1
|
Dange S, Aggarwal N, Verma R, Sinha Y, Dadhiya S, Mittal G, Sachdeva R. Computational analysis of Ayurvedic herbs to explore their potential role as anti-cervical cancer agents. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2025; 14:129-141. [PMID: 40028476 PMCID: PMC11865937 DOI: 10.22099/mbrc.2024.51173.2038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cervical cancer is one of the common types of cancer in women. Treatment regimens include use of chemotherapy but it leads to certain side effects thereby creating a need for safer therapeutic options. Ayurveda has a great potential to provide better treatment strategies. In this study, computational approaches have been employed to investigate the molecular mechanism of anti-cervical cancer Ayurvedic herbs. Initially, Ayurvedic plants possessing anti-cervical cancer activities were obtained from literature. Bioactive compounds present in such plants were evaluated for drug-likeliness, biological functions and associations with cancer-related pathways. This resulted in the most promising drug-like bioactive compounds which were found to target cancer pathways like microRNA and proteoglycans, Human papillomavirus infection. Anti-cervical cancer activity possessing herbs derived from the study include Camellia sinensis, Equisetum arvense, Rosmarinus officinalis. Major bioactive compounds extracted from the enlisted herbs that contribute in promoting anti-cervical cancer effects include allicin, apigenin, and mataresinol. Overall, our study has provided insights into the scientific mechanism behind anti-cervical cancer activities of the indigenous herbs of Ayurveda. In addition, this study has also highlighted key bioactive compounds which have a potential in targeting cancer related pathways and thus can further be utilized to devise better therapeutics to cure cervical cancer.
Collapse
Affiliation(s)
- Suhani Dange
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32, Chandigarh, India
| | - Neha Aggarwal
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32, Chandigarh, India
| | - Rivi Verma
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Yashika Sinha
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32, Chandigarh, India
| | - Sonakshi Dadhiya
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32, Chandigarh, India
| | - Gagan Mittal
- Department of Zoology, RKSD College, Kaithal, Haryana, India
| | - Ruchi Sachdeva
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32, Chandigarh, India
| |
Collapse
|
2
|
Yapar EA, Ozdemir MN, Cavalu S, Dagıstan ÖA, Ozsoy Y, Kartal M. Phytoactive Molecules and Nanodelivery Approaches for Breast Cancer Treatment: Current and Future Perspectives. Curr Pharm Biotechnol 2025; 26:795-812. [PMID: 38859783 DOI: 10.2174/0113892010299183240529094844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024]
Abstract
One of the most common malignancies in women, breast cancer accounts for nearly 25% of all cancer cases. Breast cancer is a diverse cancer form that exhibits variability in both morphology and molecular characteristics and is linked to numerous risk factors. Although various approaches and research are ongoing in the treatment and prevention of breast cancer, medication resistance in the current breast cancer treatment contributes to the disease's relapse and recurrence. Phytoactive molecules are the subject of growing research in both breast cancer prevention and treatment, but currently used conventional medicines and techniques limit their application. In recent years, significant advancements have been made in the field of nanotechnology, which has proven to be essential in the fight against drug resistance. The transport of synthetic and natural anticancer molecules via nanocarriers has recently been added to breast cancer therapy, greatly alleviating the constraints of the current approach. In light of these developments, interest in nano-delivery studies of phytoactive molecules has also increased. In this review, research of phytoactive molecules for breast cancers along with their clinical studies and nanoformulations, was presented from current and future perspectives.
Collapse
Affiliation(s)
- Evren Algın Yapar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Merve Nur Ozdemir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Bihor, România
| | - Özlem Akbal Dagıstan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Yıldız Ozsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Murat Kartal
- Faculty of Pharmacy, Bezmialem Vakıf University, Department of Pharmacognosy, Istanbul, Türkiye
| |
Collapse
|
3
|
Islam MM, Sultana N, Liu C, Mao A, Katsube T, Wang B. Impact of dietary ingredients on radioprotection and radiosensitization: a comprehensive review. Ann Med 2024; 56:2396558. [PMID: 39320122 PMCID: PMC11425709 DOI: 10.1080/07853890.2024.2396558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Radiation exposure poses significant health risks, particularly in radiotherapy and nuclear accidents. Certain dietary ingredients offer potential radioprotection and radiosensitization. In this review, we explore the impact of dietary ingredients, including vitamins, minerals, antioxidants, and other bioactive compounds, on radiation sensitivity and their potential for radioprotection. Radiosensitizers reoxygenate hypoxic tumor cells, increase the radiolysis of water molecules, and regulate various molecular mechanisms to induce cytotoxicity and inhibit DNA repair in irradiated tumor cells. Several dietary ingredients, such as vitamins C, E, selenium, and phytochemicals, show promise in protecting against radiation by reducing radiation-induced oxidative stress, inflammation, and DNA damage. Radioprotectors, such as ascorbic acid, curcumin, resveratrol, and genistein, activate and modulate various signaling pathways, including Keap1-Nrf2, NF-κB, PI3K/Akt/mammalian target of rapamycin (mTOR), STAT3, and mitogen-activated protein kinase (MAPK), in response to radiation-induced oxidative stress, regulating inflammatory cytokine expression, and promoting DNA damage repair and cell survival. Conversely, natural dietary radiosensitizers impede these pathways by enhancing DNA damage and inducing apoptosis in irradiated tumor cells. Understanding the molecular basis of these effects may aid in the development of effective strategies for radioprotection and radiosensitization in cancer treatment. Dietary interventions have the potential to enhance the efficacy of radiation therapy and minimize the side effects associated with radiation exposure.
Collapse
Affiliation(s)
- Md Monirul Islam
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - Nahida Sultana
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - Chang Liu
- Department of Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Aihong Mao
- Center of Medical Molecular Biology Research, Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Research, Lanzhou, PR China
| | - Takanori Katsube
- Institute for Radiological Science, Quantum Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Bing Wang
- Institute for Radiological Science, Quantum Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
4
|
Staynova R, Gavazova E, Kafalova D. Clinical Pharmacist-Led Interventions for Improving Breast Cancer Management-A Scoping Review. Curr Oncol 2024; 31:4178-4191. [PMID: 39195295 PMCID: PMC11352950 DOI: 10.3390/curroncol31080312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide and the fifth most common cause of cancer death overall. Most women with breast cancer have a good prognosis if the cancer is detected at an early stage and the patients have access to the appropriate treatment and disease management. This study aims to evaluate the impact of pharmacist-led interventions on breast cancer management and health outcomes. A literature review was carried out through the scientific databases PubMed, Scopus, and Web of Science using predefined keywords. Only full-text original articles written in English that investigated the role of the pharmacist in the management of breast cancer were included in the final analysis. No publication date limits were set. A total of 1625 articles were retrieved from the electronic databases, of which 14 met the inclusion criteria. The current scoping review consists of different study types, including randomized controlled trials, cross-sectional studies, pre-post studies, retrospective cohort studies, quality improvement projects, case-control studies, and one pharmacoeconomic study. Pharmacists commonly provided the following interventions: consultations regarding chemotherapy treatment, risk assessment and patient education, adverse drug reactions and drug-drug interactions detection, and adherence assessment. This scoping review highlights the beneficial effects of the involvement of pharmacists in breast cancer management, such as better quality of life, reduced drug interaction risk, greater adherence rates, and improved patient knowledge. This confirms the importance of including the pharmacist in the oncology team caring for patients with breast cancer.
