1
|
Salama RM, Eissa N, Doghish AS, Abulsoud AI, Abdelmaksoud NM, Mohammed OA, Abdel Mageed SS, Darwish SF. Decoding the secrets of longevity: unraveling nutraceutical and miRNA-Mediated aging pathways and therapeutic strategies. FRONTIERS IN AGING 2024; 5:1373741. [PMID: 38605867 PMCID: PMC11007187 DOI: 10.3389/fragi.2024.1373741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
MicroRNAs (miRNAs) are short RNA molecules that are not involved in coding for proteins. They have a significant function in regulating gene expression after the process of transcription. Their participation in several biological processes has rendered them appealing subjects for investigating age-related disorders. Increasing data indicates that miRNAs can be influenced by dietary variables, such as macronutrients, micronutrients, trace minerals, and nutraceuticals. This review examines the influence of dietary factors and nutraceuticals on the regulation of miRNA in relation to the process of aging. We examine the present comprehension of miRNA disruption in age-related illnesses and emphasize the possibility of dietary manipulation as a means of prevention or treatment. Consolidating animal and human research is essential to validate the significance of dietary miRNA control in living organisms, despite the abundance of information already provided by several studies. This review elucidates the complex interaction among miRNAs, nutrition, and aging, offering valuable insights into promising areas for further research and potential therapies for age-related disorders.
Collapse
Affiliation(s)
- Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
| | - Ahmed I. Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| |
Collapse
|
2
|
Sajadi Kaboudi P, Halakoo M, Ezoji K, Shafee H, Hosseini SR, Bijani A. Serum vitamin D and PSA in elderly men in Amirkola. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:535-541. [PMID: 39011431 PMCID: PMC11246678 DOI: 10.22088/cjim.15.3.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/10/2023] [Accepted: 11/16/2023] [Indexed: 07/17/2024]
Abstract
Background Vitamin D is a modifiable risk factor in cancer and prostate diseases. In this study, we investigate the relationship between vitamin D and serum PSA in elderly men of Amirkola City. Methods The current cross-sectional descriptive study was conducted on elderly men participating in the cohort study in Amirkola. Demographic information including age, sex, marital status and occupation were recorded and blood samples (5 cc of blood) were taken to measure PSA and vitamin D. A p -value less than 0.05 is statistically significant. Results After applying the inclusion and exclusion criteria, 837 elderly men with mean age of 69.99 ± 7.72 years were included in the study. In terms of marital status, 779 (93.1%) were married and 59 (6.9%) were single. In the study of employment status, 476 (56.9%) self-employed, 331 (439.5%) retired, 8 (1.0 %) housewives, 14 (1.7%) unemployed and 8 (1.0 %) They were in an unknown situation. The mean level of vitamin D was 31.94 ± 28.57 ng / mL and the mean level of PSA was 1.94 ± 3.28 ng / dL. No significant relationship was found between vitamin D level and serum PSA in Pearson Correlation test (P = 0.16). Among the other variables studied, only age was related to PSA levels and PSA level increased with age (P = 0.001). Conclusion No significant relationship was found between PSA serum level and vitamin D level, but the existence of vitamin D deficiency in most of the elderly studied needs attention.
Collapse
Affiliation(s)
- Parvin Sajadi Kaboudi
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Halakoo
- Student Research Committee, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Khadijeh Ezoji
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Shafee
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Reza Hosseini
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Bijani
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
3
|
McGillis L, Bronte-Tinkew DM, Dang F, Capurro M, Prashar A, Ricciuto A, Greenfield L, Lozano-Ruf A, Siddiqui I, Hsieh A, Church P, Walters T, Roth DE, Griffiths A, Philpott D, Jones NL. Vitamin D deficiency enhances expression of autophagy-regulating miR-142-3p in mouse and "involved" IBD patient intestinal tissues. Am J Physiol Gastrointest Liver Physiol 2021; 321:G171-G184. [PMID: 34159811 DOI: 10.1152/ajpgi.00398.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vitamin D deficiency is an environmental factor involved in the pathogenesis of inflammatory bowel disease (IBD); however, the mechanisms surrounding its role remain unclear. Previous studies conducted in an intestinal epithelial-specific vitamin D receptor (VDR) knockout model suggest that a lack of vitamin D signaling causes a reduction in intestinal autophagy. A potential link between vitamin D deficiency and dysregulated autophagy is microRNA (miR)-142-3p, which suppresses autophagy. In this study, we found that wild-type C57BL/6 mice fed a vitamin D-deficient diet for 5 wk had increased miR-142-3p expression in ileal tissues compared with mice that were fed a matched control diet. Interestingly, there was no difference in expression of key autophagy markers ATG16L1 and LC3II in the ileum whole tissue. However, Paneth cells of vitamin D-deficient mice were morphologically abnormal and had an accumulation of the autophagy adaptor protein p62, which was not present in the total crypt epithelium. These findings suggest that Paneth cells exhibit early markers of autophagy dysregulation within the intestinal epithelium in response to vitamin D deficiency and enhanced miR-142-3p expression. Finally, we demonstrated that treatment-naïve IBD patients with low levels of vitamin D have an increase in miR-142-3p expression in colonic tissues procured from "involved" areas of the disease. Taken together, our findings demonstrate that insufficient vitamin D levels alter expression of autophagy-regulating miR-142-3p in intestinal tissues of mice and patients with IBD, providing insight into the mechanisms by which vitamin D deficiency modulates IBD pathogenesis.NEW & NOTEWORTHY Vitamin D deficiency has a role in IBD pathogenesis, and although the mechanisms surrounding its role remain unclear, it has been suggested that autophagy dysregulation is involved. Here, we show increased ileal expression of autophagy-suppressing miR-142-3p in mice that were fed a vitamin D-deficient diet and in "involved" colonic biopsies from pediatric IBD patients with low vitamin D. miR-142-3p serves as a potential mechanism mediating vitamin D deficiency and reduced autophagy.
