1
|
Gelen V, Başeğmez M, Dursun İ, Çinar I, Kara A. Propolis Extract Reduces Doxorubucin-Induced Brain Damage by Regulating Inflammation, ER Stress, Oxidative Stress, and Apoptosis. Food Sci Nutr 2025; 13:e70194. [PMID: 40270939 PMCID: PMC12014397 DOI: 10.1002/fsn3.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/21/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Doxorubicin (DOX) is the most widely used chemotherapeutic agent to treat various tumors. DOX treatment can damage many organs, including the brain, by causing oxidative stress. Several antioxidant substances can lessen the effects of DOX or make antioxidant defense systems work faster. Propolis (PROP) is a powerful agent with various healing effects, including antioxidant, antiproliferative, and anti-inflammatory. The point of this study is to look at the histopathological changes, apoptosis, and antioxidant effects of DOX on brain damage in rats. To find out what kinds of phytochemicals were in PROP from the Karlıova region of Bingöl province, ultra-high-performance liquid chromatography (UHPLC-Orbitrap-HRMS) was used. Then, we made an ethanol extract of it. A total of 28 healthy male Wistar albino rats, each 12 weeks old and weighing between 220 and 250 g, were included in the study. Rats were divided into four groups: control, PROP, DOX, and PROP+DOX. We applied the relevant treatments to the determined groups. Following the application, we decapitated the rats under the appropriate conditions and collected blood and brain tissue samples. We examined oxidative stress parameters in blood samples and used brain tissue samples for histopathological, biochemical, and molecular analyses. We determined DOX levels in the brain tissue samples using UHPLC-Orbitrap-HRMS. The findings obtained showed that the PROP extract improved DOX-induced brain tissue damage. In addition, PROP extract attenuated DOX-induced brain tissue inflammation, ER stress, apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Volkan Gelen
- Department of Physiology, Faculty of Veterinary MedicineKafkas UniversityKarsTürkiye
| | - Mehmet Başeğmez
- Acıpayam Vocational High School, Department of Veterinary, Laboratory and Veterinary Health ProgramPamukkale UniversityDenizliTürkiye
| | - İnan Dursun
- Center of Research and Application CenterBingöl UniversityBingölTürkiye
- Department of Crop and Animal Production, Vocational School of Food, Agriculture and LivestockBingöl UniversityBingölTürkiye
| | - Irfan Çinar
- Department of Pharmacology and Toxicolog, Faculty of MedicineKastamonu UniversityKastamonuTürkiye
| | - Adem Kara
- Department of Genetics, Faculty of ScienceErzurum Technical UniversityErzurumTürkiye
| |
Collapse
|
2
|
Li W, Zhang Y, Yan B, Luo B, Lv J. Forsythiaside A Ameliorates Oxidative Damage Caused by Cerebral Ischemia Through the Nrf2/HO-1 Signaling Pathway. Chem Biol Drug Des 2025; 105:e70083. [PMID: 40035314 DOI: 10.1111/cbdd.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/16/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Forsythiaside A (FA) has anti-inflammatory and antioxidant properties. The aim of this study was to explore the antioxidant effects and mechanisms of FA in ischemic stroke (IS). In this work, IS-related genes were obtained through GEO, GeneCards, TTD, CTD, DrugBank, and MalaCards databases. The targets of the FA were obtained from CTD, TargetNet, Super-PRED, TCMIO, and SwissTargetPrediction databases. GO analysis and KEGG pathway enrichment analysis were performed, and a protein-protein interaction (PPI) network was constructed to screen for key pathways. For in vivo assays, a middle cerebral artery occlusion and reperfusion (MCAO/R) model was established in rats, and high and low doses of FA were administered. Neurological impairment score, cerebral infarction, cerebral edema, and tissue morphology were evaluated. The content of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) were detected. The expressions of cleaved caspase 3, Bax, and bcl-2, and Nrf2/HO-1 pathway-related proteins were detected by Western blot. For in vitro experiments, an oxygen-glucose deprivation/reperfusion (OGD/R) model was constructed in HT22 cells, and CCK-8 and LDH release assays were used to evaluate the effect of FA on OGD/R-induced toxicity of HT22 neurons. The Nrf2 inhibitor ML385 was used for the rescue experiments. Network pharmacology and bioinformatics analysis showed that the role of FA in treating IS was associated with oxidative stress. Topological analysis of the PPI network revealed 11 key genes, which were closely associated with the Nrf2 pathway. FA treatment could significantly reduce cerebral infarction, cerebral edema, neurological function impairment, and neuronal injury of the rats with MCAO/R. FA could also inhibit oxidative stress and neuronal apoptosis, and increase the viability of HT22 cells. In addition, FA promoted the nuclear translocation of Nrf2 and activated the Nrf2/HO-1 pathway, while ML385 weakened the protective effect of FA on neuronal viability and antioxidant capacity. In conclusion, FA attenuates the oxidative damage induced by IS by activating the Nrf2/HO-1 signaling pathway, which is a promising natural drug for IS.
Collapse
Affiliation(s)
- Wei Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Ying Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Baihui Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Bin Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jianrui Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
3
|
Issa S, Fayoud H, Shaimardanova A, Sufianov A, Sufianova G, Solovyeva V, Rizvanov A. Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases. Biomedicines 2024; 12:1906. [PMID: 39200370 PMCID: PMC11351319 DOI: 10.3390/biomedicines12081906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Hereditary neurodegenerative diseases (hNDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and others are primarily characterized by their progressive nature, severely compromising both the cognitive and motor abilities of patients. The underlying genetic component in hNDDs contributes to disease risk, creating a complex genetic landscape. Considering the fact that growth factors play crucial roles in regulating cellular processes, such as proliferation, differentiation, and survival, they could have therapeutic potential for hNDDs, provided appropriate dosing and safe delivery approaches are ensured. This article presents a detailed overview of growth factors, and explores their therapeutic potential in treating hNDDs, emphasizing their roles in neuronal survival, growth, and synaptic plasticity. However, challenges such as proper dosing, delivery methods, and patient variability can hinder their clinical application.
Collapse
Affiliation(s)
- Shaza Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Haidar Fayoud
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Alisa Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Valeriya Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
4
|
Ashour AM. Propolis attenuates diabetes-induced testicular injury by protecting against DNA damage and suppressing cellular stress. Front Pharmacol 2024; 15:1416238. [PMID: 39055492 PMCID: PMC11269134 DOI: 10.3389/fphar.2024.1416238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Propolis has a wide range of biological and pharmacological actions, including antioxidant properties-particularly its phenolic and flavonoid constituents-that could potentially protect the reproductive system from oxidative damage. Method: Four groups were allocated 40 male Wistar rats each. The vehicle was given to the first group's normal control rats negative control. The second, third, and fourth groups of diabetic rats were given vehicle (diabetic control) and propolis orally at 50 and 100 mg/kg, respectively, for 8 weeks. Diabetes was induced in rats via injection of nicotinamide and streptozotocin (STZ). Fasting blood glucose (FBG) and insulin levels, homeostatic model assessment for insulin resistance (HOMA-IR), and semen analysis were assessed. In addition, assessments of serum reproductive hormones, including total testosterone (TTST), estradiol (E2), follicle-stimulating hormone luteinizing hormone (LH), and prolactin (PRL), were measured at the end of the study. Tissue total testosterone, E2, and dihydrotestosterone were also evaluated. Serum and tissue oxidative enzymes, including catalase (CAT), superoxide dismutase, and glutathione peroxidase activities, were examined, and malondialdehyde content was determined. The pancreatic and testicular tissues were histopathologically examined, and proliferating cell nuclear antigen (PCNA) and B-cell lymphoma 2 (Bcl-2) in testicular tissue were immunohistochemically analyzed. Testicular tissue was examined for DNA integrity using a comet assay. Results: Compared to the STZ-control group, propolis greatly decreased FBG levels and improved the glycemic status of diabetic rats. In comparison to the STZ-DC group, propolis increased the number of sperm cells and the percent of morphologically normal and viable sperm in male rats, improving their fertility. Propolis also restored the pancreatic islets, protected the testis from oxidative stress, and increased levels of reproductive hormones in the blood, especially testosterone. Moreover, propolis at high doses demonstrated a strong positive response for Bcl-2 and a negative expression of proliferating cell nuclear antigen in spermatogenic cells. Conclusion: The data obtained strongly indicate that STZ causes severe impairments to the testis whereas propolis, acting as an antioxidant, protects against the adverse effects of STZ on the testis.