Collapse
Affiliation(s)
- Radiana Staynova
- Department of Organisation and Economics of Pharmacy, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (E.G.); (D.K.)
| | | | | |
Collapse
|
5
|
Nooreen Z, Tandon S, Wal A, Rai AK. An Updated Insight into Phytomolecules and Novel Approaches used in the Management of Breast Cancer. Curr Drug Targets 2024; 25:201-219. [PMID: 38231060 DOI: 10.2174/0113894501277556231221072938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024]
Abstract
Breast cancer is a widespread condition that kills more women from cancer-related causes than any other type of cancer globally. Women who have estrogen-dependent, initial metastatic breast cancer frequently receive treatment with surgery, radiation therapy, and chemotherapy. They may also get more specialized treatments like tamoxifen or aromatase inhibitors (anastrozole or letrozole). The World Health Organisation reported in 2012 that by 2030, breast cancer will be more common worldwide. There are several phytochemicals, such as isoflavones, coumestans, lignans, and prenylflavonoides. Isoflavones have been shown in studies to prevent the spread of breast cancer and to trigger apoptosis. Targeting BCs in metastatic breast cancer may be made possible by combining well-formulated phytochemicals in nanoparticles or other novel drug delivery agents with currently accepted endocrine and/or conventional chemotherapies. Cell signaling, regulation of cell cycles, oxidative stress action, and inflammation could be positively impacted by phytoconstituents. They have the ability to alter non-coding RNAs, to prevent the proliferation and regeneration of cancer cells. The availability of novel approaches helps in disease targeting, safety, effectiveness and efficacy. The current literature helps to know the available drugs i.e. phytoconstituents or novel drug delivery like nanoparticle, microsphere, micelles, liposomes and neosomes. The literature has been taken from PubMed, Google Scholar, SciFinder, or other internet sites.
Collapse
Affiliation(s)
- Zulfa Nooreen
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhautipratapur, Uttar Pradseh 209305, India
| | - Sudeep Tandon
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.- CIMAP, Lucknow-226015, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhautipratapur, Uttar Pradseh 209305, India
| | - Awani Kumar Rai
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhautipratapur, Uttar Pradseh 209305, India
| |
Collapse
|
6
|
Shekar N, Vuong P, Kaur P. Analysing potent biomarkers along phytochemicals for breast cancer therapy: an in silico approach. Breast Cancer Res Treat 2024; 203:29-47. [PMID: 37726449 PMCID: PMC10771382 DOI: 10.1007/s10549-023-07107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE This research focused on the identification of herbal compounds as potential anti-cancer drugs, especially for breast cancer, that involved the recognition of Notch downstream targets NOTCH proteins (1-4) specifically expressed in breast tumours as biomarkers for prognosis, along with P53 tumour antigens, that were used as comparisons to check the sensitivity of the herbal bio-compounds. METHODS After investigating phytochemical candidates, we employed an approach for computer-aided drug design and analysis to find strong breast cancer inhibitors. The present study utilized in silico analyses and protein docking techniques to characterize and rank selected bio-compounds for their efficiency in oncogenic inhibition for use in precise carcinomic cell growth control. RESULTS Several of the identified phytocompounds found in herbs followed Lipinski's Rule of Five and could be further investigated as potential medicinal molecules. Based on the Vina score obtained after the docking process, the active compound Epigallocatechin gallate in green tea with NOTCH (1-4) and P53 proteins showed promising results for future drug repurposing. The stiffness and binding stability of green tea pharmacological complexes were further elucidated by the molecular dynamic simulations carried out for the highest scoring phytochemical ligand complex. CONCLUSION The target-ligand complex of green tea active compound Epigallocatechin gallate with NOTCH (1-4) had the potential to become potent anti-breast cancer therapeutic candidates following further research involving wet-lab experiments.
Collapse
Affiliation(s)
- Nivruthi Shekar
- UWA School of Agriculture and Environment, University of Western Australia, 35-Stirling Highway, Perth, WA, 6009, Australia
| | - Paton Vuong
- UWA School of Agriculture and Environment, University of Western Australia, 35-Stirling Highway, Perth, WA, 6009, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, 35-Stirling Highway, Perth, WA, 6009, Australia.
| |
Collapse
|
7
|
Vyshnavi AM H, Sankaran S, Namboori PK K, Venkidasamy B, Hirad AH, Alarfaj AA, Vinayagam R. In Silico Analysis of the Effect of Hydrastis canadensis on Controlling Breast Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1412. [PMID: 37629702 PMCID: PMC10456556 DOI: 10.3390/medicina59081412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Background and Objectives: Breast cancer is a significant type of cancer among women worldwide. Studies have reported the anti-carcinogenic activity of Hydrastis Canadensis (Goldenseal) in cancer cell lines. Hydrastis Canadensis could help eliminate toxic substances due to its anti-cancer, anti-inflammatory, and other properties. The design phase includes the identification of potential and effective molecules through modern computational techniques. Objective: This work aims to study Hydrastis Canadensis's effect in controlling hormone-independent breast cancer through in-silico analysis. Materials and Methods: The preliminary screening of reported phytochemicals includes biomolecular networking. Identifying functionally relevant phytochemicals and the respective target mutations/genes leads to selecting 3D proteins of the desired mutations being considered the target. Interaction studies have been conducted using docking. The kinetic and thermodynamic stability of complexes was studied through molecular dynamic simulation and MM-PBSA/GBSA analysis. Pharmacodynamic and pharmacokinetic features have been predicted. The mechanism-wise screening, functional enrichment, and interactional studies suggest that canadaline and Riboflavin effectively interact with the target proteins. Results: Hydrastis Canadensis has been identified as the effective formulation containing all these constituents. The phytoconstituents; Riboflavin and Canadensis showed good interaction with the targets of hormone-independent breast cancer. The complexes were found to be kinetically and thermodynamically stable. Conclusions: Hydrastis Canadensis has been identified as effective in controlling 'hormone-independent or basal-like breast cancer' followed by 'hormone-dependent breast cancer: Luminal A' and Luminal B.
Collapse
Affiliation(s)
- Hima Vyshnavi AM
- Computational Chemistry Group (CCG), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India;
| | - Sathianarayanan Sankaran
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, India;
| | - Krishnan Namboori PK
- Computational Chemistry Group (CCG), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India;
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India;
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.H.); (A.A.A.)
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.H.); (A.A.A.)
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
8
|
Bhandari SV, Kuthe P, Patil SM, Nagras O, Sarkate AP. A Review: Exploring Synthetic Schemes and Structure-activity Relationship (SAR) Studies of Mono-carbonyl Curcumin Analogues for Cytotoxicity Inhibitory Anticancer Activity. Curr Org Synth 2023; 20:821-837. [PMID: 36703591 DOI: 10.2174/1570179420666230126142238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Cancer is the major cause of death globally. Cancer can be treated with naturally occurring Curcumin nuclei. Curcumin has a wide range of biological actions, including anti-inflammatory and anti-cancer properties. Even though it is an effective medicinal entity, it has some limitations such as instability at physiological pH and a weak pharmacokinetic profile due to the β-diketone moiety present in it. To overcome this drawback, research was carried out on monoketone moieties in curcumin, popularly known as mono-carbonyl curcumin. OBJECTIVE The present review focuses on different synthetic schemes and Mono-carbonyl curcumin derivative's Structure-Activity Relationship (SAR) as a cytotoxic inhibitory anticancer agent. The various synthetic schemes published by researchers were compiled. METHODS Findings of different researchers working on mono-carbonyl curcumin as an anticancer have been reviewed, analyzed and the outcomes were summarized. RESULTS The combination of all of these approaches serves as a one-stop solution for mono-carbonyl curcumin synthesis. The important groups on different positions of mono-carbonyl curcumin were discovered by a SAR study focused on cytotoxicity, which could be useful in the designing of its derivatives. CONCLUSION Based on our examination of the literature, we believe that this review will help researchers design and develop powerful mono-carbonyl curcumin derivatives that can be proven essential for anticancer activity.
Collapse
Affiliation(s)
- Shashikant Vasantarao Bhandari
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, Near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Pranali Kuthe
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, Near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Shital Manoj Patil
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, Near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Om Nagras
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, Near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Aniket Pardip Sarkate
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
| |
Collapse
|
9
|
Zhang J, Zhu Y, Si J, Wu L. Metabolites of medicine food homology-derived endophytic fungi and their activities. Curr Res Food Sci 2022; 5:1882-1896. [PMID: 36276242 PMCID: PMC9579210 DOI: 10.1016/j.crfs.2022.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 11/04/2022] Open
Abstract
Medicine food homology (MFH) substances not only provide essential nutrients as food but also have corresponding factors that can prevent and help treat nutritional imbalances, chronic disease, and other related issues. Endophytic fungi associated with plants have potential for use in drug discovery and food therapy. However, the endophytic fungal metabolites from MFH plants and their effects have been overlooked. Therefore, this review focuses on the various biological activities of 108 new metabolites isolated from 53 MFH-derived endophytic fungi. The paper explores the potential nutritional and medicinal value of metabolites of MFH-derived endophytic fungi for food and medical applications. This research is important for the future development of effective, safe, and nontoxic therapeutic nutraceuticals for the prevention and treatment of human diseases.
