1
|
Zhu H, Uno H, Matsuba K, Hamachi I. Profiling Proteins Involved in Peroxynitrite Homeostasis Using ROS/RNS Conditional Proteomics. J Am Chem Soc 2025; 147:7305-7316. [PMID: 39988859 DOI: 10.1021/jacs.4c14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Peroxynitrite (ONOO-), the product of the diffusion-controlled reaction of superoxide (O2•-) with nitric oxide (NO•), plays a crucial role in oxidative and nitrative stress and modulates key physiological processes such as redox signaling. While biological ONOO- is conventionally analyzed using 3-nitrotyrosine antibodies and fluorescent sensors, such probes lack specificity and sensitivity, making high-throughput and comprehensive profiling of ONOO--associated proteins challenging. In this study, we used a conditional proteomics approach to investigate ONOO- homeostasis by identifying its protein neighbors in cells. We developed Peroxynitrite-responsive protein Labeling reagents (Porp-L) and, for the first time, discovered 2,6-dichlorophenol as an ideal moiety that can be selectively and rapidly activated by ONOO- for labeling of proximal proteins. The reaction of Porp-L with ONOO- generated several short-lived reactive intermediates that can modify Tyr, His, and Lys residues on the protein surface. We have demonstrated the Porp-L-based conditional proteomics in immune-stimulated macrophages, which indeed identified proteins known to be involved in the generation and modification of ONOO- and revealed the endoplasmic reticulum (ER) as a ONOO- hot spot. Moreover, we discovered a previously unknown role for Ero1a, an ER-resident protein, in the formation of ONOO-. Overall, Porp-L represent a promising research tool for advancing our understanding of the biological roles of ONOO-.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroaki Uno
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kyoichi Matsuba
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
2
|
Jørgensen SM, Lorentzen LG, Hammer A, Hoefler G, Malle E, Chuang CY, Davies MJ. The inflammatory oxidant peroxynitrous acid modulates the structure and function of the recombinant human V3 isoform of the extracellular matrix proteoglycan versican. Redox Biol 2023; 64:102794. [PMID: 37402332 DOI: 10.1016/j.redox.2023.102794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Continued oxidant production during chronic inflammation generates host tissue damage, with this being associated with pathologies including atherosclerosis. Atherosclerotic plaques contain modified proteins that may contribute to disease development, including plaque rupture, the major cause of heart attacks and strokes. Versican, a large extracellular matrix (ECM) chondroitin-sulfate proteoglycan, accumulates during atherogenesis, where it interacts with other ECM proteins, receptors and hyaluronan, and promotes inflammation. As activated leukocytes produce oxidants including peroxynitrite/peroxynitrous acid (ONOO-/ONOOH) at sites of inflammation, we hypothesized that versican is an oxidant target, with this resulting in structural and functional changes that may exacerbate plaque development. The recombinant human V3 isoform of versican becomes aggregated on exposure to ONOO-/ONOOH. Both reagent ONOO-/ONOOH and SIN-1 (a thermal source of ONOO-/ONOOH) modified Tyr, Trp and Met residues. ONOO-/ONOOH mainly favors nitration of Tyr, whereas SIN-1 mostly induced hydroxylation of Tyr, and oxidation of Trp and Met. Peptide mass mapping indicated 26 sites with modifications (15 Tyr, 5 Trp, 6 Met), with the extent of modification quantified at 16. Multiple modifications, including the most extensively nitrated residue (Tyr161), are within the hyaluronan-binding region, and associated with decreased hyaluronan binding. ONOO-/ONOOH modification also resulted in decreased cell adhesion and increased proliferation of human coronary artery smooth muscle cells. Evidence is also presented for colocalization of versican and 3-nitrotyrosine epitopes in advanced (type II-III) human atherosclerotic plaques. In conclusion, versican is readily modified by ONOO-/ONOOH, resulting in chemical and structural modifications that affect protein function, including hyaluronan binding and cell interactions.
Collapse
Affiliation(s)
- Sara M Jørgensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, 8010, Austria
| | - Gerald Hoefler
- Institute of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, 8010, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, 8010, Austria
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
3
|
Geiger AK, Weber LP. Assessing non-protein nitrogen sources in commercial dry dog foods. Transl Anim Sci 2022; 6:txac009. [PMID: 35233511 PMCID: PMC8882255 DOI: 10.1093/tas/txac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
Protein is a macronutrient required by dogs for growth and maintenance metabolism. However, a portion of the crude protein listed on pet foods may actually arise from non-digestible organic nitrogen or potentially toxic inorganic non-protein nitrogen sources. Neither non-protein source is retained or used by the animal. However, these compounds may result in adverse effects such as methemoglobin formation and increased oxidative stress or potentially beneficial effects such as improved vascular distensibility and decreased inflammation. To analyze nitrogen retention and screen for non-protein nitrogen, four commercial, dry kibble dog foods and one laboratory-made diet were evaluated and then fed to beagles during two separate feeding trials. During the first trial, dogs were randomly assigned each diet (n = 4 dogs/diet) and fed chromium oxide-coated diets for 48 h, followed by total urine and marked fecal collection, as well as plasma collection for total nitrogen, nitrate, ammonia, and urea determination. The amount of nitrogen retained (93%–96%) did not differ among commercial diets. Protein total tract apparent digestibility (TTAD) ranged from 69% to 84%, with the high protein diets significantly higher than the laboratory-made and mid-ranged diets (1-way ANOVA: P < 0.05). The high protein diet also contained the highest concentration of nitrate with subsequent elevations in plasma nitrotyrosine levels (indicator of oxidative stress). During the second trial, eight dogs (n = 8) were fed the same diets for 6 d, after which echocardiography was completed with blood, urine, and feces collected. For health end-points, methemoblobin, plasma nitrotyrosine, and C-reactive protein (CRP; indicator of inflammation) levels were measured. Methemoglobin levels were significantly lower in the high protein diet (P > 0.05), possible due to the stimulation of methemoglobin reductase while nitrotyrosine was unchanged and CRP was undetectable. Furthermore, there was a positive relationship between crude protein, crude fat (simple linear regression: P = 0.02, r2 > 0.6), price (P = 0.08, r2 > 0.6), and caloric density (P = 0.11, r2 > 0.6). There were no significant cardiovascular differences among any of the diets (P > 0.05). Ultimately, this study shows that in commercial diets, price does reflect protein content but that feeding dogs high protein diets for a long period of time may provide an excess in calories without a change in cardiovascular function or detectable increases in inflammation.
Collapse
Affiliation(s)
- Andrea K Geiger
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lynn P Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Wigner P, Szymańska B, Bijak M, Sawicka E, Kowal P, Marchewka Z, Saluk-Bijak J. Oxidative stress parameters as biomarkers of bladder cancer development and progression. Sci Rep 2021; 11:15134. [PMID: 34302052 PMCID: PMC8302678 DOI: 10.1038/s41598-021-94729-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/09/2021] [Indexed: 12/09/2022] Open
Abstract
The epidemiological studies confirm that the overproduction of free radical is an important factor of cancer induction as well as development, and loss of antioxidant systems efficiency is associated with an increased risk of carcinogenesis. While bladder cancer is the fourth most common type of cancer all over the world, there is little evidence of the advancing changes in oxidative/nitrative stress during the progression of bladder cancer. Our study aimed to investigate the plasma levels of typical markers of oxidative/nitrative stress depending on the clinical classification of bladder cancer differentiation and infiltration degree. We examined 40 patients with newly diagnosed bladder cancer and 20 healthy volunteers as a control group. We analysed the plasma levels of protein carbonyls, thiol groups, 3-nitrotyrosine, lipid peroxidation, as well as non-enzymatic plasma antioxidant capacity using DPPH· and ABTS·+ radicals. We confirmed that all analysed biomarkers are higher in enrolled BC patients than in healthy subjects. Furthermore, our findings demonstrate a positive correlation between the degree of bladder cancer progression and the level of oxidative stress, but no correlation in the case of NT-3. Based on obtained results, we might conclude that during carcinogenesis of the bladder increased oxidative damage of biomolecules is manifested. This indicates the participation of oxidative stress in the development of bladder cancer, and it is important the ensure the proper antioxidant protection.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Beata Szymańska
- Department of Toxicology, Faculty of Pharmacy and Division of Laboratory, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-136, Lodz, Poland
| | - Ewa Sawicka
- Department of Toxicology, Faculty of Pharmacy and Division of Laboratory, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| | - Paweł Kowal
- Department and Clinic of Urology and Urological Oncology, Faculty of Postgraduate Medical Training, Wroclaw Medical University, Kamieńskiego 73a, 51-124, Wrocław, Poland
| | - Zofia Marchewka
- Department of Toxicology, Faculty of Pharmacy and Division of Laboratory, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
5
|
Melatonin, Its Metabolites and Their Interference with Reactive Nitrogen Compounds. Molecules 2021; 26:molecules26134105. [PMID: 34279445 PMCID: PMC8271479 DOI: 10.3390/molecules26134105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melatonin and several of its metabolites are interfering with reactive nitrogen. With the notion of prevailing melatonin formation in tissues that exceeds by far the quantities in blood, metabolites come into focus that are poorly found in the circulation. Apart from their antioxidant actions, both melatonin and N1-acetyl-5-methoxykynuramine (AMK) downregulate inducible and inhibit neuronal NO synthases, and additionally scavenge NO. However, the NO adduct of melatonin redonates NO, whereas AMK forms with NO a stable product. Many other melatonin metabolites formed in oxidative processes also contain nitrosylatable sites. Moreover, AMK readily scavenges products of the CO2-adduct of peroxynitrite such as carbonate radicals and NO2. Protein AMKylation seems to be involved in protective actions.