Collapse
Affiliation(s)
- Ahmed M. Ashour
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
5
|
Almarfadi OM, Siddiqui NA, Shahat AA, Fantoukh OI, El Gamal AA, Raish M, Bari A, Iqbal M, Alqahtani AS. Isolation of a novel isoprenylated phenolic compound and neuroprotective evaluation of Dodonaea viscosa extract against cerebral ischaemia-reperfusion injury in rats. Saudi Pharm J 2024; 32:101898. [PMID: 38192384 PMCID: PMC10772285 DOI: 10.1016/j.jsps.2023.101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Dodonaea viscosa grows widely in Saudi Arabia, but studies evaluating its neuroprotective activity are lacking. Thus, this study aimed to isolate and identify the secondary metabolites and evaluate the neuroprotective effects of D. viscosa leaves. The isolation and identification of phytochemicals were performed using chromatographic and spectroscopic techniques. The neuroprotective potential of the extract was evaluated against focal cerebral ischaemia-reperfusion injury in rat model. Neurobehavioural deficits in the rats were evaluated, and their brains were harvested to measure infarct volume and oxidative biomarkers. Results revealed the presence of three compounds: a novel isoprenylated phenolic derivative that was elucidated as 4-hydroxy-3-(3'-methyl-2'-butenyl) phenyl 1-O-β-D-apiosyl-(1''' → 6'')- β-D-glucopyranoside (named Viscomarfadol) and two known compounds (isorhamnetin-3-O-rutinoside and epicatechin (4-8) catechin). Pre-treatment of the rats with the extract improved neurological outcomes. It significantly reduced neurological deficits and infarct volume; significantly reduced lipid peroxidation, as evidenced by decreased malondialdehyde levels; and significantly elevated antioxidant (superoxide dismutase, catalase, and glutathione) activities. These results indicate that D. viscosa is a promising source of bioactive compounds that can improve neurological status, decrease infarct volume, and enhance antioxidant activities in rats with cerebral ischaemic injury. Thus, D. viscosa could be developed into an adjuvant therapy for ischaemic stroke and other oxidative stress-related neurodegenerative disorders. Further investigations are warranted to explore other bioactive compounds in D. viscosa and evaluate their potential neuroprotective activities.
Collapse
Affiliation(s)
- Omer M. Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasir A. Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali A. El Gamal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Vakili-Sadeghi E, Najafpour A, Mohammadi R. Protective effects of propolis on ischemia-reperfusion injury in a rat testicular torsion and detorsion model. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:389-395. [PMID: 37564353 PMCID: PMC10410105 DOI: 10.30466/vrf.2023.1972630.3682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/26/2023] [Indexed: 08/12/2023]
Abstract
The torsion model of testis in a rat was adopted for evaluation of possible effects of propolis (Prop) on ischemia-reperfusion (IS/REP) injury. The healthy male Wistar rats (totally 24 animals) were randomized into four groups (n = 6) and animals experienced bilateral testicular torsions as follows: In sham group just, laparotomy was performed and in IS group, animals experienced a 3 hr period testicular IS. In IS/REP group, a 3 hr period of IS followed by a 3 hr period of testicular REP for left testis and a one-week testicular REP for right testis were done. In this group animals were gavaged by 1.00 mL normal saline 1 hr before the onset of IS. In IS/REP/ Prop group, the same procedures for IS/REP animals were followed as well as gavage of 1.00 mL Prop extract solution 1 hr before the onset of IS. Analyses of biochemistry, histology, inflammatory biomarkers and sperm parameters were carried out. In IS/REP/Prop group, nitric oxide synthase malondialdehyde, myeloperoxidase and 8-hydroxy-2 deoxyguanine in IS/REP/Prop group were significantly decreased and, superoxide dismutase, total glutathione, glutathione peroxidase, glutathione reductase and glutathione S-transferase were significantly increased compared to the other animals. In IS/REP/Prop group, seminiferous tubules (with normal spermatogenesis) showed all stages of spermatogenic cells with plentiful spermatozoa. Tubular deterioration and atrophy and spermatogenic cell loss in were seen in a limited extent. The mean concentrations of Interleukin-1 beta and tumor necrosis factor alpha in IS/REP/Prop were significantly decreased. Sperm quality was significantly improved by Prop in IS/REP/Prop group. It was concluded that Prop could be supportive in diminishing IS/REP injury in testicular tissue exposed to ischemia.
Collapse
Affiliation(s)
- Emad Vakili-Sadeghi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran;
| | - Alireza Najafpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran;
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
7
|
Demir S, Kazaz IO, Kerimoglu G, Demir EA, Colak F, Biyik AF, Cansever Y, Mentese A. Propolis ameliorates ischemia/reperfusion-induced testicular damage by reducing oxidative stress. Rev Int Androl 2023; 21:100364. [PMID: 37267854 DOI: 10.1016/j.androl.2023.100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/14/2022] [Accepted: 04/12/2022] [Indexed: 06/04/2023]
Abstract
PURPOSE This study was performed to evaluate the effect of ethanolic extract of Turkish propolis (EEP) on testicular ischemia/reperfusion (I/R) damage in rats in terms of biochemistry and histopathology, for the first time. METHODS A total of 18 male Sprague-Dawley rats were divided into three groups with six rats in each group: control, torsion/detorsion (T/D), and T/D+EEP (100mg/kg). Testicular torsion was performed by 720° rotating the left testicle in a clockwise direction. The duration of ischemia was 4h and orchiectomy was performed after 2h of detorsion. EEP was applied only once 30min before detorsion. Tissue malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant status (TAS) levels were determined using colorimetric methods. Oxidative stress index (OSI) was calculated by proportioning tissue TOS and TAS values to each other. Tissue glutathione (GSH) and glutathione peroxidase (GPx) levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. Johnsen's testicle scoring system was used for histological evaluation. RESULTS In the T/D group, it was determined that statistically significant decreasing in TAS, GSH, GPx levels and Johnsen score, and increasing in TOS, OSI and MDA levels (p<0.05) compared with control group. EEP administration statistically significantly restored this I/R damage (p<0.05). CONCLUSION This is the first study to show that propolis prevent I/R-induced testicular damage through its antioxidant activity. More comprehensive studies are needed to see the underlying mechanisms.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Ilke Onur Kazaz
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Gokcen Kerimoglu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational High School, Karadeniz Technical University, 61750 Trabzon, Turkey
| | - Fatih Colak
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ayse Firuze Biyik
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Yasin Cansever
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
8
|
Sarkar S, Karmakar S, Basu M, Ghosh P, Ghosh MK. Neurological damages in COVID-19 patients: Mechanisms and preventive interventions. MedComm (Beijing) 2023; 4:e247. [PMID: 37035134 PMCID: PMC10080216 DOI: 10.1002/mco2.247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, causes coronavirus disease 2019 (COVID-19) which led to neurological damage and increased mortality worldwide in its second and third waves. It is associated with systemic inflammation, myocardial infarction, neurological illness including ischemic strokes (e.g., cardiac and cerebral ischemia), and even death through multi-organ failure. At the early stage, the virus infects the lung epithelial cells and is slowly transmitted to the other organs including the gastrointestinal tract, blood vessels, kidneys, heart, and brain. The neurological effect of the virus is mainly due to hypoxia-driven reactive oxygen species (ROS) and generated cytokine storm. Internalization of SARS-CoV-2 triggers ROS production and modulation of the immunological cascade which ultimately initiates the hypercoagulable state and vascular thrombosis. Suppression of immunological machinery and inhibition of ROS play an important role in neurological disturbances. So, COVID-19 associated damage to the central nervous system, patients need special care to prevent multi-organ failure at later stages of disease progression. Here in this review, we are selectively discussing these issues and possible antioxidant-based prevention therapies for COVID-19-associated neurological damage that leads to multi-organ failure.