Collapse
|
10
|
Investigation of CO2 Extract of Portulaca oleracea for Antioxidant Activity from Raw Material Cultivated in Kazakhstan. Int J Biomater 2022; 2022:6478977. [PMID: 35497070 PMCID: PMC9054492 DOI: 10.1155/2022/6478977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Medicinal plants remain as an important resource in the fight against many diseases, especially in developing countries. Antioxidants are substances capable of delaying, retarding, and preventing the oxidation of lipids or substances that delay or prevent free radical reactions during lipid oxidation. Natural antioxidants such as ascorbic acid, tocopherol, phenolic compounds, and flavonoids are a safe alternative to chemical antioxidants. In present work, results of antioxidant activity of raw materials from the cultivated plant Portulaca oleracea are presented. The extraction time was optimized to 780 minutes; the yield of extractive substances was 1.25% in the production of CO2 extract under subcritical conditions. For the first time, the antioxidant activity of Portulaca oleracea CO2 extract was determined by the amperometric method. Gas chromatography-mass spectrometry (GC-MS) chemical analysis of Portulaca oleracea CO2 extract dissolved in hexane revealed 37 components, including a complex mixture of aldehydes, alkanes, alkenes, esters, diterpenes, steroids, vitamin E, and carbohydrates. The investigation results showed that the Portulaca oleracea CO2 extract was promising for pharmaceutical, cosmetic, and food industries and had great potential for the prevention and treatment of diseases caused by oxidative stress.
Collapse
|
11
|
Hussain A, Bourguet-Kondracki ML, Hussain F, Rauf A, Ibrahim M, Khalid M, Hussain H, Hussain J, Ali I, Khalil AA, Alhumaydhi FA, Khan M, Hussain R, Rengasamy KRR. The potential role of dietary plant ingredients against mammary cancer: a comprehensive review. Crit Rev Food Sci Nutr 2022; 62:2580-2605. [DOI: 10.1080/10408398.2020.1855413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amjad Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
| | - Farhad Hussain
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pukhtanuk (KP), Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Punjab, Pakistan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Salle), Germany
| | - Javid Hussain
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Khan
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Kannan R. R. Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
12
|
Islam MR, Islam F, Nafady MH, Akter M, Mitra S, Das R, Urmee H, Shohag S, Akter A, Chidambaram K, Alhumaydhi FA, Emran TB, Cavalu S. Natural Small Molecules in Breast Cancer Treatment: Understandings from a Therapeutic Viewpoint. Molecules 2022; 27:2165. [PMID: 35408561 PMCID: PMC9000328 DOI: 10.3390/molecules27072165] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BrCa) is the most common malignancy in women and the second most significant cause of death from cancer. BrCa is one of the most challenging malignancies to treat, and it accounts for a large percentage of cancer-related deaths. The number of cases requiring more effective BrCa therapy has increased dramatically. Scientists are looking for more productive agents, such as organic combinations, for BrCa prevention and treatment because most chemotherapeutic agents are linked to cancer metastasis, the resistance of the drugs, and side effects. Natural compounds produced by living organisms promote apoptosis and inhibit metastasis, slowing the spread of cancer. As a result, these compounds may delay the spread of BrCa, enhancing survival rates and reducing the number of deaths caused by BrCa. Several natural compounds inhibit BrCa production while lowering cancer cell proliferation and triggering cell death. Natural compounds, in addition to therapeutic approaches, are efficient and potential agents for treating BrCa. This review highlights the natural compounds demonstrated in various studies to have anticancer properties in BrCa cells. Future research into biological anti-BrCa agents may pave the way for a new era in BrCa treatment, with natural anti-BrCa drugs playing a key role in improving BrCa patient survival rates.
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt;
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (R.D.)
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (R.D.)
| | - Humaira Urmee
- Department of Pharmaceutical Science, North South University, Dhaka 1229, Bangladesh;
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
13
|
Irfandi R, Santi S, Raya I, Ahmad A, Ahmad Fudholi, Sari DRT, Prihantono. Study of new Zn(II)Prolinedithiocarbamate as a potential agent for breast cancer: Characterization and molecular docking. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Shrihastini V, Muthuramalingam P, Adarshan S, Sujitha M, Chen JT, Shin H, Ramesh M. Plant Derived Bioactive Compounds, Their Anti-Cancer Effects and In Silico Approaches as an Alternative Target Treatment Strategy for Breast Cancer: An Updated Overview. Cancers (Basel) 2021; 13:cancers13246222. [PMID: 34944840 PMCID: PMC8699774 DOI: 10.3390/cancers13246222] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the most common malignant diseases that occur worldwide, among which breast cancer is the second leading cause of death in women. The subtypes are associated with differences in the outcome and were selected for treatments according to the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor. Triple-negative breast cancer, one of the subtypes of breast cancer, is difficult to treat and can even lead to death. If breast cancer is not treated during the initial stages, it may spread to nearby organs, a process called metastasis, through the blood or lymph system. For in vitro studies, MCF-7, MDA-MB-231, MDA-MB-468, and T47B are the most commonly used breast cancer cell lines. Clinically, chemotherapy and radiotherapy are usually expensive and can also cause side effects. To overcome these issues, medicinal plants could be the best alternative for chemotherapeutic drugs with fewer side effects and cost-effectiveness. Furthermore, the genes involved in breast cancer can be regulated and synergized with signaling molecules to suppress the proliferation of breast cancer cells. In addition, nanoparticles encapsulating (nano-encapsulation) medicinal plant extracts showed a significant reduction in the apoptotic and cytotoxic activities of breast cancer cells. This present review mainly speculates an overview of the native medicinal plant derived anti-cancerous compounds with its efficiency, types and pathways involved in breast cancer along with its genes, the mechanism of breast cancer brain metastasis, chemoresistivity and its mechanism, bioinformatics approaches which could be an effective alternative for drug discovery.
Collapse
Affiliation(s)
- Vijayakumar Shrihastini
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India; (V.S.); (M.S.)
| | - Pandiyan Muthuramalingam
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India; (V.S.); (M.S.)
- Correspondence: (P.M.); (J.-T.C.)
| | - Sivakumar Adarshan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (M.R.)
| | - Mariappan Sujitha
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India; (V.S.); (M.S.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
- Correspondence: (P.M.); (J.-T.C.)
| | - Hyunsuk Shin
- Department of Horticultural Sciences, Gyeongsang National University, Jinju 52725, Korea;
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (M.R.)
| |
Collapse
|
15
|
Pattar SV, Mirjankar MR, Kulkarni S, Gai PB, Pujar NK, Premakshi HG, Mulla SI, Babu RL, Kamanavalli CM. Analysis of human aldehyde dehydrogenases (ALDH) gene expression pattern in breast cancer tissue samples: rutin-copper complex inhibit the breast cancer cell proliferation. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Higher aldehyde dehydrogenases (ALDH) activity is one of the important signatures of breast cancer appearance and has been associated with poor prognosis. ALDH1A3 has been over-expressed in breast cancer patients. This study aims to analyze gene expression patterns of 18 ALDH isozymes in breast cancer tissue samples. It is carried out using a chip-based microarray, next-generation DNA sequencing of ALDH2 gene following in silico study to identify the natural products which act as inhibitors for over-expressed ALDH isoforms. The synthesis of rutin-copper complex and cell viability assay is carried out on MDA-MB-468 cell line.
Results
ALDH1A3 and ALDH18A1 have shown the highest positive mean fold of variation; whereas, ALDH2 and ALDH1A2 have shown the highest negative mean fold variation. In silico studies revealed that rutin has the highest binding affinity with both ALDH1A3 and ALDH18A1 and supported with IC50 value of rutin against MDA-MB-468 cells (144.50 μg/ml). Chemically synthesized rutin-copper complex significantly lowered the IC50 value to 119.40 μg/ml. The next-generation sequencing study provides the novel single nucleotide polymorphism (SNP) from T to G in the ALDH2 gene.
