1
|
Bai J, Haase K, Roberts JJ, Hoffmann J, Nguyen HT, Wan Z, Zhang S, Sarker B, Friedman N, Ristić-Lehmann Č, Kamm RD. A novel 3D vascular assay for evaluating angiogenesis across porous membranes. Biomaterials 2020; 268:120592. [PMID: 33348261 DOI: 10.1016/j.biomaterials.2020.120592] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Microfluidic technology has been extensively applied to model the functional units of human organs and tissues. Since vasculature is a key component of any functional tissue, a variety of techniques to mimic vasculature in vitro have been developed to address complex physiological and pathological processes in 3D tissues. Herein, we developed a novel, in vitro, microfluidic-based model to probe microvasculature growth into and across implanted porous membranes. Using ePTFE and polycarbonate as examples, we characterize the vascularization potential of these thin porous membranes using this device. This tool will allow for the assessment of porous materials early in their development, prior to their use for encapsulating implants or drugs, while minimizing the need for animal studies. Employing quantitative morphometric analysis and measurements of vascular permeability, we demonstrate our model to be an effective platform for evaluation of angiogenic potential of an implanted membrane biomaterial. Results show that endothelial cells can either migrate as single cells or form continuous sprouts across porous membranes, which is a material structure-dependent behavior. Our model is advantageous over conventional Transwell assays as it is amenable to quantitative assessment of vascular sprouting in 3D, and in contrast to animal models it can be employed more efficiently and with real-time assessment capabilities. This new tool could be applied either to test the suitability of a wide range of biomaterials for implantation or to screen different pro-angiogenic factors for therapeutic applications, and will advance the design of new biomaterials.
Collapse
Affiliation(s)
- Jing Bai
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kristina Haase
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Justine J Roberts
- W. L. Gore & Associates, Inc., Flagstaff, AZ, 86004/Cambridge, MA, 02142, USA
| | - Joseph Hoffmann
- W. L. Gore & Associates, Inc., Flagstaff, AZ, 86004/Cambridge, MA, 02142, USA
| | - Huu Tuan Nguyen
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengpeng Wan
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shun Zhang
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bapi Sarker
- W. L. Gore & Associates, Inc., Flagstaff, AZ, 86004/Cambridge, MA, 02142, USA
| | - Nathan Friedman
- W. L. Gore & Associates, Inc., Flagstaff, AZ, 86004/Cambridge, MA, 02142, USA
| | | | - Roger D Kamm
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss. Bioengineering (Basel) 2020; 7:bioengineering7030085. [PMID: 32751847 PMCID: PMC7552659 DOI: 10.3390/bioengineering7030085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of Americans suffer from skeletal muscle injuries annually that can result in volumetric muscle loss (VML), where extensive musculoskeletal damage and tissue loss result in permanent functional deficits. In the case of small-scale injury skeletal muscle is capable of endogenous regeneration through activation of resident satellite cells (SCs). However, this is greatly reduced in VML injuries, which remove native biophysical and biochemical signaling cues and hinder the damaged tissue's ability to direct regeneration. The current clinical treatment for VML is autologous tissue transfer, but graft failure and scar tissue formation leave patients with limited functional recovery. Tissue engineering of instructive biomaterial scaffolds offers a promising approach for treating VML injuries. Herein, we review the strategic engineering of biophysical and biochemical cues in current scaffold designs that aid in restoring function to these preclinical VML injuries. We also discuss the successes and limitations of the three main biomaterial-based strategies to treat VML injuries: acellular scaffolds, cell-delivery scaffolds, and in vitro tissue engineered constructs. Finally, we examine several innovative approaches to enhancing the design of the next generation of engineered scaffolds to improve the functional regeneration of skeletal muscle following VML injuries.