Collapse
|
6
|
Kurogi K, Rasool MI, Alherz FA, El Daibani AA, Bairam AF, Abunnaja MS, Yasuda S, Wilson LJ, Hui Y, Liu MC. SULT genetic polymorphisms: physiological, pharmacological and clinical implications. Expert Opin Drug Metab Toxicol 2021; 17:767-784. [PMID: 34107842 DOI: 10.1080/17425255.2021.1940952] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Cytosolic sulfotransferases (SULTs)-mediated sulfation is critically involved in the metabolism of key endogenous compounds, such as catecholamines and thyroid/steroid hormones, as well as a variety of drugs and other xenobiotics. Studies performed in the past three decades have yielded a good understanding about the enzymology of the SULTs and their structural biology, phylogenetic relationships, tissue/organ-specific/developmental expression, as well as the regulation of the SULT gene expression. An emerging area is related to the functional impact of the SULT genetic polymorphisms. AREAS COVERED The current review aims to summarize our current knowledge about the above-mentioned aspects of the SULT research. An emphasis is on the information concerning the effects of the polymorphisms of the SULT genes on the functional activity of the SULT allozymes and the associated physiological, pharmacological, and clinical implications. EXPERT OPINION Elucidation of how SULT SNPs may influence the drug-sulfating activity of SULT allozymes will help understand the differential drug metabolism and eventually aid in formulating personalized drug regimens. Moreover, the information concerning the differential sulfating activities of SULT allozymes toward endogenous compounds may allow for the development of strategies for mitigating anomalies in the metabolism of these endogenous compounds in individuals with certain SULT genotypes.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Mohammed I Rasool
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Pharmacology, College of Pharmacy, University of Karbala, Karbala, Iraq
| | - Fatemah A Alherz
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amal A El Daibani
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA
| | - Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Maryam S Abunnaja
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA
| | - Shin Yasuda
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Bioscience, School of Agriculture, Tokai University, Kumamoto City, Kumamoto 862-8652, Japan
| | - Lauren J Wilson
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA
| | - Ying Hui
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Obstetrics and Gynecology, Beijing Hospital, Beijing, China
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA
| |
Collapse
|
7
|
Lee DY, Chun YS, Kim JK, Lee JO, Ku SK, Shim SM. Curcumin Attenuates Sarcopenia in Chronic Forced Exercise Executed Aged Mice by Regulating Muscle Degradation and Protein Synthesis with Antioxidant and Anti-inflammatory Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6214-6228. [PMID: 33950680 DOI: 10.1021/acs.jafc.1c00699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aim of the current study is to investigate the effects of spray dry powders of Curcuma longa containing 40% curcumin (CM-SD), as a new aqueous curcumin formula, on sarcopenia in chronic forced exercise executed 10 month old ICR mice. CM-SD (80 and 40 mg/kg) increased calf thicknesses and strengths, total body and calf protein amounts, and muscle weights in both gastrocnemius and soleus muscles. mRNA expressions regarding muscle growth and protein synthesis were induced, while those of muscle degradation significantly declined in CM-SD treatment. CM-SD decreased serum biochemical markers, lipid peroxidation, and reactive oxygen species and increased endogenous antioxidants and enzyme activities. It also reduced immunoreactive myofibers for apoptosis and oxidative stress markers but increased ATPase in myofibers. These results suggest that CM-SD can be an adjunct therapy to exercise-based remedy that prevents muscle disorders including sarcopenia by anti-apoptosis, anti-inflammation, and antioxidation-mediated modulation of gene expressions related to muscle degradation and protein synthesis.
Collapse
Affiliation(s)
- Da-Yeon Lee
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Yoon-Seok Chun
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Republic of Korea
| | - Jong-Kyu Kim
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Republic of Korea
| | - Jeong-Ok Lee
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, Daegu Haany University, 1, Hanuidae-ro, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
8
|
Clemen R, Freund E, Mrochen D, Miebach L, Schmidt A, Rauch BH, Lackmann J, Martens U, Wende K, Lalk M, Delcea M, Bröker BM, Bekeschus S. Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003395. [PMID: 34026437 PMCID: PMC8132054 DOI: 10.1002/advs.202003395] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Eric Freund
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Daniel Mrochen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Anke Schmidt
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Bernhard H. Rauch
- Institute of Pharmacology (C_Dat)University Medicine GreifswaldFelix‐Hausdorff‐Str. 1Greifswald17489Germany
| | - Jan‐Wilm Lackmann
- CECAD proteomics facilityUniversity of CologneJoseph‐Stelzmann‐Str. 26Cologne50931Germany
| | - Ulrike Martens
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Kristian Wende
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Michael Lalk
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Mihaela Delcea
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Barbara M. Bröker
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| |
Collapse
|
9
|
Choi PM, Bowes DA, O'Brien JW, Li J, Halden RU, Jiang G, Thomas KV, Mueller JF. Do food and stress biomarkers work for wastewater-based epidemiology? A critical evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139654. [PMID: 32497888 DOI: 10.1016/j.scitotenv.2020.139654] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 05/25/2023]
Abstract
Dietary characteristics and oxidative stress are closely linked to the wellbeing of individuals. In recent years, various urinary biomarkers of food and oxidative stress have been proposed for use in wastewater-based epidemiology (WBE), in efforts to objectively monitor the food consumed and the oxidative stress experienced by individuals in a wastewater catchment. However, it is not clear whether such biomarkers are suitable for wastewater-based epidemiology. This study presents a suite of 30 urinary food and oxidative stress biomarkers and evaluates their applicability for WBE studies. This includes 22 biomarkers which were not previously considered for WBE studies. Daily per capita loads of biomarkers were measured from 57 wastewater influent samples from nine Australian catchments. Stability of biomarkers were assessed using laboratory scale sewer reactors. Biomarkers of consumption of vitamin B2, vitamin B3 and fibre, as well as a component of citrus had per capita loads in line with reported literature values despite susceptibility of degradation in sewer reactors. Consumption biomarkers of red meat, fish, fruit, other vitamins and biomarkers of stress had per capita values inconsistent with literature findings, and/or degraded rapidly in sewer reactors, indicating that they are unsuitable for use as WBE biomarkers in the traditional quantitative sense. This study serves to communicate the suitability of food and oxidative stress biomarkers for future WBE research.
Collapse
Affiliation(s)
- P M Choi
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia.
| | - D A Bowes
- Biodesign Center for Environmental Health Engineering, Arizona State University, United States of America; OneWaterOneHealth, Arizona State University Foundation, United States of America
| | - J W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - J Li
- Advanced Water Management Centre, The University of Queensland, Australia
| | - R U Halden
- Biodesign Center for Environmental Health Engineering, Arizona State University, United States of America; OneWaterOneHealth, Arizona State University Foundation, United States of America
| | - G Jiang
- Advanced Water Management Centre, The University of Queensland, Australia; School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - K V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - J F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| |
Collapse
|
10
|
Frohwitter G, Zimmermann OL, Kreutzer K, Doll C, Rendenbach CM, Dommisch H, Wolff KD, Kesting MR, Heiland M, Koerdt S. Oxidative and Nitrosative Stress in Oral Squamous Cell Carcinoma. Cells Tissues Organs 2020; 209:120-127. [PMID: 32756061 DOI: 10.1159/000508705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/06/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The incidence of oral squamous cell carcinoma (OSCC) shows a constant increase, while the long-term outcome remains poor over the last decades. Radical oxygen and nitrogen species (RONS) - initially released by carcinogens, such as alcohol and tobacco, and later maintained by the tumor microenvironment - appear to be strongly associated to chronic inflammation, tumor induction, progression, and metastatic spread. The aim of this study was to evaluate the role of oxidative and nitrosative stress in primary OSCC compared to healthy tissue specimens and to identify their impact on tumor carcinogenesis. MATERIALS AND METHODS In this basic research study, tissue samples of 30 patients with primary OSCC were evaluated for the expression of pAKT, pERK, 3-NT, NOS1, NOS3, MAPK1, and IP-8 by immunohistochemistry and RT-PCR and compared to those of a healthy control group (n = 30). RESULTS The results showed a significantly increased expression of pAKT (p < 0.001), pERK (p = 0.01), 3-NT (p = 0.039), NOS1 (p = 0.025), NOS3 (p = 0.046), and MAPK1 (p = 0.032) in OSCC tissue samples compared to healthy controls. CONCLUSION The results of this study prove the tested stable degradation products to be suitable for the detection of RONS in OSCC. Moreover, the significantly increased expression underlines the role of RONS in carcinogenesis of OSCC, suggests specific mechanisms of detection, and anticipates supplementary research.
Collapse
Affiliation(s)
- Gesche Frohwitter
- Department of Oral and Maxillofacial Surgery, Friedrich Alexander University, Erlangen, Germany
| | - Ornella Lisa Zimmermann
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Munich, Germany
| | - Kilian Kreutzer
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christian Doll
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten M Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Henrik Dommisch
- Department of Periodontology and Synoptic Dentistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Munich, Germany
| | - Marco R Kesting
- Department of Oral and Maxillofacial Surgery, Friedrich Alexander University, Erlangen, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Steffen Koerdt
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,
| |
Collapse
|
11
|
He C, Song W, Weston TA, Tran C, Kurtz I, Zuckerman JE, Guagliardo P, Miner JH, Ivanov SV, Bougoure J, Hudson BG, Colon S, Voziyan PA, Bhave G, Fong LG, Young SG, Jiang H. Peroxidasin-mediated bromine enrichment of basement membranes. Proc Natl Acad Sci U S A 2020; 117:15827-15836. [PMID: 32571911 PMCID: PMC7354931 DOI: 10.1073/pnas.2007749117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bromine and peroxidasin (an extracellular peroxidase) are essential for generating sulfilimine cross-links between a methionine and a hydroxylysine within collagen IV, a basement membrane protein. The sulfilimine cross-links increase the structural integrity of basement membranes. The formation of sulfilimine cross-links depends on the ability of peroxidasin to use bromide and hydrogen peroxide substrates to produce hypobromous acid (HOBr). Once a sulfilimine cross-link is created, bromide is released into the extracellular space and becomes available for reutilization. Whether the HOBr generated by peroxidasin is used very selectively for creating sulfilimine cross-links or whether it also causes oxidative damage to bystander molecules (e.g., generating bromotyrosine residues in basement membrane proteins) is unclear. To examine this issue, we used nanoscale secondary ion mass spectrometry (NanoSIMS) imaging to define the distribution of bromine in mammalian tissues. We observed striking enrichment of bromine (79Br, 81Br) in basement membranes of normal human and mouse kidneys. In peroxidasin knockout mice, bromine enrichment of basement membranes of kidneys was reduced by ∼85%. Proteomic studies revealed bromination of tyrosine-1485 in the NC1 domain of α2 collagen IV from kidneys of wild-type mice; the same tyrosine was brominated in collagen IV from human kidney. Bromination of tyrosine-1485 was reduced by >90% in kidneys of peroxidasin knockout mice. Thus, in addition to promoting sulfilimine cross-links in collagen IV, peroxidasin can also brominate a bystander tyrosine. Also, the fact that bromine enrichment is largely confined to basement membranes implies that peroxidasin activity is largely restricted to basement membranes in mammalian tissues.
Collapse
Affiliation(s)
- Cuiwen He
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Wenxin Song
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Thomas A Weston
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Caitlyn Tran
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Ira Kurtz
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Jonathan E Zuckerman
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, 6009 Perth, Australia
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sergey V Ivanov
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, 6009 Perth, Australia
| | - Billy G Hudson
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| | - Selene Colon
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212
| | - Paul A Voziyan
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Gautam Bhave
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212
- Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, CA 90095;
- Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, 6009 Perth, Australia;
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, Ojha S, Patil CR. Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. Int J Mol Sci 2019; 20:E4367. [PMID: 31491986 PMCID: PMC6770891 DOI: 10.3390/ijms20184367] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation is one of the common events in the majority of acute as well as chronic debilitating diseases and represent a chief cause of morbidity in today's era of modern lifestyle. If unchecked, inflammation leads to development of rheumatoid arthritis, diabetes, cancer, Alzheimer's disease, and atherosclerosis along with pulmonary, autoimmune and cardiovascular diseases. Inflammation involves a complex network of many mediators, a variety of cells, and execution of multiple pathways. Current therapy for inflammatory diseases is limited to the steroidal and non-steroidal anti-inflammatory agents. The chronic use of these drugs is reported to cause severe adverse effects like gastrointestinal, cardiovascular, and renal abnormalities. There is a massive need to explore new anti-inflammatory agents with selective action and lesser toxicity. Plants and isolated phytoconstituents are promising and interesting sources of new anti-inflammatories. However, drug development from natural sources has been linked with hurdles like the complex nature of extracts, difficulties in isolation of pure phytoconstituents, and the yield of isolated compounds in minute quantities that is insufficient for subsequent lead development. Although various in-vivo and in-vitro models for anti-inflammatory drug development are available, judicious selection of appropriate animal models is a vital step in the early phase of drug development. Systematic evaluation of phytoconstituents can facilitate the identification and development of potential anti-inflammatory leads from natural sources. The present review describes various techniques of anti-inflammatory drug screening with its advantages and limitations, elaboration on biological targets of phytoconstituents in inflammation and biomarkers for the prediction of adverse effects of anti-inflammatory drugs. The systematic approach proposed through present article for anti-inflammatory drug screening can rationalize the identification of novel phytoconstituents at the initial stage of drug screening programs.
