1
|
Stephens VR, Ameli S, Major AS, Wanjalla CN. Mouse Models of HIV-Associated Atherosclerosis. Int J Mol Sci 2025; 26:3417. [PMID: 40244289 PMCID: PMC11989901 DOI: 10.3390/ijms26073417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. Several factors are implicated in the pathogenesis of CVD, and efforts have been made to reduce traditional risks, yet CVD remains a complex burden. Notably, people living with HIV (PLWH) are twice as likely to develop CVD compared to persons without HIV (PWoH). Intensive statin therapy, the first-line treatment to prevent cardiovascular events, is effective at reducing morbidity and mortality. However, statin therapy has not reduced the overall prevalence of CVD. Despite antiretroviral therapy (ART), and new guidelines for statin use, PLWH have persistent elevation of inflammatory markers, which is suggested to be a bigger driver of future cardiovascular events than low-density lipoprotein. Herein, we have summarized the development of atherosclerosis and highlighted mouse models of atherosclerosis in the presence and absence of HIV. Since most mouse strains have several mechanisms that are atheroprotective, researchers have developed mouse models to study CVD using dietary and genetic manipulations. In evaluating the current methodologies for studying HIV-associated atherosclerosis, we have detailed the benefits of integrating multi-omics analyses, genetic manipulations, and immune cell profiling within mouse models. These advanced approaches significantly enhance our capacity to address critical gaps in understanding the immune mechanisms driving CVD, including in the context of HIV.
Collapse
Affiliation(s)
- Victoria R. Stephens
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.); (A.S.M.)
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sharareh Ameli
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.); (A.S.M.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amy S. Major
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.); (A.S.M.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Tennessee Valley Health System, Department of Veterans Affairs, Nashville, TN 37212, USA
| | - Celestine N. Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.); (A.S.M.)
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Castillo-Galán S, Parra V, Cuenca J. Unraveling the pathogenesis of viral-induced pulmonary arterial hypertension: Possible new therapeutic avenues with mesenchymal stromal cells and their derivatives. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167519. [PMID: 39332781 DOI: 10.1016/j.bbadis.2024.167519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Pulmonary hypertension (PH) is a severe condition characterized by elevated pressure in the pulmonary artery, where metabolic and mitochondrial dysfunction may contribute to its progression. Within the PH spectrum, pulmonary arterial hypertension (PAH) stands out with its primary pulmonary vasculopathy. PAH's prevalence varies from 0.4 to 1.4 per 100,000 individuals and is associated with diverse conditions, including viral infections such as HIV. Notably, recent observations highlight an increased occurrence of PAH among COVID-19 patients, even in the absence of pre-existing cardiopulmonary disorders. While current treatments offer partial relief, there's a pressing need for innovative therapeutic strategies, among which mesenchymal stromal cells (MSCs) and their derivatives hold promise. This review critically evaluates recent investigations into viral-induced PAH, encompassing pathogens like human immunodeficiency virus, herpesvirus, Cytomegalovirus, Hepatitis B and C viruses, SARS-CoV-2, and Human endogenous retrovirus K (HERKV), with a specific emphasis on mitochondrial dysfunction. Furthermore, we explore the underlying rationale driving novel therapeutic modalities, including MSCs, extracellular vesicles, and mitochondrial interventions, within the framework of PAH management.
Collapse
Affiliation(s)
- Sebastián Castillo-Galán
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Valentina Parra
- Laboratory of Differentiation and Cell Metabolism (D&M), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; SYSTEMIX Center for Systems Biology, O'Higgins University, Rancagua, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile; Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile.
| |
Collapse
|
3
|
Franzén Boger M, Kaldhusdal V, Pascual-Reguant A, Kroh S, Uecker R, Burgener AD, Lajoie J, Omollo K, Kimani J, Fowke KR, Hauser AE, Tjernlund A, Broliden K. Spatial transcriptomics and in situ immune cell profiling of the host ectocervical landscape of HIV infected Kenyan sex working women. Front Immunol 2024; 15:1483346. [PMID: 39687623 PMCID: PMC11646855 DOI: 10.3389/fimmu.2024.1483346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Chronic immune activation is a hallmark of human immunodeficiency virus (HIV) infection that significantly impacts disease pathogenesis. However, in-depth studies characterizing the immunological landscape of the ectocervix during chronic HIV infection remain scarce despite the importance of this tissue site for HIV transmission. Methods Ectocervical tissue samples were obtained from antiretroviral-naïve HIV-seropositive and -seronegative Kenyan female sex workers. These samples were assessed by spatial transcriptomics and Gene Set Enrichment Analysis. We further performed multi-epitope ligand cartography (MELC) using an in situ staining panel that included 17 markers of primarily T cell-mediated immune responses. Results Spatial transcriptomics revealed tissue-wide immune activation encompassing immune responses associated with chronic HIV infection. First, both the epithelial and submucosal compartments showed diverse but significant upregulation of humoral immune responses, as indicated by the expression of several antibody-related genes. Second, an antiviral state-associated cellular immunity was also observed in the HIV-seropositive group, characterized by upregulation of genes involved in interferon signaling across the mucosal tissue and a more spatially restricted mucosal expression of genes related to T cell activity and effector functions relative to the HIV-seronegative group. Additionally, HIV associated structural alterations were evident within both compartments. Downregulated genes across the epithelium were mainly linked to epithelial integrity, with the outer layer involved in terminal differentiation and the inner layer associated with epithelial structure. MELC analysis further revealed a significantly increased ectocervical leukocyte population in HIV-seropositive participants, primarily driven by an increase in CD8+ T cells while the CD4+ T cell population remained stable. Consistent with our spatial transcriptomics data, T cells from HIV-seropositive participants showed an increased effector phenotype, defined by elevated expression of various granzymes. Conclusion By combining spatial transcriptomics and MELC, we identified significant HIV-associated cervical immune activity driven by induction of both T and B cell activity, together with a general antiviral state characterized by sustained interferon induction. These findings underscore that chronic HIV infection is associated with an altered ectocervical mucosal immune landscape years after primary infection. This sheds light on HIV pathogenesis at distant local sites and complements current knowledge on HIV-associated systemic immune activation.
Collapse
Affiliation(s)
- Mathias Franzén Boger
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Division of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Vilde Kaldhusdal
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Division of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Anna Pascual-Reguant
- Department of Rheumatology and Clinical Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungzentrum (DRFZ), Leibniz Insititute, Berlin, Germany
- Spatial Genomics, Centre Nacional d’Anàlisi Genòmica, Barcelona, Spain
| | - Sandy Kroh
- Department of Rheumatology and Clinical Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungzentrum (DRFZ), Leibniz Insititute, Berlin, Germany
| | - Ralf Uecker
- Department of Rheumatology and Clinical Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungzentrum (DRFZ), Leibniz Insititute, Berlin, Germany
| | - Adam D. Burgener
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Division of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, MB, Canada
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Kenneth Omollo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Anja E. Hauser
- Department of Rheumatology and Clinical Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungzentrum (DRFZ), Leibniz Insititute, Berlin, Germany
| | - Annelie Tjernlund
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Division of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Division of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
4
|
Franzén Boger M, Hasselrot T, Kaldhusdal V, Miranda GHB, Czarnewski P, Edfeldt G, Bradley F, Rexaj G, Lajoie J, Omollo K, Kimani J, Fowke KR, Broliden K, Tjernlund A. Sustained immune activation and impaired epithelial barrier integrity in the ectocervix of women with chronic HIV infection. PLoS Pathog 2024; 20:e1012709. [PMID: 39561211 PMCID: PMC11614238 DOI: 10.1371/journal.ppat.1012709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/03/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Chronic systemic immune activation significantly influences human immunodeficiency virus (HIV) disease progression. Despite evidence of a pro-inflammatory environment in the genital tract of HIV-infected women, comprehensive investigations into cervical tissue from this region remain limited. Similarly, the consequences of chronic HIV infection on the integrity of the female genital epithelium are poorly understood, despite its importance in HIV transmission and replication. Ectocervical biopsies were obtained from HIV-seropositive (n = 14) and HIV-seronegative (n = 47) female Kenyan sex workers. RNA sequencing and bioimage analysis of epithelial junction proteins (E-cadherin, desmoglein-1, claudin-1, and zonula occludens-1) were conducted, along with CD4 staining. RNA sequencing revealed upregulation of immunoregulatory genes in HIV-seropositive women, primarily associated with heightened T cell activity and interferon signaling, which further correlated with plasma viral load. Transcription factor analysis confirmed the upregulation of pro-inflammatory transcription factors, such as RELA, NFKB1, and IKZF3, which facilitates HIV persistence in T cells. Conversely, genes and pathways associated with epithelial barrier function and structure were downregulated in the context of HIV. Digital bioimage analysis corroborated these findings, revealing significant disruption of various epithelial junction proteins in ectocervical tissues of the HIV-seropositive women. Thus, chronic HIV infection associated with ectocervical inflammation, characterized by induced T cell responses and interferon signaling, coupled with epithelial disruption. These alterations may influence HIV transmission and heighten susceptibility to other sexually transmitted infections. These findings prompt exploration of therapeutic interventions to address HIV-related complications and mitigate the risk of sexually transmitted infection transmission.
Collapse
Affiliation(s)
- Mathias Franzén Boger
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Tyra Hasselrot
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Vilde Kaldhusdal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Gisele H. B. Miranda
- Division of Computational Science and Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- BioImage Informatics Facility, Science for Life Laboratory, Solna, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Biochemistry and Biophysics and National Bioinformatics Infrastructure Sweden, Stockholm University, Stockholm, Sweden
| | - Gabriella Edfeldt
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Frideborg Bradley
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Genta Rexaj
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Kenneth Omollo
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Kristina Broliden
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Annelie Tjernlund
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
5
|
Kondrachuk O, Ciccone P, Ford N, Hong K, Kimura Y, Zi J, Yusuf S, Alkousa A, Tailor N, Rajkumar R, Rappaport J, Gupta MK. HIV Protein Nef Induces Cardiomyopathy Through Induction of Bcl2 and p21. Int J Mol Sci 2024; 25:11401. [PMID: 39518954 PMCID: PMC11547003 DOI: 10.3390/ijms252111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
HIV-associated cardiovascular diseases remain a leading cause of death in people living with HIV/AIDS (PLWHA). Although antiretroviral drugs suppress the viral load, they fail to remove the virus entirely. HIV-1 Nef protein is known to play a role in viral virulence and HIV latency. Expression of Nef protein can be detected in different organs, including cardiac tissue. Despite the established role of Nef protein in HIV-1 replication, its impact on organ function inside the human body is not clear. To understand the effect of Nef at the organ level, we created a new Nef-transgenic (Nef-TG) mouse that expresses Nef protein in the heart. Our study found that Nef expression caused inhibition of cardiac function and pathological changes in the heart with increased fibrosis, leading to heart failure and early mortality. Further, we found that cellular autophagy is significantly inhibited in the cardiac tissue of Nef-TG mice. Mechanistically, we found that Nef protein causes the accumulation of Bcl2 and Beclin-1 proteins in the tissue, which may affect the cellular autophagy system. Additionally, we found Nef expression causes upregulation of the cellular senescence marker p21 and senescence-associated β-galactosidase expression. Our findings suggest that the Nef-mediated inhibition of autophagy and induction of senescence markers may promote aging in PLWHA. Our mouse model could help us to understand the effect of Nef protein on organ function during latent HIV infection.
