1
|
Fan H, Sun M, Zhu JH. S-nitrosoglutathione inhibits pyroptosis of kidney tubular epithelial cells in sepsis via the SIRT3/SOD2/mtROS signaling pathway. Ren Fail 2025; 47:2472987. [PMID: 40050253 DOI: 10.1080/0886022x.2025.2472987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 03/12/2025] Open
Abstract
OBJECTIVES Pyroptosis is considered to play an important role in the occurrence, development and prognosis of septic acute kidney injury (SAKI). We aimed to explore the specific molecular mechanism of S-nitrosoglutathione (SNG) regulating pyroptosis of kidney tubular epithelial cells (KTECs). METHODS By constructing a mice model of sepsis, we pretreated them with SNG and used biochemical methods to detect the levels of serum inflammatory factors and mitochondrial reactive oxygen species (mtROS), assessed the severity of kidney injury and KTECs mitochondrial damage, and detected the expression of KTECs pyroptosis-related proteins and sirtuin 3 (SIRT3)/superoxide dismutase 2 (SOD2) pathway proteins. RESULTS The kidney injury caused by sepsis was significantly aggravated, and the levels of IL-1β, IL-6, IL-18, TNF-α, malondialdehyde (MDA) and mtROS were all increased, accompanied by the decrease of SIRT3 and SOD2 proteins, while NOD-like receptor with pyrin domain 3 (NLRP3), gasdermin D (GSDMD), Caspase-1 proteins expression and the number of KTECs apoptotic cells were all increased. However, after SNG pretreatment, the levels of IL-1β, IL-6, IL-18, TNF-α, MDA and mtROS were all significantly decreased, the expression of SIRT3 and SOD2 proteins were increased, NLRP3, GSDMD, Caspase-1 proteins expression and the number of KTECs apoptotic cells were decreased. CONCLUSIONS SNG protects SAKI by regulating the SIRT3/SOD2/mtROS signaling pathway to inhibit the pyroptosis of KTECs.
Collapse
Affiliation(s)
- Heng Fan
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R China
| | - Min Sun
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R China
| | - Jian-Hua Zhu
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R China
| |
Collapse
|
2
|
Wu W, Lan W, Jiao X, Wang K, Deng Y, Chen R, Zeng R, Li J. Pyroptosis in sepsis-associated acute kidney injury: mechanisms and therapeutic perspectives. Crit Care 2025; 29:168. [PMID: 40270016 PMCID: PMC12020238 DOI: 10.1186/s13054-025-05329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 04/25/2025] Open
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a severe complication characterized by high morbidity and mortality, driven by multi-organ dysfunction. Recent evidence suggests that pyroptosis, a form of programmed cell death distinct from apoptosis and necrosis, plays a critical role in the pathophysiology of S-AKI. This review examines the mechanisms of pyroptosis, focusing on inflammasome activation (e.g., NLRP3), caspase-mediated processes, and the role of Gasdermin D in renal tubular damage. We also discuss the contributions of inflammatory mediators, oxidative stress, and potential therapeutic strategies targeting pyroptosis, including inflammasome inhibitors, caspase inhibitors, and anti-inflammatory therapies. Lastly, we highlight the clinical implications and challenges in translating these findings into effective treatments, underscoring the need for personalized medicine approaches in managing S-AKI.
Collapse
Affiliation(s)
- Wenyu Wu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, China
| | - Wanning Lan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin Jiao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Kai Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yawen Deng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Rui Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Research On Emergency in TCM, Guangzhou, Guangdong, China.
| | - Ruifeng Zeng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Research On Emergency in TCM, Guangzhou, Guangdong, China.