Collapse
Affiliation(s)
- Kalpesh R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India.
| | - Umesh B Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Banappa S Unger
- Pharmacology & Toxicology Division, ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Sameer N Goyal
- SVKM's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sateesh Belemkar
- School of Pharmacy and Technology Management, SVKM's NMIMS, MPTP, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Sanjay J Surana
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, PO Box 17666, United Arab Emirates.
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India.
| |
Collapse
|
13
|
El-Din EAA, Mostafa HES, Samak MA, Mohamed EM, El-Shafei DA. Could curcumin ameliorate titanium dioxide nanoparticles effect on the heart? A histopathological, immunohistochemical, and genotoxic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21556-21564. [PMID: 31127514 DOI: 10.1007/s11356-019-05433-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 05/28/2023]
Abstract
The evaluation of the toxicological effects of titanium dioxide nanoparticles (TiO2NPs) is increasingly important due to their growing occupational and industrial use. Curcumin is a yellow curry spice with a long history of use in herbal medicine and has numerous protective potentials such as antioxidant, antimicrobial, anti-inflammatory, and anti-apoptotic effects. Accordingly, we tested the hypothesis that curcumin could ameliorate TiO2NP-induced cardiotoxic and genotoxic effects in adult male albino rats. For this purpose, 48 adult male albino rats were randomized into five groups; all treatment was by oral gavage once daily for 90 days: group I (8 rats), untreated control; group II (16 rats), subdivided into vehicle control IIa (8 rats) received saline and vehicle control IIb (8 rats) received corn oil; group III (8 rats) orally gavaged with curcumin dissolved in 0.5 ml corn oil at a dose of 200 mg/kg b.w./day; group IV treated with TiO2NPs at a dose of 1200 mg/kg b.w./day (1/10 LD50) suspended in 1 ml of 0.9% saline; group V treated with curcumin + TiO2NPs (the same previously mentioned doses). Curcumin was orally gavaged for 7 days before TiO2NPs treatment was initiated, and then they received TiO2NPs along with curcumin at the same doses for 90 days. TiO2NPs administration resulted in several myocardial cytomorphic changes as structurally disorganized, degenerated, and apoptotic cardiomyocytes and the newly implemented 3-nitrotyrosine immune expression rendered strong evidence that these effects derived from the cardio myocellular oxidative burden. Furthermore, comet assay results confirmed TiO2NP-related DNA damage. Remarkably, all these changes are partially mitigated in rats treated with both curcumin and TiO2NPs. Our results suggest that concurrent curcumin treatment has a beneficial role in ameliorating TiO2NP-induced cardiotoxicity and this may be mediated by its antioxidative property.
Collapse
Affiliation(s)
- Eman Ahmed Alaa El-Din
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Heba El-Sayed Mostafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mai A Samak
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M Mohamed
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia Abdallah El-Shafei
- Department of Community, Environmental & Occupational Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
A novel chlorination-induced ribonuclease YabJ from Staphylococcus aureus. Biosci Rep 2018; 38:BSR20180768. [PMID: 30201692 PMCID: PMC6435465 DOI: 10.1042/bsr20180768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 01/09/2023] Open
Abstract
The characteristic fold of a protein is the decisive factor for its biological function. However, small structural changes to amino acids can also affect their function, for example in the case of post-translational modification (PTM). Many different types of PTMs are known, but for some, including chlorination, studies elucidating their importance are limited. A recent study revealed that the YjgF/YER057c/UK114 family (YjgF family) member RidA from Escherichia coli shows chaperone activity after chlorination. Thus, to identify the functional and structural differences of RidA upon chlorination, we studied an RidA homolog from Staphylococcus aureus: YabJ. The overall structure of S. aureus YabJ was similar to other members of the YjgF family, showing deep pockets on its surface, and the residues composing the pockets were well conserved. S. aureus YabJ was highly stable after chlorination, and the chlorinated state is reversible by treatment with DTT. However, it shows no chaperone activity after chlorination. Instead, YabJ from S. aureus shows chlorination-induced ribonuclease activity, and the activity is diminished after subsequent reduction. Even though the yabJ genes from Staphylococcus and Bacillus are clustered with regulators that are expected to code nucleic acid-interacting proteins, the nucleic acid-related activity of bacterial RidA has not been identified before. From our study, we revealed the structure and function of S. aureus YabJ as a novel chlorination-activated ribonuclease. The present study will contribute to an in-depth understanding of chlorination as a PTM.
Collapse
|
15
|
Lim JM, Lee YJ, Cho HR, Park DC, Jung GW, Ku SK, Choi JS. Extracellular polysaccharides purified from Aureobasidium pullulans SM‑2001 (Polycan) inhibit dexamethasone‑induced muscle atrophy in mice. Int J Mol Med 2018; 41:1245-1264. [PMID: 29138805 PMCID: PMC5819910 DOI: 10.3892/ijmm.2017.3251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
The present study assessed the beneficial skeletal muscle‑preserving effects of extracellular polysaccharides from Aureobasidium pullulans SM‑2001 (Polycan) (EAP) on dexamethasone (DEXA)‑induced catabolic muscle atrophy in mice. To investigate whether EAP prevented catabolic DEXA‑induced muscle atrophy, and to examine its mechanisms of action, EAP (100, 200 and 400 mg/kg) was administered orally, once a day for 24 days. EAP treatment was initiated 2 weeks prior to DEXA treatment (1 mg/kg, once a day for 10 days) in mice. Body weight alterations, serum biochemistry, calf thickness, calf muscle strength, gastrocnemius muscle thickness and weight, gastrocnemius muscle antioxidant defense parameters, gastrocnemius muscle mRNA expression, histology and histomorphometry were subsequently assessed. After 24 days, DEXA control mice exhibited muscle atrophy according to all criteria indices. However, these muscle atrophy symptoms were significantly inhibited by oral treatment with all three doses of EAP. Regarding possible mechanisms of action, EAP exhibited favorable ameliorating effects on DEXA‑induced catabolic muscle atrophy via antioxidant and anti‑inflammatory effects; these effects were mediated by modulation of the expression of genes involved in muscle protein synthesis (AKT serine/threonine kinase 1, phosphatidylinositol 3‑kinase, adenosine A1 receptor and transient receptor potential cation channel subfamily V member 4) and degradation (atrogin‑1, muscle RING‑finger protein‑1, myostatin and sirtuin 1). Therefore, these results indicated that EAP may be helpful in improving muscle atrophies of various etiologies. EAP at 400 mg/kg exhibited favorable muscle protective effects against DEXA‑induced catabolic muscle atrophy, comparable with the effects of oxymetholone (50 mg/kg), which has been used to treat various muscle disorders.
Collapse
Affiliation(s)
- Jong-Min Lim
- Glucan Corporation, #305 Marine Bio-Industry Development Center, Busan 46048
| | | | - Hyung-Rae Cho
- Glucan Corporation, #305 Marine Bio-Industry Development Center, Busan 46048
| | - Dong-Chan Park
- Glucan Corporation, #305 Marine Bio-Industry Development Center, Busan 46048
| | - Go-Woon Jung
- Glucan Corporation, #305 Marine Bio-Industry Development Center, Busan 46048
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si, Gyeongsangbuk-do 38610
| | - Jae-Suk Choi
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| |
Collapse
|
16
|
Fanti JR, Tomiotto-Pellissier F, Miranda-Sapla MM, Cataneo AHD, Andrade CGTDJ, Panis C, Rodrigues JHDS, Wowk PF, Kuczera D, Costa IN, Nakamura CV, Nakazato G, Durán N, Pavanelli WR, Conchon-Costa I. Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta Trop 2018; 178:46-54. [PMID: 29111137 DOI: 10.1016/j.actatropica.2017.10.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/01/2022]
Abstract
American Cutaneous Leishmaniasis (ACL) is a zoonosis caused by Leishmania protozoa. The ACL chemotherapy available is unsatisfactory motivating researches to seek alternative treatments. In this study, we investigated the action of biogenic silver nanoparticle (AgNp-bio) obtained from Fusarium oxysporium, against Leishmania amazonensis promastigote and amastigote forms. The AgNp-bio promastigote treatment results in promastigote death leading to apoptosis-like events due an increased production of reactive oxygen species (ROS), loss of mitochondrial integrity, phosphatidylserine exposure and damage on promastigotes membrane. In L. amazonensis infected macrophages, AgNp-bio treatment was still able to reduce the percentage of infected macrophages and the amount of amastigotes per macrophage, consequently, the amount of promastigotes recovered. This leishmanicidal effect was also accompanied by a decrease in the levels of ROS and nitric oxide. By observing the ultrastructural integrity of the intracellular amastigotes, we found that the AgNp-bio treatment made a significant damage, suggesting that the compound has a direct effect on intracellular amastigotes. These results demonstrated that AgNp-bio had a direct effect against L. amazonensis forms and acted on immunomodulatory ability of infected macrophages, reducing the infection without inducing the synthesis of inflammatory mediators, which continuous stimulation can generate and aggravate leishmaniotic lesions. Overall, our findings suggest that the use of AgNp-bio stands out as a new therapeutic option to be considered for further in vivo investigations representing a possible treatment for ACL.