Collapse
Affiliation(s)
- Olena Kondrachuk
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Pierce Ciccone
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Nicole Ford
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Kim Hong
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Yuka Kimura
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Jorgo Zi
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sumaya Yusuf
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Aya Alkousa
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Nishit Tailor
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Rithvik Rajkumar
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Jay Rappaport
- Division of Pathology, Tulane National Primate Research Center, Covington, LA 70118, USA
| | - Manish K. Gupta
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
6
|
Chien A, Wu T, Lau CY, Pandya D, Wiebold A, Agan B, Snow J, Smith B, Nath A, Nair G. White and Gray Matter Changes are Associated With Neurocognitive Decline in HIV Infection. Ann Neurol 2024; 95:941-950. [PMID: 38362961 PMCID: PMC11060903 DOI: 10.1002/ana.26896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To investigate the relationship between neurocognitive deficits and structural changes on brain magnetic resonance imaging in people living with HIV (PLWH) with good virological control on combination antiretroviral therapy, compared with socioeconomically matched control participants recruited from the same communities. METHODS Brain magnetic resonance imaging scans, and clinical and neuropsychological data were obtained from virologically controlled PLWH (viral load of <50 c/mL and at least 1 year of combination antiretroviral therapy) and socioeconomically matched control participants. Magnetic resonance imaging was carried out on 3 T scanner with 8-channel head coils and segmented using Classification using Derivative-based Features. Multiple regression analysis was performed to examine the association between brain volume and various clinical and neuropsychiatric parameters adjusting for age, race, and sex. To evaluate longitudinal changes in brain volumes, a random coefficient model was used to evaluate the changes over time (age) adjusting for sex and race. RESULTS The cross-sectional study included 164 PLWH and 51 controls, and the longitudinal study included 68 PLWH and 20 controls with 2 or more visits (mean 2.2 years, range 0.8-5.1 years). Gray matter (GM) atrophy rate was significantly higher in PLWH compared with control participants, and importantly, the GM and global atrophy was associated with the various neuropsychological domain scores. Higher volume of white matter hyperintensities were associated with increased atherosclerotic cardiovascular disease risk score, and decreased executive functioning and memory domain scores in PLWH. INTERPRETATION These findings suggest ongoing neurological damage even in virologically controlled participants, with significant implications for clinical management of PLWH. ANN NEUROL 2024;95:941-950.
Collapse
Affiliation(s)
- Alice Chien
- National Institute of Neurological Disorders and Stroke, MD, USA
| | - Tianxia Wu
- National Institute of Neurological Disorders and Stroke, MD, USA
| | - Chuen-Yen Lau
- National Institute of Allergy and Infectious Diseases, MD, USA
| | - Darshan Pandya
- National Institute of Neurological Disorders and Stroke, MD, USA
| | - Amanda Wiebold
- National Institute of Neurological Disorders and Stroke, MD, USA
| | - Brian Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Joseph Snow
- National Institute of Mental Health, MD, USA
| | - Bryan Smith
- National Institute of Neurological Disorders and Stroke, MD, USA
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, MD, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, MD, USA
| |
Collapse
|
7
|
Papantoniou E, Arvanitakis K, Markakis K, Papadakos SP, Tsachouridou O, Popovic DS, Germanidis G, Koufakis T, Kotsa K. Pathophysiology and Clinical Management of Dyslipidemia in People Living with HIV: Sailing through Rough Seas. Life (Basel) 2024; 14:449. [PMID: 38672720 PMCID: PMC11051320 DOI: 10.3390/life14040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Infections with human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS) represent one of the greatest health burdens worldwide. The complex pathophysiological pathways that link highly active antiretroviral therapy (HAART) and HIV infection per se with dyslipidemia make the management of lipid disorders and the subsequent increase in cardiovascular risk essential for the treatment of people living with HIV (PLHIV). Amongst HAART regimens, darunavir and atazanavir, tenofovir disoproxil fumarate, nevirapine, rilpivirine, and especially integrase inhibitors have demonstrated the most favorable lipid profile, emerging as sustainable options in HAART substitution. To this day, statins remain the cornerstone pharmacotherapy for dyslipidemia in PLHIV, although important drug-drug interactions with different HAART agents should be taken into account upon treatment initiation. For those intolerant or not meeting therapeutic goals, the addition of ezetimibe, PCSK9, bempedoic acid, fibrates, or fish oils should also be considered. This review summarizes the current literature on the multifactorial etiology and intricate pathophysiology of hyperlipidemia in PLHIV, with an emphasis on the role of different HAART agents, while also providing valuable insights into potential switching strategies and therapeutic options.
Collapse
Affiliation(s)
- Eleni Papantoniou
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (K.M.); (O.T.)
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Konstantinos Markakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (K.M.); (O.T.)
| | - Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Olga Tsachouridou
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (K.M.); (O.T.)
| | - Djordje S. Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, 21137 Novi Sad, Serbia;
- Medical Faculty, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, AHEPA University Hospital, Aristotle University of Thessaloniki, 1 St. Kiriakidi Street, 54636 Thessaloniki, Greece
| |
Collapse
|
8
|
Coelho SVA, Augusto FM, de Arruda LB. Potential Pathways and Pathophysiological Implications of Viral Infection-Driven Activation of Kallikrein-Kinin System (KKS). Viruses 2024; 16:245. [PMID: 38400022 PMCID: PMC10892958 DOI: 10.3390/v16020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Microcirculatory and coagulation disturbances commonly occur as pathological manifestations of systemic viral infections. Research exploring the role of the kallikrein-kinin system (KKS) in flavivirus infections has recently linked microvascular dysfunctions to bradykinin (BK)-induced signaling of B2R, a G protein-coupled receptor (GPCR) constitutively expressed by endothelial cells. The relevance of KKS activation as an innate response to viral infections has gained increasing attention, particularly after the reports regarding thrombogenic events during COVID-19. BK receptor (B2R and B1R) signal transduction results in vascular permeability, edema formation, angiogenesis, and pain. Recent findings unveiling the role of KKS in viral pathogenesis include evidence of increased activation of KKS with elevated levels of BK and its metabolites in both intravascular and tissue milieu, as well as reports demonstrating that virus replication stimulates BKR expression. In this review, we will discuss the mechanisms triggered by virus replication and by virus-induced inflammatory responses that may stimulate KKS. We also explore how KKS activation and BK signaling may impact virus pathogenesis and further discuss the potential therapeutic application of BKR antagonists in the treatment of hemorrhagic and respiratory diseases.
Collapse
Affiliation(s)
- Sharton Vinícius Antunes Coelho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | | | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
9
|
Avagimyan A, Pogosova N, Kakturskiy L, Sheibani M, Urazova O, Trofimenko A, Navarsdyan G, Jndoyan Z, Abgaryan K, Fogacci F, Galli M, Agati L, Kobalava Z, Shafie D, Marzilli M, Gogiashvili L, Sarrafzadegan N. HIV-Related Atherosclerosis: State-of-the-Art-Review. Curr Probl Cardiol 2023; 48:101783. [PMID: 37172874 DOI: 10.1016/j.cpcardiol.2023.101783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
The infection caused by the Human Immunodeficiency Virus (HIV) has spread rapidly across the globe, assuming the characteristics of an epidemic in some regions. Thanks to the introduction of antiretroviral therapy into routine clinical practice, there was a considerable breakthrough in the treatment of HIV, that is now HIV is potentially well-controlled even in low-income countries. To date, HIV infection has moved from the group of life-threatening conditions to the group of chronic and well controlled ones and the quality of life and life expectancy of HIV+ people, with an undetectable viral load is closer to that of an HIV- people. However, unsolved issues still persist. For example: people living with HIV are more prone to the age-related diseases, especially atherosclerosis. For this reason, a better understanding of the mechanisms of HIV-associated destabilization of vascular homeostasis seems to be an urgent duty, that may lead to the development of new protocols, bringing the possibilities of pathogenetic therapies to a new level. The purpose of the article was to evaluate the pathological aspects of HIV-induced atherosclerosis.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Assistant Professor, Anatomical Pathology and Clinical Morphology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia.
| | - Nana Pogosova
- Professor, Deputy of General Director for Science and Preventive Cardiology, National Medical Research Centre of Cardiology after E. Chazov, Moscow, Russia
| | - Lev Kakturskiy
- Professor, Scientific Director, Research Institute of Human Morphology FSBI «Petrovskiy NRCS, Moscow, Russia
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Olga Urazova
- Professor, Head of Pathophysiology Department, Siberian State Medical University, Tomsk, Russia
| | - Artem Trofimenko
- Associate Professor, Pathophysiology Department, Kuban State Medical University, Krasnodar, Russia
| | - Grizelda Navarsdyan
- Professor, Pathophysiology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zinaida Jndoyan
- Professor, Head of Internal Diseases Propedeutics Department, Yerevan State Medical University after M. Heratsi, Armenia
| | - Kristina Abgaryan
- Associate Professor, Medical Microbiology Department, Yerevan State Medical University after M.Heratsi, Armenia
| | - Federica Fogacci
- Research Fellow, Atherosclerosis and Metabolic Disorders Research Unit, University of Bologna, Bologna, Italy
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Luciano Agati
- Professor of Cardiology Department, Head of Cardiology Unit Azienda Policlinico Umberto II, Sapienza University, Rome, Italy
| | - Zhanna Kobalava
- Professor, Head of Internal Disease, Cardiology and Clinical Pharmacology Department, Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Davood Shafie
- Isfahan Cardiovascular Research Institute, Isfahan, Iran
| | - Mario Marzilli
- Professor, Head of Cardiovascular Medicine Division, University of Pisa, Pisa, Italy
| | - Liana Gogiashvili
- Professor, Head of Experimental and Clinical Pathology Department, Al. Natishvili Institute of Experimental Morphology, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Nizal Sarrafzadegan
- Professor, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Herd CL, Mellet J, Mashingaidze T, Durandt C, Pepper MS. Consequences of HIV infection in the bone marrow niche. Front Immunol 2023; 14:1163012. [PMID: 37497228 PMCID: PMC10366613 DOI: 10.3389/fimmu.2023.1163012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulation of the bone marrow niche resulting from the direct and indirect effects of HIV infection contributes to haematological abnormalities observed in HIV patients. The bone marrow niche is a complex, multicellular environment which functions primarily in the maintenance of haematopoietic stem/progenitor cells (HSPCs). These adult stem cells are responsible for replacing blood and immune cells over the course of a lifetime. Cells of the bone marrow niche support HSPCs and help to orchestrate the quiescence, self-renewal and differentiation of HSPCs through chemical and molecular signals and cell-cell interactions. This narrative review discusses the HIV-associated dysregulation of the bone marrow niche, as well as the susceptibility of HSPCs to infection by HIV.
Collapse
|
11
|
Batta Y, King C, Cooper F, Johnson J, Haddad N, Boueri MG, DeBerry E, Haddad GE. Direct and indirect cardiovascular and cardiometabolic sequelae of the combined anti-retroviral therapy on people living with HIV. Front Physiol 2023; 14:1118653. [PMID: 37078025 PMCID: PMC10107050 DOI: 10.3389/fphys.2023.1118653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
With reports of its emergence as far back as the early 1900s, human immunodeficiency virus (HIV) has become one of the deadliest and most difficult viruses to treat in the era of modern medicine. Although not always effective, HIV treatment has evolved and improved substantially over the past few decades. Despite the major advancements in the efficacy of HIV therapy, there are mounting concerns about the physiological, cardiovascular, and neurological sequelae of current treatments. The objective of this review is to (Blattner et al., Cancer Res., 1985, 45(9 Suppl), 4598s-601s) highlight the different forms of antiretroviral therapy, how they work, and any effects that they may have on the cardiovascular health of patients living with HIV, and to (Mann et al., J Infect Dis, 1992, 165(2), 245-50) explore the new, more common therapeutic combinations currently available and their effects on cardiovascular and neurological health. We executed a computer-based literature search using databases such as PubMed to look for relevant, original articles that were published after 1998 to current year. Articles that had relevance, in any capacity, to the field of HIV therapy and its intersection with cardiovascular and neurological health were included. Amongst currently used classes of HIV therapies, protease inhibitors (PIs) and combined anti-retroviral therapy (cART) were found to have an overall negative effect on the cardiovascular system related to increased cardiac apoptosis, reduced repair mechanisms, block hyperplasia/hypertrophy, decreased ATP production in the heart tissue, increased total cholesterol, low-density lipoproteins, triglycerides, and gross endothelial dysfunction. The review of Integrase Strand Transfer Inhibitors (INSTI), Nucleoside Reverse Transcriptase Inhibitors (NRTI), and Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI) revealed mixed results, in which both positive and negative effects on cardiovascular health were observed. In parallel, studies suggest that autonomic dysfunction caused by these drugs is a frequent and significant occurrence that needs to be closely monitored in all HIV + patients. While still a relatively nascent field, more research on the cardiovascular and neurological implications of HIV therapy is crucial to accurately evaluate patient risk.