| | - Jun Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
3
|
Aksu F, Akkoc RF, Savur E, Çelik C. Effects of N-Acetylcysteine on Humanin and Endostatin in Rats Exposed to Formaldehyde. Cureus 2024; 16:e61354. [PMID: 38947691 PMCID: PMC11214271 DOI: 10.7759/cureus.61354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
INTRODUCTION People are constantly exposed to formaldehyde, a volatile and poisonous gas, in indoor environments. In particular, anatomists, pathologists, histologists, and those involved in embalming are exposed to higher amounts of formaldehyde continuously due to their work. This study aimed to investigate the effect of N-acetylcysteine on endostatin and humanin values in male rats exposed to experimental formaldehyde. METHODS In the study, 28 male Spraque-Dawley rats aged 12-14 weeks (seven animals in each group: control group, formaldehyde group, N-acetylcysteine group, formaldehyde+N-acetylcysteine group) were used. Four weeks later, the animals were sacrificed by decapitation. Following decapitation, endostatin and humanin levels in the serum of rats were studied by the enzyme-linked immunoassay (ELISA) method. In all analyses, p<0.05 was accepted as statistically significant. RESULTS Humanin and endostatin values were checked in the serum of rats. When humanin levels were compared between groups, a statistically significant difference was found between the formaldehyde group and both the control group (p<0.05) and the N-acetylcysteine group (p<0.05). In the formaldehyde+N-acetylcysteine group, it was determined that the humanin level was impaired due to formaldehyde exposure, approaching the control group values with the administered N-acetylcysteine. When the endostatin level was compared between the groups, a statistical significance (p<0.05) was found only between the formaldehyde group and the N-acetylcysteine group. In the formaldehyde+N-acetylcysteine group, it was determined that the endostatin level was impaired due to formaldehyde exposure, approaching the control group values with the administered N-acetylcysteine. CONCLUSION In this study, the effects of N-acetylcysteine on humanin and endostatin on rats exposed to formaldehyde were demonstrated for the first time. Formaldehyde exposure negatively affected humanin and endostatin levels in rat sera. N-acetylcysteine ameliorated the negative effects of formaldehyde, bringing humanin and endostatin levels closer to the healthy control group.
Collapse
Affiliation(s)
- Feyza Aksu
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, TUR
| | | | - Ezgi Savur
- College of Medicine, Faculty of Medicine, Firat University, Elazig, TUR
| | - Celal Çelik
- College of Medicine, Faculty of Medicine, Firat University, Elazig, TUR
| |
Collapse
|
4
|
Fan H, Sun M, Zhu JH. Clinical role of serum microRNA-155 in early diagnosis and prognosis of septic patients with acute kidney injury. Int Urol Nephrol 2024; 56:1687-1694. [PMID: 37898565 DOI: 10.1007/s11255-023-03855-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND AND PURPOSE Acute kidney injury (AKI) is a common complication in patients with sepsis, and early detection and timely treatment are crucial. This article aims to explore the clinical role of microRNA-155 (miR-155) in early diagnosis and prognosis evaluation of septic patients with acute kidney injury. METHODS We collected the blood samples of septic patients and measured the relative expression of serum miR-155 by RT-qPCR, and drew the receiver operating characteristic (ROC) curves to evaluate its early diagnosis for septic AKI. RESULTS The relative expression of miR-155 in the septic AKI was significantly higher than that in the septic non-AKI, and increased with the aggravation of renal function damage. The ROC curve of miR-155 for the diagnosis of septic AKI was 1.91 (95% CI: 1.61-2.19). When the optimal cut-off value of miR-155 expression was 2.37, its sensitivity for diagnosing septic AKI was 91.12% (95% CI: 80.41-95.07%), and its specificity was 84.52% (95% CI: 71.74-89.36%). Furthermore, the severity of kidney injury, SOFA score, APACHE II score and miR-155 were the risk factors affecting the prognosis of septic patients with AKI. CONCLUSION Serum miR-155 can be used as a novel biomarker for the early diagnosis of septic AKI, and also has important clinical value in the prognosis evaluation of septic patients with AKI.
Collapse
Affiliation(s)
- Heng Fan
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Road, Ningbo, Zhejiang Province, People's Republic of China
| | - Min Sun
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Road, Ningbo, Zhejiang Province, People's Republic of China
| | - Jian-Hua Zhu
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Road, Ningbo, Zhejiang Province, People's Republic of China.