Collapse
Affiliation(s)
- Laurel McGillis
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dana M Bronte-Tinkew
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Frances Dang
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Capurro
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Akriti Prashar
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Ricciuto
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laura Greenfield
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ana Lozano-Ruf
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Iram Siddiqui
- Department of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Adam Hsieh
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Peter Church
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Walters
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel E Roth
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Division of Paediatric Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anne Griffiths
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Dana Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nicola L Jones
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Abd El-Haleim EA, Sallam NA. Vitamin D modulates hepatic microRNAs and mitigates tamoxifen-induced steatohepatitis in female rats. Fundam Clin Pharmacol 2021; 36:338-349. [PMID: 34312906 DOI: 10.1111/fcp.12720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022]
Abstract
Tamoxifen (TAM) is a life-saving and cost-effective drug widely used in the prevention and treatment of breast cancer. However, the adverse effects of tamoxifen can lead to non-adherence and poor patient outcomes. Therefore, exploring novel strategies to improve TAM safety profile is crucial. Given the key role that vitamin D (VD) plays in modulating lipid metabolism and inflammation, in addition to its benefits in reducing risk and progression of breast cancer, we evaluated the protective potential of VD against TAM-induced hepatotoxicity focusing on lipid metabolism and microRNAs (miRNAs) regulation. Female rats were pretreated with VD as cholecalciferol (500 IU/kg/day, po) for 4 weeks before receiving TAM (40 mg/kg/day, po) concurrently with VD during the fifth and sixth weeks. Liver histology, lipid profile and expression of genes, proteins, and miRNAs involved in lipid metabolism and inflammation were examined. TAM-induced steatohepatitis was evidenced by elevated liver triglycerides and cholesterol contents, increased serum miRNA-122 level, and ALT activity, in parallel with accumulation of lipid droplets, focal necrosis, and inflammatory cells infiltration in hepatocytes. Prophylactic use of VD mitigated TAM-induced steatohepatitis by modulating key transcription factors in the liver: PPAR-α, Srebf1, and NF-κB and their downstream genes/proteins Fas, CPT-1A, and TNF-α resulting in reduced hepatic lipids and suppressed pro-inflammatory signaling. Notably, VD pretreatment mitigated TAM-induced alterations in the expression of serum miRNA-122, hepatic miRNA-21, and miRNA-33. The combination therapy of VD and TAM has complementary benefits in terms of safety and not only efficacy and should be further investigated clinically.