Collapse
|
3
|
Wang Z, Mithieux SM, Weiss AS. Fabrication Techniques for Vascular and Vascularized Tissue Engineering. Adv Healthc Mater 2019; 8:e1900742. [PMID: 31402593 DOI: 10.1002/adhm.201900742] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Indexed: 12/19/2022]
Abstract
Impaired or damaged blood vessels can occur at all levels in the hierarchy of vascular systems from large vasculatures such as arteries and veins to meso- and microvasculatures such as arterioles, venules, and capillary networks. Vascular tissue engineering has become a promising approach for fabricating small-diameter vascular grafts for occlusive arteries. Vascularized tissue engineering aims to fabricate meso- and microvasculatures for the prevascularization of engineered tissues and organs. The ideal small-diameter vascular graft is biocompatible, bridgeable, and mechanically robust to maintain patency while promoting tissue remodeling. The desirable fabricated meso- and microvasculatures should rapidly integrate with the host blood vessels and allow nutrient and waste exchange throughout the construct after implantation. A number of techniques used, including engineering-based and cell-based approaches, to fabricate these synthetic vasculatures are herein explored, as well as the techniques developed to fabricate hierarchical structures that comprise multiple levels of vasculature.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Suzanne M. Mithieux
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
- Bosch Institute University of Sydney NSW 2006 Australia
- Sydney Nano Institute University of Sydney NSW 2006 Australia
| |
Collapse
|
4
|
Morotomi T, Washio A, Kitamura C. Current and future options for dental pulp therapy. JAPANESE DENTAL SCIENCE REVIEW 2018; 55:5-11. [PMID: 30733839 PMCID: PMC6354285 DOI: 10.1016/j.jdsr.2018.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/13/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
Dental pulp is a connective tissue and has functions that include initiative, formative, protective, nutritive, and reparative activities. However, it has relatively low compliance, because it is enclosed in hard tissue. Its low compliance against damage, such as dental caries, results in the frequent removal of dental pulp during endodontic therapy. Loss of dental pulp frequently leads to fragility of the tooth, and eventually, a deterioration in the patient’s quality of life. With the development of biomaterials such as bioceramics and advances in pulp biology such as the identification of dental pulp stem cells, novel ideas for the preservation of dental pulp, the regenerative therapy of dental pulp, and new biomaterials for direct pulp capping have now been proposed. Therapies for dental pulp are classified into three categories; direct pulp capping, vital pulp amputation, and treatment for non-vital teeth. In this review, we discuss current and future treatment options in these therapies.
Collapse
Affiliation(s)
- Takahiko Morotomi
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| |
Collapse
|
5
|
Passipieri JA, Christ GJ. The Potential of Combination Therapeutics for More Complete Repair of Volumetric Muscle Loss Injuries: The Role of Exogenous Growth Factors and/or Progenitor Cells in Implantable Skeletal Muscle Tissue Engineering Technologies. Cells Tissues Organs 2016; 202:202-213. [PMID: 27825153 DOI: 10.1159/000447323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Despite the robust regenerative capacity of skeletal muscle, there are a variety of congenital and acquired conditions in which the volume of skeletal muscle loss results in major permanent functional and cosmetic deficits. These latter injuries are referred to as volumetric muscle loss (VML) injuries or VML-like conditions, and they are characterized by the simultaneous absence of multiple tissue components (i.e., nerves, vessels, muscles, satellite cells, and matrix). There are currently no effective treatment options. Regenerative medicine/tissue engineering technologies hold great potential for repair of these otherwise irrecoverable VML injuries. In this regard, three-dimensional scaffolds have been used to deliver sustained amounts of growth factors into a variety of injury models, to modulate host cell recruitment and extracellular matrix remodeling. However, this is a nascent field of research, and more complete functional improvements require more precise control of the spatiotemporal distribution of critical growth factors over a physiologically relevant range. This is especially true for VML injuries where incorporation of a cellular component into the scaffolds might provide not only a source of new tissue formation but also additional signals for host cell migration, recruitment, and survival. To this end, we review the major features of muscle repair and regeneration for largely recoverable injuries, and then discuss recent cell- and/or growth factor-based approaches to repair the more profound and irreversible VML and VML-like injuries. The underlying supposition is that more rationale incorporation of exogenous growth factors and/or cellular components will be required to optimize the regenerative capacity of implantable therapeutics for VML repair.