Collapse
Affiliation(s)
- Jacqueline Rodrigues Fanti
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil.
| | - Allan Henrique Depieri Cataneo
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Célia Guadalupe Tardeli de Jesus Andrade
- Laboratory of Electron Microscopy and Microanalysis, Department of General Biology, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, University of Western Paraná, Francisco Beltrão, Paraná, Brazil
| | - Jean Henrique da Silva Rodrigues
- Laboratory of Technological Innovation in Development of Drugs and Cosmetics, Department of Health Basic Sciences, Center of Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Pryscilla Fanini Wowk
- Laboratory of Molecular Virology, Carlos Chagas Institute (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil
| | - Diogo Kuczera
- Laboratory of Molecular Virology, Carlos Chagas Institute (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in Development of Drugs and Cosmetics, Department of Health Basic Sciences, Center of Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Gerson Nakazato
- Laboratory of Bacteriology Basic and Applied, Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Nelson Durán
- Institute of Chemistry, Biological Chemistry Laboratory, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil; Brazilian Nanotechnology National Laboratory (LNNano-CNPEM), Campinas, São Paulo, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
17
|
Agim ZS, Cannon JR. Alterations in the nigrostriatal dopamine system after acute systemic PhIP exposure. Toxicol Lett 2018; 287:31-41. [PMID: 29378243 DOI: 10.1016/j.toxlet.2018.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/10/2018] [Accepted: 01/23/2018] [Indexed: 11/30/2022]
Abstract
Heterocyclic amines (HCAs) are primarily formed during cooking of meat at high temperature. HCAs have been extensively studied as mutagens and possible carcinogens. Emerging data suggest that HCAs are neurotoxic and may be relevant to Parkinson's disease (PD) etiology. However, the majority of HCAs have not been evaluated for in vivo neurotoxicity. Here, we investigated acute in vivo neurotoxicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). PhIP is the most prevalent genotoxin in many types of meats. Adult, male Sprague-Dawley rats were subjected to acute, systemic PhIP at doses and time-points that have been extensively utilized in cancer studies (100 and 200 mg/kg for 8, 24 h) and evaluated for changes in dopaminergic, serotoninergic, GABAergic, and glutamatergic neurotransmission. PhIP exposure resulted in decreased striatal dopamine metabolite levels and dopamine turnover in the absence of changes to vesicular monoamine transporter 2 levels; other neurotransmitter systems were unaffected. Quantification of intracellular nitrotyrosine revealed higher levels of oxidative damage in dopaminergic neurons in the substantia nigra after PhIP exposure, while other neuronal populations were less sensitive. These changes occurred in the absence of an overt lesion to the nigrostriatal dopamine system. Collectively, our study suggests that acute PhIP treatment in vivo targets the nigrostriatal dopaminergic system and that PhIP should be further examined in chronic, low-dose studies for PD relevance.
Collapse
Affiliation(s)
- Zeynep Sena Agim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, United States.
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
18
|
Deryagin OG, Gavrilova SA, Gainutdinov KL, Golubeva AV, Andrianov VV, Yafarova GG, Buravkov SV, Koshelev VB. Molecular Bases of Brain Preconditioning. Front Neurosci 2017; 11:427. [PMID: 28790886 PMCID: PMC5524930 DOI: 10.3389/fnins.2017.00427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
Preconditioning of the brain induces tolerance to the damaging effects of ischemia and prevents cell death in ischemic penumbra. The development of this phenomenon is mediated by mitochondrial adenosine triphosphate-sensitive potassium (KATP+) channels and nitric oxide signaling (NO). The aim of this study was to investigate the dynamics of molecular changes in mitochondria after ischemic preconditioning (IP) and the effect of pharmacological preconditioning (PhP) with the KATP+-channels opener diazoxide on NO levels after ischemic stroke in rats. Immunofluorescence-histochemistry and laser-confocal microscopy were applied to evaluate the cortical expression of electron transport chain enzymes, mitochondrial KATP+-channels, neuronal and inducible NO-synthases, as well as the dynamics of nitrosylation and nitration of proteins in rats during the early and delayed phases of IP. NO cerebral content was studied with electron paramagnetic resonance (EPR) spectroscopy using spin trapping. We found that 24 h after IP in rats, there is a two-fold decrease in expression of mitochondrial KATP+-channels (p = 0.012) in nervous tissue, a comparable increase in expression of cytochrome c oxidase (p = 0.008), and a decrease in intensity of protein S-nitrosylation and nitration (p = 0.0004 and p = 0.001, respectively). PhP led to a 56% reduction of free NO concentration 72 h after ischemic stroke simulation (p = 0.002). We attribute this result to the restructuring of tissue energy metabolism, namely the provision of increased catalytic sites to mitochondria and the increased elimination of NO, which prevents a decrease in cell sensitivity to oxygen during subsequent periods of severe ischemia.
Collapse
Affiliation(s)
- Oleg G Deryagin
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Svetlana A Gavrilova
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Khalil L Gainutdinov
- Laboratory of Neurorehabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of SciencesKazan, Russia
| | - Anna V Golubeva
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Vyatcheslav V Andrianov
- Laboratory of Neurorehabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of SciencesKazan, Russia
| | - Guzel G Yafarova
- Laboratory of Neurorehabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of SciencesKazan, Russia
| | - Sergey V Buravkov
- Research Laboratory of Cellular Structure and Tissue Imaging Analysis, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Vladimir B Koshelev
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| |
Collapse
|
19
|
Sharma K. Myeloperoxidase Activity and Oxidized Amino Acids as Biomarkers in Chronic Kidney Disease and Coronary Artery Disease. Am J Nephrol 2017; 46:71-72. [PMID: 28715823 DOI: 10.1159/000477767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kumar Sharma
- Center for Renal Translational Medicine, Institute of Metabolomic Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Nox2 contributes to hyperinsulinemia-induced redox imbalance and impaired vascular function. Redox Biol 2017; 13:288-300. [PMID: 28600985 PMCID: PMC5466665 DOI: 10.1016/j.redox.2017.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 12/22/2022] Open
Abstract
Insulin resistance promotes vascular endothelial dysfunction and subsequent development of cardiovascular disease. Previously we found that skeletal muscle arteriolar flow-induced dilation (FID) was reduced following a hyperinsulinemic clamp in healthy adults. Therefore, we hypothesized that hyperinsulinemia, a hallmark of insulin resistance, contributes to microvascular endothelial cell dysfunction via inducing oxidative stress that is mediated by NADPH oxidase (Nox) system. We examined the effect of insulin, at levels that are comparable with human hyperinsulinemia on 1) FID of isolated arterioles from human skeletal muscle tissue in the presence and absence of Nox inhibitors and 2) human adipose microvascular endothelial cell (HAMECs) expression of nitric oxide (NO), endothelial NO synthase (eNOS), and Nox-mediated oxidative stress. In six lean healthy participants (mean age 25.5±1.6 y, BMI 21.8±0.9), reactive oxygen species (ROS) were increased while NO and arteriolar FID were reduced following 60 min of ex vivo insulin incubation. These changes were reversed after co-incubation with the Nox isoform 2 (Nox2) inhibitor, VAS2870. In HAMECs, insulin-induced time-dependent increases in Nox2 expression and P47phox phosphorylation were echoed by elevations of superoxide production. In contrast, phosphorylation of eNOS and expression of superoxide dismutase (SOD2 and SOD3) isoforms showed a biphasic response with an increased expression at earlier time points followed by a steep reduction phase. Insulin induced eNOS uncoupling that was synchronized with a drop of NO and a surge of ROS production. These effects were reversed by Tempol (SOD mimetic), Tetrahydrobiopterin (BH4; eNOS cofactor), and VAS2870. Finally, insulin induced nitrotyrosine formation which was reversed by inhibiting NO or superoxide generation. In conclusions, hyperinsulinemia may reduce FID via inducing Nox2-mediated superoxide production in microvascular endothelial cells which reduce the availability of NO and enhances peroxynitrite formation. Therefore, the Nox2 pathway should be considered as a target for the prevention of oxidative stress-associated endothelial dysfunction during hyperinsulinemia. Hyperinsulinemia impairs FID and induces ROS production in human muscle arterioles. Insulin-induced ROS production in endotelial cells is mediated by NADPH oxidase. Long exposure to high insulin levels reduces eNOS phosphorylation and NO production.
Collapse
|
21
|
Kim CG, Lee JE, Jeong DG, Lee YH, Park SI, Lee DG, Han CH, Kang SJ, Song CH, Choi SH, Lee YJ, Ku SK. Bathing effects of east saline groundwater concentrates on allergic (atopic) dermatitis-like skin lesions induced by 2,4-dinitrochlorobenzene in hairless mice. Exp Ther Med 2017; 13:3448-3466. [PMID: 28587425 PMCID: PMC5450751 DOI: 10.3892/etm.2017.4397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 03/06/2017] [Indexed: 01/06/2023] Open
Abstract
In the present study, it was evaluated whether east saline groundwater concentration solution (ESGWc) exerted a favorable inhibitory effect on 2,4-dinitrochlorobenzene (DNCB)-induced allergic/atopic-like dermatitis (AD). AD was induced and boosted by sensitization with DNCB via topical application on the dorsal back skins. Mice with DNCB-induced AD were bathed in 100-, 200- and 400-fold diluted ESGWc. After 6 weeks bathing, changes to body weight, clinical skin severity scores, scratching behavior, serum total immunoglobulin (Ig)E levels, submandibular lymph node and spleen weights, splenic cytokine levels, skin cytokine mRNA expressions, antioxidant defense systems and superoxide anion productions were recorded to determine the effects of bathing on the histopathology of dorsal back skin tissues. All DNCB-induced mice demonstrated that the induction of AD through IgE-mediated hypersensitivities, oxidative stresses, activation of MMP and apoptosis of keratinocytes resulted in no significant differences in body weight between the different groups at each time point following initial sensitization. However, markers of DNCB-induced AD were significantly inhibited (P<0.05) in a concentration-dependent manner following bathing in all concentrations of ESGWc. The results obtained in the present study suggest that bathing in ESGWc may have favorable protective effects against DNCB-induced AD due to favorable systemic and local immunomodulatory effects, active cytoprotective anti-apoptotic effects, inhibitory effects of matrix metalloproteinase activity, and anti-inflammatory and antioxidative effects.
Collapse
Affiliation(s)
- Choong-Gon Kim
- Biological Oceanography and Marine Biology Division, KIOST, Ansan, Gyeonggi 15627, Republic of Korea
| | - Ji-Eun Lee
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.,Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Da-Geum Jeong
- Biological Oceanography and Marine Biology Division, KIOST, Ansan, Gyeonggi 15627, Republic of Korea
| | - Youn-Ho Lee
- Biological Oceanography and Marine Biology Division, KIOST, Ansan, Gyeonggi 15627, Republic of Korea
| | - Sang-In Park
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.,Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Dae-Geon Lee
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.,Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Chang-Hyun Han
- Department of Medical History and Literature Group, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Su-Jin Kang
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.,Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Chang-Hyun Song
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.,Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Seong-Hun Choi
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Young-Joon Lee
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.,Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Sae-Kwang Ku
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.,Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| |
Collapse
|
22
|
Activation of AMPK by Buddleja officinalis Maxim. Flower Extract Contributes to Protecting Hepatocytes from Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9253462. [PMID: 28473864 PMCID: PMC5394415 DOI: 10.1155/2017/9253462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/06/2017] [Indexed: 12/16/2022]
Abstract
The Buddleja officinalis Maxim. flower is used in traditional Chinese and Korean medicine to treat inflammation, vascular diseases, headache, and stroke, as well as enhance liver function. This research investigated the effects of B. officinalis Maxim. flower extract (BFE) on hepatotoxicity. The cytoprotective effects and mechanism of BFE against severe mitochondrial dysfunction and H2O2 production in hepatotoxicity induced by coadministration of arachidonic acid (AA) and iron were observed in the HepG2 cell line. In addition, we performed blood biochemical, histopathological, and histomorphometric analyses of mice with carbon tetrachloride- (CCl4-) induced acute liver damage. BFE inhibited the AA + iron-mediated hepatotoxicity of HepG2 cells. Moreover, it inhibited mitochondrial dysfunction, H2O2 production, and glutathione depletion mediated by AA + iron in the same cells. Meanwhile, the cytoprotective effects of BFE against oxidative stress were associated with the activation of AMP-activated protein kinase (AMPK). In particular, based on the histopathological observations, BFE (30 and 100 mg/kg) showed clear hepatoprotective effects against CCl4-induced acute hepatic damage. Furthermore, it inhibited 4-hydroxynonenal and nitrotyrosine immunoreactivity in hepatocytes. These results provide evidence that BFE has beneficial hepatoprotective effects against hepatic damage via the activation of AMPK pathway. Accordingly, BFE may have therapeutic potential for diverse liver disorders.