Collapse
Affiliation(s)
- Yashvardhan Batta
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | - Cody King
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | - Farion Cooper
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | - John Johnson
- Delaware Psychiatric Center, New Castle, DE, United States
| | - Natasha Haddad
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | | | - Ella DeBerry
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | - Georges E. Haddad
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
12
|
Perkins MV, Joseph S, Dittmer DP, Mackman N. Cardiovascular Disease and Thrombosis in HIV Infection. Arterioscler Thromb Vasc Biol 2023; 43:175-191. [PMID: 36453273 PMCID: PMC10165851 DOI: 10.1161/atvbaha.122.318232] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
HIV infection has transitioned from an acute, fatal disease to a chronic one managed by antiretroviral therapy. Thus, the aging population of people living with HIV (PLWH) continues to expand. HIV infection results in a dysregulated immune system, wherein CD4+ T cells are depleted, particularly in the gastrointestinal tract, disrupting the gut epithelial barrier. Long-term HIV infection is associated with chronic inflammation through potentially direct mechanisms caused by viral replication or exposure to viral proteins and indirect mechanisms resulting from increased translocation of microbial products from the intestine or exposure to antiretroviral therapy. Chronic inflammation (as marked by IL [interleukin]-6 and CRP [C-reactive protein]) in PLWH promotes endothelial cell dysfunction and atherosclerosis. PLWH show significantly increased rates of cardiovascular disease, such as myocardial infarction (risk ratio, 1.79 [95% CI, 1.54-2.08]) and stroke (risk ratio, 2.56 [95% CI, 1.43-4.61]). In addition, PLWH have increased levels of the coagulation biomarker D-dimer and have a two to ten-fold increased risk of venous thromboembolism compared with the general population. Several small clinical trials analyzed the effect of different antithrombotic agents on platelet activation, coagulation, inflammation, and immune cell activation. Although some markers for coagulation were reduced, most agents failed to reduce inflammatory markers in PLWH. More studies are needed to understand the underlying mechanisms driving inflammation in PLWH to create better therapies for lowering chronic inflammation in PLWH. Such therapies can potentially reduce atherosclerosis, cardiovascular disease, and thrombosis rates in PLWH and thus overall mortality in this population.
Collapse
Affiliation(s)
- Megan V. Perkins
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah Joseph
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P. Dittmer
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Mazzuti L, Turriziani O, Mezzaroma I. The Many Faces of Immune Activation in HIV-1 Infection: A Multifactorial Interconnection. Biomedicines 2023; 11:biomedicines11010159. [PMID: 36672667 PMCID: PMC9856151 DOI: 10.3390/biomedicines11010159] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Chronic immune activation has a significant role in HIV-1 disease pathogenesis and CD4+ T-cell depletion. The causes of chronic inflammation and immune activation are incompletely understood, but they are likely multifactorial in nature, involving both direct and indirect stimuli. Possible explanations include microbial translocation, coinfection, and continued presence of competent replicating virus. In fact, long-term viral suppression treatments are unable to normalize elevated markers of systemic immune activation. Furthermore, high levels of pro-inflammatory cytokines increase susceptibility to premature aging of the immune system. The phenomenon of "inflammaging" has begun to be evident in the last decades, as a consequence of increased life expectancy due to the introduction of cART. Quality of life and survival have improved substantially; however, PLWH are predisposed to chronic inflammatory conditions leading to age-associated diseases, such as inflammatory bowel disease, neurocognitive disorders, cardiovascular diseases, metabolic syndrome, bone abnormalities, and non-HIV-associated cancers. Several approaches have been studied in numerous uncontrolled and/or randomized clinical trials with the aim of reducing immune activation/inflammatory status in PLWH, none of which have achieved consistent results.
Collapse
Affiliation(s)
- Laura Mazzuti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Ombretta Turriziani
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Ivano Mezzaroma
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
14
|
Medrano-Garcia S, Morales-Cano D, Barreira B, Vera-Zambrano A, Kumar R, Kosanovic D, Schermuly RT, Graham BB, Perez-Vizcaino F, Mathie A, Savai R, Pullamseti S, Butrous G, Fernández-Malavé E, Cogolludo A. HIV and Schistosoma Co-Exposure Leads to Exacerbated Pulmonary Endothelial Remodeling and Dysfunction Associated with Altered Cytokine Landscape. Cells 2022; 11:cells11152414. [PMID: 35954255 PMCID: PMC9368261 DOI: 10.3390/cells11152414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
HIV and Schistosoma infections have been individually associated with pulmonary vascular disease. Co-infection with these pathogens is very common in tropical areas, with an estimate of six million people co-infected worldwide. However, the effects of HIV and Schistosoma co-exposure on the pulmonary vasculature and its impact on the development of pulmonary vascular disease are largely unknown. Here, we have approached these questions by using a non-infectious animal model based on lung embolization of Schistosoma mansoni eggs in HIV-1 transgenic (HIV) mice. Schistosome-exposed HIV mice but not wild-type (Wt) counterparts showed augmented pulmonary arterial pressure associated with markedly suppressed endothelial-dependent vasodilation, increased endothelial remodeling and vessel obliterations, formation of plexiform-like lesions and a higher degree of perivascular fibrosis. In contrast, medial wall muscularization was similarly increased in both types of mice. Moreover, HIV mice displayed an impaired immune response to parasite eggs in the lung, as suggested by decreased pulmonary leukocyte infiltration, small-sized granulomas, and augmented residual egg burden. Notably, vascular changes in co-exposed mice were associated with increased expression of proinflammatory and profibrotic cytokines, including IFN-γ and IL-17A in CD4+ and γδ T cells and IL-13 in myeloid cells. Collectively, our study shows for the first time that combined pulmonary persistence of HIV proteins and Schistosoma eggs, as it may occur in co-infected people, alters the cytokine landscape and targets the vascular endothelium for aggravated pulmonary vascular pathology. Furthermore, it provides an experimental model for the understanding of pulmonary vascular disease associated with HIV and Schistosoma co-morbidity.
Collapse
Affiliation(s)
- Sandra Medrano-Garcia
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Daniel Morales-Cano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28040 Madrid, Spain
- Correspondence: (D.M.-C.); (A.C.); Tel.: +34-913947120 (A.C.)
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Alba Vera-Zambrano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Rahul Kumar
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ralph Theo Schermuly
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Brian B. Graham
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham ME4 4BF, UK
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Soni Pullamseti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Ghazwan Butrous
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham ME4 4BF, UK
| | - Edgar Fernández-Malavé
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
- Correspondence: (D.M.-C.); (A.C.); Tel.: +34-913947120 (A.C.)
| |
Collapse
|
15
|
Palakeel JJ, Ali M, Chaduvula P, Chhabra S, Lamsal Lamichhane S, Ramesh V, Opara CO, Khan FY, Kabiraj G, Kauser H, Mostafa JA. An Outlook on the Etiopathogenesis of Pulmonary Hypertension in HIV. Cureus 2022; 14:e27390. [PMID: 36046315 PMCID: PMC9418639 DOI: 10.7759/cureus.27390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
Although overall survival rates of patients infected with human immunodeficiency virus (HIV) have been significantly improved by antiretroviral therapy (ART), chronic comorbidities associated with HIV result in a worsening quality of life. Pulmonary arterial hypertension (PAH) is the most prevalent comorbidity associated with HIV infection. Despite low viremia and a non-replicative state maintained by ART, few people develop PAH. Previous data from animal models and human pulmonary microvascular endothelial cells (HPMVECs) suggests a constellation of events occurring during the propagation of HIV-associated PAH (HIV-PAH). However, these studies have not successfully isolated HIV virions, HIV-DNA, protein 24 antigen (p24), or HIV-RNA from the pulmonary endothelial cells (ECs). It provides an insight into an ongoing inflammatory process that could be attributed to viral proteins. Several studies have demonstrated the role of viral proteins on vascular remodeling. A composite of chronic inflammatory changes mediated by cytokines and growth factors along with several inciting risk factors such as Hepatitis C virus (HCV) co-infection, genetic factors, male predominance, illegal drug usage, and duration of HIV infection have led to molecular changes that result in an initial phase of apoptosis followed by the formation of apoptotic resistant hyperproliferative ECs with altered phenotype. This study aims to identify the risk factors and mechanisms behind HIV-PAH pathobiology at the host-pathogen interface at the intracellular level.
Collapse
|
16
|
Liu X, Zhou H, Hu Z. Resveratrol attenuates chronic pulmonary embolism-related endothelial cell injury by modulating oxidative stress, inflammation, and autophagy. Clinics (Sao Paulo) 2022; 77:100083. [PMID: 35932505 PMCID: PMC9357834 DOI: 10.1016/j.clinsp.2022.100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Due to Pulmonary Artery Endothelial Cell (PAEC) dysfunction, Pulmonary Hypertension (PH) persists even after the Pulmonary Embolism (PE) has been relieved. However, the mechanism behind this remains unclear. METHOD Here, the authors incubated Human PAECs (HPAECs) with thrombin to simulate the process of arterial thrombosis. RESULTS CCK8 results showed a decrease in the viability of HPAECs after thrombin incubation. In addition, the expression of Tissue Factor (TF), Monocyte Chemoattractant Protein 1 (MCP-1), VCAM-1, ICAM-1, cleaved caspase 3, cleaved caspase 9, and Bax protein were all increased after thrombin incubation, while Bcl-2 was decreased. The effects of 3-MA treatment further suggested that autophagy might mediate the partial protective effects of Resveratrol on HPAECs. To observe the effects of Resveratrol in vivo, the authors established a Chronic Thromboembolic Pulmonary Hypertension (CTEPH) model by repeatedly injecting autologous blood clots into a rat's left jugular vein. The results exhibited that Mean Pulmonary Arterial Pressure (mPAP) and vessel Wall Area/Total Area (WA/TA) ratio were both decreased after Resveratrol treatment. Moreover, Resveratrol could reduce the concentration and activity of TF, vWF, P-selectin, and promote these Superoxide Dismutase (SOD) in plasma. Western blot analysis of inflammation, platelet activation, autophagy, and apoptosis-associated proteins in pulmonary artery tissue validated the results in PHAECs. CONCLUSIONS These findings suggested that reduced autophagy, increased oxidative stress, increased platelet activation, and increased inflammation were involved in CTEPH-induced HPAEC dysfunction and the development of PH, while Resveratrol could improve PAEC dysfunction and PH.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Department of Respiratory Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Haiying Zhou
- Department of Respiratory Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhixiong Hu
- Department of Respiratory Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Cardiovascular computed tomography and HIV: The evolving role of imaging biomarkers in enhanced risk prediction. IMAGING 2021. [DOI: 10.1556/1647.2021.00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
The treatment of human immunodeficiency virus (HIV) with antiretroviral (ARV) medications has revolutionised the care for these patients. The dramatic increase in life expectancy has brought new challenges in treating diseases of aging in this cohort. Cardiovascular disease (CVD) is now a leading cause of morbidity and mortality with risk matched HIV-positive patients having double the risk of MI compared to HIV-negative patients. This enhanced risk is secondary to the interplay the virus (and accessory proteins), ARV medications and traditional risk factors. The culmination of these factors can lead to a hybrid metabolic syndrome characterised by heightened ectopic fat. Cardiovascular computed tomography (CT) is ideal for quantifying epicardial adipose tissue volumes, hepatosteatosis and cardiovascular disease burden. The CVD risk attributed to disease burden and plaque morphology is well established in general populations but is less clear in HIV populations. The purpose of this review article is to appraise the latest data on CVD development in HIV-positive patients and how the use of cardiovascular CT may be used to enhance risk prediction in this population. This may have important implications on individualised treatment decisions and risk reduction strategies which will improve the care of these patients.