Collapse
Affiliation(s)
- Sibani Sarkar
- Division of Cancer Biology and Inflammatory DisorderSignal Transduction in Cancer and Stem Cells LaboratoryCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB)KolkataIndia
| | - Subhajit Karmakar
- Division of Cancer Biology and Inflammatory DisorderSignal Transduction in Cancer and Stem Cells LaboratoryCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB)KolkataIndia
| | - Malini Basu
- Department of MicrobiologyDhruba Chand Halder College, University of CalcuttaDakshin BarasatWBIndia
| | - Pratyasha Ghosh
- Department of EconomicsBethune CollegeUniversity of CalcuttaKolkataIndia
| | - Mrinal K Ghosh
- Division of Cancer Biology and Inflammatory DisorderSignal Transduction in Cancer and Stem Cells LaboratoryCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB)KolkataIndia
| |
Collapse
|
9
|
Zhang Y, Su Q, Xia W, Jia K, Meng D, Wang X, Ni X, Su Z. MiR-140-3p directly targets Tyro3 to regulate OGD/R-induced neuronal injury through the PI3K/Akt pathway. Brain Res Bull 2023; 192:93-106. [PMID: 36372373 DOI: 10.1016/j.brainresbull.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/21/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND PURPOSE MicroRNAs (miRNAs) are highly expressed in the central nervous system and play important roles in ischaemic stroke pathogenesis. However, the role of miRNAs in cerebral ischaemia-reperfusion injury remains unclear. Here, we investigated the role of miR-140-3p in regulating oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury in vitro to identify a new biomarker for research on ischaemic stroke. METHODS The differential expression of miR-140-3p and Tyro3 in OGD/R-exposed N2a cells was verified by qRT-PCR. N2a cells were transfected with miR-140-3p mimic, miR-140-3p inhibitor, Tyro3 or siTyro3, and qRT-PCR, Western blotting, the Cell counting kit-8 (CCK-8) assay, Hoechst 33342/PI staining and flow cytometry analyses were performed to measure miRNA, mRNA and protein expression; cell viability; and apoptosis. RESULTS OGD/R-exposed N2a cells exhibited increased miR-140-3p expression, decreased viability, reduced Bcl-2 protein expression and increased Bax and Caspase-3 protein expression and apoptosis; the miR-140-3p mimic markedly amplified these changes, exacerbating OGD/R-induced injury to N2a cells, while the miR-140-3p inhibitor reversed these changes and alleviated OGD/R-induced injury. OGD/R-exposed N2a cells expressed less Tyro3, and Tyro3 overexpression increased cell viability and Bcl-2 protein expression, reduced Bax and Caspase-3 protein expression, and alleviated OGD/R-induced injury. However, silencing Tyro3 reversed these changes and exacerbated OGD/R-induced injury. MiR-140-3p directly bound the Tyro3 mRNA 3'UTR. Rescue experiments indicated that the miR-140-3p mimic-induced changes in cell viability and protein expression were alleviated by Tyro3 overexpression and that the miR-140-3p inhibitor-induced changes in cell viability and protein expression were alleviated by silencing Tyro3. Tyro3 overexpression increased cell viability and PI3K and p-Akt protein expression, but these effects were weakened by the addition of LY294002. CONCLUSIONS MiR-140-3p directly targets Tyro3 to regulate cell viability and apoptosis of OGD/R-exposed N2a cells through the PI3K/Akt pathway, suggesting that miR-140-3p is a novel biomarker and therapeutic target for ischaemic stroke.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; Central Laboratory of the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Qian Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Wenbo Xia
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Kejuan Jia
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Delong Meng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xunran Ni
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150001, China
| | - Zhiqiang Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
10
|
Althurwi HN, Abdel-Rahman RF, Soliman GA, Ogaly HA, Alkholifi FK, Abd-Elsalam RM, Alqasoumi SI, Abdel-Kader MS. Protective Effect of Beta-Carotene against Myeloperoxidase- Mediated Oxidative Stress and Inflammation in Rat Ischemic Brain Injury. Antioxidants (Basel) 2022; 11:antiox11122344. [PMID: 36552554 PMCID: PMC9774247 DOI: 10.3390/antiox11122344] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress and inflammatory reaction play critical roles in ischemia/reperfusion (I/R) injury in the brain. β-carotene (βCAR) is a naturally occurring pigment present in fruits and vegetables that expresses antioxidant and anti-inflammatory activities. This study was conducted to investigate the involvement of Bcl2/Bax and NF-κB signaling pathways in the potential protective role of βCAR against brain injury in a middle cerebral artery occlusion (MCAO) rat model. A focal brain ischemia model was created for 2 h, followed by reperfusion. Rats were given 10 and 20 mg/kg of βCAR for 7 days orally before induction of ischemia, at the start of reperfusion, and 3 days after ischemia. Scores of neurological deficit were rated 24 h after induction of ischemia. Motor coordination and spontaneous coordinate activities were assessed using rotarod and activity cage, respectively. After 2 h of the last dose, the animals were killed and their brains were extracted for further examinations. The results of the study show that βCAR diminished the score of neurological deficits and ameliorated motor coordination, balance, and locomotor activity in the I/R control group. Further, βCAR resulted in diminution of malondialdehyde (MDA) and augmentation of reduced glutathione (GSH) contents, as well as the elevation of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) enzyme activities in the brain homogenates of I/R rats. βCAR treatment significantly reduced nuclear factor kappa B (NF-κB) brain content and myeloperoxidase (MPO) activity and ameliorated the histological alterations in the brain tissues. βCAR significantly suppressed Bcl-2-associated X protein (Bax) and caspase-3 expression, as well as upregulated B-cell lymphoma-2 (Bcl-2) expression, suggesting a neuroprotective potential via downregulating NF-kB and protecting the rat brain against the I/R-associated apoptotic injury.
Collapse
Affiliation(s)
- Hassan N. Althurwi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Gamal A. Soliman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacology, College of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Hanan A. Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha 61421, Saudi Arabia
- Department of Biochemistry, College of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Faisal K. Alkholifi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Reham M. Abd-Elsalam
- Department of Pathology, College of Veterinary Medicine, Cairo University, Giza 12613, Egypt
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T3R 1J3, Canada
| | - Saleh I. Alqasoumi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria 21215, Egypt
- Correspondence:
| |
Collapse
|
11
|
ElBaset MA, Salem RS, Ayman F, Ayman N, Shaban N, Afifi SM, Esatbeyoglu T, Abdelaziz M, Elalfy ZS. Effect of Empagliflozin on Thioacetamide-Induced Liver Injury in Rats: Role of AMPK/SIRT-1/HIF-1α Pathway in Halting Liver Fibrosis. Antioxidants (Basel) 2022; 11:2152. [PMID: 36358524 PMCID: PMC9686640 DOI: 10.3390/antiox11112152] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatic fibrosis causes severe morbidity and death. No viable treatment can repair fibrosis and protect the liver until now. We intended to discover the empagliflozin's (EMPA) hepatoprotective efficacy in thioacetamide (TAA)-induced hepatotoxicity by targeting AMPK/SIRT-1 activity and reducing HIF-1α. Rats were treated orally with EMPA (3 or 6 mg/kg) with TAA (100 mg/kg, IP) thrice weekly for 6 weeks. EMPA in both doses retracted the serum GGT, ALT, AST, ammonia, triglycerides, total cholesterol, and increased serum albumin. At the same time, EMPA (3 or 6 mg/kg) replenished the hepatic content of GSH, ATP, AMP, AMPK, or SIRT-1 and mitigated the hepatic content of MDA, TNF-α, IL-6, NF-κB, or HIF-1α in a dose-dependent manner. Likewise, hepatic photomicrograph stained with hematoxylin and eosin or Masson trichrome stain of EMPA (3 or 6 mg/kg) revealed marked regression of the hepatotoxic effect of TAA with minimal injury. Similarly, in rats given EMPA (3 or 6 mg/kg), the immunohistochemically of hepatic photomicrograph revealed minimal stain of either α-SMA or caspase-3 compared to the TAA group. Therefore, we concluded that EMPA possessed an antifibrotic effect by targeting AMPK/SIRT-1 activity and inhibiting HIF-1α. The present study provided new insight into a novel treatment of liver fibrosis.