Collapse
|
6
|
Gao JM, Yan J, Li R, Li M, Yan LY, Wang TR, Zhao HC, Zhao Y, Yu Y, Qiao J. Improvement in the quality of heterotopic allotransplanted mouse ovarian tissues with basic fibroblast growth factor and fibrin hydrogel. Hum Reprod 2013; 28:2784-93. [DOI: 10.1093/humrep/det296] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
7
|
Hagiwara K, Chen G, Kawazoe N, Tabata Y, Komuro H. Promotion of muscle regeneration by myoblast transplantation combined with the controlled and sustained release of bFGFcpr. J Tissue Eng Regen Med 2013; 10:325-33. [PMID: 23554408 DOI: 10.1002/term.1732] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/02/2012] [Accepted: 01/29/2013] [Indexed: 11/09/2022]
Abstract
Although myoblast transplantation is an attractive method for muscle regeneration, its efficiency remains limited. The efficacy of myoblast transplantation in combination with the controlled and sustained delivery of basic fibroblast growth factor (bFGF) was investigated. Defects of thigh muscle in Sprague-Dawley (SD) rats were created, and GFP-positive myoblasts were subsequently transplanted. The rats were divided into three groups. In control group 1 (C1) only myoblasts were transplanted, while in control group 2 (C2) myoblasts were introduced along with empty gelatin hydrogel microspheres. In the experimental group (Ex), myoblasts were transplanted along with bFGF incorporated into gelatin hydrogel microspheres. Four weeks after transplantation, GFP-positive myoblasts were found to be integrated into the recipient muscle and to contribute to muscle fibre regeneration in all groups. A significantly higher expression level of GFP in the Ex group demonstrated that the survival rate of transplanted myoblasts in Ex was remarkably improved compared with that in C1 and C2. Furthermore, myofibre regeneration, characterized by centralization of the nuclei, was markedly accelerated in Ex. The expression level of CD31 in Ex was higher than that in both C1 and C2, but the differences were not statistically significant. A significantly higher expression level of Myogenin and a lower expression level of MyoD1 were both observed in Ex after 4 weeks, suggesting the promotion of differentiation to myotubes. Our findings suggest that the controlled and sustained release of bFGF from gelatin hydrogel microspheres improves the survival rate of transplanted myoblasts and promotes muscle regeneration by facilitating myogenesis rather than angiogenesis.
Collapse
Affiliation(s)
- Koki Hagiwara
- Department of Paediatric Surgery, Faculty of Medicine, University of Tsukuba, Japan.,Organoid Group, Biomaterial Centre, National Institute for Materials Science, Tsukuba, Japan
| | - Guoping Chen
- Organoid Group, Biomaterial Centre, National Institute for Materials Science, Tsukuba, Japan
| | - Naoki Kawazoe
- Organoid Group, Biomaterial Centre, National Institute for Materials Science, Tsukuba, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Japan
| | - Hiroaki Komuro
- Department of Paediatric Surgery, Graduate School of Medicine, University of Tokyo, Japan
| |
Collapse
|
8
|
Nitta N, Nitta-Seko A, Sonoda A, Watanabe S, Tsuchiya K, Murata K, Tabata Y. Vascular regeneration by pinpoint delivery of growth factors using a microcatheter reservoir system in a rabbit hind-limb ischemia model. Exp Ther Med 2012; 4:201-204. [PMID: 23139710 DOI: 10.3892/etm.2012.574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/04/2012] [Indexed: 01/18/2023] Open
Abstract
The purpose of this study was to compare the results of delivering low doses of growth factor iteratively (20 μg x5) via a reservoir system with results obtained following a single administration of 100 μg of growth factor. The delivery systems using gelatin microspheres (GMS) facilitate the controlled release of drugs. The controlled release of growth factors at specific sites is essential for vascular regeneration. An ischemic hind-limb model was established in nine rabbits. A reservoir system was implanted in each rabbit. GMS impregnated with basic fibroblast growth factor (bFGF) through an indwelling 2-Fr catheter was infused in the reservoir system. The rabbits were divided into three equal groups: group 1 received 20 μg iteratively (x5) via the reservoir, a single dose of 100 μg growth factor was administered to group 2 and group 3 was the saline control. The therapeutic effects were evaluated by measuring the thigh temperature, blood pressure and blood flow. An immunohistological analysis was also performed for CD31. No significant difference was observed between preand post-treatment (4 weeks following bFGF infusion) in the thigh temperature, blood pressure and blood flow results from each group. Pathological analysis revealed that the number of regenerated vessels was significantly higher in the group treated iteratively with low-dose bFGF.