Collapse
Affiliation(s)
- Enas A Abd El-Haleim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Ren H, Wu C, Shao Y, Liu S, Zhou Y, Wang Q. Correlation between serum miR-154-5p and urinary albumin excretion rates in patients with type 2 diabetes mellitus: a cross-sectional cohort study. Front Med 2020; 14:642-650. [DOI: 10.1007/s11684-019-0719-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/05/2019] [Indexed: 01/28/2023]
|
6
|
MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors. Cancers (Basel) 2020; 12:cancers12082111. [PMID: 32751207 PMCID: PMC7464294 DOI: 10.3390/cancers12082111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
DNA mutation-induced activation of RAS-BRAF-MEK-ERK signaling associated with intermittent or chronic ultraviolet (UV) irradiation cannot exclusively explain the excessive increase of malignant melanoma (MM) incidence since the 1950s. Malignant conversion of a melanocyte to an MM cell and metastatic MM is associated with a steady increase in microRNA-21 (miR-21). At the epigenetic level, miR-21 inhibits key tumor suppressors of the RAS-BRAF signaling pathway enhancing proliferation and MM progression. Increased MM cell levels of miR-21 either result from endogenous upregulation of melanocytic miR-21 expression or by uptake of miR-21-enriched exogenous exosomes. Based on epidemiological data and translational evidence, this review provides deeper insights into environmentally and metabolically induced exosomal miR-21 trafficking beyond UV-irradiation in melanomagenesis and MM progression. Sources of miR-21-enriched exosomes include UV-irradiated keratinocytes, adipocyte-derived exosomes in obesity, airway epithelium-derived exosomes generated by smoking and pollution, diet-related exosomes and inflammation-induced exosomes, which may synergistically increase the exosomal miR-21 burden of the melanocyte, the transformed MM cell and its tumor environment. Several therapeutic agents that suppress MM cell growth and proliferation attenuate miR-21 expression. These include miR-21 antagonists, metformin, kinase inhibitors, beta-blockers, vitamin D, and plant-derived bioactive compounds, which may represent new options for the prevention and treatment of MM.
Collapse
|
7
|
Nazarizadeh A, Mohammadi F, Alian F, Faraji P, Nourbakhsh M, Alizadeh-Fanalou S. MicroRNA-154: A Novel Candidate for Diagnosis and Therapy of Human Cancers. Onco Targets Ther 2020; 13:6603-6615. [PMID: 32753896 PMCID: PMC7354082 DOI: 10.2147/ott.s249268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/31/2020] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded, tiny RNAs with 21-23 nucleotides that regulate several biological functions through binding to target mRNAs and modulating gene expression at post-transcriptional levels. Recent studies have described crucial roles for miRNAs in pathophysiology of numerous human cancers. They can act as an oncogene and promote cancer or as a tumor suppressor and alleviate the disease. Recently discovered microRNA-154 (miR-154) has been proposed to be involved in multiple physiological and pathological processes including cancer. With this aspect, aberrant expression of miR-154 has been demonstrated in variety of human malignancies, suggesting an important role for miR-154 in tumorigenesis. To be specific, it is considered as a tumor suppressor miRNA and exerts its beneficial effects by targeting several genes. This review systematically summarizes the recent advances done on the role of miR-154 in different cancers and discusses its potential prognostic, diagnostic and therapeutic values.
Collapse
Affiliation(s)
- Ali Nazarizadeh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Post-treatment levels of plasma 25- and 1,25-dihydroxy vitamin D and mortality in men with aggressive prostate cancer. Sci Rep 2020; 10:7736. [PMID: 32385370 PMCID: PMC7210996 DOI: 10.1038/s41598-020-62182-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/02/2020] [Indexed: 11/08/2022] Open
Abstract
Vitamin D may reduce mortality from prostate cancer (PC). We examined the associations of post-treatment plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D concentrations with PC mortality. Participants were PC cases from the New South Wales Prostate Cancer Care. All contactable and consenting participants, at 4.9 to 8.6 years after diagnosis, were interviewed and had plasma 25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxyvitamin D (1,25(OH)2D) measured in blood specimens. Cox regression allowing for left-truncation was used to calculate adjusted mortality hazards ratios (HR) and 95% confidence intervals (95% CI) for all-cause and PC-specific mortality in relation to vitamin D levels and other potentially-predictive variables. Of the participants (n = 111; 75·9% response rate), there were 198 deaths from any cause and 41 from PC in the study period. Plasma 25(OH)D was not associated with all-cause or PC-specific mortality (p-values > 0·10). Plasma 1,25(OH)2D was inversely associated with all-cause mortality (HR for highest relative to lowest quartile = 0·45; 95% CI: 0·29-0·69), and PC-specific mortality (HR = 0·40; 95% CI: 0·14-1·19). These associations were apparent only in men with aggressive PC: all-cause mortality HR = 0·28 (95% CI·0·15-0·52; p-interaction = 0·07) and PC-specific mortality HR = 0·26 (95% CI: 0·07-1.00). Time spent outdoors was also associated with lower all-cause (HR for 4th relative to 1st exposure quartile = 0·42; 95% CI: 0·24-0·75) and PC-specific (HR = 0·48; 95% CI: 0·14-1·64) mortality, although the 95% CI for the latter was wide. The inverse association between post-treatment plasma 1,25(OH)2D levels and all-cause and PC-specific mortality in men with aggressive PC, suggest a possible beneficial effect of vitamin D supplementation in these men.