Collapse
Affiliation(s)
- Marwan A. ElBaset
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo P.O. Box 12622, Egypt
| | - Rana S. Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Fairouz Ayman
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Nadeen Ayman
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Nooran Shaban
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Mahmoud Abdelaziz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Zahraa S. Elalfy
- Pathology Department Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo P.O. Box 12622, Egypt
| |
Collapse
|
12
|
Ogaly HA, Abdel-Rahman RF, Mohamed MAE, O A AF, Khattab MS, Abd-Elsalam RM. Thymol ameliorated neurotoxicity and cognitive deterioration in a thioacetamide-induced hepatic encephalopathy rat model; involvement of the BDNF/CREB signaling pathway. Food Funct 2022; 13:6180-6194. [PMID: 35583008 DOI: 10.1039/d1fo04292k] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the present study, we aimed to delineate the neuroprotective potential of thymol (THY) against neurotoxicity and cognitive deterioration induced by thioacetamide (TAA) in an experimental model of hepatic encephalopathy (HE). Rats received TAA (100 mg kg-1, intraperitoneally injected, three times per week) for two weeks. THY (30 and 60 mg kg-1), and Vit E (100 mg k-1) were administered daily by oral gavage for 30 days after HE induction. Supplementation with THY significantly improved liver function, reduced serum ammonia level, and ameliorated the locomotor and cognitive deficits. THY effectively modulated the alteration in oxidative stress markers, neurotransmitters, and brain ATP content. Histopathology of liver and brain tissues showed that THY had ameliorated TAA-induced damage, astrocyte swelling and brain edema. Furthermore, THY downregulated NF-kB and upregulated GFAP protein expression. In addition, THY significantly promoted CREB and BDNF expression at both mRNA and protein levels, together with enhancing brain cAMP level. In conclusion, THY exerted hepato- and neuroprotective effects against HE by mitigating hepatotoxicity, hyperammonemia and brain ATP depletion via its antioxidant, anti-inflammatory effects in addition to activation of the CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia. .,Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rehab F Abdel-Rahman
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Center, Dokki, Giza, Egypt
| | - Marawan Abd Elbaset Mohamed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Center, Dokki, Giza, Egypt
| | - Ahmed-Farid O A
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
D-Carvone Attenuates CCl 4-Induced Liver Fibrosis in Rats by Inhibiting Oxidative Stress and TGF-ß 1/SMAD3 Signaling Pathway. BIOLOGY 2022; 11:biology11050739. [PMID: 35625467 PMCID: PMC9138456 DOI: 10.3390/biology11050739] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
D-carvone is a natural monoterpene found in abundance in the essential oil of aromatic medicinal plants with a wide range of pharmacological values. However, the impact of D-carvone on liver fibrosis remains unclear. This study aimed to evaluate the anti-fibrotic potential of D-carvone in a rat model of liver fibrosis and to clarify the possible underlying mechanisms. Liver fibrosis was induced in rats by carbon tetrachloride, CCl4 (2.5 mL/kg, interperitoneally every 72 h for 8 weeks). Oral treatment of rats with D-carvone (50 mg/kg, daily) started on the 3rd week of CCl4 administration. D-carvone significantly enhanced liver functions (ALT, AST), oxidant/antioxidant status (MDA, SOD, GSH, total antioxidant capacity; TAC), as well as histopathological changes. Moreover, D-carvone effectively attenuated the progression of liver fibrosis, evident by the decreased collagen deposition and fibrosis score by Masson trichrome staining (MT) and α-SMA protein expression. Moreover, D-carvone administration resulted in a significant downregulation of the pro-fibrogenic markers TGF-β1 and SMAD3 and upregulation of MMP9. These findings reveal the anti-fibrotic effect of D-carvone and suggest regulation of the TGF-β1/SMAD3 pathway, together with the antioxidant activity as a mechanistic cassette, underlines this effect. Therefore, D-carvone could be a viable candidate for inhibiting liver fibrosis and other oxidative stress-related hepatic diseases. Clinical studies to support our hypothesis are warranted.
Collapse
|
14
|
Nattagh‐Eshtivani E, Pahlavani N, Ranjbar G, Gholizadeh Navashenaq J, Salehi‐Sahlabadi A, Mahmudiono T, Nader Shalaby M, Jokar M, Nematy M, Barghchi H, Havakhah S, Maddahi M, Rashidmayvan M, Khosravi M. Does propolis have any effect on rheumatoid arthritis? A review study. Food Sci Nutr 2022; 10:1003-1020. [PMID: 35432965 PMCID: PMC9007309 DOI: 10.1002/fsn3.2684] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease in which inflammation and oxidative stress play a key role in its pathophysiology. Complementary therapies along with medications may be effective in the control of RA. Propolis is a natural substance extracted from beehives, which have confirmed anti-inflammatory and antioxidant effects. The present study aimed to review the possible effects of propolis on inflammation, oxidative stress, and lipid profile in patients with RA. English articles in online databases such as PubMed‑Medline, AMED, Google Scholar, EMBASE, Scopus, and Web of Science databases were searched. Pieces of evidence show that supplementation with propolis may have therapeutic effects on RA patients. Due to increased inflammation and oxidative stress in the affected joints of RA patients, propolis could inhibit the inflammatory cascades by inhibiting the nuclear factor kappa B pathway and reducing reactive oxygen species, malondialdehyde, and interleukin-17 by increasing some antioxidants. Therefore, inflammation and pain reduce, helping improve and control RA in patients. Further investigations are required with larger sample sizes and different doses of propolis to demonstrate the definite effects of propolis on various aspects of RA.