| |
Collapse
|
5
|
Chen R, Zheng Y, Zhou C, Dai H, Wang Y, Chu Y, Luo J. N-Acetylcysteine Attenuates Sepsis-Induced Muscle Atrophy by Downregulating Endoplasmic Reticulum Stress. Biomedicines 2024; 12:902. [PMID: 38672256 PMCID: PMC11048408 DOI: 10.3390/biomedicines12040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Sepsis-induced muscle atrophy is characterized by a loss of muscle mass and function which leads to decreased quality of life and worsens the long-term prognosis of patients. N-acetylcysteine (NAC) has powerful antioxidant and anti-inflammatory properties, and it relieves muscle wasting caused by several diseases, whereas its effect on sepsis-induced muscle atrophy has not been reported. The present study investigated the effect of NAC on sepsis-induced muscle atrophy and its possible mechanisms. (2) Methods: The effect of NAC on sepsis-induced muscle atrophy was assessed in vivo and in vitro using cecal ligation and puncture-operated (CLP) C57BL/6 mice and LPS-treated C2C12 myotubes. We used immunofluorescence staining to analyze changes in the cross-sectional area (CSA) of myofibers in mice and the myotube diameter of C2C12. Protein expressions were analyzed by Western blotting. (3) Results: In the septic mice, the atrophic response manifested as a reduction in skeletal muscle weight and myofiber cross-sectional area, which is mediated by muscle-specific ubiquitin ligases-muscle atrophy F-box (MAFbx)/Atrogin-1 and muscle ring finger 1 (MuRF1). NAC alleviated sepsis-induced skeletal muscle wasting and LPS-induced C2C12 myotube atrophy. Meanwhile, NAC inhibited the sepsis-induced activation of the endoplasmic reticulum (ER) stress signaling pathway. Furthermore, using 4-Phenylbutyric acid (4-PBA) to inhibit ER stress in LPS-treated C2C12 myotubes could partly abrogate the anti-muscle-atrophy effect of NAC. Finally, NAC alleviated myotube atrophy induced by the ER stress agonist Thapsigargin (Thap). (4) Conclusions: NAC can attenuate sepsis-induced muscle atrophy, which may be related to downregulating ER stress.
Collapse
Affiliation(s)
- Renyu Chen
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingfang Zheng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenchen Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongkai Dai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yurou Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Chu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinlong Luo
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Cao W, Zhang J, Yu S, Gan X, An R. N-acetylcysteine regulates oxalate induced injury of renal tubular epithelial cells through CDKN2B/TGF-β/SMAD axis. Urolithiasis 2024; 52:46. [PMID: 38520518 DOI: 10.1007/s00240-023-01527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/26/2023] [Indexed: 03/25/2024]
Abstract
This study was aimed to investigate the preventive effects of N-acetyl-L-cysteine (NAC) against renal tubular cell injury induced by oxalate and stone formation and further explore the related mechanism. Transcriptome sequencing combined with bioinformatics analysis were performed to identify differentially expressed gene (DEG) and related pathways. HK-2 cells were pretreated with or without antioxidant NAC/with or silencing DEG before exposed to sodium oxalate. Then, the cell viability, oxidative biomarkers of superoxidase dismutase (SOD) and malondialdehyde (MDA), apoptosis and cell cycle were measured through CCK8, ELISA and flow cytometry assay, respectively. Male SD rats were separated into control group, hyperoxaluria (HOx) group, NAC intervention group, and TGF-β/SMAD pathway inhibitor group. After treatment, the structure changes and oxidative stress and CaOx crystals deposition were evaluated in renal tissues by H&E staining, immunohistochemical and Pizzolato method. The expression of TGF-β/SMAD pathway related proteins (TGF-β1, SMAD3 and SMAD7) were determined by Western blot in vivo and in vitro. CDKN2B is a DEG screened by transcriptome sequencing combined with bioinformatics analysis, and verified by qRT-PCR. Sodium oxalate induced declined HK-2 cell viability, in parallel with inhibited cellular oxidative stress and apoptosis. The changes induced by oxalate in HK-2 cells were significantly reversed by NAC treatment or the silencing of CDKN2B. The cell structure damage and CaOx crystals deposition were observed in kidney tissues of HOx group. Meanwhile, the expression levels of SOD and 8-OHdG were detected in kidney tissues of HOx group. The changes induced by oxalate in kidney tissues were significantly reversed by NAC treatment. Besides, expression of SMAD7 was significantly down-regulated, while TGF-β1 and SMAD3 were accumulated induced by oxalate in vitro and in vivo. The expression levels of TGF-β/SMAD pathway related proteins induced by oxalate were reversed by NAC. In conclusion, we found that NAC could play an anti-calculus role by mediating CDKN2B/TGF-β/SMAD axis.