Collapse
|
18
|
Kumar A, Mahajan A, Salazar EA, Pruitt K, Guzman CA, Clauss MA, Almodovar S, Dhillon NK. Impact of human immunodeficiency virus on pulmonary vascular disease. Glob Cardiol Sci Pract 2021; 2021:e202112. [PMID: 34285903 PMCID: PMC8272407 DOI: 10.21542/gcsp.2021.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
With the advent of anti-retroviral therapy, non-AIDS-related comorbidities have increased in people living with HIV. Among these comorbidities, pulmonary hypertension (PH) is one of the most common causes of morbidity and mortality. Although chronic HIV-1 infection is independently associated with the development of pulmonary arterial hypertension, PH in people living with HIV may also be the outcome of various co-morbidities commonly observed in these individuals including chronic obstructive pulmonary disease, left heart disease and co-infections. In addition, the association of these co-morbidities and other risk factors, such as illicit drug use, can exacerbate the development of pulmonary vascular disease. This review will focus on these complex interactions contributing to PH development and exacerbation in HIV patients. We also examine the interactions of HIV proteins, including Nef, Tat, and gp120 in the pulmonary vasculature and how these proteins alter the endothelial and smooth muscle function by transforming them into susceptible PH phenotype. The review also discusses the available infectious and non-infectious animal models to study HIV-associated PAH, highlighting the advantages and disadvantages of each model, along with their ability to mimic the clinical manifestations of HIV-PAH.
Collapse
Affiliation(s)
- Ashok Kumar
- Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aatish Mahajan
- Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ethan A Salazar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Christian Arce Guzman
- Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthias A Clauss
- Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sharilyn Almodovar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Navneet K Dhillon
- Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
19
|
Spagnolo-Allende A, Gutierrez J. Role of Brain Arterial Remodeling in HIV-Associated Cerebrovascular Outcomes. Front Neurol 2021; 12:593605. [PMID: 34239489 PMCID: PMC8258100 DOI: 10.3389/fneur.2021.593605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/07/2021] [Indexed: 01/11/2023] Open
Abstract
As the life expectancy of people living with HIV (PLWH) on combination antiretroviral therapy (cART) increases, so does morbidity from cerebrovascular disease and neurocognitive disorders. Brain arterial remodeling stands out as a novel investigational target to understand the role of HIV in cerebrovascular and neurocognitive outcomes. We therefore conducted a review of publications in PubMed, EMBASE, Web of Science and Wiley Online Library, from inception to April 2021. We included search terms such as HIV, cART, brain, neuroimmunity, arterial remodeling, cerebrovascular disease, and neurocognitive disorders. The literature shows that, in the post-cART era, PLWH continue to experience an increased risk of stroke and neurocognitive disorders (albeit milder forms) compared to uninfected populations. PLWH who are immunosuppressed have a higher proportion of hemorrhagic strokes and strokes caused by opportunistic infection and HIV vasculopathy, while PLWH on long-term cART have higher rates of ischemic strokes, compared to HIV-seronegative controls. Brain large artery atherosclerosis in PLWH is associated with lower CD4 nadir and higher CD4 count during the stroke event. HIV vasculopathy, a form of non-atherosclerotic outward remodeling, on the other hand, is associated with protracted immunosuppression. HIV vasculopathy was also linked to a thinner media layer and increased adventitial macrophages, suggestive of non-atherosclerotic degeneration of the brain arterial wall in the setting of chronic central nervous system inflammation. Cerebrovascular architecture seems to be differentially affected by HIV infection in successfully treated versus immunosuppressed PLWH. Brain large artery atherosclerosis is prevalent even with long-term immune reconstitution post-cART. HIV-associated changes in brain arterial walls may also relate to higher rates of HIV-associated neurocognitive disorders, although milder forms are more prevalent in the post-cART era. The underlying mechanisms of HIV-associated pathological arterial remodeling remain poorly understood, but a role has been proposed for chronic HIV-associated inflammation with increased burden on the vasculature. Neuroimaging may come to play a role in assessing brain arterial remodeling and stratifying cerebrovascular risk, but the data remains inconclusive. An improved understanding of the different phenotypes of brain arterial remodeling associated with HIV may reveal opportunities to reduce rates of cerebrovascular disease in the aging population of PLWH on cART.
Collapse
Affiliation(s)
| | - Jose Gutierrez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
20
|
Kotwal M, Gupta KK, Ozair A, Atam V. Bilateral limb gangrene in an HIV patient due to vasculopathy: Managing the dual challenge of psychosocial issues and an uncommon medical condition. J Family Med Prim Care 2020; 9:5049-5051. [PMID: 33209843 PMCID: PMC7652172 DOI: 10.4103/jfmpc.jfmpc_605_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 11/12/2022] Open
Abstract
Patients with human immunodeficiency virus (HIV) have been reported to experience a spectrum of homeostatic dysregulation and resulting manifestations in their vascular system. This may be due to either disruption in the coagulation-anticoagulation pathways or due to damage to vessels from either HIV or other opportunistic infections. However, gangrene in an HIV-infected patient is an uncommon phenomenon. We herein report a case of a 30-year-old female, who had been taking antiretrovirals irregularly for 10 years, developing bilateral limb gangrene during her hospitalization for cryptococcal meningitis. Unfortunately, her condition continued to deteriorate and her attendants took her from the hospital against medical advice, with her death soon after. We illustrate how several biopsychosocial factors came together here to result in poor outcomes. To note, peripheral arterial disease (PAD) in HIV can rapidly lead to critical limb ischemia, resulting in limb gangrene. Aggravating risk factors for the same include smoking, poor glycemic control, and/or low CD4 T-cell count (<200 cells/mm3). General practitioners should be aware that HIV patients are far more prone to PAD than the normal population. Early recognition of at-risk patients, both medically and psychosocially, by family physicians is thus critical.
Collapse
Affiliation(s)
- Mudit Kotwal
- Department of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - K. K. Gupta
- Department of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ahmad Ozair
- Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Virendra Atam
- Department of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
21
|
Agarwal S, Sharma H, Chen L, Dhillon NK. NADPH oxidase-mediated endothelial injury in HIV- and opioid-induced pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1097-L1108. [PMID: 32233792 DOI: 10.1152/ajplung.00480.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We previously demonstrated that the combined exposure of human pulmonary microvascular endothelial cells (HPMECs) to morphine and viral protein(s) results in the oxidative stress-mediated induction of autophagy, leading to shift in the cells from early apoptotic to apoptosis-resistant proliferative status associated with the angioproliferative remodeling observed in pulmonary arterial hypertension (PAH). In this study, we tried to delineate the major source of HIV-1 protein Tat and morphine induced oxidative burst in HPMECs and its consequences on vascular remodeling and PAH in an in vivo model. We observed switch from the initial increased expression of NADPH oxidase (NOX) 2 in response to acute treatment of morphine and HIV-Tat to later increased expression of NOX4 on chronic treatment in the endoplasmic reticulum of HPMECs without any alterations in the mitochondria. Furthermore, NOX-dependent induction of autophagy was observed to play a pivotal role in regulating the endothelial cell survival. Our in vivo findings showed significant increase in pulmonary vascular remodeling, right ventricular systolic pressure, and Fulton index in HIV-transgenic rats on chronic administration of morphine. This was associated with increased oxidative stress in lung tissues and rat pulmonary microvascular endothelial cells. Additionally, endothelial cells from morphine-treated HIV-transgenic rats demonstrated increased expression of NOX2 and NOX4 proteins, inhibition of which ameliorated their increased survival upon serum starvation. In conclusion, this study describes NADPH oxidases as one of the main players in the oxidative stress-mediated endothelial dysfunction on the dual hit of HIV-viral protein(s) and opioids.
Collapse
Affiliation(s)
- Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Himanshu Sharma
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ling Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
22
|
Chelvanambi S, Gupta SK, Chen X, Ellis BW, Maier BF, Colbert TM, Kuriakose J, Zorlutuna P, Jolicoeur P, Obukhov AG, Clauss M. HIV-Nef Protein Transfer to Endothelial Cells Requires Rac1 Activation and Leads to Endothelial Dysfunction Implications for Statin Treatment in HIV Patients. Circ Res 2019; 125:805-820. [PMID: 31451038 PMCID: PMC7009312 DOI: 10.1161/circresaha.119.315082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Even in antiretroviral therapy-treated patients, HIV continues to play a pathogenic role in cardiovascular diseases. A possible cofactor may be persistence of the early HIV response gene Nef, which we have demonstrated recently to persist in the lungs of HIV+ patients on antiretroviral therapy. Previously, we have reported that HIV strains with Nef, but not Nef-deleted HIV strains, cause endothelial proinflammatory activation and apoptosis. OBJECTIVE To characterize mechanisms through which HIV-Nef leads to the development of cardiovascular diseases using ex vivo tissue culture approaches as well as interventional experiments in transgenic murine models. METHODS AND RESULTS Extracellular vesicles derived from both peripheral blood mononuclear cells and plasma from HIV+ patient blood samples induced human coronary artery endothelial cells dysfunction. Plasma-derived extracellular vesicles from antiretroviral therapy+ patients who were HIV-Nef+ induced significantly greater endothelial apoptosis compared with HIV-Nef-plasma extracellular vesicles. Both HIV-Nef expressing T cells and HIV-Nef-induced extracellular vesicles increased transfer of cytosol and Nef protein to endothelial monolayers in a Rac1-dependent manner, consequently leading to endothelial adhesion protein upregulation and apoptosis. HIV-Nef induced Rac1 activation also led to dsDNA breaks in endothelial colony forming cells, thereby resulting in endothelial colony forming cell premature senescence and endothelial nitric oxide synthase downregulation. These Rac1-dependent activities were characterized by NOX2-mediated reactive oxygen species production. Statin treatment equally inhibited Rac1 inhibition in preventing or reversing all HIV-Nef-induction abnormalities assessed. This was likely because of the ability of statins to block Rac1 prenylation as geranylgeranyl transferase inhibitors were effective in inhibiting HIV-Nef-induced reactive oxygen species formation. Finally, transgenic expression of HIV-Nef in endothelial cells in a murine model impaired endothelium-mediated aortic ring dilation, which was then reversed by 3-week treatment with 5 mg/kg atorvastatin. CONCLUSIONS These studies establish a mechanism by which HIV-Nef persistence despite antiretroviral therapy could contribute to ongoing HIV-related vascular dysfunction, which may then be ameliorated by statin treatment.