Collapse
Affiliation(s)
- Elyas Nattagh‐Eshtivani
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of NutritionSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Naseh Pahlavani
- Health Sciences Research CenterTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
- Children Growth and Development Research CenterResearch Institute for Prevention of Non‐Communicable DiseaseQazvin University of Medical SciencesQazvinIran
| | - Golnaz Ranjbar
- Department of NutritionSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Ammar Salehi‐Sahlabadi
- Student Research CommitteeDepartment of Clinical Nutrition and DieteticsSchool of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Trias Mahmudiono
- Departmentof NutritionFaculty of Public HealthUniversitas AirlanggaAirlanggaIndonesia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health DepartmentFaculty of Physical EducationSuez Canal UniversityIsmailiaEgypt
| | - Mohammadhassan Jokar
- Rheumatic Diseases Research CenterSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mohsen Nematy
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Hanieh Barghchi
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of NutritionSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Shahrzad Havakhah
- Addiction and Behavioral Sciences Research CenterNorth Khorasan University of Medical SciencesBojnurdIran
| | - Mona Maddahi
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | | | - Maryam Khosravi
- Department of NutritionSchool of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
15
|
Nattagh‐Eshtivani E, Pahlavani N, Ranjbar G, Gholizadeh Navashenaq J, Salehi‐Sahlabadi A, Mahmudiono T, Nader Shalaby M, Jokar M, Nematy M, Barghchi H, Havakhah S, Maddahi M, Rashidmayvan M, Khosravi M. Does propolis have any effect on rheumatoid arthritis? A review study. Food Sci Nutr 2022. [DOI: https:/doi.org/10.1002/fsn3.2684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Elyas Nattagh‐Eshtivani
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Naseh Pahlavani
- Health Sciences Research Center Torbat Heydariyeh University of Medical Sciences Torbat Heydariyeh Iran
- Children Growth and Development Research Center Research Institute for Prevention of Non‐Communicable Disease Qazvin University of Medical Sciences Qazvin Iran
| | - Golnaz Ranjbar
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | | | - Ammar Salehi‐Sahlabadi
- Student Research Committee Department of Clinical Nutrition and Dietetics School of Nutrition and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Trias Mahmudiono
- Departmentof Nutrition Faculty of Public Health Universitas Airlangga Airlangga Indonesia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department Faculty of Physical Education Suez Canal University Ismailia Egypt
| | - Mohammadhassan Jokar
- Rheumatic Diseases Research Center School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mohsen Nematy
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Hanieh Barghchi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Shahrzad Havakhah
- Addiction and Behavioral Sciences Research Center North Khorasan University of Medical Sciences Bojnurd Iran
| | - Mona Maddahi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
| | | | - Maryam Khosravi
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
16
|
Nattagh‐Eshtivani E, Pahlavani N, Ranjbar G, Gholizadeh Navashenaq J, Salehi‐Sahlabadi A, Mahmudiono T, Nader Shalaby M, Jokar M, Nematy M, Barghchi H, Havakhah S, Maddahi M, Rashidmayvan M, Khosravi M. Does propolis have any effect on rheumatoid arthritis? A review study. Food Sci Nutr 2022. [DOI: https://doi.org/10.1002/fsn3.2684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Elyas Nattagh‐Eshtivani
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Naseh Pahlavani
- Health Sciences Research Center Torbat Heydariyeh University of Medical Sciences Torbat Heydariyeh Iran
- Children Growth and Development Research Center Research Institute for Prevention of Non‐Communicable Disease Qazvin University of Medical Sciences Qazvin Iran
| | - Golnaz Ranjbar
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | | | - Ammar Salehi‐Sahlabadi
- Student Research Committee Department of Clinical Nutrition and Dietetics School of Nutrition and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Trias Mahmudiono
- Departmentof Nutrition Faculty of Public Health Universitas Airlangga Airlangga Indonesia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department Faculty of Physical Education Suez Canal University Ismailia Egypt
| | - Mohammadhassan Jokar
- Rheumatic Diseases Research Center School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mohsen Nematy
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Hanieh Barghchi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Shahrzad Havakhah
- Addiction and Behavioral Sciences Research Center North Khorasan University of Medical Sciences Bojnurd Iran
| | - Mona Maddahi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
| | | | - Maryam Khosravi
- Department of Nutrition School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
17
|
Alsharif IA, Fayed HM, Abdel-Rahman RF, Abd-Elsalam RM, Ogaly HA. Miconazole Mitigates Acetic Acid-Induced Experimental Colitis in Rats: Insight into Inflammation, Oxidative Stress and Keap1/Nrf-2 Signaling Crosstalk. BIOLOGY 2022; 11:303. [PMID: 35205169 PMCID: PMC8869207 DOI: 10.3390/biology11020303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/23/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
Ulcerative colitis (UC) is the most common type of inflammatory bowel disease, characterized by oxidative stress and elevated pro-inflammatory cytokines. Miconazole is an azole antifungal that stimulates the expression of antioxidant enzymes via Nrf2 activation, which consequently inhibits ROS formation and NF-κB activation. Hence, the present study aimed to investigate the protective effect of miconazole, sulfasalazine (as a reference drug) and their combination on acetic acid (AA)-induced UC in a rat model which was induced by intra-rectal administration of 4% AA. Rats were pretreated with miconazole (20 and 40 mg/kg, orally) or sulfasalazine (100 mg/kg, orally), or their combination (20 mg/kg miconazole and 50 mg/Kg of sulfasalazine, orally). Pretreatment with miconazole significantly reduced wet colon weight and macroscopic scores, accompanied by a significant amelioration of the colonic architecture disorder. Moreover, the treatment also significantly decreased the malondialdehyde (MDA) level and prevented the depletion of superoxide dismutase (SOD) activity and GSH content in inflamed colons. Additionally, the treatment showed suppressive activities on pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and C-reactive protein (CRP), and upregulated the anti-inflammatory cytokine interleukin-10 (IL-10). Moreover, the treatment upregulated the protein levels of Nrf-2 and heme oxygenase-1 (HO-1) in the colon tissue. Taken together, miconazole is effective in alleviating AA-induced colitis in rats, and the mechanism of its action is associated with the activation of Nrf2-regulated cytoprotective protein expression.
Collapse
Affiliation(s)
- Ifat A. Alsharif
- Biology Department, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Hany M. Fayed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Rehab F. Abdel-Rahman
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Reham M. Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Hanan A. Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
18
|
Hussien YA, Mansour DF, Nada SA, Abd El-Rahman SS, Abdelsalam RM, Attia AS, El-Tanbouly DM. Linagliptin attenuates thioacetamide-induced hepatic encephalopathy in rats: Modulation of C/EBP-β and CX3CL1/Fractalkine, neuro-inflammation, oxidative stress and behavioral defects. Life Sci 2022; 295:120378. [DOI: 10.1016/j.lfs.2022.120378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022]
|
19
|
Liu Y, Qu X, Yan M, Li D, Zou R. Tricin attenuates cerebral ischemia/reperfusion injury through inhibiting nerve cell autophagy, apoptosis and inflammation by regulating the PI3K/Akt pathway. Hum Exp Toxicol 2022; 41:9603271221125928. [PMID: 36113040 DOI: 10.1177/09603271221125928] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To elucidate the effect of tricin in cerebral ischemia/reperfusion (I/R) injury and examine its possible underlying mechanisms. Rats were randomly divided into Sham (exposed the right internal carotid arteries), I/R, and tricin (administered at various doses) groups. After the cerebral I/R injury model was established, a Morris water maze test and a tetrazolium chloride assay were performed. Apoptosis and autophagy were assessed in the nerve cells of hippocampus tissue, and the levels of inflammatory markers within animal serum were detected. Proteins related to apoptosis and the PI3K/Akt pathway were evaluated. To further investigate the mechanisms by which tricin affects brain damage, mouse neuroblastoma cells N2a were divided into control, oxygen-glucose deprivation and reoxygenation (OGD/R), tricin, PI3K/Akt activator, and tricin + PI3K/Akt inhibitor groups. The cell viability, apoptosis, inflammatory factors, and PI3K/Akt pathway related proteins in N2a cells were also detected. The results revealed that I/R-induced learning and memory dysfunction was improved by tricin treatment. The area of cerebral infarction, the levels of apoptosis and autophagy in nerve cells, and the serum inflammatory marker content were all decreased following tricin treatment. Additionally, the expression of Beclin-1 protein was downregulated, while the expression of Bcl-2 protein, p-PI3K/PI3K and p-Akt/Akt was upregulated after tricin treatment. Mechanistically, tricin or PI3K/Akt activator ameliorated OGD/R-induced apoptosis, autophagy, and inflammation. However, these effects were reversed following PI3K/Akt inhibitor treatment in OGD/R-induced N2a cells. In summary, this study suggested that tricin can against I/R-induced brain injury by inhibiting autophagy, apoptosis and inflammation, and activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, 519688Yantaishan Hospital, Yantai, China
| | - Xiaoning Qu
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Mengjun Yan
- Yantai Raphael Biotechnology Co Ltd, Yantai, China
| | - Dalei Li
- School of Pharmacy, 12682Yantai University, Yantai, China
| | - Rong Zou
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
20
|
Mehmood Siddiqui E, Mehan S, Upadhayay S, Khan A, Halawi M, Ahmed Halawi A, Alsaffar RM. Neuroprotective efficacy of 4-Hydroxyisoleucine in experimentally induced intracerebral hemorrhage. Saudi J Biol Sci 2021; 28:6417-6431. [PMID: 34764759 PMCID: PMC8568986 DOI: 10.1016/j.sjbs.2021.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe form of brain injury, which is a major cause of mortality in humans. Hydrocephalus and cerebral hematoma lead to severe neurological deficits. A single autologous blood (ALB) injection in rats' brains induces hemorrhage and other conditions that regularly interfere with the standard treatment of several cellular and molecular pathways. Several studies have found that IGF-1/GLP-1 decreases the production of inflammatory markers in peripheral tissues, while some have found that they also have pro-inflammatory functions. Since these receptors are down-regulated in hemorrhagic situations, we looked into the potential neuroprotective effect of 4-hydroxyisoleucine (4-HI); 50 mg/kg and 100 mg/kg, an active compound Trigonellafoenum-graecum, on post-hemorrhagic deficits in rats. Long-term oral administration of 4-HI for 35 days has improved behavioral and neurochemical deficits and severe pathological changes and improved cellular and molecular markers, apoptotic markers in the ALB-induced ICH experimental model. Furthermore, the findings revealed that 4-HI also improved the levels of other neurotransmitters (Ach, DOPA, GABA, glutamate); inflammatory cytokines (TNF-alpha, IL-1β, IL-17), and oxidative stress markers (MDA, nitrite, LDH, AchE, SOD, CAT, GPx, GSH) in the brain when evaluated after Day 35. There is no proven treatment available for the prevention of post-brain hemorrhage and neurochemical malfunction; available therapy is only for symptomatic relief of the patient. Thus, 4-HI could be a potential clinical approach for treating post-brain haemorrhage and neurochemical changes caused by neurological damage. Furthermore, 4-HI may be linked to other standard therapeutic therapies utilized in ICH as a potential pharmacological intervention.