Collapse
Affiliation(s)
- Wei Cao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jingbo Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shiliang Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China
| | - Xiuguo Gan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China
| | - Ruihua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China.
| |
Collapse
|
7
|
Zhong DN, Pan YP, Fan H, Lv JL. Protective Effect of Salidroside on Acute Kidney Injury in Sepsis by Inhibiting Oxidative Stress, Mitochondrial Damage, and Cell Apoptosis. Biol Pharm Bull 2024; 47:1550-1556. [PMID: 39313391 DOI: 10.1248/bpb.b24-00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Acute kidney injury (AKI) is one of the common complications in patients with sepsis. We aimed to investigate the protective mechanism of salidroside (SLDS) on AKI induced by cecal ligation and perforation (CLP). We established a sepsis model using the CLP, and pretreated the mice with SLDS. We used biochemical methods to measure renal function, inflammatory factors and oxidase levels. We used transmission electron microscopy to observe mitochondrial damage, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) to detect apoptosis in renal tubular epithelial cells (TECs), and RT-quantitative PCR (qPCR) to detect the expression of apoptotic genes. CLP induced renal pathological damage and decreased renal function, activated inflammatory factors and oxidases, leading to mitochondrial damage and increased apoptosis of TECs. SLDS pretreatment improved renal pathological damage, reduced tumor necrosis factor (TNF)-α, interleukin (IL)-6 and malondialdehyde levels, and increased the levels of glutathione peroxidase, superoxide dismutase and catalase. Moreover, SLDS stabilized mitochondrial damage induced by CLP, inhibited TECs apoptosis, increased Bcl-2 mRNA level, and decreased Bax and Caspase-3 mRNA levels. SLDS protects CLP induced AKI by inhibiting oxidative stress, mitochondrial damage, and cell apoptosis in TECs.
Collapse
Affiliation(s)
- Dan-Ni Zhong
- School of Pharmacy, Xinxiang Medical University
- Department of Pharmacy, Ningbo No.6 Hospital
| | - Yun-Ping Pan
- Department of Intensive Care Unit, Ningbo No.6 Hospital
| | - Heng Fan
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University
| | - Jie-Li Lv
- School of Pharmacy, Xinxiang Medical University
| |
Collapse
|
8
|
Juha M, Molnár A, Jakus Z, Ledó N. NETosis: an emerging therapeutic target in renal diseases. Front Immunol 2023; 14:1253667. [PMID: 37744367 PMCID: PMC10514582 DOI: 10.3389/fimmu.2023.1253667] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear and granular components. The primary role of NETS is to prevent the dissemination of microbes and facilitate their elimination. However, this process is accompanied by collateral proinflammatory adverse effects when the NET release becomes uncontrollable, or clearance is impaired. Although NET-induced organ damage is conducted primarily and indirectly via immune complexes and the subsequent release of cytokines, their direct effects on cells are also remarkable. NETosis plays a critical pathogenic role in several renal disorders, such as the early phase of acute tubular necrosis, anti-neutrophil cytoplasmic antibody-mediated renal vasculitis, lupus nephritis, thrombotic microangiopathies, anti-glomerular basement membrane disease, and diabetic nephropathy. Their substantial contribution in the course of these disorders makes them a desirable target in the therapeutic armamentarium. This article gives an in-depth review of the heterogeneous pathogenesis and physiological regulations of NETosis and its pivotal role in renal diseases. Based on the pathogenesis, the article also outlines the current therapeutic options and possible molecular targets in the treatment of NET-related renal disorders. Methods We carried out thorough literature research published in PubMed and Google Scholar, including a comprehensive review and analysis of the classification, pathomechanisms, and a broad spectrum of NET-related kidney disorders. Conclusions NETosis plays a pivotal role in certain renal diseases. It initiates and maintains inflammatory and autoimmune disorders, thus making it a desirable target for improving patient and renal outcomes. Better understanding and clinical translation of the pathogenesis are crucial aspects to treatment, for improving patient, and renal outcomes.