Collapse
Affiliation(s)
| | | | - Xingjuan Chen
- Indiana University School of Medicine, Indianapolis, IN 46202
| | | | | | | | - Jithin Kuriakose
- Indiana University School of Medicine, Indianapolis, IN 46202
- Ulster University, Ulster, Northern Ireland, UK
| | | | - Paul Jolicoeur
- Institut de Recherches Cliniques de Montreal, Montreal, Canada
| | | | - Matthias Clauss
- Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
23
|
Shamskhou EA, Verghese L, Yuan K, de Jesus Perez VA. EMAPII: A Key Player in HIV-Nef-induced Pulmonary Vasculopathy. Am J Respir Cell Mol Biol 2019; 60:257-258. [PMID: 30376353 DOI: 10.1165/rcmb.2018-0327ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Elya A Shamskhou
- 1 Division of Pulmonary and Critical Care Medicine School of Medicine, Stanford University Stanford, California
| | - Leah Verghese
- 1 Division of Pulmonary and Critical Care Medicine School of Medicine, Stanford University Stanford, California
| | - Ke Yuan
- 1 Division of Pulmonary and Critical Care Medicine School of Medicine, Stanford University Stanford, California
| | - Vinicio A de Jesus Perez
- 1 Division of Pulmonary and Critical Care Medicine School of Medicine, Stanford University Stanford, California
| |
Collapse
|
24
|
De Alwis PM, Smith BR, Wu T, Artrip C, Steinbach S, Morse C, Lau CY, Rapoport SI, Snow J, Tramont E, Reich DS, Nair G, Nath A. In-vivo MRI Reveals Changes to Intracerebral Vasculature Caliber in HIV Infection. Front Neurol 2019; 10:687. [PMID: 31297086 PMCID: PMC6607694 DOI: 10.3389/fneur.2019.00687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/12/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: To characterize cerebral arterial remodeling in HIV-infected (HIV+) individuals in-vivo, and to study its clinical and immunological associations. Methods: T2*-weighted magnetic resonance imagining sequences was used to determine cross-sectional area (vascular caliber) of the anterior (A1 segment) and middle (M1 segment) cerebral arteries in HIV- (control) and HIV+ subjects on antiretroviral therapy. Correlations of A1 caliber with clinical, demographic parameters, and immunological markers in cerebrospinal fluid (CSF) were determined using multivariable analyses. Results: A1 and M1 calibers from 22 HIV- control subjects (age: median 48.5 years, range 22-60 years, 55% male) and 61 HIV+ subjects (age: median 53 years, range 25–60 years, 67% male) were studied. ANCOVA, adjusting for ethnicity and sex (age was not correlated with M1 or A1 caliber in either group), revealed that HIV+ subjects had larger caliber in the A1 segment than HIV- subjects (4.95 ± 0.14 mm2, and 4.47 ± 0.21 mm2 respectively, p = 0.048), but caliber of the M1 segment did not differ among the groups (7.21 ± 0.14 mm2 and 7.09 ± 0.23 mm2 respectively, p = 0.65). In the HIV+ cohort, longer disease duration and higher current CD4 T-cell count were associated with reduced A1 caliber (r =−0.42 and −0.33 respectively, p < 0.05). In addition, increase in cardiovascular disease risk (CVD risk) was associated with a decrease in A1 caliber in the HIV group (r = −0.35, p < 0.05). Conclusions: This cross-sectional study reveals an increase in A1 caliber in the HIV+ cohort, compared to control subjects, which is especially prominent in early phase of the disease. This increase in caliber may be associated with acute pathological processes in HIV during the initial stages of infection resulting in loss of compliance or thinning of the arterial wall. At later stages, such changes may be confounded by arteriosclerotic changes that are common in later stages of HIV infection. This study suggests there is extensive vessel remodeling in various stages of infection. Long-term longitudinal follow-up of this cohort is planned to further verify this hypothesis and to better understand this MRI marker of intracranial vascular caliber.
Collapse
Affiliation(s)
- Paba M De Alwis
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Bryan R Smith
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Tianxia Wu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Cristah Artrip
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Sally Steinbach
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Caryn Morse
- Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Chuen-Yen Lau
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Stanley I Rapoport
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Joseph Snow
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Edmund Tramont
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Hijmans JG, Stockelman K, Levy M, Brewster LM, Bammert TD, Greiner JJ, Connick E, DeSouza CA. Effects of HIV-1 gp120 and TAT-derived microvesicles on endothelial cell function. J Appl Physiol (1985) 2019; 126:1242-1249. [PMID: 30789287 DOI: 10.1152/japplphysiol.01048.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aims of this study were twofold. The first was to determine if human immunodeficiency virus (HIV)-1 glycoprotein (gp) 120 and transactivator of transcription (Tat) stimulate the release of endothelial microvesicles (EMVs). The second was to determine whether viral protein-induced EMVs are deleterious to endothelial cell function (inducing endothelial cell inflammation, oxidative stress, senescence and increasing apoptotic susceptibility). Human aortic endothelial cells (HAECs) were treated with recombinant HIV-1 proteins Bal gp120 (R5), Lav gp120 (X4), or Tat. EMVs released in response to each viral protein were isolated and quantified. Fresh HAECs were treated with EMVs generated under control conditions and from each of the viral protein conditions for 24 h. EMV release was higher (P < 0.05) in HAECs treated with R5 (141 ± 21 MV/µl), X4 (132 ± 20 MV/µl), and Tat (130 ± 20 MV/µl) compared with control (61 ± 13 MV/µl). Viral protein EMVs induced significantly higher endothelial cell release of proinflammatory cytokines and expression of cell adhesion molecules than control. Reactive oxygen species production was more pronounced (P < 0.05) in the R5-, X4- and Tat-EMV-treated cells. In addition, viral protein-stimulated EMVs significantly augmented endothelial cell senescence and apoptotic susceptibility. Concomitant with these functional changes, viral protein-stimulated EMVs disrupted cell expression of micro-RNAs 34a, 126, 146a, 181b, 221, and miR-Let-7a (P < 0.05). These results demonstrate that HIV-1 gp120 and Tat stimulate microvesicle release from endothelial cells, and these microvesicles confer pathological effects on endothelial cells by inducing inflammation, oxidative stress, and senescence as well as enhancing susceptibility to apoptosis. Viral protein-generated EMVs may contribute to the increased risk of vascular disease in patients with HIV-1. NEW & NOTEWORTHY Human immunodeficiency virus (HIV)-1-related proteins glycoprotein (gp) 120 and transactivator of transcription (Tat)-mediated endothelial damage and dysfunction are poorly understood. Endothelial microvesicles (EMVs) serve as indicators and potent mediators of endothelial dysfunction. In the present study we determined if HIV-1 R5- and X4-tropic gp120 and Tat stimulate EMV release in vitro and if viral protein-induced EMVs are deleterious to endothelial cell function. gp120 and Tat induced a marked increase in EMV release. Viral protein-induced EMVs significantly increased endothelial cell inflammation, oxidative stress, senescence, and apoptotic susceptibility in vitro. gp120- and Tat-derived EMVs promote a proinflammatory, pro-oxidative, prosenescent, and proapoptotic endothelial phenotype and may contribute to the endothelial damage and dysfunction associated with gp120 and Tat.
Collapse
Affiliation(s)
- Jamie G Hijmans
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Kelly Stockelman
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Ma'ayan Levy
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - L Madden Brewster
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Tyler D Bammert
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Elizabeth Connick
- Division of Infectious Disease, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| |
Collapse
|
26
|
Anand AR, Rachel G, Parthasarathy D. HIV Proteins and Endothelial Dysfunction: Implications in Cardiovascular Disease. Front Cardiovasc Med 2018; 5:185. [PMID: 30619892 PMCID: PMC6305718 DOI: 10.3389/fcvm.2018.00185] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022] Open
Abstract
With the success of antiretroviral therapy (ART), a dramatic decrease in viral burden and opportunistic infections and an increase in life expectancy has been observed in human immunodeficiency virus (HIV) infected individuals. However, it is now clear that HIV- infected individuals have enhanced susceptibility to non-AIDS (Acquired immunodeficiency syndrome)-related complications such as cardiovascular disease (CVD). CVDs such as atherosclerosis have become a significant cause of morbidity and mortality in individuals with HIV infection. Though studies indicate that ART itself may increase the risk to develop CVD, recent studies suggest a more important role for HIV infection in contributing to CVD independently of the traditional risk factors. Endothelial dysfunction triggered by HIV infection has been identified as a critical link between infection, inflammation/immune activation, and atherosclerosis. Considering the inability of HIV to actively replicate in endothelial cells, endothelial dysfunction depends on both HIV-encoded proteins as well as inflammatory mediators released in the microenvironment by HIV-infected cells. Indeed, the HIV proteins, gp120 (envelope glycoprotein) and Tat (transactivator of transcription), are actively secreted into the endothelial cell micro-environment during HIV infection, while Nef can be actively transferred onto endothelial cells during HIV infection. These proteins can have significant direct effects on the endothelium. These include a range of responses that contribute to endothelial dysfunction, including enhanced adhesiveness, permeability, cell proliferation, apoptosis, oxidative stress as well as activation of cytokine secretion. This review summarizes the current understanding of the interactions of HIV, specifically its proteins with endothelial cells and its implications in cardiovascular disease. We analyze recent in vitro and in vivo studies examining endothelial dysfunction in response to HIV proteins. Furthermore, we discuss the multiple mechanisms by which these viral proteins damage the vascular endothelium in HIV patients. A better understanding of the molecular mechanisms of HIV protein associated endothelial dysfunction leading to cardiovascular disease is likely to be pivotal in devising new strategies to treat and prevent cardiovascular disease in HIV-infected patients.
Collapse
Affiliation(s)
- Appakkudal R Anand
- L&T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, India.,Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - Gladys Rachel
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - Durgadevi Parthasarathy
- L&T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| |
Collapse
|
27
|
Abstract
: Improved survival among HIV-1-infected individuals with the advent of antiretroviral therapy has clearly led to a greater prevalence of noninfectious complications. One of the most devastating sequelae in these individuals is the development of pulmonary arterial hypertension (PAH). Various epidemiological studies suggest worse survival of HIV-PAH patients when compared with other forms of PAH. Given that only a subset and not all HIV-infected individuals develop HIV-PAH, it is suggested that an additional second-hit of genetic or environmental trigger is needed for the development of PAH. In this context, it has been well documented that HIV patients who abuse illicit drugs such as stimulants, opioids, and the like, are more susceptible to develop PAH. In this review, we highlight the studies that support the significance of a double hit of HIV and drug abuse in the incidence of PAH and focus on the research that has been undertaken to unravel the pathobiology and vascular remodeling mechanisms underlying the deleterious synergy between HIV infection and drugs of abuse in orchestrating the development of PAH.
Collapse
|
28
|
Marincowitz C, Genis A, Goswami N, De Boever P, Nawrot TS, Strijdom H. Vascular endothelial dysfunction in the wake of HIV and ART. FEBS J 2018; 286:1256-1270. [PMID: 30220106 DOI: 10.1111/febs.14657] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 01/18/2023]
Abstract
Mounting evidence points to increased rates of cardiovascular disease (CVD) among people living with HIV/AIDS (PLWHA). Endothelial dysfunction (loss of endothelium-dependent vascular relaxation in response to provasodilatory stimuli) constitutes an early pathophysiological event in atherogenesis and CVD. Both HIV-1 infection and antiretroviral therapy (ART) are implicated in the development of endothelial dysfunction; however, conclusions are frequently drawn from associations shown in epidemiological studies. In this narrative review of mainly in vitro and animal studies, we report on the current understanding of how various HIV-1 proteins, HIV-1-induced proinflammatory cytokines and common antiretroviral drugs directly impact vascular endothelial cells. Proposed cellular mechanisms underlying the switch to a dysfunctional state are discussed, including oxidative stress, impaired expression and regulation of endothelial nitric oxide (NO) synthase (eNOS) and increased expression of vascular adhesion molecules. From the literature, it appears that increased reactive oxygen species (ROS) production, linked to decreased NO bioavailability and ensuing endothelial dysfunction, may be proposed as a putative final common pathway afflicting the vascular endothelium in PLWHA. The HIV-1-proteins Tat, Gp120 and Nef in particular, the proinflammatory cytokine, TNF-α, and the antiretroviral drugs Efavirenz and Lopinavir, most commonly postulated to be primary causal agents of endothelial dysfunction, are also discussed. We conclude that, despite existing evidence from basic research papers, a significant gap remains in terms of the exact underlying cellular mechanisms involved in HIV-1 and ART induced endothelial dysfunction. Bridging this gap could help pave the way for future strategies to prevent and treat early cardiovascular changes in PLWHA.
Collapse
Affiliation(s)
- Clara Marincowitz
- Division of Medical Physiology, Stellenbosch University, Cape Town, South Africa
| | - Amanda Genis
- Division of Medical Physiology, Stellenbosch University, Cape Town, South Africa
| | - Nandu Goswami
- Department of Physiology and Otto Loewi Research Centre, Medical University of Graz, Austria
| | - Patrick De Boever
- Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Centre for Environment and Health, Department for Public Health and Primary Care, KU Leuven, Belgium
| | - Hans Strijdom
- Division of Medical Physiology, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
29
|
Hemmat N, Ebadi A, Badalzadeh R, Memar MY, Baghi HB. Viral infection and atherosclerosis. Eur J Clin Microbiol Infect Dis 2018; 37:2225-2233. [PMID: 30187247 DOI: 10.1007/s10096-018-3370-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
Abstract
Several risk factors have been described for the pathogenesis of atherosclerosis. Infectious diseases are suggested to be a causative factor, and some viruses have been studied for their relation with atherosclerotic diseases. Studies report two hypotheses, direct and indirect effects, for the role of viral infections in atherogenesis. Viruses are able to initiate atherosclerosis by two different pathways. They can exert their direct effects on atherogenesis by infecting vascular cells and then inducing inflammation in the endothelium and smooth muscle cells. Alternatively, they can also apply indirect effects by infecting non-vascular cells and inducing systemic inflammation. In this review, we consider the available data about the effects and correlations of DNA and RNA viruses on atherosclerosis.
