extensively examined the relationship between menopausal hormone therapy (MHT) and risk of developing breast cancer. A highly influential study from the Women's Health Initiative (WHI) in 2002 reported that a MHT regimen of conjugated equine estrogens and medroxyprogesterone acetate increased the risk of breast cancer by 26%. Later reports from the WHI indicated that a MHT regimen with conjugated equine estrogens alone decreased the risk of breast cancer by 23%. Critical re-examination of the WHI study noted that the average participant age was 63, that few women had symptoms, and that the WHI results might not apply to younger, symptomatic women shortly after menopause. Since the original publications, several post hoc analyses and observational studies have stimulated reconsideration of the WHI findings. Emphasis has been directed toward risks in younger women just entering the menopause, the subgroup who are most likely to be considering MHT use. The goal of this treatise is to integrate available mechanistic and clinical information related to the use of estrogen alone or estrogen plus a progestogen for five years or less. These data suggest that estrogen alone neither decreases nor increases risk in younger women initiating therapy close to the time of menopause but decreases risk in older women. Both younger and older women experience an excess risk with estrogen plus a progestogen. The attributable risk in younger women is less in those with a low underlying Gail Model risk score. Effects of MHT on risk largely reflect actions on pre-existing, occult, undiagnosed breast cancers. Tumor kinetic models suggest that the pro-proliferative effects of estrogen plus a progestogen on occult tumors provide a mechanistic explanation for the increased risk with this therapy. Pro-apoptotic effects of estrogen alone may explain the reduction of breast cancer in women starting this therapy at an average age of 63 as reported in the WHI study. This article is part of a Special Issue entitled 'Menopause'.
Collapse
Affiliation(s)
- Richard J Santen
- University of Virginia Health Sciences System, Charlottesville, VA 22908-1416, USA.
| |
Collapse
|
44
|
Abstract
The study of large prospective collections of plasma samples from women prior to the development of breast cancer has firmly established certain sex steroids as being significantly associated with risk. The strongest associations have been found in postmenopausal women in whom the within person variability of most hormones is markedly reduced but some positive associations have also been seen in premenopausal women. Plasma estrogens show the strongest correlations with risk and these are strengthened by measurement or calculation of the proportion of estradiol that circulates free of sex hormone binding globulin (SHBG), consistent with this being the most active fraction. The relationships have been reported to potentially explain virtually all of the association of breast cancer with body mass index in postmenopausal women; this is likely to be due to non-ovarian estrogen synthesis being prominent in subcutaneous fat. These strong relationships have led to plasma and urine estrogen levels being used as intermediate end-points in the search for genes that affect breast cancer risk via their role in steroid disposition. Plasma androgen levels also show a relationship with breast cancer risk that is weakened but not eliminated by 'correction' for estrogen levels. This has been argued to be evidence of the local production of estrogens being important in the etiology of breast cancer. Given that plasma steroid levels do not correlate closely with mammographic density, which is strongly associated with risk, the opportunity exists to combine the two factors in assessing breast cancer risk but the low availability of suitable estrogen assays is a major impediment to this. In established breast cancer, plasma estrogens have been found to correlate with gene expression of estrogen dependent genes and the expression of these varies across the menstrual cycle of premenopausal women. There is infrequently a need for routine measurement of plasma estrogen levels but it has been important in the comparative pharmacology and dose-related effectiveness of aromatase inhibitors. Measurement may be needed to identify residual ovarian function in women who have amenorrhea subsequent to cytotoxic chemotherapy indicating their unsuitability for aromatase inhibitor treatment. Use of highly sensitive assays has also revealed that the association between BMI and plasma estrogen levels persists in patients on 3rd generation aromatase inhibitors and that measurable increments in plasma estrogen levels occur with some vaginal estrogen preparations that are of concern in relation to treatment efficacy.
Collapse
Affiliation(s)
- Elizabeth Folkerd
- The Academic Department of Biochemistry, The Royal Marsden NHS Foundation Trust, Wallace Wing, Fulham Road, London SW3 6JJ, UK.
| | | |
Collapse
|
45
|
Samavat H, Kurzer MS. Estrogen metabolism and breast cancer. Cancer Lett 2014; 356:231-43. [PMID: 24784887 DOI: 10.1016/j.canlet.2014.04.018] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/01/2014] [Accepted: 04/19/2014] [Indexed: 01/18/2023]
Abstract
There is currently accumulating evidence that endogenous estrogens play a critical role in the development of breast cancer. Estrogens and their metabolites have been studied in both pre- and postmenopausal women with more consistent results shown in the latter population, in part because of large hormonal variations during the menstrual cycle and far fewer studies having been performed in premenopausal women. In this review we describe in detail estrogen metabolism and associated genetic variations, and provide a critical review of the current literature regarding the role of estrogens and their metabolites in breast cancer risk.
Collapse
Affiliation(s)
- Hamed Samavat
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Mindy S Kurzer
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
46
|
Folkerd EJ, Lønning PE, Dowsett M. Interpreting plasma estrogen levels in breast cancer: caution needed. J Clin Oncol 2014; 32:1396-400. [PMID: 24733806 DOI: 10.1200/jco.2013.53.9411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Elizabeth J Folkerd
- The Institute of Cancer Research; Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | | | | |
Collapse
|
47
|
Relationship of body mass index with aromatisation and plasma and tissue oestrogen levels in postmenopausal breast cancer patients treated with aromatase inhibitors. Eur J Cancer 2014; 50:1055-64. [DOI: 10.1016/j.ejca.2014.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/03/2014] [Accepted: 01/09/2014] [Indexed: 11/21/2022]
|
48
|
Savage KI, Matchett KB, Barros EM, Cooper KM, Irwin GW, Gorski JJ, Orr KS, Vohhodina J, Kavanagh JN, Madden AF, Powell A, Manti L, McDade SS, Park BH, Prise KM, McIntosh SA, Salto-Tellez M, Richard DJ, Elliott CT, Harkin DP. BRCA1 deficiency exacerbates estrogen-induced DNA damage and genomic instability. Cancer Res 2014; 74:2773-2784. [PMID: 24638981 DOI: 10.1158/0008-5472.can-13-2611] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here, we report that estrogen and estrogen metabolites can cause DNA double-strand breaks (DSB) in estrogen receptor-α-negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability. We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolizing enzymes, such as CYP1A1, in breast cells. Finally, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumors in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell types.