Collapse
|
9
|
Abstract
Epigenetic modifications play an important role in disease pathogenesis and therefore are a focus of intense investigation. Epigenetic changes include DNA, RNA, and histone modifications along with expression of non-coding RNAs. Various factors such as environment, diet, and lifestyle can influence the epigenome. Dietary nutrients like vitamins can regulate both physiological and pathological processes through their direct impact on epigenome. Vitamin A acts as a major regulator of above-mentioned epigenetic mechanisms. B group vitamins including biotin, niacin, and pantothenic acid also participate in modulation of various epigenome. Further, vitamin C has shown to modulate both DNA methylation and histone modifications while few reports have also supported its role in miRNA-mediated pathways. Similarly, vitamin D also influences various epigenetic modifications of both DNA and histone by controlling the regulatory mechanisms. Despite the information that vitamins can modulate the epigenome, the detailed mechanisms of vitamin-mediated epigenetic regulations have not been explored fully and hence further detailed studies are required to decipher their role at epigenome level in both normal and disease pathogenesis. The current review summarizes the available literature on the role of vitamins as epigenetic modifier and highlights the key evidences for developing vitamins as potential epidrugs.
Collapse
Affiliation(s)
- Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suvasmita Rath
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI, USA
| | - Varish Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bushra Ateeq
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur (IIT K), Kanpur, India
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Ren H, Ma X, Shao Y, Han J, Yang M, Wang Q. Correlation Between Serum miR-154-5p and Osteocalcin in Males and Postmenopausal Females of Type 2 Diabetes With Different Urinary Albumin Creatinine Ratios. Front Endocrinol (Lausanne) 2019; 10:542. [PMID: 31447785 PMCID: PMC6691150 DOI: 10.3389/fendo.2019.00542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/19/2019] [Indexed: 01/26/2023] Open
Abstract
Purpose: To investigate the serum levels of miR-154-5p, osteocalcin (OC), and other clinical parameters in male and post-menopausal female type 2 diabetes mellitus (T2DM) patients with different urinary albumin creatinine ratio (UACR) levels and to discuss the relationship between miR-154-5p and glycolipid metabolism, bone metabolism, and different urinary albumin excretion rate in T2DM. Methods: Seven hundred thirty-eight T2DM patients were categorized into six groups, including 374 men and 364 post-menopausal women who were sub-divided into three groups based on albumin excretion that involved normal albuminuria, microalbuminuria, and large amount of albuminuria (138, 127, 109, 135, 125, and 104 cases, UACR<30, 30-300, and >300 mg/g, M1, M2, M3, F1, F2, and F3). Measurement of circulating miR-154-5p, OC, and other biochemical indicators were performed by real-time PCR, ELISA, and chemiluminescence assays in T2DM patients and in 141 M0 and 139 F0 control subjects. Results: There are few differences appeared between groups. Comparing with men, women had higher age, waist-to-hip ratio (WHR), adiponectin (ADPN), connective tissue growth factor (CTGF), UACR, procollagen type 1 N-terminal propeptide (P1NP), β-C-terminal telopeptide of type I collagen (β-CTx), OC, and miR-154-5p, but lower FPG, HOMA-IR, and HbA1c. T2DM patients with albuminuria (micro or macro) had lower bone turnover markers (P1NP, β-CTx, and OC) and adiponectin, but higher HbA1c, CTGF, and miR-154-5p. In addition, after regression analysis, UACR was positively correlated with CTGF, HbA1c, and miR-154-5p, and negatively correlated with ADPN and bone turnover markers (P1NP, β-CTx, and OC). However, OC showed a positive correlation with ADPN and other bone turnover markers (P1NP and β-CTx), but negative correlation with CTGF, UACR, and miR-154-5p in all three groups. Conclusion: These findings suggested that increased serum levels of miR-154-5p and decreased OC levels may influence osteogenesis and proteinuria in T2DM and may identify novel targets for diagnosis and treatment of diabetic kidney disease and osteoporosis.