Collapse
Affiliation(s)
- Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, PO Box 5165665931, Tabriz, Iran
| | - Amin Ebadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, PO Box 5165665931, Tabriz, Iran
| | - Reza Badalzadeh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, PO Box 5165665931, Tabriz, Iran.,Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, PO Box 5165665931, Tabriz, Iran. .,Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Mondejar-Parreño G, Morales-Cano D, Barreira B, Callejo M, Ruiz-Cabello J, Moreno L, Esquivel-Ruiz S, Mathie A, Butrous G, Perez-Vizcaino F, Cogolludo A. HIV transgene expression impairs K + channel function in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 2018; 315:L711-L723. [PMID: 30136611 DOI: 10.1152/ajplung.00045.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is an established risk factor for pulmonary arterial hypertension (PAH); however, the pathogenesis of HIV-related PAH remains unclear. Since K+ channel dysfunction is a common marker in most forms of PAH, our aim was to analyze whether the expression of HIV proteins is associated with impairment of K+ channel function in the pulmonary vascular bed. HIV transgenic mice (Tg26) expressing seven of the nine HIV viral proteins and wild-type (WT) mice were used. Hemodynamic assessment was performed by echocardiography and catheterization. Vascular reactivity was studied in endothelium-intact pulmonary arteries. K+ currents were recorded in freshly isolated pulmonary artery smooth muscle cells (PASMC) using the patch-clamp technique. Gene expression was assessed using quantitative RT-PCR. PASMC from Tg26 mice had reduced K+ currents and were more depolarized than those from WT. Whereas voltage-gated K+ channel 1.5 (Kv1.5) currents were preserved, pH-sensitive noninactivating background currents ( IKN) were nearly abolished in PASMC from Tg26 mice. Tg26 mice had reduced lung expression of Kv7.1 and Kv7.4 channels and decreased responses to the Kv7.1 channel activator L-364,373 assessed by vascular reactivity and patch-clamp experimental approaches. Although we found pulmonary vascular remodeling and endothelial dysfunction in Tg26 mice, this was not accompanied by changes in hemodynamic parameters. In conclusion, the expression of HIV proteins in vivo impairs pH-sensitive IKN and Kv7 currents. This negative impact of HIV proteins in K+ channels was not sufficient to induce PAH, at least in mice, but may play a permissive or accessory role in the pathophysiology of HIV-associated PAH.
Collapse
Affiliation(s)
- Gema Mondejar-Parreño
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| | - Daniel Morales-Cano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| | - María Callejo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| | - Jesús Ruiz-Cabello
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain.,Centro de Investigación Cooperativa en Biomateriales, Donostia- San Sebastián , Spain.,Basque Foundation for Science , Bilbao , Spain.,Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid , Madrid , Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| | - Sergio Esquivel-Ruiz
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich , Chatham , United Kingdom
| | - Ghazwan Butrous
- Medway School of Pharmacy, University of Kent and University of Greenwich , Chatham , United Kingdom
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias , Madrid , Spain
| |
Collapse
|
31
|
Zanetti HR, Mendes EL, Palandri Chagas AC, Gomes Douglas MO, Paranhos Lopes LT, Roever L, Gonçalves A, Santos Resende E. Triad of the Ischemic Cardiovascular Disease in People Living with HIV? Association Between Risk Factors, HIV Infection, and Use of Antiretroviral Therapy. Curr Atheroscler Rep 2018; 20:30. [PMID: 29777448 DOI: 10.1007/s11883-018-0727-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review is focused on cardiovascular risk factors in HIV-infected people. RECENT FINDINGS Antiretroviral therapy (ART) has significantly increased the life expectancy of HIV-infected people. Thus, this population has experienced non-HIV-related diseases, mainly cardiovascular diseases. Thus, in our review, we intend to understand the cardiovascular risk factors that trigger this situation. We have demonstrated that both ART and traditional cardiovascular risk factors contribute to the development of cardiovascular disease in HIV-infected people. Thus, it becomes important to stratify the risk factors to reduce this scenario.
Collapse
Affiliation(s)
- Hugo Ribeiro Zanetti
- Post-Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil.
- Master Institute of Education President Antônio Carlos, Avenida Minas Gerais, 1889 - Centro, Araguari, MG, 38.440-046, Brazil.
| | | | | | | | | | - Leonardo Roever
- Post-Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Alexandre Gonçalves
- Post-Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil
- Master Institute of Education President Antônio Carlos, Avenida Minas Gerais, 1889 - Centro, Araguari, MG, 38.440-046, Brazil
- Atenas Faculty, Paracatu, MG, Brazil
| | - Elmiro Santos Resende
- Post-Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
32
|
deFilippi C, Lo J, Christenson R, Grundberg I, Stone L, Zanni MV, Lee H, Grinspoon SK. Novel mediators of statin effects on plaque in HIV: a proteomics approach. AIDS 2018; 32:867-876. [PMID: 29369166 PMCID: PMC5869115 DOI: 10.1097/qad.0000000000001762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE HIV patients have increased atherosclerotic coronary vascular disease (ASCVD), thought to be mediated through inflammatory mechanisms. We hypothesized that among asymptomatic HIV-infected patients with subclinical coronary plaque, statin therapy would modulate unique inflammatory and cardiovascular proteins in relation to change in subclinical coronary plaque volume. We tested this hypothesis using a novel proteomics approach. DESIGN Forty HIV-infected participants were randomized to atorvastatin (40 mg/day) versus placebo, and underwent computed tomography coronary angiography to quantify plaque volume at baseline and 1 year. METHODS We used Olink Cardiovascular III and Cardiometabolic panels based on dual antibody epitope recognition with linked DNA amplification to compare change over time in 184 proteins in treatment versus placebo and in relation to change in coronary plaque volume. RESULTS Six proteins (TFPI, CCL24, NT-Pro BNP, MBL2, LTBR, PCOLCE) changed significantly in the atorvastatin versus placebo group, many in innate immune and other novel inflammatory pathways. Twenty-six proteins changed significantly in relationship to total coronary plaque volume over 1 year. Notably, many of these proteins changed only weakly in relationship to change in low-density lipoprotein (LDL). Overlapping these two broad discovery approaches, proteins involved in myocardial fibrosis/collagen formation and monocyte chemoattraction changed with statin treatment, in relationship to plaque volume, but not LDL. CONCLUSION This proof-of-concept study employing a proteomic discovery platform offers insight into statin effects on novel immune pathways relevant to ASCVD progression in HIV. Novel biomarker discovery may enhance precision medicine strategies to estimate the efficacy of targeted therapies to reduce ASCVD progression and events in HIV.
Collapse
Affiliation(s)
| | - Janet Lo
- Program in Nutritional Metabolism, MGH and Harvard Medical School, Boston
| | - Robert Christenson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Lauren Stone
- Program in Nutritional Metabolism, MGH and Harvard Medical School, Boston
| | - Markella V Zanni
- Program in Nutritional Metabolism, MGH and Harvard Medical School, Boston
| | - Hang Lee
- MGH Biostatistics Center, MGH and Harvard Medical School, Boston, Massachusetts
| | - Steven K Grinspoon
- Program in Nutritional Metabolism, MGH and Harvard Medical School, Boston
| |
Collapse
|
33
|
Abstract
Cardiovascular disease, including atherosclerosis and atherosclerosis-associated complications, is an increasing cause of morbidity and mortality in human immunodeficiency virus (HIV) patients in the post-antiretroviral therapy era. HIV alone accelerates atherosclerosis. Antiretroviral therapy; HIV-associated comorbidities, such as dyslipidemia, drug abuse, and opportunistic infections; and lifestyle are risk factors for HIV-associated atherosclerosis. However, our current understanding of HIV-associated atherogenesis is very limited and has largely been obtained from clinical observation. There is a pressing need to experimentally unravel the missing link between HIV and atherosclerosis. Understanding these mechanisms will help to better develop and design novel therapeutic interventions for the treatment of HIV-associated cardiovascular disease. HIV mainly infects T cells and macrophages resulting in the induction of oxidative and endoplasmic reticulum stress, the formation of the inflammasome, and the dysregulation of autophagy. These mechanisms may contribute to HIV-associated atherogenesis. In this review, we will summarize our current understanding and propose potential mechanisms of HIV-associated atherosclerosis.
Collapse
Affiliation(s)
- Alison Kearns
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jennifer Gordon
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Tricia H Burdo
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.
| | - Xuebin Qin
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
34
|
The Role of Caveolin 1 in HIV Infection and Pathogenesis. Viruses 2017; 9:v9060129. [PMID: 28587148 PMCID: PMC5490806 DOI: 10.3390/v9060129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/02/2017] [Accepted: 05/22/2017] [Indexed: 12/29/2022] Open
Abstract
Caveolin 1 (Cav-1) is a major component of the caveolae structure and is expressed in a variety of cell types including macrophages, which are susceptible to human immunodeficiency virus (HIV) infection. Caveolae structures are present in abundance in mechanically stressed cells such as endothelial cells and adipocytes. HIV infection induces dysfunction of these cells and promotes pathogenesis. Cav-1 and the caveolae structure are believed to be involved in multiple cellular processes that include signal transduction, lipid regulation, endocytosis, transcytosis, and mechanoprotection. Such a broad biological role of Cav-1/caveolae is bound to have functional cross relationships with several molecular pathways including HIV replication and viral-induced pathogenesis. The current review covers the relationship of Cav-1 and HIV in respect to viral replication, persistence, and the potential role in pathogenesis.
Collapse
|
35
|
Risk Factors Associated With Quantitative Evidence of Lung Emphysema and Fibrosis in an HIV-Infected Cohort. J Acquir Immune Defic Syndr 2016; 71:420-7. [PMID: 26914911 DOI: 10.1097/qai.0000000000000894] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The disease spectrum for HIV-infected individuals has shifted toward comorbid non-AIDS conditions including chronic lung disease, but quantitative image analysis of lung disease has not been performed. OBJECTIVES To quantify the prevalence of structural changes of the lung indicating emphysema or fibrosis on radiographic examination. METHODS A cross-sectional analysis of 510 HIV-infected participants in the multicenter Lung-HIV study was performed. Data collected included demographics, biological markers of HIV, pulmonary function testing, and chest computed tomographic examinations. Emphysema and fibrosis-like changes were quantified on computed tomographic images based on threshold approaches. RESULTS In our cohort, 69% was on antiretroviral therapy, 13% had a current CD4 cell count less than 200 cells per microliter, 39% had an HIV viral load greater than 500 copies per milliliter, and 25% had at least a trace level of emphysema (defined as >2.5% of voxels <-950HU). Trace emphysema was significantly correlated with age, smoking, and pulmonary function. Neither current CD4 cell count nor HIV viral load was significantly correlated with emphysema. Fibrosis-like changes were detected in 29% of the participants and were significantly correlated with HIV viral load (Pearson correlation coefficient = 0.210; P < 0.05); current CD4 cell count was not associated with fibrosis. In multivariable analyses including age, race, and smoking status, HIV viral load remained significantly correlated with fibrosis-like changes (coefficient = 0.107; P = 0.03). CONCLUSIONS A higher HIV viral load was significantly associated with fibrosis-like changes, possibly indicating early interstitial lung disease, but emphysematous changes were not related to current CD4 cell count or HIV viral load.