Collapse
Affiliation(s)
- Ehraz Mehmood Siddiqui
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shubham Upadhayay
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | - Rana M Alsaffar
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O.Box-173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
21
|
Gastroprotective effects and metabolomic profiling of Chasteberry fruits against indomethacin-induced gastric injury in rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
Possible Synergistic Antidiabetic Effects of Quantified Artemisia judaica Extract and Glyburide in Streptozotocin-Induced Diabetic Rats via Restoration of PPAR-α mRNA Expression. BIOLOGY 2021; 10:biology10080796. [PMID: 34440028 PMCID: PMC8389674 DOI: 10.3390/biology10080796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023]
Abstract
Simple Summary A considerable number of diabetic patients are in favour of using oral antidiabetic drugs in combination with certain herbs instead of using oral antidiabetic drugs alone. Artemisia judaica (AJ) is one of the herbs documented to have antidiabetic effects. This study examined the effect of using combination of A. judaica extract (AJE) and the oral hypoglycemic drug glyburide (GLB, 5 mg/kg) on diabetic rats. Fasting blood glucose (FBG), insulin levels, glycated hemoglobin (HbA1c) percentage, serum lipid profile, and oxidative stress biomarkers were estimated. The histopathological examination of the pancreas and the immunohistochemical analysis of anti-insulin, anti-glucagon, and anti-somatostatin protein expressions were also performed. The analysis of the hepatic mRNA expression of peroxisome proliferator-activated receptor α (PPAR-α) and nuclear factor erythroid 2-related factor-2 (Nrf2) genes was performed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Combination of GLB and 500 mg/kg of AJE highly improved FBG, insulin levels, HbA1c, and lipid profile in blood when compared with GLB monotherapy. Furthermore, GLB plus 500 mg/kg of AJE combination was the most successful in restoring insulin content in the β-cells and diminished the levels of glucagon and somatostatin of the α- and δ-endocrine cells in the pancreatic islets, restoring PPAR-α and Nrf2 mRNA expression in the liver. In conclusion, these data indicate that GLB plus 500 mg/kg of AJE combination gives greater glycemic improvement than GLB monotherapy. Abstract Several members of the genus Artemisia are used in both Western and African traditional medicine for the control of diabetes. A considerable number of diabetic patients switch to using oral antidiabetic drugs in combination with certain herbs instead of using oral antidiabetic drugs alone. This study examined the effect of Artemisia judaica extract (AJE) on the antidiabetic activity of glyburide (GLB) in streptozotocin (STZ)-induced diabetes. Forty-two male Wistar rats were divided into seven equal groups. Normal rats of the first group were treated with the vehicle. The diabetic rats in the second–fifth groups received vehicle, GLB (5 mg/kg), AJE low dose (250 mg/kg), and AJE high dose (500 mg/kg), respectively. Groups sixth–seventh were treated with combinations of GLB plus the lower dose of AJE and GLB plus the higher dose of AJE, respectively. All administrations were done orally for eight weeks. Fasting blood glucose (FBG) and insulin levels, glycated hemoglobin (HbA1c) percentage, serum lipid profile, and biomarkers of oxidative stress were estimated. The histopathological examination of the pancreas and the immunohistochemical analysis of anti-insulin, anti-glucagon, and anti-somatostatin protein expressions were also performed. The analysis of the hepatic mRNA expression of PPAR-α and Nrf2 genes were performed using quantitative RT-PCR. All treatments significantly lowered FBG levels when compared with the STZ-control group with the highest percentage reduction exhibited by the GLB plus AJE high dose combination. This combination highly improved insulin levels, HbA1c, and lipid profile in blood of diabetic rats compared to GLB monotherapy. In addition, all medicaments restored insulin content in the β-cells and diminished the levels of glucagon and somatostatin of the α- and δ-endocrine cells in the pancreatic islets. Furthermore, the GLB plus AJE high dose combination was the most successful in restoring PPAR-α and Nrf2 mRNA expression in the liver. In conclusion, these data indicate that the GLB plus AJE high dose combination gives greater glycemic improvement in male Wistar rats than GLB monotherapy.
Collapse
|
23
|
El Badawy SA, Ogaly HA, Abd-Elsalam RM, Azouz AA. Benzyl isothiocyanates modulate inflammation, oxidative stress, and apoptosis via Nrf2/HO-1 and NF-κB signaling pathways on indomethacin-induced gastric injury in rats. Food Funct 2021; 12:6001-6013. [PMID: 34037056 DOI: 10.1039/d1fo00645b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study investigated the gastroprotective activity of benzyl isothiocyanates (BITC) on indomethacin (IND)-induced gastric injury in a rat model and explicated the possible involved biochemical, cellular, and molecular mechanisms. The rat model with gastric ulcers was established by a single oral dose of IND (30 mg per kg b.wt). BITC (0.75 and 1.5 mg kg-1) and esomeprazole (20 mg per kg b.wt) were orally administered for 3 weeks to rats before the induction of gastric injury. Compared with the IND group, BITC could diminish both the macroscopic and microscopic pathological morphology of gastric mucosa. BITC significantly preserved the antioxidants (glutathione GSH, superoxide dismutase SOD), nitric oxide (NO), and prostaglandin E2 (PGE2) contents, while decreasing the gastric mucosal malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and myeloperoxidase (MPO) contents. Moreover, BITC remarkably upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), hemoxygenase-1 (HO-1), and NAD(P)H : quinone oxidoreductase (NQO1). In addition, BITC activates the expression of heat shock protein 70 (HSP-70) and downregulated the expression of nuclear factor-κB (NF-κB) and caspase-3 to promote gastric mucosal cell survival. To the best of our knowledge, this study is the first published report to implicate the suppression of inflammation, oxidative stress, and Nrf2 signaling pathway as a potential mechanism for the gastroprotective activity of BITC.