Collapse
Affiliation(s)
- Márk Juha
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Adél Molnár
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Nóra Ledó
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Association between blood caspase-9 concentrations and septic patient prognosis. Wien Klin Wochenschr 2023; 135:75-79. [PMID: 35854154 DOI: 10.1007/s00508-022-02059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND There are few data on caspase‑9 (intrinsic apoptosis pathway initiating caspase) in septic patients. Higher serum caspase‑9 levels in septic patients than in healthy subjects have been found. However, there are no data on the prognosis of septic patients and blood caspase‑9 concentrations. Therefore, the objective of this study was to analyze the potential association between blood caspase‑9 concentrations and prognosis in septic patients. METHODS Three Spanish hospitals participated in the recruitment of septic patients admitted to intensive care units in this observational and prospective study. Serum caspase‑9 concentrations were determined at the time of sepsis diagnosis. The 30-day mortality was the outcome variable. RESULTS Higher Acute Phisiology and Chronic Health Evaluation(APACHE)-II (p < 0.001), Sepsis-related Organ Failure Assessment score (SOFA) (p < 0.001), serum lactic acid levels (p = 0.001), serum caspase‑9 levels (p < 0.001), age (p < 0.001), International normalized ratio (INR) (p = 0.001), rate of septic shock (p = 0.001), Activated partial thromboplastin time (aPTT) (p = 0.03), rate of diabetes mellitus (p = 0.04), and lower platelet counts (p = 0.01) were found in non-surviving (n = 80) than in surviving patients (n = 134). Multiple logistic regression analysis showed an association between serum caspase‑9 concentrations and mortality (Odds Ratio (OR) = 1.985; 95% Confidence Interval (CI) = 1.359-2.900; p < 0.001) regardless of age, SOFA, lactic acid and septic shock and history of diabetes mellitus. No significant differences were found when we compared area under ROC curves of serum caspase‑9 with SOFA (p = 0.92) and with lactic acid (p = 0.59). CONCLUSIONS The main novel finding of our study was the association between blood caspase‑9 concentrations and septic patient prognosis. However, our study showed some limitations (for example, the absence of data in respect to execution of Surviving Sepsis Campaign bundles); thus, more research could be interesting to confirm our preliminary findings.
Collapse
|
10
|
Mamashli M, Nasseri S, Mohammadi Y, Ayati S, Zarban A. Anti-inflammatory effects of N-Acetylcysteine and Elaeagnus angustifolia extract on acute lung injury induced by λ-carrageenan in rat. Inflammopharmacology 2022; 30:1759-1768. [PMID: 35723848 PMCID: PMC9207887 DOI: 10.1007/s10787-022-01003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
N-Acetylcysteine (NAC) is a chemical compound with anti-inflammatory and antioxidant activity and acts as a free radical scavenger. Elaeagnus angustifolia (EA) is a plant native to the western part of Iran, with antioxidant and anti-inflammatory properties. The present study been taken evaluated the protective effect afforded by EA and NAC extracts on carrageenan-induced acute lung injury in Wistar rats. In this study, 42 rats were randomly assigned into seven groups. NAC and EA extracts were orally administered once/day for 21 continuous days. Pulmonary damage was induced by intratracheal injection of 100 μl of 2% λ-Carrageenan on day 21. Twenty-four hours post-surgery, the rats were euthanized and the samples were collected. Pretreatment with NAC and EA extracts reduced the total and differential cell accumulation as well as IL-6, and TNF-α cytokines. Antioxidant indicators demonstrate that in the groups receiving NAC and EA extract, MDA decreased while thiol and antioxidant capacity elevated. Treatment with NAC and EA significantly reduced Carrageenan-induced pathological pulmonary tissue injury. NAC and EA extract has protective effects on acute carrageenan-induced lung injury.
Collapse
Affiliation(s)
- Morteza Mamashli
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Ghafari Street, Birjand, 9717853577, South Khorasan, Iran
| | - Saeed Nasseri
- Cellular and Molecular Research Center, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Yaser Mohammadi
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Sahar Ayati
- Department of Pathology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Asghar Zarban
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Ghafari Street, Birjand, 9717853577, South Khorasan, Iran.