Collapse
|
36
|
Abstract
Cardiovascular disease is one of the leading causes of morbidity and mortality in people living with HIV. Several epidemiological studies have shown an increased risk of myocardial infarction and stroke compared to uninfected controls. Although traditional risk factors contribute to this increased risk of cardiovascular disease, HIV-specific mechanisms likely also play a role. Systemic inflammation has been linked to cardiovascular disease in several populations suffering from chronic inflammation, including people living with HIV. Although antiretroviral therapy reduces immune activation, levels of inflammatory markers remain elevated compared to uninfected controls. The causes of this sustained immune response are likely multifactorial and incompletely understood. In this review, we summarize the evidence describing the relationship between inflammation and cardiovascular disease and discuss potential anti-inflammatory treatment options for cardiometabolic disease in people living with HIV.
Collapse
|
37
|
Bigna JJR, Sime PSD, Koulla-Shiro S. HIV related pulmonary arterial hypertension: epidemiology in Africa, physiopathology, and role of antiretroviral treatment. AIDS Res Ther 2015; 12:36. [PMID: 26566389 PMCID: PMC4642627 DOI: 10.1186/s12981-015-0078-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/29/2015] [Indexed: 01/28/2023] Open
Abstract
The development of HIV related pulmonary arterial hypertension (PAH) reduces the probability of survival by half as compared with HIV-infected individuals without HIV related PAH. HIV infected patients have a greater incidence of PAH compared to general population and have a 2500-fold increased risk of developing PAH. It is therefore important to have a recent overview of the problem in Africa, the most HIV affected part of the world (70 % of all HIV infection in the world). First, we discussed the epidemiology of HIV-related PAH in Africa. Second, the current understanding of the HIV-related PAH pathogenesis has been covered. Third, role of highly active antiretroviral therapy on HIV-related PAH has been revisited. There are few data concerning epidemiology of HIV related pulmonary hypertension in Africa leading to necessity to conduct further prospective large studies. The prevalence of PAH among HIV infected people in Africa varies from 5 to 13 %. The prevalence of HIV-related PAH in Africa is notably high compared to those in developed countries and in general population. The pathogenesis of PAH is clearly complex, and probably results from the interaction of multiple modulating genes with environmental factors. The physiopathology includes cytokines secretion increase which induces dysregulation of endothelial and vascular smooth muscle cell growth and imbalance of endogenous vasodilators and constrictors; HIV viral proteins which induces vascular oxidative stress, smooth myocyte proliferation and migration, and endothelial injury and genetic predisposition due to some major histocompatibility complex alleles, particularly HDL-DR6 and HLA-DR5. Histologically, HIV related PAH has the same characteristics with other types PAH. Antiretroviral therapy have a beneficial effect on the outcome of HIV related pulmonary hypertension, but it lacks evidence from large prospective studies.
Collapse
|
38
|
Shahbaz S, Manicardi M, Guaraldi G, Raggi P. Cardiovascular disease in human immunodeficiency virus infected patients: A true or perceived risk? World J Cardiol 2015; 7:633-44. [PMID: 26516417 PMCID: PMC4620074 DOI: 10.4330/wjc.v7.i10.633] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/07/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
After the successful introduction of highly active antiretroviral agents the survival of patients infected with the human immunodeficiency virus (HIV) in developed countries has increased substantially. This has allowed the surfacing of several chronic diseases among which cardiovascular disease (CVD) is prominent. The pathogenesis of CVD in HIV is complex and involves a combination of traditional and HIV related factors. An accurate assessment of risk of CVD in these patients is still elusive and as a consequence the most appropriate preventive and therapeutic interventions remain controversial.
Collapse
Affiliation(s)
- Shima Shahbaz
- Shima Shahbaz, Paolo Raggi, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton T6G 2B7, Alberta, Canada
| | - Marcella Manicardi
- Shima Shahbaz, Paolo Raggi, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton T6G 2B7, Alberta, Canada
| | - Giovanni Guaraldi
- Shima Shahbaz, Paolo Raggi, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton T6G 2B7, Alberta, Canada
| | - Paolo Raggi
- Shima Shahbaz, Paolo Raggi, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton T6G 2B7, Alberta, Canada
| |
Collapse
|
39
|
Lin S, Nadeau PE, Mergia A. HIV inhibits endothelial reverse cholesterol transport through impacting subcellular Caveolin-1 trafficking. Retrovirology 2015; 12:62. [PMID: 26169283 PMCID: PMC4501058 DOI: 10.1186/s12977-015-0188-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/06/2015] [Indexed: 01/13/2023] Open
Abstract
Background Human immunodeficiency virus (HIV) infection leads to decreased reverse cholesterol transport (RCT) in macrophages, and Nef mediated down-regulation and redistribution of ATP-binding cassette transporter A1 (ABCA1) are identified as key factors for this effect. This may partially explain the increased risk of atherosclerosis in HIV infected individuals. Since endothelial dysfunction is key in the initial stages of atherosclerosis, we sought to determine whether RCT was affected in human aortic endothelial cells (HAECs). Results We found that apoA-I does not significantly stimulate cholesterol efflux in HAECs while cholesterol efflux to high-density lipoprotein (HDL) was dramatically reduced in HAECs co-cultured with HIV infected cells. Studies with wild type and Nef defective HIV revealed no significant differences suggesting that multiple factors are working perhaps in concert with Nef to affect cholesterol efflux to HDL from HAECs. Interestingly, treating HAECs with recombinant Nef showed similar effect in HDL mediated cholesterol efflux as observed in HAECs co-cultured with HIV infected cells. Using a detergent-free based subcellular fractionation approach, we demonstrated that exposure of HAECs to HIV infected cells or Nef alone disrupts caveolin 1 (Cav-1) subcellular trafficking upon HDL stimulation. Moreover, Nef significantly enhanced tyrosine 14 phosphorylation of Cav-1 which may have an impact on recycling of Cav-1 and caveolae. Conclusion These results suggest that HIV interferes with cholesterol efflux by HDL in HAECs through the disruption of Cav-1s’ cellular distribution and that multiple factors are involved, possibly including Nef, for the inhibition of HDL mediated cholesterol efflux and alteration of cellular distribution of Cav-1. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0188-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanshan Lin
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, 32611, USA.
| | - Peter E Nadeau
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, 32611, USA.
| | - Ayalew Mergia
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
40
|
Abstract
The lives of individuals infected with HIV who have access to combination antiretroviral therapy (cART) are substantially prolonged, which increases the risk of developing non-AIDS comorbidities, including coronary heart disease (CHD). In Europe and the USA, individuals with HIV infection have a ∼1.5-fold increased risk of myocardial infarction relative to uninfected individuals. In Africa, the relative risk of myocardial infarction is unknown, but broadened access to life-extending cART suggests that rates of CHD will rise in this and other resource-constrained regions. Atherogenesis in HIV is affected by complex interactions between traditional and immune risk factors. cART has varied, regimen-specific effects on metabolic risk factors. Overall, cART seems to lessen proatherogenic immune activation, but does not eliminate it even in patients in whom viraemia is suppressed. Current strategies to decrease the risk of CHD in individuals infected with HIV include early initiation of cART regimens with the fewest metabolic adverse effects, and careful management of traditional CHD risk factors throughout treatment. Future strategies to prevent CHD in patients with HIV infection might involve the use of HIV-tailored CHD risk-prediction paradigms and the administration of therapies alongside cART that will further decrease proatherogenic HIV-specific immune activation.
Collapse
|
41
|
Sessa R, Pietro MD, Filardo S, Turriziani O. Infectious burden and atherosclerosis: A clinical issue. World J Clin Cases 2014; 2:240-249. [PMID: 25032197 PMCID: PMC4097149 DOI: 10.12998/wjcc.v2.i7.240] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/16/2014] [Accepted: 06/11/2014] [Indexed: 02/05/2023] Open
Abstract
Atherosclerotic cardiovascular diseases, chronic inflammatory diseases of multifactorial etiology, are the leading cause of death worldwide. In the last decade, more infectious agents, labeled as “infectious burden”, rather than any single pathogen, have been showed to contribute to the development of atherosclerosis through different mechanisms. Some microorganisms, such as Chlamydia pneumoniae (C. pneumoniae), human cytomegalovirus, etc. may act directly on the arterial wall contributing to endothelial dysfunction, foam cell formation, smooth muscle cell proliferation, platelet aggregation as well as cytokine, reactive oxygen specie, growth factor, and cellular adhesion molecule production. Others, such as Helicobacter pylori (H. pylori), influenza virus, etc. may induce a systemic inflammation which in turn may damage the vascular wall (e.g., by cytokines and proteases). Moreover, another indirect mechanism by which some infectious agents (such as H. pylori, C. pneumoniae, periodontal pathogens, etc.) may play a role in the pathogenesis of atherosclerosis is molecular mimicry. Given the complexity of the mechanisms by which each microorganism may contribute to atherosclerosis, defining the interplay of more infectious agents is far more difficult because the pro-atherogenic effect of each pathogen might be amplified. Clearly, continued research and a greater awareness will be helpful to improve our knowledge on the complex interaction between the infectious burden and atherosclerosis.
Collapse
|
42
|
Dai HL, Zhang M, Xiao ZC, Guang XF, Yin XL. Pulmonary arterial hypertension in HIV infection: a concise review. Heart Lung Circ 2014; 23:299-302. [PMID: 24345377 DOI: 10.1016/j.hlc.2013.10.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/16/2013] [Accepted: 10/22/2013] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is an infrequent but nevertheless serious life threatening severe complication of human immunodeficiency virus (HIV) infection. In today's era of antiretroviral therapy (ART), the mortality of HIV patients has greatly reduced due to improved immune function and fewer opportunistic infections. However, these patients have an increased incidence of PAH. In this review, we will mainly discuss HIV-related pulmonary arterial hypertension (HRPH) in terms of the epidemiology, pathogenesis, clinical characteristics and treatment.
Collapse
Affiliation(s)
- Hai-Long Dai
- Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, PR China; The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, PR China; Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Ming Zhang
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, PR China
| | - Zhi-Cheng Xiao
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, PR China; Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Xue-Feng Guang
- Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, PR China.
| | - Xiao-Long Yin
- Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, PR China
| |
Collapse
|
43
|
Cui HL, Ditiatkovski M, Kesani R, Bobryshev YV, Liu Y, Geyer M, Mukhamedova N, Bukrinsky M, Sviridov D. HIV protein Nef causes dyslipidemia and formation of foam cells in mouse models of atherosclerosis. FASEB J 2014; 28:2828-39. [PMID: 24642731 DOI: 10.1096/fj.13-246876] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with HIV are at an increased risk of cardiovascular disease. In this study we investigated the effect of Nef, a secreted HIV protein responsible for the impairment of cholesterol efflux, on the development of atherosclerosis in two animal models. ApoE(-/-) mice fed a high-fat diet and C57BL/6 mice fed a high-fat, high-cholesterol diet were injected with recombinant Nef (40 ng/injection) or vehicle, and the effects of Nef on development of atherosclerosis, inflammation, and dyslipidemia were assessed. In apoE(-/-) mice, Nef significantly increased the size of atherosclerotic lesions and caused vessel remodeling. Nef caused elevation of total cholesterol and triglyceride levels in the plasma while reducing high-density lipoprotein cholesterol levels. These changes were accompanied by a reduction of ABCA1 abundance in the liver, but not in the vessels. In C57BL/6 mice, Nef caused a significant number of lipid-laden macrophages presented in adventitia of the vessels; these cells were absent from the vessels of control mice. Nef caused sharp elevations of plasma triglyceride levels and body weight. Taken together, our findings suggest that Nef causes dyslipidemia and accumulation of cholesterol in macrophages within the vessel wall, supporting the role of Nef in pathogenesis of atherosclerosis in HIV-infected patients.-Cui, H. L., Ditiatkovski, M., Kesani, R., Bobryshev, Y. V., Liu, Y., Geyer, M., Mukhamedova, N., Bukrinsky, M., Sviridov, D. HIV protein Nef causes dyslipidemia and formation of foam cells in mouse models of atherosclerosis.