Collapse
Affiliation(s)
- Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia. and Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Asmaa A Azouz
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
24
|
Zhou H, He Y, Zhu J, Lin X, Chen J, Shao C, Wan H, Yang J. Guhong Injection Protects Against Apoptosis in Cerebral Ischemia by Maintaining Cerebral Microvasculature and Mitochondrial Integrity Through the PI3K/AKT Pathway. Front Pharmacol 2021; 12:650983. [PMID: 34054531 PMCID: PMC8155598 DOI: 10.3389/fphar.2021.650983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023] Open
Abstract
Guhong injection (GHI) can be used for the treatment of ischemic stroke. We investigated the antiapoptotic activity of GHI, its ability to repair the cerebral microvessels and mitochondria, and the PI3K/AKT signaling pathway of GHI against cerebral ischemia. Western blot and immunohistochemical analyses were used to determine the expression of cleaved caspase-3, B-cell lymphoma-2 (Bcl-2), cytochrome c (Cyt-c), basic fibroblast growth factor (BFGF), vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), and proteins in the PI3K/AKT signaling pathway. Transmission electron microscopy and scanning electron microscopy were used to evaluate the structures of the cerebral microvasculature and cells. Hoechst 33342 staining was used to evaluate the nuclear morphology. FITC-AV/PI double staining was used to measure the antiapoptotic effects. The fluorescent dye JC-1 was used to measure mitochondrial membrane potential. The enzyme-linked immunosorbent assay (ELISA) was used to detect the activities of matrix metalloproteinase-9 (MMP-9). Biochemical assay kits were used to detect the activities of lactate dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA). Compared with the middle cerebral artery occlusion (MCAO) group, there was decreased infarct volume and significantly improved neurological deficits in the GHI group. In addition, the expression of Bcl-2 was significantly upregulated, while the expression of Cyt-c, Bax, and cleaved caspase-3 was notably downregulated. GHI administration attenuated the pathological change and morphology of the cerebral microvasculature, and immunohistochemical staining indicated that the expressions of BFGF, VEGF, and TGF-β1 were significantly increased. The cell morphology, cell viability, cell nuclei characteristics, and mitochondrial morphology normalized following GHI treatment, which decreased the release of Cyt-c and the mitochondrial membrane potential. The levels of LDH, MMP-9, and MDA decreased, while SOD increased. Moreover, GHI administration inhibited the activation of the PI3K/AKT signaling pathway in rat brain microvascular endothelial cells (rBMECs) following oxygen/glucose deprivation (OGD) injury. Therefore, our results show that GHI administration resulted in antiapoptosis of cerebral cells and repair of cerebral microvessels and mitochondria via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Huifen Zhou
- Institute of Cardiovascular-Cranial Disease, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Zhu
- Institute of Cardiovascular-Cranial Disease, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojie Lin
- Institute of Cardiovascular-Cranial Disease, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Juan Chen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongyu Shao
- Institute of Cardiovascular-Cranial Disease, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- Institute of Cardiovascular-Cranial Disease, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
25
|
Ma R, Xie Q, Li H, Guo X, Wang J, Li Y, Ren M, Gong D, Gao T. l-Borneol Exerted the Neuroprotective Effect by Promoting Angiogenesis Coupled With Neurogenesis via Ang1-VEGF-BDNF Pathway. Front Pharmacol 2021; 12:641894. [PMID: 33746762 PMCID: PMC7973462 DOI: 10.3389/fphar.2021.641894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
At present, Stroke is still one of the leading causes of population death worldwide and leads to disability. Traditional Chinese medicine plays an important role in the prevention or treatment of stroke. l-borneol, a traditional Chinese medicine, has been used in China to treat stroke for thousands of years. However, its mechanism of action is unclear. After cerebral ischemia, promoting angiogenesis after cerebral ischemia and providing nutrition for the infarct area is an important strategy to improve the damage in the ischemic area, but it is also essential to promote neurogenesis and replenish new neurons. Here, our research shows that l-borneol can significantly improve the neurological deficits of pMCAO model rats, reduce cerebral infarction, and improve the pathological damage of cerebral ischemia. and significantly increase serum level of Ang-1 and VEGF, and significantly decrease level of ACE and Tie2 to promote angiogenesis. PCR and WB showed the same results. Immunohistochemistry also showed that l-borneol can increase the number of CD34 positive cells, further verifying that l-borneol can play a neuroprotective effect by promoting angiogenesis after cerebral ischemia injury. In addition, l-borneol can significantly promote the expression level of VEGF, BDNF and inhibit the expression levels of TGF-β1 and MMP9 to promote neurogenesis. The above suggests that l-borneol can promote angiogenesis coupled neurogenesis by regulating Ang1-VEGF-BDNF to play a neuroprotective effect. Molecular docking also shows that l-borneol has a very high binding rate with the above target, which further confirmed the target of l-borneol to improve cerebral ischemic injury. These results provide strong evidence for the treatment of cerebral ischemia with l-borneol and provide reference for future research.
Collapse
Affiliation(s)
- Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqing Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoyin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Gao
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Adverse Reaction Monitoring Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Punicalin Alleviates OGD/R-Triggered Cell Injury via TGF- β-Mediated Oxidative Stress and Cell Cycle in Neuroblastoma Cells SH-SY5Y. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6671282. [PMID: 33628309 PMCID: PMC7895578 DOI: 10.1155/2021/6671282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 01/17/2023]
Abstract
Purpose The research aimed to identify the active component from Punica granatum L. to alleviate ischemia/reperfusion injury and clarify the underlying mechanism of the active component alleviating ischemia/reperfusion injury. Materials and Methods The SH-SY5Y cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) was established to simulate the ischemia/reperfusion injury. According to the strategy of bioassay-guided isolation, the active component of punicalin from Punica granatum L. was identified. Flow cytometry and Western blotting were employed to evaluate the effects of OGD/R and/or punicalin on cell cycle arrest. Immunofluorescence assay was applied to assess the nucleus translocation. The relative content of ROS and GSH and the enzyme activities of CAT and SOD were examined using ELISA. Results The data of bioassay-guided isolation showed that punicalin from Punica granatum L. could alleviate OGD/R-induced cell injury in SH-SY5Y cells. Flow cytometry analysis and Western blotting for probing the expression of CDK1, p-CDK1, cyclin B1, and p21 revealed that punicalin could relieve OGD/R-induced cell cycle G0/G1 arrest. Additionally, immunofluorescence assay and Western blotting for probing the expression of TGF-β and p-Smad2/p-Smad3 showed that punicalin could relieve the OGD/R-induced TGF-β/Smad pathway. Furthermore, the TGF-β/Smad pathway inhibitor of LY2157299 was employed to confirm that the TGF-β/Smad pathway is crucial to the effect of punicalin. At last, it was indicated that punicalin could relieve OGD/R-induced oxidative stress. Conclusion Punicalin, an active component from Punica granatum L., was identified as a protective agent to alleviate the OGD/R-induced cell injury, which could exert the protective effect via TGF-β/Smad pathway-regulated oxidative stress and cell cycle arrest in SH-SY5Y cells.
Collapse
|
27
|
Preziuso F, Genovese S, Marchetti L, Sharifi-Rad M, Palumbo L, Epifano F, Fiorito S. 7-Isopentenyloxycoumarin: What Is New across the Last Decade. Molecules 2020; 25:molecules25245923. [PMID: 33327602 PMCID: PMC7765079 DOI: 10.3390/molecules25245923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
7-Isopentenyloxycoumarin is among the most widespread naturally occurring prenyloxy umbelliferone derivatives. This secondary metabolite of mixed biosynthetic origin has been typically isolated from plants belonging to several genera of the Rutaceae and Apiaceae families, comprising widely used medicinal plants and in general plants with beneficial effects on human welfare, as well as edible fruits and vegetables. Although known for quite a long time (more than 50 years), only in the last two decades has this natural compound been revealed to exert powerful and promising pharmacological properties, such as active cancer chemopreventive, antibacterial, antiprotozoal, antifungal, anti-inflammatory, neuroprotective, and antioxidant properties, among the activities best outlined in the recent literature. The aim of this comprehensive miniature review article is to detail the novel natural sources and the effects described during the last decade for 7-isopentenyloxycoumarin and what has been reported on the mechanisms of action underlying the observed biological activities of this oxyprenylated secondary metabolite. In view of the herein described data, suggestions on how to address future research on the abovementioned natural product and structurally related derivatives in the best ways according to the authors will be also provided.
Collapse
Affiliation(s)
- Francesca Preziuso
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (F.P.); (S.G.); (L.M.); (L.P.); (S.F.)
| | - Salvatore Genovese
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (F.P.); (S.G.); (L.M.); (L.P.); (S.F.)
| | - Lorenzo Marchetti
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (F.P.); (S.G.); (L.M.); (L.P.); (S.F.)