Collapse
Affiliation(s)
- Kienan I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Kyle B Matchett
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Eliana M Barros
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Kevin M Cooper
- Institute for Global Food Security, Queen's University Belfast, 30 Malone Rd, Belfast BT9 5BN, UK
| | - Gareth W Irwin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Julia J Gorski
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Katy S Orr
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Jekaterina Vohhodina
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Joy N Kavanagh
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Angelina F Madden
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Alexander Powell
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK.,Institute for Global Food Security, Queen's University Belfast, 30 Malone Rd, Belfast BT9 5BN, UK
| | - Lorenzo Manti
- Radiation Biophysics Laboratory, Department of Physics, University of Naples Federico II, Via Cinthia-80126 Naples, Italy
| | - Simon S McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Stuart A McIntosh
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Manuel Salto-Tellez
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| | - Derek J Richard
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, 4059, Brisbane, Australia
| | - Christopher T Elliott
- Institute for Global Food Security, Queen's University Belfast, 30 Malone Rd, Belfast BT9 5BN, UK
| | - D Paul Harkin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| |
Collapse
|
49
|
van Kruchten M, de Vries EGE, Brown M, de Vries EFJ, Glaudemans AWJM, Dierckx RAJO, Schröder CP, Hospers GAP. PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol 2013; 14:e465-e475. [PMID: 24079874 DOI: 10.1016/s1470-2045(13)70292-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oestrogen receptors are overexpressed in around 70% of all breast cancers, and are a target for endocrine therapy. These receptors can be visualised on PET with use of 16α-[(18)F]-fluoro-17β-oestradiol ((18)F-FES) as a tracer. Compared with biopsy, which enables assessment of individual sites, whole-body (18)F-FES-PET enables quantification of oestrogen-receptor expression in all metastases. In several studies, measurement of tumour protein expression in oestrogen receptors by (18)F-FES-PET, concurrent with biopsy, detected oestrogen-receptor-positive tumour lesions with a sensitivity of 84% and specificity of 98%. Roughly 45% of patients with metastatic breast cancer have discordant oestrogen-receptor expression across lesions (ie, (18)F-FES-positive and (18)F-FES-negative metastases). Low tumour (18)F-FES uptake in metastases can predict failure of hormonal therapy in patients with oestrogen-receptor-positive primary tumours. Finally, (18)F-FES-PET has shown that oestrogen-receptor binding capacity changes after intervention with hormonal drugs, but findings need to be confirmed. Factors other than oestrogen-receptor expression, including menopausal status and concomitant therapies, that can affect tumour (18)F-FES uptake must be taken into account.
Collapse
Affiliation(s)
- Michel van Kruchten
- Department of Medical Oncology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Carolien P Schröder
- Department of Medical Oncology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands.
| |
Collapse
|
50
|
Inverse regulation of EGFR/HER1 and HER2-4 in normal and malignant human breast tissue. PLoS One 2013; 8:e74618. [PMID: 23991224 PMCID: PMC3750010 DOI: 10.1371/journal.pone.0074618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/05/2013] [Indexed: 01/05/2023] Open
Abstract
Cross-talk between the estrogen and the EGFR/HER signalling pathways has been suggested as a potential cause of resistance to endocrine therapy in breast cancer. Here, we determined HER1-4 receptor and neuregulin-1 (NRG1) ligand mRNA expression levels in breast cancers and corresponding normal breast tissue from patients previously characterized for plasma and tissue estrogen levels. In tumours from postmenopausal women harbouring normal HER2 gene copy numbers, we found HER2 and HER4, but HER3 levels in particular, to be elevated (2.48, 1.30 and 22.27 –fold respectively; P<0.01 for each) compared to normal tissue. Interestingly, HER3 as well as HER4 were higher among ER+ as compared to ER- tumours (P=0.004 and P=0.024, respectively). HER2 and HER3 expression levels correlated positively with ER mRNA (ESR1) expression levels (r=0.525, P=0.044; r=0.707, P=0.003, respectively). In contrast, EGFR/HER1 was downregulated in tumour compared to normal tissue (0.13-fold, P<0.001). In addition, EGFR/HER1 correlated negatively to intra-tumour (r=-0.633, P=0.001) as well as normal tissue (r=-0.556, P=0.006) and plasma estradiol levels (r=-0.625, P=0.002), suggesting an inverse regulation between estradiol and EGFR/HER1 levels. In ER+ tumours from postmenopausal women, NRG1 levels correlated positively with EGFR/HER1 (r=0.606, P=0.002) and negatively to ESR1 (r=-0.769, P=0.003) and E2 levels (r=-0.542, P=0.020). Our results indicate influence of estradiol on the expression of multiple components of the HER system in tumours not amplified for HER2, adding further support to the hypothesis that cross-talk between these systems may be of importance to breast cancer growth in vivo.
Collapse
|