Collapse
Affiliation(s)
- Huanhuan L Cui
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Rajitha Kesani
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Yuri V Bobryshev
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Yingying Liu
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Matthias Geyer
- Center for Advanced European Studies and Research (CAESAR), Bonn, Germany; and
| | | | - Michael Bukrinsky
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, District of Columbia, USA
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia;
| |
Collapse
|
44
|
Wang T, Green LA, Gupta SK, Kim C, Wang L, Almodovar S, Flores SC, Prudovsky IA, Jolicoeur P, Liu Z, Clauss M. Transfer of intracellular HIV Nef to endothelium causes endothelial dysfunction. PLoS One 2014; 9:e91063. [PMID: 24608713 PMCID: PMC3946685 DOI: 10.1371/journal.pone.0091063] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 02/07/2014] [Indexed: 12/17/2022] Open
Abstract
With effective antiretroviral therapy (ART), cardiovascular diseases (CVD) are emerging as a major cause of morbidity and death in the aging HIV-infected population. To address whether HIV-Nef, a viral protein produced in infected cells even when virus production is halted by ART, can lead to endothelial activation and dysfunction, we tested Nef protein transfer to and activity in endothelial cells. We demonstrated that Nef is essential for major endothelial cell activating effects of HIV-infected Jurkat cells when in direct contact with the endothelium. In addition, we found that Nef protein in endothelial cells is sufficient to cause apoptosis, ROS generation and release of monocyte attractant protein-1 (MCP-1). The Nef protein-dependent endothelial activating effects can be best explained by our observation that Nef protein rapidly transfers from either HIV-infected or Nef-transfected Jurkat cells to endothelial cells between these two cell types. These results are of in vivo relevance as we demonstrated that Nef protein induces GFP transfer from T cells to endothelium in CD4.Nef.GFP transgenic mice and Nef is present in chimeric SIV-infected macaques. Analyzing the signal transduction effects of Nef in endothelial cells, we found that Nef-induced apoptosis is mediated through ROS-dependent mechanisms, while MCP-1 production is NF-kB dependent. Together, these data indicate that inhibition of Nef-associated pathways may be promising new therapeutic targets for reducing the risk for cardiovascular disease in the HIV-infected population.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- R. L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
| | - Linden A. Green
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- R. L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
| | - Samir K. Gupta
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chul Kim
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Liang Wang
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- R. L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
| | - Sharilyn Almodovar
- Department of Medicine, Pulmonary Sciences & Critical Care Medicine, University of Colorado, Denver, Colorado, United States of America
| | - Sonia C. Flores
- Department of Medicine, Pulmonary Sciences & Critical Care Medicine, University of Colorado, Denver, Colorado, United States of America
| | - Igor A. Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Paul Jolicoeur
- Institut de Recherches Cliniques de Montréal University of Montréal, Montréal, Quebec, Canada
| | - Ziyue Liu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Matthias Clauss
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- R. L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
- * E-mail:
| |
Collapse
|
45
|
Kherbeck N, Tamby MC, Bussone G, Dib H, Perros F, Humbert M, Mouthon L. The role of inflammation and autoimmunity in the pathophysiology of pulmonary arterial hypertension. Clin Rev Allergy Immunol 2013; 44:31-8. [PMID: 21394427 DOI: 10.1007/s12016-011-8265-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pulmonary arterial hypertension is characterized by a remodeling of pulmonary arteries with endothelial cell, fibroblast, and vascular smooth muscle cell activation and proliferation. Since pulmonary arterial hypertension occurs frequently in autoimmune conditions such as systemic sclerosis, inflammation and autoimmunity have been suspected to play a critical role in both idiopathic pulmonary arterial hypertension and systemic sclerosis-associated pulmonary arterial hypertension. High levels of pro-inflammatory cytokines such as interleukin-1 and interleukin-6, platelet-derived growth factor, or macrophage inflammatory protein 1 have been found in lung samples of patients with pulmonary arterial hypertension, along with inflammatory cell infiltrates mainly composed of macrophages and dendritic cells, T and B lymphocytes. In addition, circulating autoantibodies are found in the peripheral blood of patients. Thus, autoimmunity and inflammation probably play a role in the development of pulmonary arterial hypertension. In this setting, it would be important to set-up new experimental models of pulmonary arterial hypertension, in order to define novel therapeutics that specifically target immune disturbances in this devastating condition.
Collapse
|
46
|
Porter KM, Walp ER, Elms SC, Raynor R, Mitchell PO, Guidot DM, Sutliff RL. Human immunodeficiency virus-1 transgene expression increases pulmonary vascular resistance and exacerbates hypoxia-induced pulmonary hypertension development. Pulm Circ 2013; 3:58-67. [PMID: 23662175 PMCID: PMC3641741 DOI: 10.4103/2045-8932.109915] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary arterial resistance and vessel remodeling. Patients living with human immunodeficiency virus-1 (HIV-1) have an increased susceptibility to develop severe pulmonary hypertension (PH) irrespective of their CD4+ lymphocyte counts. While the underlying cause of HIV-PAH remains unknown, the interaction of HIV-1 proteins with the vascular endothelium may play a critical role in HIV-PAH development. Hypoxia promotes PH in experimental models and in humans, but the impact of HIV-1 proteins on hypoxia-induced pulmonary vascular dysfunction and PAH has not been examined. Therefore, we hypothesize that the presence of HIV-1 proteins and hypoxia synergistically augment the development of pulmonary vascular dysfunction and PH. We examined the effect of HIV-1 proteins on pulmonary vascular resistance by measuring pressure-volume relationships in isolated lungs from wild-type (WT) and HIV-1 Transgenic (Tg) rats. WT and HIV-1 Tg rats were exposed to 10% O2 for four weeks to induce experimental pulmonary hypertension to assess whether HIV-1 protein expression would impact the development of hypoxia-induced PH. Our results demonstrate that HIV-1 protein expression significantly increased pulmonary vascular resistance (PVR). HIV-1 Tg mice demonstrated exaggerated pulmonary vascular responses to hypoxia as evidenced by greater increases in right ventricular systolic pressures, right ventricular hypertrophy and vessel muscularization when compared to wild-type controls. This enhanced PH was associated with enhanced expression of HIF-1α and PCNA. In addition, in vitro studies reveal that medium from HIV-infected monocyte derived macrophages (MDM) potentiates hypoxia-induced pulmonary artery endothelial proliferation. These results indicate that the presence of HIV-1 proteins likely impact pulmonary vascular resistance and exacerbate hypoxia-induced PH.
Collapse
Affiliation(s)
- Kristi M Porter
- Department of Pulmonary, Allergy, and Critical Care, Emory University School of Medicine/Atlanta Veterans Affairs Medical Center Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Singer EJ, Valdes-Sueiras M, Commins DL, Yong W, Carlson M. HIV stroke risk: evidence and implications. Ther Adv Chronic Dis 2013; 4:61-70. [PMID: 23556125 DOI: 10.1177/2040622312471840] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
An estimated 34 million men, women, and children are infected with human immunodeficiency virus type 1 (HIV-1), the virus that causes acquired immunodeficiency syndrome (AIDS). Current technology cannot eradicate HIV-1, and most patients with HIV-1-infection (HIV+) will require lifelong treatment with combined antiretroviral therapy (cART). Stroke was recognized as a complication of HIV-1 infection since the early days of the epidemic. Potential causes of stroke in HIV-1 include opportunistic infections, tumors, atherosclerosis, diabetes, hypertension, autoimmunity, coagulopathies, cardiovascular disease, and direct HIV-1 infection of the arterial wall. Ischemic stroke has emerged as a particularly significant neurological complication of HIV-1 and its treatment due to the aging of the HIV+ population, chronic HIV-1 infection, inflammation, and prolonged exposure to cART. New prevention and treatment strategies tailored to the needs of the HIV+ population are needed to address this issue.
Collapse
Affiliation(s)
- Elyse J Singer
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine at UCLA, 11645 Wilshire Blvd, Suite 770, Los Angeles, CA 90025, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Antiretroviral therapy has improved longevity for HIV-infected persons, but long-term HIV infection is now complicated by increased rates of chronic medical conditions including pulmonary disorders. Chronic obstructive pulmonary disease, lung cancer, asthma, and pulmonary hypertension are becoming common comorbidities of HIV infection, and these diseases may develop as a result of HIV-related risk factors, such as antiretroviral drug toxicities, colonization by infectious organisms, HIV viremia, immune activation, or immune dysfunction. It also appears that the ability to control HIV infection does not completely eliminate the risk for infectious complications, such as bacterial pneumonia and tuberculosis. The effect of HIV infection on lung-specific immune responses is being elucidated to help develop better prevention and treatment strategies in HIV-infected persons.
Collapse
Affiliation(s)
- Matthew R Gingo
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
49
|
Porter KM, Sutliff RL. HIV-1, reactive oxygen species, and vascular complications. Free Radic Biol Med 2012; 53:143-59. [PMID: 22564529 PMCID: PMC3377788 DOI: 10.1016/j.freeradbiomed.2012.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/16/2012] [Accepted: 03/18/2012] [Indexed: 02/07/2023]
Abstract
Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species (ROS), including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species and how these effects are likely to contribute to vascular dysfunction and disease.
Collapse
Affiliation(s)
- Kristi M Porter
- Pulmonary, Allergy and Critical Care Division, Emory University School of Medicine/Atlanta VA Medical Center, 1670 Clairmont Road, Mailstop 151P, Decatur, GA 30033, USA.
| | | |
Collapse
|
50
|
Lü JM, Nurko J, Jiang J, Weakley SM, Lin PH, Yao Q, Chen C. Nordihydroguaiaretic acid (NDGA) inhibits ritonavir-induced endothelial dysfunction in porcine pulmonary arteries. Med Sci Monit 2012; 17:BR312-318. [PMID: 22037733 PMCID: PMC3275091 DOI: 10.12659/msm.882040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND HIV infection and treatment with highly active antiretroviral therapy (HAART) including HIV protease inhibitor ritonavir (RTV) have been associated with endothelial dysfunction and cardiovascular disease including pulmonary arterial hypertension. The objective of this study was to determine if nordihydroguaiaretic acid (NDGA), a natural herbal antioxidant found in the creosote bush Larrea tridentate, can protect vascular tissues against RTV-induced vascular injury. MATERIAL/METHODS Fresh porcine pulmonary artery (PA) rings were treated with a clinically relevant concentration of RTV (15 µmol/L) with or without NDGA for 24 hours, and then subjected to myograph analysis for vasomotor reactivity. Expression of endothelial nitric oxide synthase (eNOS) in both treated PA rings and human pulmonary artery endothelial cells (HPAECs) was analyzed by real-time PCR and immunohistochemistry. Oxidative stress levels were analyzed with the lucigenin-enhanced chemiluminescence and glutathione assay. RESULTS In response to bradykinin at 10-10 mol/L, RTV-treated PA rings showed a 39% reduction in endothelium-dependent vasorelaxation compared with the control vessels (P<0.05); when co-cultured with NDGA (1.75 or 3.50 µmol/L), the relaxation increased by 25% and 48%, respectively. RTV also decreased the maximal contraction and endothelium-independent vasorelaxation in RTV-treated vessels, while NDGA improved these vasomotor responses. In addition, treatment of RTV significantly decreased eNOS mRNA levels in both porcine PAs and HPAECs, and reduced eNOS immunoreactivity in porcine PAs, while NDGA significantly inhibited this effect of RTV. Furthermore, NDGA significantly blocked RTV-induced increase of superoxide anion in the PA rings and inhibited RTV-induced decrease of glutathione in HPAECs. CONCLUSIONS NDGA effectively inhibits the detrimental effects of HIV protease inhibitor RTV on vasomotor functions in porcine PAs. NDGA also blocks RTV-induced decrease of eNOS expression and increase of oxidative stress in both porcine PAs and HPAECs. This study may provide valuable information for the development of effective strategies for the prevention and treatment of HAART-associated cardiovascular complications.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|