Conclusion
The present study signifies that, along with ALDH1A3, ALDH18A1 also acts as a marker for breast cancer. Apart from that, inhibitors of ALDH1A3 and ALDH18A1 were attained. Perhaps the single nucleotide polymorphism (SNP) obtained during the mutation analysis may be the probable cause of the highest downregulation of ALDH2 in breast cancer.
Collapse
|
16
|
Daneshforouz A, Nazemi S, Gholami O, Kafami M, Amin B. The cytotoxicity and apoptotic effects of verbascoside on breast cancer 4T1 cell line. BMC Pharmacol Toxicol 2021; 22:72. [PMID: 34844644 PMCID: PMC8628474 DOI: 10.1186/s40360-021-00540-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Despite significant advancements in breast cancer therapy, novel drugs with lower side effects are still being demanded. In this regard, we investigated the anti-cancer features of verbascoside in 4 T1 mouse mammary tumor cell. METHODS First, MTT assay was performed with various concentrations (ranging between 5 to 200 μM) of verbascoside and IC50 was calculated. Then the expression of Bax, Bcl-2, and caspase-3 was evaluated in treated 4 T1 cells. In addition, we investigated the expression of TLR4, MyD88, and NF-κB to ascertain the underlying mechanism of the anti-proliferative feature of verbascoside. Also, flow cytometry followed by double PI and Annexin V was conducted to confirm the apoptosis-inducing effect of verbascoside. RESULTS Our results from MTT assay showed verbascoside inhibits proliferation of 4 T1 cancer cells (IC50 117 μM) while is safe for normal HEK293T cells. By qRT-PCR, we observed that verbascoside treatment (100, 117 and, 130 μM) increases the expression of caspase-3 and Bax while reduces the expression of Bcl-2. Also, verbascoside (100, 117 and, 130 μM) increased the expression of TLR4 only at 130 μM dose and the expression of MyD88 whereas reduced the expression of NF-κB at mRNA level. Flow cytometry analysis also confirmed verbascoside induces apoptosis in 4 T1 cells at 117 μM. CONCLUSION Taken together, our data showed verbascoside is a safe natural compound for normal cells while has apoptosis-inducing feature through TLR4 axis on 4 T1 cells.
Collapse
Affiliation(s)
- Atena Daneshforouz
- Student Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Samad Nazemi
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Omid Gholami
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Marzieh Kafami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran. .,Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
17
|
Grabarska A, Wróblewska-Łuczka P, Kukula-Koch W, Łuszczki JJ, Kalpoutzakis E, Adamczuk G, Skaltsounis AL, Stepulak A. Palmatine, a Bioactive Protoberberine Alkaloid Isolated from Berberis cretica, Inhibits the Growth of Human Estrogen Receptor-Positive Breast Cancer Cells and Acts Synergistically and Additively with Doxorubicin. Molecules 2021; 26:molecules26206253. [PMID: 34684834 PMCID: PMC8538708 DOI: 10.3390/molecules26206253] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Palmatine (PLT) is a natural isoquinoline alkaloid that belongs to the class of protoberberines and exhibits a wide spectrum of pharmacological and biological properties, including anti-cancer activity. The aim of our study was to isolate PLT from the roots of Berberis cretica and investigate its cytotoxic and anti-proliferative effects in vitro alone and in combination with doxorubicine (DOX) using human ER+/HER2− breast cancer cell lines. The alkaloid was purified by column chromatography filled with silica gel NP and Sephadex LH-20 resin developed in the mixture of methanol: water (50:50 v/v) that provided high-purity alkaloid for bioactivity studies. The purity of the alkaloid was confirmed by high resolution mass measurement and MS/MS fragmentation analysis in the HPLC-ESI-QTOF-MS/MS-based analysis. It was found that PLT treatment inhibited the viability and proliferation of breast cancer cells in a dose-dependent manner as demonstrated by MTT and BrdU assays. PLT showed a quite similar growth inhibition on breast cancer cells with IC50 values ranging from 5.126 to 5.805 µg/mL. In contrast, growth of normal human breast epithelial cells was not affected by PLT. The growth inhibitory activity of PLT was related to the induction of apoptosis, as determined by Annexin V/PI staining. Moreover, PLT sensitized breast cancer cells to DOX. Isobolographic analysis revealed synergistic and additive interactions between studied agents. Our studies suggest that PLT can be a potential candidate agent for preventing and treating breast cancer.
Collapse
Affiliation(s)
- Aneta Grabarska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81448-6350
| | - Paula Wróblewska-Łuczka
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (P.W.-Ł.); (J.J.Ł.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Jarogniew J. Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (P.W.-Ł.); (J.J.Ł.)
| | - Eleftherios Kalpoutzakis
- Laboratory of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (E.K.); (A.L.S.)
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Alexios Leandros Skaltsounis
- Laboratory of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (E.K.); (A.L.S.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| |
Collapse
|
18
|
Singh V, Kumar K, Purohit D, Verma R, Pandey P, Bhatia S, Malik V, Mittal V, Rahman MH, Albadrani GM, Arafah MW, El-Demerdash FM, Akhtar MF, Saleem A, Kamel M, Najda A, Abdel-Daim MM, Kaushik D. Exploration of therapeutic applicability and different signaling mechanism of various phytopharmacological agents for treatment of breast cancer. Biomed Pharmacother 2021; 139:111584. [PMID: 34243623 DOI: 10.1016/j.biopha.2021.111584] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cancer is one of the most dreaded diseases characterized by uncontrolled proliferation of abnormal cells that occurs due to impairment of cell division and apoptosis process. Cancer is categorized into several types on the basis of affected organs and breast cancer (BC) is the most predominant cause of mortality among women. Although, several synthetic and semi-synthetic therapies have been developed for the treatment of BC but they exhibit numerous serious adverse effects therefore; pharmacological agents with fewer/no side effects need to be explored. Plants and phytoconstituents perhaps fulfill the aforementioned requirement and could serve as a potential and alternative therapy for BC treatment. The ongoing biomedical research, clinical trials and number of patents granted have further boosted the acceptance of the plants and plant-derived constituents in the effective treatment of BC. PURPOSE OF STUDY Various treatment strategies such as checkpoint inhibitors, targeting micro RNA, apoptotic pathway, BRCA-1 gene, P53 protein, P13K/Akt/mTOR pathway, notch signaling pathway, hedgehog/gli-1 signaling pathway, poly-ADP ribose polymerase inhibitors, mitogen-activated protein kinase inhibitors etc. are available for BC. In addition to these synthetic and semi-synthetic drug therapies, several natural constituents such as alkaloids, sesquiterpenes, polyphenols, flavonoids and diterpenoids from medicinal plants, vegetables and fruits are reported to possess promising anti-cancer activity. The purpose of the present review is to highlight the various signaling pathways through which plants/herbs show the anti-cancer potential especially against the BC. STUDY DESIGN The literature for the present study was collected from various databases such as Pubmed, Scopus, Chemical Abstracts, Medicinal and aromatic plant abstracts, Web of Science etc. The different patent databases were also reviewed for the anti-cancer (BC) potential of the particular herbs/plants and their formulations. RESULT AND CONCLUSION In this review, we have discussed the number of plants along with their patents of different herbal formulations which are being used for the treatment of BC and other types of cancers. We have also delineated the different signaling mechanisms through which they inhibit the growth of BC cells. In nutshell, we can conclude that large numbers of herbs or their extracts are reported for the treatment of BC. But still, there is further need for research in-depth to translate the use of natural products clinically BC treatment.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India; University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Mohali, Punjab, India
| | - Deepika Purohit
- Department of Pharmaceutical Sciences, Indira Gandhi University, Rewari 123401, Haryana, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University Haryana, Manesar, Panchgaon, Haryana 122412, India; Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohammed W Arafah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegtable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India.
| |
Collapse
|
19
|
Widjaja SS, Rusdiana, Ichwan M. Enhanced cytotoxic effects of Clinacanthus nutans and doxorubicin in combination toward breast cancer cell lines. J Adv Pharm Technol Res 2021; 12:152-156. [PMID: 34159146 PMCID: PMC8177153 DOI: 10.4103/japtr.japtr_251_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/19/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most common cancers with a relatively high mortality rate. Despite the advancement of its medical treatments, many patients are still seeking complementary alternative medicines, namely Clinacanthus nutans which is found mainly in South-East Asian countries. We aim to find the antioxidant properties and cytotoxic activity of the plant extract toward breast cancer cell lines Michigan Cancer Foundation-7 (MCF7) and T47D individually and in combination with doxorubicin. Extractions of C. nutans with ethanol, n-hexane, and ethyl acetate were done using rotatory vacuum evaporators with the reflux method. Screening of biochemical properties was conducted. Antioxidant activity was measured toward α, α-diphenyl-β-picrylhydrazyl (DPPH) with IC50 scores were shown to be highest in ethyl acetate extract. Cytotoxic effects of all three extracts were shown to be low in both MCF7 and T47D cells. However, combinations of 125 μg/ml n-hexane extract of C. nutans, and 0.1 μg/ml doxorubicin in T47D cancer cells showed further proliferation reduction compared to the single administration. The results suggested possible synergisms of the treatment combination.