Collapse
|
23
|
Montano-Loza AJ, Thandassery RB, Czaja AJ. Targeting Hepatic Fibrosis in Autoimmune Hepatitis. Dig Dis Sci 2016; 61:3118-3139. [PMID: 27435327 DOI: 10.1007/s10620-016-4254-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Abstract
Hepatic fibrosis develops or progresses in 25 % of patients with autoimmune hepatitis despite corticosteroid therapy. Current management regimens lack reliable noninvasive methods to assess changes in hepatic fibrosis and interventions that disrupt fibrotic pathways. The goals of this review are to indicate promising noninvasive methods to monitor hepatic fibrosis in autoimmune hepatitis and identify anti-fibrotic interventions that warrant evaluation. Laboratory methods can differentiate cirrhosis from non-cirrhosis, but their accuracy in distinguishing changes in histological stage is uncertain. Radiological methods include transient elastography, acoustic radiation force impulse imaging, and magnetic resonance elastography. Methods based on ultrasonography are comparable in detecting advanced fibrosis and cirrhosis, but their performances may be compromised by hepatic inflammation and obesity. Magnetic resonance elastography has excellent performance parameters for all histological stages in diverse liver diseases, is uninfluenced by inflammatory activity or body habitus, has been superior to other radiological methods in nonalcoholic fatty liver disease, and may emerge as the preferred instrument to evaluate fibrosis in autoimmune hepatitis. Promising anti-fibrotic interventions are site- and organelle-specific agents, especially inhibitors of nicotinamide adenine dinucleotide phosphate oxidases, transforming growth factor beta, inducible nitric oxide synthase, lysyl oxidases, and C-C chemokine receptors types 2 and 5. Autoimmune hepatitis has a pro-fibrotic propensity, and noninvasive radiological methods, especially magnetic resonance elastography, and site- and organelle-specific interventions, especially selective antioxidants and inhibitors of collagen cross-linkage, may emerge to strengthen current management strategies.
Collapse
Affiliation(s)
- Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, University of Alberta Hospital, Edmonton, AB, Canada
| | - Ragesh B Thandassery
- Division of Gastroenterology and Liver Unit, University of Alberta Hospital, Edmonton, AB, Canada
| | - Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
24
|
Czaja AJ. Nature and Implications of Oxidative and Nitrosative Stresses in Autoimmune Hepatitis. Dig Dis Sci 2016; 61:2784-2803. [PMID: 27411555 DOI: 10.1007/s10620-016-4247-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
Oxidative and nitrosative stresses can damage cellular membranes, disrupt mitochondrial function, alter gene expression, promote the apoptosis and necrosis of hepatocytes, and increase fibrosis in diverse acute and chronic liver diseases, including autoimmune hepatitis. The objectives of this review are to describe the mechanisms of oxidative and nitrosative stresses in inflammatory liver disease, indicate the pathogenic implications of these stresses in autoimmune hepatitis, and suggest investigational opportunities to develop interventions that counter them. The principal antioxidant defenses, including glutathione production, the activities of antioxidant enzymes, and the release of the nuclear factor erythroid 2-related factor 2, may be inadequate or suppressed by transforming growth factor beta. The generation of reactive oxygen species can intensify nitrosative stress, and this stress may not be adequately modulated by the thioredoxin-thioredoxin reductase system and induce post-translational modifications of proteins that further disrupt hepatocyte function. The unfolded protein response and autophagy may be unable to restore redox stability, meet metabolic demands, and maintain hepatocyte survival. Emerging interventions with highly selective site- and organelle-specific actions may improve outcomes, and they include inhibitors of nicotinamide adenine dinucleotide phosphate oxidase, nitric oxide synthase, and transforming growth factor beta. Pharmacological manipulation of nuclear transcription factors may favor expression of antioxidant genes, and stimulation of chaperone proteins within the endoplasmic reticulum and modulation of autophagy may prevent hepatic fibrosis and enhance cell survival. These interventions constitute investigational opportunities to improve the management of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
25
|
Cho I, Kim J, Jung J, Sung S, Kim J, Lee N, Ku S. Hepatoprotective effects of hoveniae semen cum fructus extracts in ethanol intoxicated mice. J Exerc Nutrition Biochem 2016; 20:49-64. [PMID: 27298813 PMCID: PMC4899896 DOI: 10.20463/jenb.2016.03.20.1.4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022] Open
Abstract
[Purpose] The objective of this study was to evaluate the hepatoprotective effects of Hoveniae Semen Cum Fructus extract in ethanol induced hepatic damages. [Methods] Hepatic damages were induced by oral administration of ethanol and then Hoveniae Semen Cum Fructus extract was administered. [Results] Following Hoveniae Semen Cum Fructus extract administration, body and liver weights were increased, while aspartate aminotransferase, alanine aminotransferase, albumin, γ-glutamyl transferase, and triglyceride levels in the serum, triglyceride contents, tumor necrosis factor -α level, cytochrome (CY) P450 2E1 activity in the liver and mRNA expression of hepatic lipogenic genes, and Nitrotyrosine and 4-HNE-immunolabelled hepatocytes were decreased. However, mRNA expression of genes involved in fatty acid oxidation was increased. Also, as a protective mechanism for hepatic antioxidant defense systems, decreased liver MDA contents, increased glutathione contents, increased dismutase and catalase activities were observed when compared to the ethanol control. [Conclusion] Hoveniae Semen Cum Fructus extract favorably protected against liver damages, mediated by its potent anti-inflammatory and anti-steatosis properties through the augmentation of the hepatic antioxidant defense system by NF-E2-related factor-2 activation, and down-regulation of the mRNA expression of hepatic lipogenic genes or up-regulation of the mRNA expression of genes involved in fatty acid oxidation.
Collapse
Affiliation(s)
- Ilje Cho
- Department of Anatomy and Histology, Daegu Haany University, Gyeongsan-si Republic of Korea
| | - Joowan Kim
- Aribio Central Research Institute, Aribio Inc., Sungnam-si Republic of Korea
| | - Jaijun Jung
- Aribio Central Research Institute, Aribio Inc., Sungnam-si Republic of Korea
| | - Soohyun Sung
- Aribio Central Research Institute, Aribio Inc., Sungnam-si Republic of Korea
| | - Jongkyu Kim
- Aribio Central Research Institute, Aribio Inc., Sungnam-si Republic of Korea
| | - Namju Lee
- Department of Sports Medicine, Jungwon University, Goesan-gun Republic of Korea
| | - Saekwang Ku
- Department of Anatomy and Histology, Daegu Haany University, Gyeongsan-si Republic of Korea
| |
Collapse
|
26
|
Lee YJ, Zhao RJ, Kim YW, Kang SJ, Lee EK, Kim NJ, Chang S, Kim JM, Lee JE, Ku SK, Lee BH. Acupuncture inhibits liver injury induced by morphine plus acetaminophen through antioxidant system. Eur J Integr Med 2016. [DOI: 10.1016/j.eujim.2015.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Ko HL, Jung EH, Jung DH, Kim JK, Ku SK, Kim YW, Kim SC, Zhao R, Lee CW, Cho IJ. Paeonia japonica root extract protects hepatocytes against oxidative stress through inhibition of AMPK-mediated GSK3β. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Song Y, Liao J, Zha C, Wang B, Liu CC. Simultaneous determination of 3-chlorotyrosine and 3-nitrotyrosine in human plasma by direct analysis in real time-tandem mass spectrometry. Acta Pharm Sin B 2015; 5:482-6. [PMID: 26579479 PMCID: PMC4629445 DOI: 10.1016/j.apsb.2015.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/13/2015] [Accepted: 06/20/2015] [Indexed: 11/15/2022] Open
Abstract
A novel method for the simultaneous determination of 3-nitrotyrosine (NT) and 3-chlorotyrosine (CT) in human plasma has been developed based on direct analysis in real time–tandem mass spectrometry (DART–MS/MS). Analysis was performed in the positive ionization mode using multiple reaction monitoring (MRM) of the ion transitions at m/z 216.2/170.1 for CT, m/z 227.2/181.1 for NT and m/z 230.2/184.2 for the internal standard, d3-NT. The assay was linear in the ranges 0.5–100 μg/mL for CT and 4–100 μg/mL for NT with corresponding limits of detection of 0.2 and 2 μg/mL. Intra- and inter-day precisions and accuracies were respectively <15% and ±15%. Matrix effects were also evaluated. The method is potentially useful for high throughput analysis although sensitivity needs to be improved before it can be applied in clinical research.
Collapse
Affiliation(s)
- Yuqiao Song
- Medical Experiment and Analysis Center of PLA General Hospital, Beijing 100853, China
- Corresponding author. Tel.: +86 10 66937199/ 66936174; fax: +86 10 66939194.
| | - Jie Liao
- Medical Experiment and Analysis Center of PLA General Hospital, Beijing 100853, China
| | - Cheng Zha
- Medical Experiment and Analysis Center of PLA General Hospital, Beijing 100853, China
| | - Bin Wang
- Medical Experiment and Analysis Center of PLA General Hospital, Beijing 100853, China
| | - Charles C. Liu
- ASPEC Technologies Limited Beijing, Beijing, 100102, China
| |
Collapse
|
29
|
The Effects of Xanthine Oxidoreductase Inhibitors on Oxidative Stress Markers following Global Brain Ischemia Reperfusion Injury in C57BL/6 Mice. PLoS One 2015; 10:e0133980. [PMID: 26230326 PMCID: PMC4521791 DOI: 10.1371/journal.pone.0133980] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/05/2015] [Indexed: 02/07/2023] Open
Abstract
We demonstrated that 3-nitrotyrosine and 4-hydroxy-2-nonenal levels in mouse brain were elevated from 1 h until 8 h after global brain ischemia for 14 min induced with the 3-vessel occlusion model; this result indicates that ischemia reperfusion injury generated oxidative stress. Reactive oxygen species production was observed not only in the hippocampal region, but also in the cortical region. We further evaluated the neuroprotective effect of xanthine oxidoreductase inhibitors in the mouse 3-vessel occlusion model by analyzing changes in the expression of genes regulated by the transcription factor nuclear factor-kappa B (including pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 and intercellular adhesion molecules-1). Administration of allopurinol resulted in a statistically significant decrease in IL-1β and TNF-α mRNA expression, whereas febuxostat had no significant effect on expression of these genes; nevertheless, both inhibitors effectively reduced serum uric acid concentration. It is suggested that the neuroprotective effect of allopurinol is derived not from inhibition of reactive oxygen species production by xanthine oxidoreductase, but rather from a direct free-radical-scavenging effect.