Collapse
Affiliation(s)
- Huiwen Ren
- Department of Endocrinology, The First Hospital Affiliated of China Medical University, Shenyang, China
| | - Xiaoyu Ma
- The Cadre Department, The First Hospital of China Medical University, Shenyang, China
| | - Ying Shao
- Department of Endocrinology, The Second Hospital Affiliated of China Medical University, Shenyang, China
| | - Jinyu Han
- The Cadre Department, The First Hospital of China Medical University, Shenyang, China
| | - Min Yang
- Department of Laboratory Medicine, The First Hospital Affiliated of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Endocrinology, The First Hospital Affiliated of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Ramakrishnan S, Steck SE, Arab L, Zhang H, Bensen JT, Fontham ETH, Johnson CS, Mohler JL, Smith GJ, Su LJ, Woloszynska A. Association among plasma 1,25(OH) 2 D, ratio of 1,25(OH) 2 D to 25(OH)D, and prostate cancer aggressiveness. Prostate 2019; 79:1117-1124. [PMID: 31077420 PMCID: PMC6593756 DOI: 10.1002/pros.23824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND African-American (AA) men tend to present with more aggressive prostate cancer (Gleason score >7) than European-American (EA) men. Vitamin D and its metabolites are implicated in prostate cancer biology with vitamin D deficiency, indicated by its metabolite levels in serum or plasma, usually observed in AA men. OBJECTIVE To determine if 1, 25-dihydroxy vitamin D3 [1,25(OH)2 D] plasma levels in AA and EA prostate cancer patients alter the risk of having aggressive prostate cancer. DESIGN Research subjects from the North Carolina-Louisiana Prostate Cancer Project (AA n = 435 and EA n = 532) were included. Plasma metabolites 1,25(OH)2 D and 25-hydroxyvitamin D3 [25(OH)D] were measured using liquid chromatography with tandem mass spectrophotometry. Research subjects were classified into low (Gleason sum < 7, stage T1-T2, and Prostate-specific antigen (PSA) < 9 ng/mL) or high (Gleason sum > 8 or Gleason sum = 7 with 4 + 3, or PSA > 20 ng/mL, or Gleason sum = 7 and stage T3-T4) aggressive disease. RESULTS Research subjects in the second and third tertiles of plasma levels of 1, 25(OH)2 D had lower odds of high aggressive prostate cancer (AA [ORT2vsT1 : 0.66, 95%CI: 0.39-1.12; ORT3vsT1 : 0.83, 95%CI: 0.49-1.41] and EA [ORT2vsT1 : 0.68, 95%CI: 0.41-1.11; ORT3vsT1 : 0.67, 95%CI: 0.40-1.11]) compared with the first tertile, though confidence intervals included the null. Greater 1,25(OH)2 D/25(OH)D molar ratios were associated with lower odds of high aggressive prostate cancer more evidently in AA (ORQ4vsQ1 : 0.45, CI: 0.24-0.82) than in EA (ORQ4vsQ1 : 0.64, CI: 0.35-1.17) research subjects. CONCLUSIONS The 1,25(OH)2 D/25(OH)D molar ratio was associated with decreased risk of high aggressive prostate cancer in AA men, and possibly in EA men. Further studies analyzing vitamin D polymorphisms, vitamin D binding protein levels, and prostatic levels of these metabolites may be useful. These studies may provide a better understanding of the vitamin D pathway and its biological role underlying health disparities in prostate cancer.
Collapse
Affiliation(s)
- Swathi Ramakrishnan
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Susan E. Steck
- Department of Epidemiology and BiostatisticsArnold School of Public Health, University of South CarolinaColumbiaSouth Carolina
| | - Lenore Arab
- David Geffen School of MedicineUniversity of CaliforniaLos AngelesCalifornia
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental HealthUniversity of MemphisMemphisTennessee
| | - Jeannette T. Bensen
- Department of EpidemiologyGillings School of Global Public Health, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Elizabeth T. H. Fontham
- School of Public HealthLouisiana State University Health Sciences CenterNew OrleansLouisiana
| | - Candace S. Johnson
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - James L. Mohler
- Department of UrologyRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Gary J. Smith
- Department of UrologyRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - L. Joseph Su
- Winthrop P. Rockefeller Cancer Institute, Department of Epidemiology, Fay W. Boozman College of Public HealthUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Anna Woloszynska
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew York
| |
Collapse
|
12
|
Abstract
Signaling through the vitamin D receptor has been shown to be biologically active and important in a number of preclinical studies in prostate and other cancers. Epidemiologic data also indicate that vitamin D signaling may be important in the cause and prognosis of prostate and other cancers. These data indicate that perturbation of vitamin D signaling may be a target for the prevention and treatment of prostate cancer. Large studies of vitamin D supplementation will be required to determine whether these observations can be translated into prevention strategies. This paper reviews the available data in the use of vitamin D compounds in the treatment of prostate cancer. Clinical data are limited which support the use of vitamin D compounds in the management of men with prostate cancer. However, clinical trials guided by existing preclinical data are limited.