Collapse
Affiliation(s)
- Norihisa Nitta
- Department of Radiology, Shiga University of Medical Science, Seta, Otsu, Shiga 520-2192
| | | | | | | | | | | | | |
Collapse
|
9
|
Page RL, Malcuit C, Vilner L, Vojtic I, Shaw S, Hedblom E, Hu J, Pins GD, Rolle MW, Dominko T. Restoration of skeletal muscle defects with adult human cells delivered on fibrin microthreads. Tissue Eng Part A 2011; 17:2629-40. [PMID: 21699414 DOI: 10.1089/ten.tea.2011.0024] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Large-scale musculoskeletal wounds, such as those seen in trauma injuries, present poor functional healing prognoses. In severe trauma, when the native tissue architecture is destroyed or lost, the regenerative capacity of skeletal muscle is diminished by scar formation. Here we demonstrate that a scaffold system composed of fibrin microthreads can provide an efficient delivery system for cell-based therapies and improve regeneration of a large defect in the tibialis anterior of the mouse. Cell-loaded fibrin microthread bundles implanted into a skeletal muscle resection reduced the overall fibroplasia-associated deposition of collagen in the wound bed and promoted in-growth of new muscle tissue. When fibrin microthreads were seeded with adult human cells, implanted cells contributed to the nascent host tissue architecture by forming skeletal muscle fibers, connective tissue, and PAX7-positive cells. Stable engraftment was observed at 10 weeks postimplant and was accompanied by reduced levels of collagen deposition. Taken together, these data support the design and development of a platform for microthread-based delivery of autologous cells that, when coupled to an in vitro cellular reprogramming process, has the potential to improve healing outcomes in large skeletal muscle wounds.
Collapse
Affiliation(s)
- Raymond L Page
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
d’Angelo I, Garcia-Fuentes M, Parajó Y, Welle A, Vántus T, Horváth A, Bökönyi G, Kéri G, Alonso MJ. Nanoparticles Based on PLGA:Poloxamer Blends for the Delivery of Proangiogenic Growth Factors. Mol Pharm 2010; 7:1724-33. [DOI: 10.1021/mp1001262] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ivana d’Angelo
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Marcos Garcia-Fuentes
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Yolanda Parajó
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Alexander Welle
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Tibor Vántus
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Anikó Horváth
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Györgyi Bökönyi
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - György Kéri
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Maria José Alonso
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Ishimatsu H, Kitamura C, Morotomi T, Tabata Y, Nishihara T, Chen KK, Terashita M. Formation of Dentinal Bridge on Surface of Regenerated Dental Pulp in Dentin Defects by Controlled Release of Fibroblast Growth Factor–2 From Gelatin Hydrogels. J Endod 2009; 35:858-65. [DOI: 10.1016/j.joen.2009.03.049] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/22/2009] [Accepted: 03/28/2009] [Indexed: 01/09/2023]
|