Collapse
Affiliation(s)
- Sry Suryani Widjaja
- Department of Biochemistry, Medical Faculty Universitas Sumatera Utara, Indonesia
| | - Rusdiana
- Department of Biochemistry, Medical Faculty Universitas Sumatera Utara, Indonesia
| | - M Ichwan
- Department of Pharmacology, Medical Faculty Universitas Sumatera Utara, Indonesia
| |
Collapse
|
20
|
Espinosa-Paredes DA, Cornejo-Garrido J, Moreno-Eutimio MA, Martínez-Rodríguez OP, Jaramillo-Flores ME, Ordaz-Pichardo C. Echinacea Angustifolia DC Extract Induces Apoptosis and Cell Cycle Arrest and Synergizes with Paclitaxel in the MDA-MB-231 and MCF-7 Human Breast Cancer Cell Lines. Nutr Cancer 2020; 73:2287-2305. [PMID: 32959676 DOI: 10.1080/01635581.2020.1817956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Echinacea spp. displays different biological activities, such as antiviral, immunomodulatory, and anticancer activities. Currently, high sales of hydroalcoholic extracts of Echinacea have been reported; hence, the importance of studies on Echinacea. AIM To establish the effects of Echinacea angustifolia DC extract obtained with ethyl acetate (Ea-AcOEt) in breast cancer cell lines. METHODS Cytotoxicity, cell cycle arrest, and cell death were evaluated. Besides, the safety of the extract, as well as its effect in combination with paclitaxel were investigated. RESULTS The echinacoside and caffeic acid content in the Ea-AcOEt extract were quantified by HPLC, and its antioxidant activity was assessed. The Ea-AcOEt extract showed cytotoxic activity on breast cancer MDA-MB-231 cells (IC50 28.18 ± 1.14 µg/ml) and MCF-7 cells (19.97 ± 2.31 µg/ml). No effect was observed in normal breast MCF-10 cells. The Ea-AcOEt extract induced cell cycle arrest in the G1 phase and caspase-mediated apoptosis. No genotoxicity was found in vitro or in vivo, and the extract showed no signs of toxicity or death at 2,000 mg/kg in rodents. In vitro, the combination of Ea-AcOEt extract and paclitaxel showed a synergistic effect on both cancer cell lines. CONCLUSION The Ea-AcOEt extract is a potential candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Daniel Abraham Espinosa-Paredes
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| | - Jorge Cornejo-Garrido
- Laboratorio de Fitoquímica, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| | | | - Oswaldo Pablo Martínez-Rodríguez
- Laboratorio de Biopolímeros, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN); Av. Wilfrido Massieu Esq. Cda. Manuel Stampa S/N Col. Unidad Profesional López Mateos, Alcaldía Gustavo A. Madero, CDMX, México
| | - María Eugenia Jaramillo-Flores
- Laboratorio de Biopolímeros, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN); Av. Wilfrido Massieu Esq. Cda. Manuel Stampa S/N Col. Unidad Profesional López Mateos, Alcaldía Gustavo A. Madero, CDMX, México
| | - Cynthia Ordaz-Pichardo
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| |
Collapse
|
21
|
Rameshbabu S, Messaoudi SA, Alehaideb ZI, Ali MS, Venktraman A, Alajmi H, Al-Eidi H, Matou-Nasri S. Anastatica hierochuntica (L.) methanolic and aqueous extracts exert antiproliferative effects through the induction of apoptosis in MCF-7 breast cancer cells. Saudi Pharm J 2020; 28:985-993. [PMID: 32792843 PMCID: PMC7414070 DOI: 10.1016/j.jsps.2020.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer therapy using anticancer bioactive compounds derived from natural products as adjuvant treatment has gained recognition due to expensive and toxic conventional chemotherapeutic drugs. The whole plant of Anastatica hierochuntica (L.) (A. hierochuntica) has been investigated for its pharmacologically important anticancer properties but without categorizing the biological activities of the plant parts. We assessed the anticancer potential of different parts of A. hierochuntica (seeds, stems and leaves) and explored their mechanisms of action using the human breast cancer cell line, MCF-7. Currently, we investigated the antiproliferative effects of methanolic (MSD, MST, ML) and aqueous (ASD, AST, AL) extracts of A. hierochuntica plant parts on the MCF-7 cells using cell viability assays. Flow cytometry, Western Blot, DNA fragmentation, and gene expression assays were performed to evaluate apoptosis and cell cycle regulatory proteins. The results indicate that the methanolic and aqueous extracts decreased MCF-7 cell viability in a dose-dependent manner. The induction of apoptosis was observed in all the methanolic and aqueous-treated MCF-7 cells. The cell death process was confirmed by the visualization of DNA fragmentation and cleavage of the intrinsic apoptotic pathways, caspase-9 and caspase-3, the key enzyme causing apoptosis hallmarks. In addition, the most pro-apoptotic extracts, ASD and ML, up-regulated the expression of pro-apoptotic Bax, tumor suppressor TP53 genes and the cyclin inhibitor CDKN1A gene. In conclusion, of the aqueous and methanolic extracts of A. hierochuntica plant parts exerting antiproliferative effects through the induction of apoptosis in breast cancer MCF-7 cells, ASD and ML extracts were the most promising natural-based drugs for the treatment of breast cancer.
Collapse
Key Words
- AL, aqueous extract of A. hierochuntica’s leaf
- ASD, aqueous extract of A. hierochuntica’s seed
- AST, aqueous extract of A. hierochuntica’s stem
- Anastatica hierochuntica
- Apoptosis
- BC, breast cancer
- Breast cancer
- CDK, cyclin-dependent kinase
- Cell cycle
- MCF-7, Michigan Cancer Foundation-7
- ML, methanolic extract of A. hierochuntica’s leaf
- MSD, methanolic extract of A. hierochuntica’s seed
- MST, methanolic extract of A. hierochuntica’s stem
- NP40, Nonidet P-40
- Natural products
- P53
- STS, Staurosporine
- TP53, tumor protein p53
Collapse
Affiliation(s)
- Saranya Rameshbabu
- Post Graduate and Research Department of Biochemistry, Mohamed Sathak College of Arts and Science, Tamil Nadu, India
| | - Safia A. Messaoudi
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Zeyad Ibrahim Alehaideb
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohammed Syed Ali
- Department of Biotechnology, Mohamed Sathak College of Arts and Science, Tamil Nadu, India
| | - Anuradha Venktraman
- Post Graduate and Research Department of Biochemistry, Mohamed Sathak College of Arts and Science, Tamil Nadu, India
| | - Hala Alajmi
- Biobank, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Ibrahim AY, Youness ER, Mahmoud MG, Asker MS, El-Newary SA. Acidic Exopolysaccharide Produced from Marine Bacillus amyloliquefaciens 3MS 2017 for the Protection and Treatment of Breast Cancer. Breast Cancer (Auckl) 2020; 14:1178223420902075. [PMID: 32047357 PMCID: PMC6984436 DOI: 10.1177/1178223420902075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/27/2022] Open
Abstract
PURPOSE This study was planned to investigate the anti-breast-cancer property of acidic exopolysaccharide produced from marine Bacillus amyloliquefaciens 3MS 2017 (BAEPS) in an animal model, which previously showed in-vitro anti-breast-cancer activity, by studying its potential participation in various targeted mechanisms. METHODS Mammary carcinoma in female Sprague-Dawley rats, both in prophylactic and in curative designs, was chemically induced using 7,12-dimethylebenz-(a)-anthracene (DMBA). B. amyloliquefaciens 3MS 2017 anti-breast-cancer property was evaluated by studying its effects on cancer-growth-rate-limiting enzymes (aromatase and Na+/K+ ATPase), sexual hormones (estrogen and progesterone), antioxidant and inflammatory biomarkers (cyclooxygenase-1; COX-1 and cyclooxygenase-2; COX-2). The incidence of breast cancer by DMBA was dependent on the level of carcinoembryonic antigen (CEA) and aromatase. RESULTS 7,12-Dimethylebenz-(a)-anthracene female rats were characterized by a significant increase in cancer-related biomarkers with an increase of oxidative stress biomarkers, in comparison with the negative control. Potent BAEPS anticancer activity on DMBA rats was exhibited either as a prophylactic or as a curative agent, which appeared via restoring the aromatase and Na+/K+ ATPase subunits levels and CEA close to the normal level. Besides, BAEPS modulated a sexual hormone, in comparison with the cancer control group (P ⩽ .05). B. amyloliquefaciens 3MS 2017 selectively inhibited COX-2 in parallel with promising antioxidant properties. The curative characters of BAEPS were more promising than the prophylactic. CONCLUSION The anti-breast-cancer characters accompanied with a good safety margin may be attributed to its inhibitory effect on cancer-growth-rate-limiting enzymes, estrogen production, COX-2 level and lipid peroxidation, concurrent with enhancing COX-1 level, progesterone production, and antioxidant status.