Collapse
|
30
|
Bathing Effects of Various Seawaters on Allergic (Atopic) Dermatitis-Like Skin Lesions Induced by 2,4-Dinitrochlorobenzene in Hairless Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26221169 PMCID: PMC4488017 DOI: 10.1155/2015/179185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We evaluated the preventive effects of four types of seawater collected in Republic of Korea on hairless mice with 2,4-dinitrochlorobenzene- (DNCB-) induced allergic/atopic dermatitis (AD). The anti-inflammatory effects were evaluated by measuring tumor necrosis factor- (TNF-) α and interleukins (ILs). Glutathione (GSH), malondialdehyde (MDA), superoxide anion, and inducible nitric oxide synthase (iNOS) were measured to evaluate the antioxidant effects. Caspase-3 and poly (ADP-ribose) polymerase (PARP) were observed to measure the antiapoptotic effects; matrix metalloproteinase- (MMP-) 9 levels were also evaluated. Mice with AD had markedly higher clinical skin severity scores and scratching behaviors; higher TNF-α and ILs (1β, 10, 4, 5, and 13) levels; higher MDA, superoxide anion, caspase-3, PARP, and MMP-9 levels; and greater iNOS activity. However, the severity of AD was significantly decreased by bathing in seawaters, but it did not influence the dermal collagen depositions and skin tissue antioxidant defense systems. These results suggest that bathing in all four seawaters has protective effects against DNCB-induced AD through their favorable systemic and local immunomodulatory effects, active cytoprotective antiapoptotic effects, inhibitory effects of MMP activity and anti-inflammatory and antioxidative effects.
Collapse
|
31
|
Babajafari S, Nikaein F, Mazloomi SM, Zibaeenejad MJ, Zargaran A. A Review of the Benefits of Satureja Species on Metabolic Syndrome and Their Possible Mechanisms of Action. J Evid Based Complementary Altern Med 2015; 20:212-23. [DOI: 10.1177/2156587214564188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/17/2014] [Indexed: 01/19/2023] Open
Abstract
Metabolic syndrome, also known as insulin resistance disorder, is the simultaneous manifestation of multiple metabolic disorders in an individual. The present-day complementary and alternative therapies suggest several medicinal herbs that may have the potential to improve one or multiple complications of metabolic syndrome. All of them have their own limitations in efficacy and unwanted effects. Therefore, we reviewed species of Satureja as widespread medicinal herbs and potentially good remedies for metabolic syndrome. We reviewed literature found in PubMed and the ISI Web of Knowledge with the key word Satureja in the title. The influence of any species of Satureja on any disease or syndrome, enzymatic, metabolic, or physiological pathways, in human, animals, or in vitro conditions related to any characteristics of metabolic syndrome were considered. The main outcomes of treatment with Satureja species were categorized, and the possible mechanisms of action are discussed in this article.
Collapse
Affiliation(s)
- Siavash Babajafari
- Department of Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Nikaein
- Student Research Committee, Research Office for the History of Persian Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Mazloomi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Zibaeenejad
- Department of Cardiology, Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arman Zargaran
- Pharmaceutical Sciences Research Center & Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Misztal T, Rusak T, Tomasiak M. Clinically relevant HOCl concentrations reduce clot retraction rate via the inhibition of energy production in platelet mitochondria. Free Radic Res 2014; 48:1443-53. [DOI: 10.3109/10715762.2014.960866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Kim KH, Park SJ, Lee YJ, Lee JE, Song CH, Choi SH, Ku SK, Kang SJ. Inhibition of UVB-induced skin damage by exopolymers from Aureobasidium pullulans SM-2001 in hairless mice. Basic Clin Pharmacol Toxicol 2014; 116:73-86. [PMID: 24964914 DOI: 10.1111/bcpt.12288] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/11/2014] [Indexed: 11/28/2022]
Abstract
Because antioxidants from natural sources may be an effective approach to the treatment and prevention of UV radiation-induced skin damage, the effects of purified exopolymers from Aureobasidium pullulans SM-2001 ('E-AP-SM2001') were evaluated in UVB-induced hairless mice. E-AP-SM2001 consists of 1.7% β-1,3/1,6-glucan, fibrous polysaccharides and other organic materials, such as amino acids, and mono- and di-unsaturated fatty acids (linoleic and linolenic acids) and shows anti-osteoporotic and immunomodulatory effects, through antioxidant and anti-inflammatory mechanisms. Hairless mice were treated topically with vehicle, E-AP-SM2001 stock and two and four times diluted solutions once per day for 15 weeks against UVB irradiation (three times per week at 0.18 J/cm(2) ). The following parameters were evaluated in skin samples: myeloperoxidase (MPO) activity, cytokine levels [interleukin (IL)-1β and IL-10], endogenous antioxidant content (glutathione, GSH), malondialdehyde (MDA) levels, superoxide anion production; matrix metalloproteases (MMP-1, -9 and -13), GSH reductase and Nox2 (gp91phox) mRNA levels, and immunoreactivity for nitrotyrosine (NT), 4-hydroxynonenal (HNE), caspase-3, and cleaved poly(ADP-ribose) polymerase (PARP). Photoageing was induced by UVB irradiation through ROS-mediated inflammation, which was related to the depletion of endogenous antioxidants, activation of MMPs and keratinocyte apoptosis. Topical treatment with all three doses of E-AP-SM2001 and 5 nm myricetin attenuated the UV-induced depletion of GSH, activation of MMPs, production of IL-1β, the decrease in IL-10 and keratinocyte apoptosis. In this study, E-AP-SM2001 showed potent inhibitory effects against UVB-induced skin photoageing. Thus, E-AP-SM2001 may be useful as a functional ingredient in cosmetics, especially as a protective agent against UVB-induced skin photoageing.
Collapse
Affiliation(s)
- Kyung Hu Kim
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Multimarker screening of oxidative stress in aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:562860. [PMID: 25147595 PMCID: PMC4124763 DOI: 10.1155/2014/562860] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/29/2014] [Accepted: 05/19/2014] [Indexed: 11/20/2022]
Abstract
Aging is a complex process of organism decline in physiological functions. There is no clear theory explaining this phenomenon, but the most accepted one is the oxidative stress theory of aging. Biomarkers of oxidative stress, substances, which are formed during oxidative damage of phospholipids, proteins, and nucleic acids, are present in body fluids of diseased people as well as the healthy ones (in a physiological concentration). 8-iso prostaglandin F2α is the most prominent biomarker of phospholipid oxidative damage, o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine are biomarkers of protein oxidative damage, and 8-hydroxy-2′-deoxyguanosine and 8-hydroxyguanosine are biomarkers of oxidative damage of nucleic acids. It is thought that the concentration of biomarkers increases as the age of people increases. However, the concentration of biomarkers in body fluids is very low and, therefore, it is necessary to use a sensitive analytical method. A combination of HPLC and MS was chosen to determine biomarker concentration in three groups of healthy people of a different age (twenty, forty, and sixty years) in order to find a difference among the groups.
Collapse
|
35
|
Adipose and leptomeningeal arteriole endothelial dysfunction induced by β-amyloid peptide: a practical human model to study Alzheimer's disease vasculopathy. J Neurosci Methods 2014; 235:123-9. [PMID: 25004204 DOI: 10.1016/j.jneumeth.2014.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/07/2014] [Accepted: 06/11/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evidence point to vascular dysfunction and hypoperfusion as early abnormalities in Alzheimer's disease (AD); probing their mechanistic bases can lead to new therapeutic approaches. We tested the hypotheses that β-amyloid peptide induces endothelial dysfunction and oxidative stress in human microvasculature and that response will be similar between peripheral adipose and brain leptomeningeal arterioles. NEW METHOD Abdominal subcutaneous arterioles from living human subjects (n=17) and cadaver leptomeningeal arterioles (n=6) from rapid autopsy were exposed to Aβ1-42 (Aβ) for 1-h and dilation response to acetylcholine/papaverine were measured and compared to baseline response. Adipose arteriole reactive oxygen species (ROS) production and nitrotyrosine content were measured. COMPARISON WITH EXISTING METHODS Methods described allow direct investigation of human microvessel functional response that cannot be replicated by human noninvasive imaging or post-mortem histology. RESULTS Adipose arterioles exposed to 2 μM Aβ showed impaired dilation to acetylcholine that was reversed by antioxidant polyethylene glycol superoxide dismutase (PEG-SOD) (Aβ-60.9 ± 6%, control-93.2 ± 1.8%, Aβ+PEGSOD-84.7 ± 3.9%, both p<0.05 vs. Aβ). Aβ caused reduced dilation to papaverine. Aβ increased adipose arteriole ROS production and increased arteriole nitrotyrosine content. Leptomeningeal arterioles showed similar impaired response to acetylcholine when exposed to Aβ (43.0 ± 6.2% versus 81.1 ± 5.7% control, p<0.05). CONCLUSION Aβ exposure induced adipose arteriole endothelial and non-endothelial dysfunction and oxidative stress that were reversed by antioxidant treatment. Aβ-induced endothelial dysfunction was similar between peripheral adipose and leptomeningeal arterioles. Ex vivo living adipose and cadaver leptomeningeal arterioles are viable, novel and practical human tissue models to study Alzheimer's vascular pathophysiology.
Collapse
|
36
|
Patterson EK, Fraser DD, Capretta A, Potter RF, Cepinskas G. Carbon monoxide-releasing molecule 3 inhibits myeloperoxidase (MPO) and protects against MPO-induced vascular endothelial cell activation/dysfunction. Free Radic Biol Med 2014; 70:167-73. [PMID: 24583458 DOI: 10.1016/j.freeradbiomed.2014.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 12/20/2022]
Abstract
Polymorphonuclear leukocyte (PMN)-derived myeloperoxidase (MPO) contributes to the pathophysiology of numerous systemic inflammatory disorders through: (1) direct peroxidation of targets and (2) production of strong oxidizing compounds, e.g., hypohalous acids, particularly hypochlorous acid, which furthers oxidant damage and contributes to the propagation of inflammation and tissue injury/dysfunction. Carbon monoxide-releasing molecules (CORMs) offer potent anti-inflammatory effects; however, the mechanism(s) of action is not fully understood. This study assessed the potential of MPO activity inhibition by a water-soluble CORM, CORM-3. To this end, we used in vitro assays to study CORM-3-dependent modulation of MPO activity with respect to: (1) the inhibition of MPO's catalytic activity generally and (2) the specific inhibition of MPO's peroxidation and halogenation (i.e., production of hypochlorous acid) reactions. Further, we employed primary human umbilical vein endothelial cells (HUVECs) to investigate MPO-dependent cellular activation and dysfunction by measuring intracellular oxidant stress (DHR-123 oxidation) and HUVEC permeability (flux of Texas red-dextran), respectively. The results indicate that CORM-3 significantly inhibits MPO activity as well as MPO's peroxidation and hypohalous acid cycles specifically (p<0.05 vs uninhibited MPO). In addition, CORM-3 significantly decreases PMN homogenate- or rhMPO-induced intracellular DHR-123 oxidation in HUVECs and rhMPO-induced HUVEC monolayer permeability (p<0.05 vs untreated). In all assays the inactivated CORM-3 was significantly less effective than CORM-3 (p<0.05). Taken together our findings indicate that CORM-3 is a novel MPO inhibitor and mitigates inflammatory damage at least in part through a mechanism involving the inhibition of neutrophilic MPO activity.