| |
Collapse
|
11
|
Yu Z, Yu K, Wu S, Zhao Q, Guo Y, Liu H, Huang X. Two contradictory facades of N-acetylcysteine activity towards renal carcinoma cells. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2070365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhihai Yu
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Kun Yu
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Shaobo Wu
- Central Laboratory, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Qiurong Zhao
- Central Laboratory, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Yaochuan Guo
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Hengchuan Liu
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Xiao Huang
- School of Physical Education, Guangxi University of Science and Technology, Liuzhou, People’s Republic of China
| |
Collapse
|
12
|
Fan H, Su BJ, Le JW, Zhu JH. Salidroside Protects Acute Kidney Injury in Septic Rats by Inhibiting Inflammation and Apoptosis. Drug Des Devel Ther 2022; 16:899-907. [PMID: 35386851 PMCID: PMC8978577 DOI: 10.2147/dddt.s361972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022] Open
Abstract
Purpose To clarify the protective effect and mechanism of salidroside (SLDS) on acute kidney injury (AKI) in septic rats. Methods We pretreated rats with different doses of SLDS and analyzed the impact of SLDS on the survival of septic rats. We evaluated the levels of inflammatory factors in rats, the expression of NF-ƙB p65 in the kidney, and the apoptosis of kidney tubular epithelial cells (KTECs). Results SLDS significantly decreased the mortality of septic rats, and it reduced the levels of TNF-α, IL-1β, and IL-17A in plasma and kidneys and decreased the levels of serum creatinine, plasma renal injury molecule-1 and plasma neutrophil gelatin-associated lipocalin. Moreover, SLDS could significantly decrease the expression of NF-ƙB p65 in kidney tissues and the apoptotic number of KETCs, while reducing the mRNA levels of Caspase-3 and Bax mRNA, and increasing the level of Bcl-2 mRNA. Conclusion SLDS pretreatment protects against AKI in septic rats by inhibiting the inflammation of kidney and the apoptosis of KTECs.
Collapse
Affiliation(s)
- Heng Fan
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Bin-Jie Su
- Department of Intensive Care Unit, Ningbo First Hospital Haishu Branch, Ningbo, Zhejiang Province, People's Republic of China
| | - Jian-Wei Le
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Jian-Hua Zhu
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| |
Collapse
|
13
|
Effects of Itxasol© Components on Gene Expression in Bacteria Related to Infections of the Urinary Tract and to the Inflammation Process. Int J Mol Sci 2021; 22:ijms222312655. [PMID: 34884459 PMCID: PMC8657809 DOI: 10.3390/ijms222312655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Urinary tract infections (UTIs) represent a health problem of the first magnitude since they affect large segments of the population, cause increased mortality and comorbidity, and have a high incidence of relapse. Therefore, UTIs cause a major socioeconomic concern. Current antibiotic treatments have various limitations such as the appearance of resistance to antibiotics, nephrotoxicity, and side effects such as gastrointestinal problems including microbiota alterations that contribute to increasing antibiotic resistance. In this context, Itxasol© has emerged, approved as an adjuvant for the treatment of UTIs. Designed with biomimetic principles, it is composed of arbutin, umbelliferon, and N-acetyl cysteine. In this work, we review the activities of these three compounds concerning the changes they produce in the expression of bacterial genes and those related to inflammation as well as assess how they are capable of affecting the DNA of bacteria and fungi.
Collapse
|
14
|
Kobroob A, Peerapanyasut W, Kumfu S, Chattipakorn N, Wongmekiat O. Effectiveness of N-Acetylcysteine in the Treatment of Renal Deterioration Caused by Long-Term Exposure to Bisphenol A. Biomolecules 2021; 11:655. [PMID: 33946939 PMCID: PMC8145636 DOI: 10.3390/biom11050655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Human health hazards caused by bisphenol A (BPA), a precursor for epoxy resins and polycarbonate-based plastics, are well documented and are closely associated with mitochondrial impairment and oxidative imbalance. This study aimed to assess the therapeutic efficacy of N-acetylcysteine (NAC) on renal deterioration caused by long-term BPA exposure and examine the signaling transduction pathway involved. Male Wistar rats were given vehicle or BPA orally for 12 weeks then the BPA-treated group was subdivided to receive vehicle or NAC concurrently with BPA for a further 4 weeks, while the vehicle-treated normal control group continued to receive vehicle through to the end of experiment. Proteinuria, azotemia, glomerular filtration reduction and histopathological abnormalities caused by chronic BPA exposure were significantly reduced following NAC therapy. NAC also diminished nitric oxide and lipid peroxidation but enhanced renal glutathione levels, and counteracted BPA-induced mitochondrial swelling, increased mitochondrial reactive oxygen species production, and the loss of mitochondrial membrane potential. The benefit of NAC was related to the modulation of signaling proteins in the AMPK-SIRT3-SOD2 axis. The present study shows the potential of NAC to restore mitochondrial integrity and oxidative balance after long-term BPA exposure, and suggests that NAC therapy is an effective approach to tackle renal deterioration in this condition.