Collapse
Affiliation(s)
- Abeer Y Ibrahim
- Department of Medicinal and Aromatic Plants Research, National Research Centre, Giza, Egypt
| | - Eman R Youness
- Department of Medical Biochemistry, Medical Research Division, National Research Centre, Giza, Egypt
| | - Manal G Mahmoud
- Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mohsen S Asker
- Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Samah A El-Newary
- Department of Medicinal and Aromatic Plants Research, National Research Centre, Giza, Egypt
| |
Collapse
|
23
|
Gao G, Ge R, Li Y, Liu S. Luteolin exhibits anti-breast cancer property through up-regulating miR-203. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3265-3271. [PMID: 31368817 DOI: 10.1080/21691401.2019.1646749] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Luteolin is a representative of natural flavonoid that has anti-tumour properties. This study designed to check its impact on breast cancer and the underlying mechanisms. MDA-MB-453 and MCF-7 cells were administrated with luteolin and the following techniques were carried out: CCK-8 assay, FITC-PI double-staining and Western blot. qRT-PCR analysis was utilized to see the effects of luteolin on miR-203 expression. Besides, miR-203 expression was silenced by transfection with specific inhibitor. Luteolin remarkably declined MDA-MB-453 and MCF-7 cells viability and accelerated apoptosis which accompanied by Bax up-regulation, Bcl-2 down-regulation and Caspase-3 cleavage. Also, luteolin impeded TGFβ1-induced EMT, as evidenced by the decreased levels of Vimentin, Zeb1 and N-cadherin, as well as the increased level of E-cadherin. miR-203 was highly expressed in 22 pair of breast cancer tissues than the matched paracancerous tissues. Luteolin could elevate miR-203 level. Besides, luteolin's anti-tumour effects were partially eliminated by miR-203 silence. Further, luteolin inhibited Ras/Raf/MEK/ERK signalling, while the inhibitory effects were flattened by miR-203 silence. Luteolin significantly reduced breast cancer cells growth and EMT. Luteolin exerted its anti-tumour effects possibly involved the elevated expression of miR-203 and the inhibited Ras/Raf/MEK/ERK signalling.
Collapse
Affiliation(s)
- Guanglei Gao
- a Department of Galactophore, Linyi Central Hospital , Linyi , PR China
| | - Rongli Ge
- a Department of Galactophore, Linyi Central Hospital , Linyi , PR China
| | - Yuzhou Li
- a Department of Galactophore, Linyi Central Hospital , Linyi , PR China
| | - Shengcui Liu
- a Department of Galactophore, Linyi Central Hospital , Linyi , PR China
| |
Collapse
|
24
|
Han B, Peng X, Cheng D, Zhu Y, Du J, Li J, Yu X. Delphinidin suppresses breast carcinogenesis through the HOTAIR/microRNA-34a axis. Cancer Sci 2019; 110:3089-3097. [PMID: 31325197 PMCID: PMC6778627 DOI: 10.1111/cas.14133] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/26/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
Delphinidin, one of the main anthocyanidins, has potent anti-cancer properties. In this study, we investigated the effect of delphinidin on 1-methyl-1-nitrosourea (MNU)-induced breast carcinogenesis on rats and the mechanism of delphinidin via negative regulation of the HOTAIR/microRNA-34a axis. We found administration of delphinidin could effectively suppress MNU-induced mammal breast carcinogenesis. Delphinidin downregulated the level of HOTAIR and upregulated miR-34a in breast carcinogenesis. Western blot analysis confirmed that delphinidin treatment can significantly decrease the expression of β-catenin, glycogen synthase kinase-3β (Gsk3β), c-Myc, cyclin-D1, and matrix metalloproteinase-7(MMP-7) expression in breast cancer cells, and inhibition of miR-34a significantly reduced the effect of delphinidin on c-Myc, cyclin-D1, and MMP-7. HOTAIR overexpression also blocked the effect of delphinidin on miR-34a and the Wnt/β-catenin signaling pathway in MDA-MB-231 cells. RNA immunoprecipitation (RIP) assay and chromatin immunoprecipitation (ChIP) assay results showed that delphinidin upregulated miR-34a by inhibiting HOTAIR, coupled with enhancement of the zeste homolog 2 (EZH2) and histone H3 Lys27 trimethylation (H3K27me3). This study indicated that delphinidin may potentially suppress breast carcinogenesis and exert its anti-cancer effect through the HOTAIR/miR-34a axis. These findings provided new evidence for the use of delphinidin in preventing breast carcinogenesis.
Collapse
Affiliation(s)
- Bin Han
- School of Public HealthChengdu Medical CollegeChengduChina
| | - Xiaoli Peng
- School of Public HealthChengdu Medical CollegeChengduChina
| | - Daomei Cheng
- School of Public HealthChengdu Medical CollegeChengduChina
| | - Yanfeng Zhu
- School of Public HealthChengdu Medical CollegeChengduChina
| | - Jingchang Du
- School of Public HealthChengdu Medical CollegeChengduChina
| | - Ju Li
- School of Public HealthChengdu Medical CollegeChengduChina
| | - Xiaoping Yu
- School of Public HealthChengdu Medical CollegeChengduChina
| |
Collapse
|
25
|
Yang L, Zhang Y, Yu X. Protective Effect of Obovatol Against MCF-7 Human Breast Adenocarcinoma Cells via Inducing Apoptosis and Cell Cycle Arrest. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.823.828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Kezimana P, Dmitriev AA, Kudryavtseva AV, Romanova EV, Melnikova NV. Secoisolariciresinol Diglucoside of Flaxseed and Its Metabolites: Biosynthesis and Potential for Nutraceuticals. Front Genet 2018; 9:641. [PMID: 30619466 PMCID: PMC6299007 DOI: 10.3389/fgene.2018.00641] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022] Open
Abstract
Secoisolariciresinol diglucoside (SDG), found mainly in flaxseed, is one of the essential lignans. SDG, as well as the beneficial fatty acid composition and high fiber content, has made flaxseed an important source of functional food or nutraceutical ingredients. Various studies have shown that SDG offers several health benefits, including protective effects against cardiovascular diseases, diabetes, cancer, and mental stress. These health benefits have been attributed to the antioxidant properties of SDG. Additionally, SDG metabolites, namely mammalian lignans, enterodiol and enterolactone, have shown promising effects against cancer. Therefore, understanding the biosynthetic pathway of SDG and its molecular mechanisms is a key to enable the production of new flaxseed cultivars rich in nutraceutical content. The present review highlights studies on the different health benefits of SDG, as well as lignan biosynthesis in flaxseed and genes involved in the biosynthetic pathway. Since SDG, the predominant lignan in flaxseed, is a glycosylated lignan, we also focus on studies investigating the genes involved in secoisolariciresinol glycosylation. These genes can be used to produce new cultivars with a novel level of glycosylation or lignan composition to maximize the yields of lignans with a therapeutic or protective potential.