Collapse
Affiliation(s)
- Donald L Trump
- Inova Schar Cancer Institute, Inova Health System, Fairfax, VA 22037, USA
| | | |
Collapse
|
13
|
Baumann B, Lugli G, Gao S, Zenner M, Nonn L. High levels of PIWI-interacting RNAs are present in the small RNA landscape of prostate epithelium from vitamin D clinical trial specimens. Prostate 2019; 79:840-855. [PMID: 30905091 PMCID: PMC6593815 DOI: 10.1002/pros.23789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Vitamin D, a hormone that acts through the nuclear vitamin D receptor (VDR), upregulates antitumorigenic microRNA in prostate epithelium. This may contribute to the lower levels of aggressive prostate cancer (PCa) observed in patients with high serum vitamin D. The small noncoding RNA (ncRNA) landscape includes many other RNA species that remain uncharacterized in prostate epithelium and their potential regulation by vitamin D is unknown. METHODS Laser capture microdissection (LCM) followed by small-RNA sequencing was used to identify ncRNAs in the prostate epithelium of tissues from a vitamin D-supplementation trial. VDR chromatin immunoprecipitation-sequencing was performed to identify vitamin D genomic targets in primary prostate epithelial cells. RESULTS Isolation of epithelium by LCM increased sample homogeneity and captured more diversity in ncRNA species compared with publicly available small-RNA sequencing data from benign whole prostate. An abundance of PIWI-interacting RNAs (piRNAs) was detected in normal prostate epithelium. The obligate binding partners of piRNAs, PIWI-like (PIWIL) proteins, were also detected in prostate epithelium. High prostatic vitamin D levels were associated with increased expression of piRNAs. VDR binding sites were located near several ncRNA biogenesis genes and genes regulating translation and differentiation. CONCLUSIONS Benign prostate epithelium expresses both piRNA and PIWIL proteins, suggesting that these small ncRNA may serve an unknown function in the prostate. Vitamin D may increase the expression of prostatic piRNAs. VDR binding sites in primary prostate epithelial cells are consistent with its reported antitumorigenic functions and a role in ncRNA biogenesis.
Collapse
Affiliation(s)
- Bethany Baumann
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| | - Giovanni Lugli
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| | - Shang Gao
- Department of BioengineeringUniversity of Illinois at ChicagoChicagoIllinois
| | - Morgan Zenner
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| | - Larisa Nonn
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| |
Collapse
|
14
|
Kura B, Parikh M, Slezak J, Pierce GN. The Influence of Diet on MicroRNAs that Impact Cardiovascular Disease. Molecules 2019; 24:molecules24081509. [PMID: 30999630 PMCID: PMC6514571 DOI: 10.3390/molecules24081509] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Food quality and nutritional habits strongly influence human health status. Extensive research has been conducted to confirm that foods rich in biologically active nutrients have a positive impact on the onset and development of different pathological processes, including cardiovascular diseases. However, the underlying mechanisms by which dietary compounds regulate cardiovascular function have not yet been fully clarified. A growing number of studies confirm that bioactive food components modulate various signaling pathways which are involved in heart physiology and pathology. Recent evidence indicates that microRNAs (miRNAs), small single-stranded RNA chains with a powerful ability to influence protein expression in the whole organism, have a significant role in the regulation of cardiovascular-related pathways. This review summarizes recent studies dealing with the impact of some biologically active nutrients like polyunsaturated fatty acids (PUFAs), vitamins E and D, dietary fiber, or selenium on the expression of many miRNAs, which are connected with cardiovascular diseases. Current research indicates that the expression levels of many cardiovascular-related miRNAs like miRNA-21, -30 family, -34, -155, or -199 can be altered by foods and dietary supplements in various animal and human disease models. Understanding the dietary modulation of miRNAs represents, therefore, an important field for further research. The acquired knowledge may be used in personalized nutritional prevention of cardiovascular disease or the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovak Republic.
| | - Mihir Parikh
- Institute of Cardiovascular Sciences and the Canadian Centre for Agri-food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovak Republic.