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol 98613-35856, Iran;
| | - Lucia Palumbo
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (F.P.); (S.G.); (L.M.); (L.P.); (S.F.)
| | - Francesco Epifano
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (F.P.); (S.G.); (L.M.); (L.P.); (S.F.)
- Correspondence: ; Tel.: +39-0871-3554654
| | - Serena Fiorito
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy; (F.P.); (S.G.); (L.M.); (L.P.); (S.F.)
| |
Collapse
|
28
|
Balion Z, Ramanauskienė K, Jekabsone A, Majienė D. The Role of Mitochondria in Brain Cell Protection from Ischaemia by Differently Prepared Propolis Extracts. Antioxidants (Basel) 2020; 9:antiox9121262. [PMID: 33322707 PMCID: PMC7763930 DOI: 10.3390/antiox9121262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are both the primary targets and mediators of ischaemic damage in brain cells. Insufficient oxygen causes reactive oxygen species that damage the mitochondria, leading to the loss of functionality and viability of highly energy-demanding neurons. We have recently found that aqueous (AqEP), polyethylene glycol-aqueous (Pg-AqEP) and ethanolic propolis extracts (EEP) can modulate mitochondria and ROS production in C6 cells of astrocytic origin. The aim of this study was to investigate the effect of the extracts on viability, mitochondrial efficiency and superoxide generation, and inflammatory cytokine release in primary rat cerebellar neuronal-glial cell cultures affected by ischaemia (mimicked by hypoxia +/- deoxyglucose). AqEP and Pg-AqEP (15-60 µg/mL of phenolic compounds, or PC) significantly increased neuronal viability in ischaemia-treated cultures, and this was accompanied by a reduction in mitochondrial superoxide levels. Less extended protection against ischaemia-induced superoxide production and death was exhibited by 2 to 4 µg/mL of PC EEP. Both Pg-AqEP and Ag-EP (but not EEP) significantly protected the cultures from hypoxia-induced elevation of TNF-α, IL-1β and IL-6. Only Pg-AqEP (but not AqEP or EEP) prevented hypoxia-induced loss of the mitochondrial basal and ATP-coupled respiration rate, and significantly increased the mitochondrial respiratory capacity. Summarising, the study revealed that hydrophilic propolis extracts might protect brain cells against ischaemic injury by decreasing the level of mitochondrial superoxide and preventing inflammatory cytokines, and, in the case of Pg-AqEP, by protecting mitochondrial function.
Collapse
Affiliation(s)
- Zbigniev Balion
- Laboratory of Pharmaceutical Sciences, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT 50162 Kaunas, Lithuania; (Z.B.); (A.J.)
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania
| | - Kristina Ramanauskienė
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT 50162 Kaunas, Lithuania;
| | - Aistė Jekabsone
- Laboratory of Pharmaceutical Sciences, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT 50162 Kaunas, Lithuania; (Z.B.); (A.J.)
- Laboratory of Preclinical Drug Investigation, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT-50162 Kaunas, Lithuania
| | - Daiva Majienė
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT 50162 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-615-23993
| |
Collapse
|
29
|
Letter to the editor: Trolox is more successful than allopurinol to reduce degenerative effects of testicular ischemia/reperfusion injury in rats. J Pediatr Urol 2020; 16:861. [PMID: 33172766 DOI: 10.1016/j.jpurol.2020.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022]
|
30
|
Seker U. Response to letter to the editor 'Trolox is more successful than allopurinol to reduce degenerative effects of testicular ischemia/reperfusion injury in rats'. J Pediatr Urol 2020; 16:862-863. [PMID: 33158726 DOI: 10.1016/j.jpurol.2020.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Ugur Seker
- Department of Histology and Embryology, Faculty of Medicine, Dicle University, Turkey.
| |
Collapse
|
31
|
Abdel-Rahman RF, Abd-Elsalam RM, Amer MS, El-Desoky AM, Mohamed SO. Manjarix attenuated pain and joint swelling in a rat model of monosodium iodoacetate-induced osteoarthritis. Food Funct 2020; 11:7960-7972. [PMID: 32839804 DOI: 10.1039/d0fo01297a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) is a joint disease characterized by degeneration of cartilage, intra-articular inflammation, remodeling of subchondral bone and joint pain. The present study was designed to assess the therapeutic effects and the possible underlying mechanism of action of Manjarix, a herbal combination composed of ginger and turmeric powder extracts, on chemically induced osteoarthritis in rats. An OA model was generated by intra-articular injection of 50 μL (40 mg mL-1) of monosodium iodoacetate (MIA) into the right knee joint of rats. After one week of osteoarthritis induction, a comparison of the anti-inflammatory efficacy of indomethacin at an oral dose of 2 mg kg-1 daily for 4 successive weeks versus five decremental dose levels of Manjarix (1000, 500, 250, 125, and 62.5 mg kg-1) was performed. Serum inflammatory cytokines, interleukin 6, interleukin 8, and tumor necrosis factor alpha; C-telopeptide of type II collagen (CTX-II) and hyaluronic acid (HA) were measured, along with weekly assessment of the knee joint swelling. Pain-like behavior was assessed and knee radiographic and histological examination were performed to understand the extent of pain due to cartilage degradation. Manjarix significantly reduced the knee joint swelling, decreased the serum levels of IL6, TNF-α, CTX-II and HA, and reduced the pathological injury in joints, with no evidence of osteo-reactivity in the radiographic examination. Manjarix also significantly prevented MIA-induced pain behavior. These results demonstrate that Manjarix exhibits chondroprotective effects and can inhibit the OA pain induced by MIA, and thus it can be used as a potential therapeutic product for OA.
Collapse
Affiliation(s)
| | - Reham M Abd-Elsalam
- Department of Pathology, College of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohammed S Amer
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M El-Desoky
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City, Egypt
| | - Shanaz O Mohamed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Malaysia, Malaysia
| |
Collapse
|
32
|
Liao Z, Sun H, Chang Y, Chen H. The expression and clinical significance of miRNA-183 in cerebral ischemia-reperfusion injury patients with cerebral small vessel disease. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1005. [PMID: 32953805 PMCID: PMC7475471 DOI: 10.21037/atm-20-5335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background To investigate the expression and clinical significance of micro (mi)RNA-183 in cerebral ischemia-reperfusion injury (CIRI) in patients with cerebral small vessel disease (CSVD). Methods A total of 138 patients with CSVD complicated with CIRI admitted to our hospital from May 2018 to May 2019 were selected and divided into the CIRI group (138 cases of patients with cerebral vascular disease complicated with CIRI) and the control group [60 cases with no abnormalities in cranial magnetic resonance imaging (MRI) in healthy volunteers]; the results of craniocerebral MRI were subsequently recorded. The serum levels of miRNA-183 were detected by quantitative real-time polymerase chain (RT-qPCR), and the levels of interleukin-6 (IL-6), IL-8, IL-1β, and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA). A correlation analysis of serum miRNA-183 level and imaging lesion characteristics in patients with CSVD was also conducted. Results RT-qPCR showed that the peripheral blood miRNA-183 level in the CIRI group was increased compared to that in the control group; the level of miRNA-183 in the control group was 30.03±6.32, while the level of miRNA-183 in the CIRI group was 36.78±10.11, which was a statistically significant difference (t=2.475, P<0.05). Compared with the control group, the patient levels of TNF-α, IL-6, IL-8, and IL-1β in the CIRI group were significantly increased (P<0.05). Correlation analysis showed that the serum miRNA-183 level in the CIRI group was positively correlated with an increase of imaging lesions (r=0.997, P<0.05). Conclusions The level of miRNA-183 in CIRI patients with CSVD was higher than that of controls, and the level of miRNA-183 was positively correlated with the increase of imaging lesions.
Collapse
Affiliation(s)
- Zigen Liao
- Department of Neurology, Second Affiliated Hospital, University of South China, Hengyang, China
| | - Hui Sun
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Yanqun Chang
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hui Chen
- Department of Emergency, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|