Collapse
Affiliation(s)
- Parfait Kezimana
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Agrobiotechnology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena V. Romanova
- Department of Agrobiotechnology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Greish K, Pittalà V, Taurin S, Taha S, Bahman F, Mathur A, Jasim A, Mohammed F, El-Deeb IM, Fredericks S, Rashid-Doubell F. Curcumin⁻Copper Complex Nanoparticles for the Management of Triple-Negative Breast Cancer. NANOMATERIALS 2018; 8:nano8110884. [PMID: 30388728 PMCID: PMC6267006 DOI: 10.3390/nano8110884] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022]
Abstract
Breast cancer is the most common cancer diagnosed among females worldwide. Although breast cancer survival has largely improved in the past 30 years, it remains highly heterogeneous in its response to treatment. Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks the expression of the estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor-2 (Her2). While TNBC may initially be responsive to chemotherapy, recurrence and subsequent high mortality rates are frequently reported. Studies have shown curcumin and its derivatives to be effective against TNBC cell lines in vitro. To improve its anti-cancer effects, we have synthesized Fe3+⁻curcumin (Fe⁻Cur₃) and Cu2+⁻curcumin (CD) complexes and investigated them experimentally. Further, CD was encapsulated into a poly(styrene)-co-maleic acid (SMA) micelle to enhance its stability. We assessed the cytotoxicity of these formulations both in vitro and in vivo. SMA⁻CD demonstrated dose-dependent cytotoxicity and abolished TNBC tumor growth in vivo. The encapsulation of the curcumin⁻copper complex improved its anti-cancer activity without overt adverse effects in a murine model of TNBC. These results provide evidence and insights into the value of nanoformulations in enhancing drug-delivery and increasing the potential therapeutic efficacy of curcumin derivatives.
Collapse
Affiliation(s)
- Khaled Greish
- Department of Molecular Medicine, College of Medicine and Medical Sciences, and Nanomedicine Research Unite, Princess Al-Jawhara Centre for Molecular Medicine and Inherited Disorder, Arabian Gulf University, Manama 328, Bahrain.
- Department of Oncology, Suez Canal University, Ismailia 007, Egypt.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Catania I-95125, Italy.
| | - Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Medical Sciences, and Nanomedicine Research Unite, Princess Al-Jawhara Centre for Molecular Medicine and Inherited Disorder, Arabian Gulf University, Manama 328, Bahrain.
| | - Safa Taha
- Department of Molecular Medicine, College of Medicine and Medical Sciences, and Nanomedicine Research Unite, Princess Al-Jawhara Centre for Molecular Medicine and Inherited Disorder, Arabian Gulf University, Manama 328, Bahrain.
| | - Fatemah Bahman
- Department of Molecular Medicine, College of Medicine and Medical Sciences, and Nanomedicine Research Unite, Princess Al-Jawhara Centre for Molecular Medicine and Inherited Disorder, Arabian Gulf University, Manama 328, Bahrain.
| | - Aanchal Mathur
- Department of Molecular Medicine, College of Medicine and Medical Sciences, and Nanomedicine Research Unite, Princess Al-Jawhara Centre for Molecular Medicine and Inherited Disorder, Arabian Gulf University, Manama 328, Bahrain.
| | - Anfal Jasim
- Department of Molecular Medicine, College of Medicine and Medical Sciences, and Nanomedicine Research Unite, Princess Al-Jawhara Centre for Molecular Medicine and Inherited Disorder, Arabian Gulf University, Manama 328, Bahrain.
| | - Fatima Mohammed
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland (RCSI), Medical University of Bahrain, Busaiteen 221, Bahrain.
| | - Ibrahim M El-Deeb
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland (RCSI), Medical University of Bahrain, Busaiteen 221, Bahrain.
| | - Salim Fredericks
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland (RCSI), Medical University of Bahrain, Busaiteen 221, Bahrain.
| | - Fiza Rashid-Doubell
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland (RCSI), Medical University of Bahrain, Busaiteen 221, Bahrain.
| |
Collapse
|
28
|
Utage BG, Patole MS, Nagvenkar PV, Kamble SS, Gacche RN. Prosopis juliflora (Sw.), DC induces apoptosis and cell cycle arrest in triple negative breast cancer cells: in vitro and in vivo investigations. Oncotarget 2018; 9:30304-30323. [PMID: 30100991 PMCID: PMC6084402 DOI: 10.18632/oncotarget.25717] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/13/2018] [Indexed: 11/28/2022] Open
Abstract
Plant originated drugs/formulations are extensively prescribed by the physicians as a complementary therapy for treating various human ailments including cancer. In this study Prosopis juliflora leaves methanol extract was prepared and exposed to human breast cancer cell lines i.e. MDA-MB-231 and MCF-7 and human keratinocytes HaCaT as a representative of normal cells. Initially, a series of in vitro experiments like cell proliferation, migration, colony formation, cell cycle arrest and inhibition of angiogenesis. After confirmation of the efficient and selective activity against triple negative breast cancer cell line, we further evaluated the possible mechanism of inducing cell death and experiments like detection of reactive oxygen species, caspases and poly (ADP-ribose) polymerase cleavage study and Annexin V assay were performed. We also evaluated in vivo anti tumorigenic activity of the P. juliflora leaves by using 4T1 cells (a triple negative mouse origin breast cancer cell line) and BALB/c xenograft mouse model. In vitro experiments revealed that methanol extract of Prosopis juliflora leaves possess impressive anti-breast cancer activity more specifically against triple negative breast cancer cells, while the in vivo studies demonstrated that P. juliflora leaves extract significantly suppressed the 4T1 induced tumor growth. Present investigations clearly focus the significance of P. juliflora as an important resource for finding novel leads against triple negative breast cancer. The results may also act as a ready reference towards developing P. juliflora based formulation as an alternative and complementary medicine for the management of breast cancer.
Collapse
Affiliation(s)
- Bhimashankar Gurushidhappa Utage
- National Centre for Cell Science, NCCS Complex, Pune, 411007, MS, India.,School of Life Sciences, S.R.T.M. University, Nanded, 4316069, MS, India
| | | | | | | | - Rajesh Nivarti Gacche
- School of Life Sciences, S.R.T.M. University, Nanded, 4316069, MS, India.,Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, MS, India
| |
Collapse
|
29
|
Velandia SA, Quintero E, Stashenko EE, Ocazionez RE. Actividad antiproliferativa de aceites esenciales de plantas cultivadas en Colombia. ACTA BIOLÓGICA COLOMBIANA 2018. [DOI: 10.15446/abc.v23n2.67394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Colombia posee gran diversidad de plantas medicinales, pero pocas han sido objeto de investigación. En este trabajo se evaluó la actividad antiproliferativa de aceites esenciales obtenidos por hidrodestilación asistida por microondas. Se analizaron 15 muestras de 11 especies en ensayos del MTT en células cancerosas MCF-7, HeLa y HepG-2 y se incluyeron células normales humanas (HEK293) y de animales (Vero y BF16F10) para evaluar selectividad. La composición química de muestras activas se determinó por cromatografía de gases acoplada a espectrometría de masas (GC-MS). Aceites esenciales de cuatro especies mostraron actividad antiproliferativa (CI50: 50 μg/mL) en células HeLa y/o MCF-7, en el siguiente rango (índice de selectividad en paréntesis): Piper cumanense H.B.K. (4,7) > Piper subflavum var. espejuelanum C.DC (3,9) > Salvia officinalis L. (3,6) > Piper eriopodom (Miq.) C. DC. (3,1). Ninguna muestra fue activa en células HepG-2. El análisis por CG-MS identificó β-cariofileno, α-copaeno, β-pineno, α-pineno y linalol como componentes mayoritarios. Los aceites esenciales activos pueden ser punto de partida para desarrollo de medicamentos herbales para cuidado paliativo del cáncer.