Collapse
Affiliation(s)
- Eric K Patterson
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 4G4, Canada
| | - Douglas D Fraser
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 4G4, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, ON N6A 4G4, Canada; Department of Physiology & Pharmacology, Department of Paediatrics, and Department of Clinical Neurological Sciences and Western University, London, ON, Canada
| | - Alfredo Capretta
- Department of Chemistry, McMaster University, Hamilton, ON, Canada
| | - Richard F Potter
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 4G4, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 4G4, Canada; Department of Medical Biophysics, Western University, London, ON, Canada.
| |
Collapse
|
37
|
Galuppo M, Giacoppo S, De Nicola GR, Iori R, Navarra M, Lombardo GE, Bramanti P, Mazzon E. Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia 2014; 95:160-74. [PMID: 24685508 DOI: 10.1016/j.fitote.2014.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/12/2014] [Accepted: 03/22/2014] [Indexed: 12/16/2022]
Abstract
Glucomoringin (4(α-L-rhamnosyloxy)-benzyl glucosinolate) (GMG) is an uncommon member of glucosinolate group belonging to the Moringaceae family, of which Moringa oleifera Lam. is the most widely distributed. Bioactivation of GMG with the enzyme myrosinase forms the corresponding isothiocyanate (4(α-L-rhamnosyloxy)-benzyl isothiocyanate) (GMG-ITC), which can play a key role in antitumoral activity and counteract the inflammatory response. The aim of this study was to assess the effect of GMG-ITC treatment in an experimental mouse model of multiple sclerosis (MS), an inflammatory demyelinating disease with neurodegeneration characterized by demyelinating plaques, neuronal, and axonal loss. For this reason, C57Bl/6 male mice were injected with myelin oligodendrocyte glycoprotein35-55 which is able to evoke an autoimmune response against myelin fibers miming human multiple sclerosis physiopatogenesis. Results clearly showed that the treatment was able to counteract the inflammatory cascade that underlies the processes leading to severe MS. In particular, GMG-ITC was effective against proinflammatory cytokine TNF-α. Oxidative species generation including the influence of iNOS, nitrotyrosine tissue expression and cell apoptotic death pathway was also evaluated resulting in a lower Bax/Bcl-2 unbalance. Taken together, this work adds new interesting properties and applicability of GMG-ITC and this compound can be suggested as a useful drug for the treatment or prevention of MS, at least in association with current conventional therapy.
Collapse
Affiliation(s)
- Maria Galuppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Gina Rosalinda De Nicola
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per le Colture Industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| | - Renato Iori
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per le Colture Industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| | - Michele Navarra
- Università degli Studi di Messina, Facoltà di Farmacia, Dipartimento di Scienze del farmaco e dei Prodotti per la Salute, Viale Annunziata, 98168 Messina, Italy
| | - Giovanni Enrico Lombardo
- Università degli Studi di Messina, Facoltà di Farmacia, Dipartimento di Scienze del farmaco e dei Prodotti per la Salute, Viale Annunziata, 98168 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
38
|
van Wijk DF, Boekholdt SM. Improving risk stratification for cardiovascular disease. Expert Rev Cardiovasc Ther 2014; 8:1091-3. [DOI: 10.1586/erc.10.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Lambrechts K, Pontier JM, Mazur A, Buzzacott P, Morin J, Wang Q, Theron M, Guerrero F. Effect of decompression-induced bubble formation on highly trained divers microvascular function. Physiol Rep 2013; 1:e00142. [PMID: 24400144 PMCID: PMC3871457 DOI: 10.1002/phy2.142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/14/2022] Open
Abstract
We previously showed microvascular alteration of both endothelium-dependent and -independent reactivity after a single SCUBA dive. We aimed to study mechanisms involved in this postdive vascular dysfunction. Ten divers each completed three protocols: (1) a SCUBA dive at 400 kPa for 30 min; (2) a 41-min duration of seawater surface head immersed finning exercise to determine the effect of immersion and moderate physical activity; and (3) a simulated 41-min dive breathing 100% oxygen (hyperbaric oxygen [HBO]) at 170 kPa in order to analyze the effect of diving-induced hyperoxia. Bubble grades were monitored with Doppler. Cutaneous microvascular function was assessed by laser Doppler. Endothelium-dependent (acetylcholine, ACh) and -independent (sodium nitroprusside, SNP) reactivity was tested by iontophoresis. Endothelial cell activation was quantified by plasma Von Willebrand factor and nitric oxide (NO). Inactivation of NO by oxidative stress was assessed by plasma nitrotyrosine. Platelet factor 4 (PF4) was assessed in order to determine platelet aggregation. Blood was also analyzed for measurement of platelet count. Cutaneous vascular conductance (CVC) response to ACh delivery was not significantly decreased by the SCUBA protocol (23 ± 9% before vs. 17 ± 7% after; P = 0.122), whereas CVC response to SNP stimulation decreased significantly (23 ± 6% before vs. 10 ± 1% after; P = 0.039). The HBO and immersion protocols did not affect either endothelial-dependent or -independent function. The immersion protocol induced a significant increase in NO (0.07 ± 0.01 vs. 0.12 ± 0.02 μg/mL; P = 0.035). This study highlighted change in microvascular endothelial-independent but not -dependent function in highly trained divers after a single air dive. The results suggest that the effects of decompression on microvascular function may be modified by diving acclimatization.
Collapse
Affiliation(s)
- Kate Lambrechts
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Jean-Michel Pontier
- Diving and Hyperbaric Department, French Navy Diving School BP 311, 83800, Toulon, France
| | - Aleksandra Mazur
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Peter Buzzacott
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Jean Morin
- Diving and Hyperbaric Department, French Navy Diving School BP 311, 83800, Toulon, France
| | - Qiong Wang
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Michael Theron
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Francois Guerrero
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| |
Collapse
|
40
|
Role of oxidative and nitrosative stress in autogenous bone grafts to the mandible using guided bone regeneration and a deproteinized bovine bone material. J Craniomaxillofac Surg 2013; 42:560-7. [PMID: 24035733 DOI: 10.1016/j.jcms.2013.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/03/2013] [Accepted: 07/31/2013] [Indexed: 11/22/2022] Open
Abstract
UNLABELLED The aim of this study was to evaluate the role of oxidative and nitrosative stress in autogenous bone grafts to the mandible based on immunohistochemical analysis. MATERIAL AND METHODS Using a well-established sheep model autogenous bone grafts were harvested form the iliac bone. A combination of a Collagen Membrane (CM) and Deproteinized Bovine Bone Material (DBBM) was used to cover the bone graft (Experiment 2). This modification was compared with simple onlay bone grafts (Experiment 1). Immunohistochemically, the expression of specific stable degradation products of oxidative and nitrosative stress was compared between the two experimental groups. RESULTS Specific markers for oxidative and nitrosative stress showed statistically significant differences in expression in the different experimental groups. The influence of oxidative and nitrosative stress on osteoblasts (OB), osteoclasts (OC), and osteocytes (OCy) was analysed. Experiment 2 showed increased expression of markers in OB and decreased expression in OC. CONCLUSIONS Taking the result of this study and reports from the literature into consideration grafts in Experiment 2 showed less resorption and atrophy, higher activity of OB and inhibition of OC, and less expression of Reactive Oxygen and Nitrogen Species (RONS) as markers of oxidative stress within the graft. These data illustrate the improved remodelling processes in grafts using CM and DBBM.
Collapse
|
41
|
Inflammatory biomarkers for predicting cardiovascular disease. Clin Biochem 2013; 46:1353-71. [PMID: 23756129 DOI: 10.1016/j.clinbiochem.2013.05.070] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 02/07/2023]
Abstract
The pathology of cardiovascular disease (CVD) is complex; multiple biological pathways have been implicated, including, but not limited to, inflammation and oxidative stress. Biomarkers of inflammation and oxidative stress may serve to help identify patients at risk for CVD, to monitor the efficacy of treatments, and to develop new pharmacological tools. However, due to the complexities of CVD pathogenesis there is no single biomarker available to estimate absolute risk of future cardiovascular events. Furthermore, not all biomarkers are equal; the functions of many biomarkers overlap, some offer better prognostic information than others, and some are better suited to identify/predict the pathogenesis of particular cardiovascular events. The identification of the most appropriate set of biomarkers can provide a detailed picture of the specific nature of the cardiovascular event. The following review provides an overview of existing and emerging inflammatory biomarkers, pro-inflammatory cytokines, anti-inflammatory cytokines, chemokines, oxidative stress biomarkers, and antioxidant biomarkers. The functions of each biomarker are discussed, and prognostic data are provided where available.
Collapse
|
42
|
Preconcentration of 3-nitrotyrosine in urine by transient isotachophoresis in MEKC. J Pharm Biomed Anal 2013; 78-79:100-4. [DOI: 10.1016/j.jpba.2013.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 11/19/2022]
|
43
|
Elms SC, Toque HA, Rojas M, Xu Z, Caldwell RW, Caldwell RB. The role of arginase I in diabetes-induced retinal vascular dysfunction in mouse and rat models of diabetes. Diabetologia 2013; 56:654-62. [PMID: 23232640 PMCID: PMC3565067 DOI: 10.1007/s00125-012-2789-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS A reduction in retinal blood flow occurs early in diabetes and is likely to be involved in the development of diabetic retinopathy. We hypothesise that activation of the arginase pathway could have a role in the vascular dysfunction of diabetic retinopathy. METHODS Experiments were performed using a mouse and rat model of streptozotocin (STZ)-induced diabetes for in vivo and ex vivo analysis of retinal vascular function. For in vivo studies, mice were infused with the endothelial-dependent vasodilator acetylcholine (ACh) or the endothelial-independent vasodilator sodium nitroprusside (SNP), and vasodilation was assessed using a fundus microscope. Ex vivo assays included pressurised vessel myography, western blotting and arginase activity measurements. RESULTS ACh-induced retinal vasodilation was markedly impaired in diabetic mice (40% of control values), whereas SNP-induced dilation was not altered. The diabetes-induced vascular dysfunction was markedly blunted in mice lacking one copy of the gene encoding arginase I and in mice treated with the arginase inhibitor 2(S)-amino-6-boronohexanoic acid. Ex vivo studies performed using pressure myography and central retinal arteries isolated from rats with STZ-induced diabetes showed a similar impairment of endothelial-dependent vasodilation that was partially blunted by pretreatment of the isolated vessels with another arginase inhibitor, (S)-2-boronoethyl-L-cysteine. The diabetes-induced vascular alterations were associated with significant increases in both arginase I protein levels and total arginase activity. CONCLUSIONS/INTERPRETATION These results indicate that, in the mouse and rat model, diabetes-induced increases in arginase I were involved in the diabetes-induced impairment of retinal blood flow by a mechanism involving vascular endothelial cell dysfunction.