| | - Grant N Pierce
- Institute of Cardiovascular Sciences and the Canadian Centre for Agri-food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| |
Collapse
|
15
|
Kumar B, Rosenberg AZ, Choi SM, Fox-Talbot K, De Marzo AM, Nonn L, Brennen WN, Marchionni L, Halushka MK, Lupold SE. Cell-type specific expression of oncogenic and tumor suppressive microRNAs in the human prostate and prostate cancer. Sci Rep 2018; 8:7189. [PMID: 29739972 PMCID: PMC5940660 DOI: 10.1038/s41598-018-25320-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
MiR-1 and miR-143 are frequently reduced in human prostate cancer (PCa), while miR-141 and miR-21 are frequently elevated. Consequently, these miRNAs have been studied as cell-autonomous tumor suppressors and oncogenes. However, the cell-type specificity of these miRNAs is not well defined in prostate tissue. Through two different microdissection techniques, and droplet digital RT-PCR, we quantified these miRNAs in the stroma and epithelium of radical prostatectomy specimens. In contrast to their purported roles as cell-autonomous tumor suppressors, we found miR-1 and miR-143 expression to be predominantly stromal. Conversely, miR-141 was predominantly epithelial. miR-21 was detected in both stroma and epithelium. Strikingly, the levels of miR-1 and miR-143 were significantly reduced in tumor-associated stroma, but not tumor epithelium. Gene expression analyses in human cell lines, tissues, and prostate-derived stromal cultures support the cell-type selective expression of miR-1, miR-141, and miR-143. Analyses of the PCa Genome Atlas (TCGA-PRAD) showed a strong positive correlation between stromal markers and miR-1 and miR-143, and a strong negative correlation between stromal markers and miR-141. In these tumors, loss of miR-1 and gain of miR-21 was highly associated with biochemical recurrence. These data shed new light on stromal and epithelial miRNA expression in the PCa tumor microenvironment.
Collapse
Affiliation(s)
- Binod Kumar
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Avi Z Rosenberg
- The Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Su Mi Choi
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Karen Fox-Talbot
- The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Angelo M De Marzo
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Larisa Nonn
- The Department of Pathology, University of Illinois, Chicago, IL, USA
| | - W Nathaniel Brennen
- The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Luigi Marchionni
- The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Marc K Halushka
- The Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Shawn E Lupold
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
16
|
Accessing Gene Expression in Treatment-Resistant Schizophrenia. Mol Neurobiol 2018; 55:7000-7008. [PMID: 29374346 DOI: 10.1007/s12035-018-0876-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/07/2018] [Indexed: 01/22/2023]
Abstract
Schizophrenia (SCZ) is a mental disorder arising from a complex interaction of genetic and environmental factors. It has been suggested that treatment-resistant schizophrenia (TRS) is a distinct, more severe, and homogenous subgroup of schizophrenia that could present specific biological markers. Our aim was to characterize expression of target genes in blood of TRS patients compared with non-TRS (NTRS) patients and healthy controls (HC). TRS has been defined using failure to respond to two previous antipsychotic trials. We hypothesized that genes involved in neurodevelopment, myelination, neuroplasticity, neurotransmission, and miRNA processing could be involved in treatment resistance; then, we investigated 13 genes related to those processes in 256 subjects, being 94 healthy controls and 162 schizophrenia patients treated with antipsychotics. Of those, 78 were TRS patients and 84 were NTRS patients. Peripheral blood samples were collected from all subjects and RNA was isolated. Gene expression analysis was performed using the TaqMan low-density array (TLDA) technology. To verify the influence of expression quantitative trait loci (eQTLs), we evaluated single-nucleotide polymorphism (SNP) of all genes using data from GTEx Project. SNP genotypes were obtained from HumanOmniExpress BeadChip. We did not detect gene expression differences between TRS and NTRS subjects, indicating candidate genes specific to treatment resistance. We detected an upregulation of CNR1 and UFD1L gene expression in patients (TRS and NTRS groups) when compared to controls, that may be associated with the release of neurotransmitters, which can influence neuronal plasticity, or with a stress response-activating protein degradation. DICER1 and AKT1 expression increased slightly across the groups and could differentiate only the extreme opposite groups, HC and TRS. Both genes act in heterogeneous pathways, such as cell signaling and miRNA processing, and seem to have an increased demand in the TRS group. We did not detect any eQTLs in our sample that could explain differences in mRNA levels, suggesting a possible regulation by other mechanism, not driven by genotypes. Our data strengthen the importance of several biological pathways involved in the schizophrenia refractoriness and severity, adding knowledge to develop more effective treatments in the future.
Collapse
|
17
|
Quintanilha BJ, Reis BZ, Duarte GBS, Cozzolino SMF, Rogero MM. Nutrimiromics: Role of microRNAs and Nutrition in Modulating Inflammation and Chronic Diseases. Nutrients 2017; 9:nu9111168. [PMID: 29077020 PMCID: PMC5707640 DOI: 10.3390/nu9111168] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Nutrimiromics studies the influence of the diet on the modification of gene expression due to epigenetic processes related to microRNAs (miRNAs), which may affect the risk for the development of chronic diseases. miRNAs are a class of non-coding endogenous RNA molecules that are usually involved in post-transcriptional gene silencing by inducing mRNA degradation or translational repression by binding to a target messenger RNA. They can be controlled by environmental and dietary factors, particularly by isolated nutrients or bioactive compounds, indicating that diet manipulation may hold promise as a therapeutic approach in modulating the risk of chronic diseases. This review summarizes the evidence regarding the influence of nutrients and bioactive compounds on the expression of miRNAs related to inflammation and chronic disease in several models (cell culture, animal models, and human trials).