Collapse
Affiliation(s)
- Anongporn Kobroob
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Wachirasek Peerapanyasut
- Renal Physiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (N.C.)
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (N.C.)
| | - Orawan Wongmekiat
- Renal Physiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
15
|
Koriem KM, Selim AY, Mazen RA. N-acetylcysteine-amide improves tissue oxidative stress, DNA damage, and proteins disappearance in methamphetamine toxicity more efficiently than N-acetyl-L-cysteine. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2021. [DOI: 10.1016/j.toxac.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Rind L, Ahmad M, Khan MI, Badruddeen, Akhtar J, Ahmad U, Yadav C, Owais M. An insight on safety, efficacy, and molecular docking study reports of N-acetylcysteine and its compound formulations. J Basic Clin Physiol Pharmacol 2021; 33:223-233. [PMID: 33638319 DOI: 10.1515/jbcpp-2020-0099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/12/2020] [Indexed: 01/07/2023]
Abstract
N-acetylcysteine (NAC) is considered as the body's major antioxidant molecules with diverse biological properties. In this review, the pharmacokinetics, safety and efficacy report on both the preclinical and clinical summary of NAC is discussed. Both in vitro and in vivo preclinical studies along with the clinical data have shown that NAC has enormous biological properties. NAC is used in the treatment of acetaminophen poisoning, diabetic nephropathy, Alzheimer's disease, schizophrenia, and ulcerative colitis, etc. Numerous analytical techniques, for instance, UPLC, LC-MS, HPLC, RP-IPC are primarily employed for the estimation of NAC in different single and fixed-dose combinations. The molecular docking studies on NAC demonstrate the binding within Sudlow's site-I hydrogen bonds and formation of NAC and BSA complexes. Various hydrophobic and hydrophilic amino acids generally exist in making contact with NAC as NAC-BSA complexes. Docking studies of NAC with the active site of the urease exposed an O-coordinated bond through nickel 3002 and a hydrogen bond through His-138. NAC and its analogs also made the allosteric pockets that helped to describe almost all favorable pose for the chaperone in a complex through the protein. Thus, we intended to highlight the several health benefits of this antioxidant compound and applications in pharmaceutical product development.
Collapse
Affiliation(s)
- Laiba Rind
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Badruddeen
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Usama Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Chandan Yadav
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohammad Owais
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
N-Acetylcysteine Reduced Ischemia and Reperfusion Damage Associated with Steatohepatitis in Mice. Int J Mol Sci 2020; 21:ijms21114106. [PMID: 32526845 PMCID: PMC7313069 DOI: 10.3390/ijms21114106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/22/2023] Open
Abstract
N-acetylcysteine (NAC) is a pharmacological alternative with great potential for reducing the deleterious effects of surgical procedures on patients with steatohepatitis. We evaluated the effect of NAC on hepatic ischemia/reperfusion (I/R) injury in C57BL/6J mice, 8 weeks-old, weighing 25-30 g, with steatohepatitis induced by a methionine- and choline-deficient (MCD) diet. Groups: MCD group (steatohepatitis), MCD-I/R group (steatohepatitis plus 30 min of 70% liver ischemia and 24 h of reperfusion), MCD-I/R+NAC group (same as MCD-I/R group plus 150 mg/kg NAC 15 min before ischemia), and control group (normal AIN-93M diet). Liver enzymes and histopathology; nitrite and TBARS (thiobarbituric acid reactive substances) levels; pro-inflammatory cytokines; antioxidants enzymes; Nrf2 (nuclear factor erythroid-2-related factor 2) expression; and apoptosis were evaluated. In the group treated with NAC, reductions in inflammatory infiltration; AST (aspartate aminotransferase), nitrite, and TBARS levels; GPx (gutathione peroxidase) activity; cytokines synthesis; and number of apoptotic cells were observed while the GR (glutathione reductase) activity was increased. No differences were observed in Nfr2 expression or in SOD (superoxide dismutase), CAT (catalase), and GST (glutathione S-transferase) activities. Thus, it may be concluded that NAC exerts beneficial effects on mice livers with steatohepatitis submitted to I/R by reducing oxidative stress, inflammatory response, and cell death.
Collapse
|