Collapse
Affiliation(s)
- S C Elms
- Vascular Biology Center, Georgia Health Sciences University, 1459 Laney Walker Boulevard, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
44
|
Ng JY, Boelen L, Wong JWH. Bioinformatics analysis reveals biophysical and evolutionary insights into the 3-nitrotyrosine post-translational modification in the human proteome. Open Biol 2013; 3:120148. [PMID: 23389939 PMCID: PMC3603447 DOI: 10.1098/rsob.120148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein 3-nitrotyrosine is a post-translational modification that commonly arises from the nitration of tyrosine residues. This modification has been detected under a wide range of pathological conditions and has been shown to alter protein function. Whether 3-nitrotyrosine is important in normal cellular processes or is likely to affect specific biological pathways remains unclear. Using GPS-YNO2, a recently described 3-nitrotyrosine prediction algorithm, a set of predictions for nitrated residues in the human proteome was generated. In total, 9.27 per cent of the proteome was predicted to be nitratable (27 922/301 091). By matching the predictions against a set of curated and experimentally validated 3-nitrotyrosine sites in human proteins, it was found that GPS-YNO2 is able to predict 73.1 per cent (404/553) of these sites. Furthermore, of these sites, 42 have been shown to be nitrated endogenously, with 85.7 per cent (36/42) of these predicted to be nitrated. This demonstrates the feasibility of using the predicted dataset for a whole proteome analysis. A comprehensive bioinformatics analysis was subsequently performed on predicted and all experimentally validated nitrated tyrosine. This found mild but specific biophysical constraints that affect the susceptibility of tyrosine to nitration, and these may play a role in increasing the likelihood of 3-nitrotyrosine to affect processes, including phosphorylation and DNA binding. Furthermore, examining the evolutionary conservation of predicted 3-nitrotyrosine showed that, relative to non-nitrated tyrosine residues, 3-nitrotyrosine residues are generally less conserved. This suggests that, at least in the majority of cases, 3-nitrotyrosine is likely to have a deleterious effect on protein function and less likely to be important in normal cellular function.
Collapse
Affiliation(s)
- John Y Ng
- Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney 2052, Australia
| | | | | |
Collapse
|
45
|
Pourfarzam M, Movahedian A, Sarrafzadegan N, Basati G, Samsamshariat SZ. Association between Plasma Myeloperoxidase and Free 3-Nitrotyrosine Levels in Patients with Coronary Artery Disease. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ijcm.2013.43028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Tsuda H, Kawada N, Kaimori JY, Kitamura H, Moriyama T, Rakugi H, Takahara S, Isaka Y. Febuxostat suppressed renal ischemia-reperfusion injury via reduced oxidative stress. Biochem Biophys Res Commun 2012; 427:266-72. [PMID: 22995295 DOI: 10.1016/j.bbrc.2012.09.032] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/07/2012] [Indexed: 12/17/2022]
Abstract
Febuxostat is a novel selective inhibitor of xanthine oxidase (XO), approved for treating hyperuricemia. XO inhibits the generation of uric acid (UA) as well as the resulting generation of superoxide. During renal ischemia-reperfusion (I/R) injury, the burst of reactive oxygen species (ROS) can trigger the inflammation and the tubular cell injury. As XO is a critical source of ROS, inhibition of XO could be a therapeutic target for I/R injury. Therefore, we performed this study to test the therapeutic effect of febuxostat on renal I/R injury. Sprague-Dawley rats, received vehicle or febuxostat, were subjected to right nephrectomy and left renal I/R injury. Febuxostat significantly suppressed XO activity, and thereby reduced oxidative stress, assessed by nitrotyrosine, thiobarbituric acid-reactive substances (TBARS) and urine 8-isoprostane. Furthermore, febuxostat reduced the induction of endoplasmic reticulum (ER) stress, assessed by GRP-78, ATF4, and CHOP. Vehicle-treated I/R injured rats exhibited elevated serum creatinine and UN, which were significantly suppressed in febuxostat-treated I/R-injured rats. Histological analysis revealed that fubuxostat-treated rats showed less tubular injury and interstitial fibrosis with reduction in ED1-positive macrophage infiltration, TUNEL positive apoptotic tubular cells, and interstitial smooth muscle α actin (SMαA) expression, compared to vehicle-treated rats. In conclusion; novel XO inhibitor, febuxostat, can protect kidney from renal I/R injury, and may contribute to preserve kidney function.
Collapse
Affiliation(s)
- Hidetoshi Tsuda
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jin H, Zangar RC. High-throughput, multiplexed analysis of 3-nitrotyrosine in individual proteins. ACTA ACUST UNITED AC 2012; Chapter 17:Unit 17.15. [PMID: 22511115 DOI: 10.1002/0471140856.tx1715s51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reactive nitrogen species (RNS) and reactive oxygen species (ROS) are derived as a result of inflammation and oxidative stress and can result in protein modifications. As such, these protein modifications are used as biomarkers for inflammation and oxidative stress. In addition, modifications in single-tissue-associated proteins released into blood can provide insight into the tissue localization of the inflammation or oxidative stress. We have developed an enzyme-linked immunosorbent assay antibody microarray platform to analyze the levels of 3-nitrotyrosine in specific proteins in a variety of biological samples, including human plasma and sputum. Selective-capture antibodies are used to immunoprecipitate individual proteins from samples onto isolated spots on the microarray chips. Then, a monoclonal antibody for 3-nitrotyrosine is used to detect the amount of 3-nitrotyrosine on each spot. Our studies suggest that this approach can be used to detect trace amounts of 3-nitrotyrosine in human plasma and sputum. In this paper, we describe our antibody microarray protocol for detecting 3-nitrotyrosine in specific proteins.
Collapse
Affiliation(s)
- Hongjun Jin
- Fundamental & Computational Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | |
Collapse
|
48
|
Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2012; 2:e134. [PMID: 22781167 PMCID: PMC3410618 DOI: 10.1038/tp.2012.61] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite increasing evidence of oxidative stress in the pathophysiology of autism, most studies have not evaluated biomarkers within specific brain regions, and the functional consequences of oxidative stress remain relatively understudied. We examined frozen samples from the cerebellum and temporal cortex (Brodmann area 22 (BA22)) from individuals with autism and unaffected controls (n=15 and n=12 per group, respectively). Biomarkers of oxidative stress, including reduced glutathione (GSH), oxidized glutathione (GSSG) and glutathione redox/antioxidant capacity (GSH/GSSG), were measured. Biomarkers of oxidative protein damage (3-nitrotyrosine; 3-NT) and oxidative DNA damage (8-oxo-deoxyguanosine; 8-oxo-dG) were also assessed. Functional indicators of oxidative stress included relative levels of 3-chlorotyrosine (3-CT), an established biomarker of a chronic inflammatory response, and aconitase activity, a biomarker of mitochondrial superoxide production. Consistent with previous studies on plasma and immune cells, GSH and GSH/GSSG were significantly decreased in both autism cerebellum (P<0.01) and BA22 (P<0.01). There was a significant increase in 3-NT in the autism cerebellum and BA22 (P<0.01). Similarly, 8-oxo-dG was significantly increased in autism cerebellum and BA22 (P<0.01 and P=0.01, respectively), and was inversely correlated with GSH/GSSG in the cerebellum (P<0.01). There was a significant increase in 3-CT levels in both brain regions (P<0.01), whereas aconitase activity was significantly decreased in autism cerebellum (P<0.01), and was negatively correlated with GSH/GSSG (P=0.01). Together, these results indicate that decreased GSH/GSSG redox/antioxidant capacity and increased oxidative stress in the autism brain may have functional consequence in terms of a chronic inflammatory response, increased mitochondrial superoxide production, and oxidative protein and DNA damage.
Collapse
Affiliation(s)
- S Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA.
| | - S Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA
| | - O Pavliv
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA
| | - S Bai
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA
| | - T G Nick
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA
| | - R E Frye
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA
| | - S J James
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA
| |
Collapse
|
49
|
Melnyk S, Fuchs GJ, Schulz E, Lopez M, Kahler SG, Fussell JJ, Bellando J, Pavliv O, Rose S, Seidel L, Gaylor DW, James SJ. Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. J Autism Dev Disord 2012; 42:367-77. [PMID: 21519954 DOI: 10.1007/s10803-011-1260-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxidative stress and abnormal DNA methylation have been implicated in the pathophysiology of autism. We investigated the dynamics of an integrated metabolic pathway essential for cellular antioxidant and methylation capacity in 68 children with autism, 54 age-matched control children and 40 unaffected siblings. The metabolic profile of unaffected siblings differed significantly from case siblings but not from controls. Oxidative protein/DNA damage and DNA hypomethylation (epigenetic alteration) were found in autistic children but not paired siblings or controls. These data indicate that the deficit in antioxidant and methylation capacity is specific for autism and may promote cellular damage and altered epigenetic gene expression. Further, these results suggest a plausible mechanism by which pro-oxidant environmental stressors may modulate genetic predisposition to autism.
Collapse
Affiliation(s)
- Stepan Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Daughton CG. Using biomarkers in sewage to monitor community-wide human health: isoprostanes as conceptual prototype. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 424:16-38. [PMID: 22425170 DOI: 10.1016/j.scitotenv.2012.02.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/10/2012] [Accepted: 02/18/2012] [Indexed: 04/14/2023]
Abstract
Timely assessment of the aggregate health of small-area human populations is essential for guiding the optimal investment of resources needed for preventing, avoiding, controlling, or mitigating exposure risks. Seeking those interventions yielding the greatest benefit with respect to allocation of resources is essential for making progress toward community sustainability, promoting social justice, and maintaining or improving health and well-being. More efficient approaches are needed for revealing cause-effect linkages between environmental stressors and human health and for measuring overall aggregate health of small-area populations. A new concept is presented--community health assessment via Sewage Chemical Information Mining (SCIM)--for quickly gauging overall, aggregate health status or trends for entire small-area populations. The approach--BioSCIM--would monitor raw sewage for specific biomarkers broadly associated with human disease, stress, or health. A wealth of untapped chemical information resides in raw sewage, a portion comprising human biomarkers of exposure and effects. BioSCIM holds potential for capitalizing on the presence of biomarkers in sewage for accomplishing any number of objectives. One of the many potential applications of BioSCIM could use various biomarkers of stress resulting from the collective excretion from all individuals in a local population. A prototype example is presented using a class of biomarkers that measures collective, systemic oxidative stress--the isoprostanes (prostaglandin-like free-radical catalyzed oxidation products from certain polyunsaturated fatty acids). Sampling and analysis of raw sewage hold great potential for quickly determining aggregate biomarker levels for entire communities. Presented are the basic principles of BioSCIM, together with its anticipated limitations, challenges, and potential applications in assessing community-wide health. Community health assessment via BioSCIM could allow rapid assessments and intercomparisons of health status among distinct populations, revealing hidden or emerging trends or disparities and aiding in evaluating correlations (or hypotheses) between stressor exposures and disease.
Collapse
Affiliation(s)
- Christian G Daughton
- Environmental Sciences Division, National Exposure Research Laboratory, US Environmental Protection Agency, 944 East Harmon Avenue, Las Vegas, NV 89119, USA.
| |
Collapse
|