Collapse
|
30
|
Calado A, Neves PM, Santos T, Ravasco P. The Effect of Flaxseed in Breast Cancer: A Literature Review. Front Nutr 2018; 5:4. [PMID: 29468163 PMCID: PMC5808339 DOI: 10.3389/fnut.2018.00004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is one of the most common cancers and the second most responsible for cancer mortality worldwide. In 2014, in Portugal approximately 27,200 people died of cancer, of which 1,791 were women with breast cancer. Flaxseed has been one of the most studied foods, regarding possible relations to breast cancer, though mainly in experimental studies in animals, yet in few clinical trials. It is rich in omega-3 fatty acids, α-linolenic acid, lignan, and fibers. One of the main components of flaxseed is the lignans, of which 95% are made of the predominant secoisolariciresinol diglucoside (SDG). SDG is converted into enterolactone and enterodiol, both with antiestrogen activity and structurally similar to estrogen; they can bind to cell receptors, decreasing cell growth. Some studies have shown that the intake of omega-3 fatty acids is related to the reduction of breast cancer risk. In animal studies, α-linolenic acids have been shown to be able to suppress growth, size, and proliferation of cancer cells and also to promote breast cancer cell death. Other animal studies found that the intake of flaxseed combined with tamoxifen can reduce tumor size to a greater extent than taking tamoxifen alone. Additionally, some clinical trials showed that flaxseed can have an important role in decreasing breast cancer risk, mainly in postmenopausal women. Further studies are needed, specifically clinical trials that may demonstrate the potential benefits of flaxseed in breast cancer.
Collapse
Affiliation(s)
- Ana Calado
- Instituto de Ciências da Saúde, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Pedro Miguel Neves
- Faculdade de Medicina da Universidade de Lisboa, Hospital Universitário de Santa Maria and Centro de Investigação Interdisciplinar em Saúde da Universidade Católica Portuguesa, Lisbon, Portugal
| | - Teresa Santos
- Faculdade de Motricidade Humana (FMH) (Projecto Aventura Social-Social Adventure Team), Universidade de Lisboa, Lisbon, Portugal.,Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,William James Center for Research, ISPA--Instituto Universitário, Lisbon, Portugal
| | - Paula Ravasco
- Faculdade de Medicina da Universidade de Lisboa, Hospital Universitário de Santa Maria and Centro de Investigação Interdisciplinar em Saúde da Universidade Católica Portuguesa, Lisbon, Portugal
| |
Collapse
|
31
|
Kerry RG, Pradhan P, Das G, Gouda S, Swamy MK, Patra JK. Anticancer Potential of Mangrove Plants: Neglected Plant Species of the Marine Ecosystem. ANTICANCER PLANTS: PROPERTIES AND APPLICATION 2018:303-325. [DOI: 10.1007/978-981-10-8548-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
|
32
|
Sabino APL, Eustáquio LMS, Miranda ACF, Biojone C, Mariosa TN, Gouvêa CMCP. Stryphnodendron adstringens ("Barbatimão") Leaf Fraction: Chemical Characterization, Antioxidant Activity, and Cytotoxicity Towards Human Breast Cancer Cell Lines. Appl Biochem Biotechnol 2017; 184:1375-1389. [PMID: 29043662 DOI: 10.1007/s12010-017-2632-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
We evaluated the chemical composition, antioxidant activity, and antitumor potential of a fraction that was isolated from Stryphnodendron adstringens (barbatimão) leaf aqueous extract. Fraction is composed by gallic acid, procyanidin dimer B1, and (-)-epicatechin-3-O-gallate and it exhibits antioxidant and cytotoxic activities. Fraction was cytotoxic against two human breast cancer cell lines, ER (+) and MCF-7 and the triple-negative, MDA-MB-435. The sulforhodamine B assay showed that, as compared to normal control cells, the fraction significantly (P < 0.05) decreased cancer cell viability. The morphological alterations noted in the treated cancer cells were cell rounding-up, shrinkage, and nuclear condensation reduction of cell diameter and length. Treatment with fraction increased cancer cell expression of Bax, caspase-9, active caspase-3, caspase-8, LC-3, and beclin-1 and decreased Bcl-2, caspase-3, and pro-caspase-8 expression. Altogether, fraction is cytotoxic to both breast cancer cell lines, induces cell death, and its mechanism of action seems to include the induction of apoptosis. Our data support a positive role of the fraction as a chemopreventive agent for antineoplastic drug development.
Collapse
Affiliation(s)
- A P L Sabino
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG, 37130-000, Brazil
| | - L M S Eustáquio
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG, 37130-000, Brazil
| | - A C F Miranda
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG, 37130-000, Brazil
| | - C Biojone
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG, 37130-000, Brazil
| | - T N Mariosa
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG, 37130-000, Brazil
| | - Cibele Marli Cação Paiva Gouvêa
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG, 37130-000, Brazil.
| |
Collapse
|
33
|
Mishra K, Alsbeih G. Appraisal of biochemical classes of radioprotectors: evidence, current status and guidelines for future development. 3 Biotech 2017; 7:292. [PMID: 28868219 DOI: 10.1007/s13205-017-0925-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
The search for efficient radioprotective agents to protect from radiation-induced toxicity, due to planned or accidental radiation exposure, is still ongoing worldwide. Despite decades of research and development of widely different biochemical classes of natural and derivative compounds, a safe and effective radioprotector is largely unmet. In this comprehensive review, we evaluated the evidence for the radioprotective performance of classical thiols, vitamins, minerals, dietary antioxidants, phytochemicals, botanical and bacterial preparations, DNA-binding agents, cytokines, and chelators including adaptogens. Where radioprotection was demonstrated, the compounds have shown moderate dose modifying factors ranging from 1.1 to 2.7. To date, only few compounds found way to clinic with limited margin of dose prescription due to side effects. Most of these compounds (amifostine, filgratism, pegfilgrastim, sargramostim, palifermin, recombinant salmonella flagellin, Prussian blue, potassium iodide) act primarily via scavenging of free radicals, modulation of oxidative stress, signal transduction, cell proliferation or enhance radionuclide elimination. However, the gain in radioprotection remains hampered with low margin of tolerance. Future development of more effective radioprotectors requires an appropriate nontoxic compound, a model system and biomarkers of radiation exposure. These are important to test the effectiveness of radioprotection on physiological tissues during radiotherapy and field application in cases of nuclear eventualities.
Collapse
Affiliation(s)
- Krishnanand Mishra
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| | - Ghazi Alsbeih
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Shoaib M, Ahmed SA. Role of natural herbs and phytochemicals to minimize tumor and economic burden in breast cancer treatment. BREAST CANCER-TARGETS AND THERAPY 2016; 8:241-242. [PMID: 27994484 PMCID: PMC5153294 DOI: 10.2147/bctt.s125826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Maria Shoaib
- Dow Medical College, Dow University of Health Sciences, Karachi
| | | |
Collapse
|
35
|
Ruan J, Zheng C, Qu L, Liu Y, Han L, Yu H, Zhang Y, Wang T. Plant Resources, (13)C-NMR Spectral Characteristic and Pharmacological Activities of Dammarane-Type Triterpenoids. Molecules 2016; 21:E1047. [PMID: 27529202 PMCID: PMC6273074 DOI: 10.3390/molecules21081047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 12/26/2022] Open
Abstract
Dammarane-type triterpenoids (DTT) widely distribute in various medicinal plants. They have generated a great amount of interest in the field of new drug research and development. Generally, DTT are the main bioactive ingredients abundant in Araliaceae plants, such as Panax ginseng, P. japonicas, P. notoginseng, and P. quinquefolium. Aside from Araliaceae, DTT also distribute in other families, including Betulaceae, Cucurbitaceae, Meliaceae, Rhamnaceae, and Scrophulariaceae. Until now, about 136 species belonging to 46 families have been reported to contain DTT. In this article, the genus classifications of plant sources of the botanicals that contain DTT are reviewed, with particular focus on the NMR spectral features and pharmacological activities based on literature reports, which may be benefit for the development of new drugs or food additives.
Collapse
Affiliation(s)
- Jingya Ruan
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Chang Zheng
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Lu Qu
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Yanxia Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Lifeng Han
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Haiyang Yu
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Tao Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| |
Collapse
|