Collapse
Affiliation(s)
- Bruna J Quintanilha
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, 01246-904 São Paulo, Brazil.
- Food Research Center (FoRC), 05508-000 São Paulo, Brazil.
| | - Bruna Z Reis
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Graziela B Silva Duarte
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Silvia M F Cozzolino
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Marcelo M Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, 01246-904 São Paulo, Brazil.
- Food Research Center (FoRC), 05508-000 São Paulo, Brazil.
| |
Collapse
|
18
|
Ma Y, Luo W, Bunch BL, Pratt RN, Trump DL, Johnson CS. 1,25D 3 differentially suppresses bladder cancer cell migration and invasion through the induction of miR-101-3p. Oncotarget 2017; 8:60080-60093. [PMID: 28947955 PMCID: PMC5601123 DOI: 10.18632/oncotarget.19629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Metastasis is the major cause of bladder cancer death. 1,25D3, the active metabolite of vitamin D, has shown anti-metastasis activity in several cancer model systems. However, the role of 1,25D3 in migration and invasion in bladder cancer is unknown. To investigate whether 1,25D3 affects migration and invasion, four human bladder cell lines with different reported invasiveness were selected: low-invasive T24 and 253J cells and highly invasive 253J-BV and TCCSUP cells. All of the four bladder cancer cells express endogenous and inducible vitamin D receptor (VDR) as examined by immunoblot analysis. 1,25D3 had no effect on the proliferation of bladder cancer cells as assessed by MTT assay. In contrast, 1,25D3 suppressed migration and invasion in the more invasive 253J-BV and TCCSUP cells, but not in the low-invasive 253J and T24 cells using "wound" healing, chemotactic migration and Matrigel-based invasion assays. 1,25D3 promoted the expression of miR-101-3p and miR-126-3p in 253J-BV cells as examined by qRT-PCR. miR-101-3p inhibitor partially abrogated and pre-miR-101-3p further suppressed the inhibition of 1,25D3 on migration and invasion in 253J-BV cells. Further, 1,25D3 enhanced VDR recruitment to the promoter region of miR-101-3p using ChIP-qPCR assay. 1,25D3 enhanced the promoter activity of miR-101-3p as evaluated by luciferase reporter assay. Taken together, 1,25D3 suppresses bladder cancer cell migration and invasion in two invasive/migration competent lines but not in two less invasive/motile lines, which is partially through the induction of miR-101-3p expression at the transcriptional level.
Collapse
Affiliation(s)
- Yingyu Ma
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Wei Luo
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brittany L. Bunch
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Rachel N. Pratt
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Candace S. Johnson
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
19
|
Pandolfi F, Franza L, Mandolini C, Conti P. Immune Modulation by Vitamin D: Special Emphasis on Its Role in Prevention and Treatment of Cancer. Clin Ther 2017; 39:884-893. [PMID: 28431765 DOI: 10.1016/j.clinthera.2017.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE Vitamin D has been known to be involved in mineral and bone homeostasis for many years. In the past its main use was in treating osteoporosis and rickets. In recent years it was found that vitamin D is an immune-modulating agent and may also have a role in several diseases, including autoimmune diseases. The immune-modulating effects appear to be mediated by vitamin D interaction with the vitamin D receptor (VDR) that has transcriptional effects and is expressed on various cell types, especially those of the immune system. Immunologic and rheumatologic diseases were the first to be studied, but at the moment the spotlight is on the interactions between tumor cells and vitamin D. This review focuses on four forms of cancer that apparently benefit from a vitamin D supplementation during treatment: prostate, breast, and colorectal cancers and melanoma. Several studies reported that differences exist between white and black patients, which we discuss in the review. METHODS We systematically searched PubMed for studies published in English. The search terms included vitamin D, cancer, breast, colorectal, prostate, and melanoma. FINDINGS AND IMPLICATIONS Our findings show that vitamin D has the potential to become a valid coadjuvant in the treatment of cancer.
Collapse
Affiliation(s)
| | - Laura Franza
- Internal Medicine Catholic University, Rome, Italy
| | | | - Pio Conti
- Postgraduate Medical School, Chieti University, Chieti, Italy.
| |
Collapse
|