1
|
Hahn S, Han IW, Shin SH, Kim G, Kim JH. Modeling diabetic intestinal organoids: Aspects of rapid gut barrier disruption. Biochem Biophys Res Commun 2025; 760:151730. [PMID: 40168710 DOI: 10.1016/j.bbrc.2025.151730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Increased intestinal permeability can occur in patients with diabetes mellitus. Previous studies demonstrated a correlation between impaired intestinal barrier function, elevated blood glucose levels, and diminished protective capacity of intestinal epithelial cells. However, few studies have explored gut-barrier disruption using three-dimensional (3D) in vitro models. In this study, we developed and optimized a 3D intestinal organoid model that mimics diabetic conditions by exposing the organoids to high glucose (HG) and palmitic acid (PA) levels. Human intestinal organoids derived from samples of both healthy individuals and patients with diabetes mellitus were analyzed. We evaluated the transcript levels of tight junction proteins and inflammation-related genes in ex vivo mouse intestinal organoids cultured under HG and PA conditions for 48 h. Human intestinal organoids from patients with diabetes mellitus exhibited reduced expression of genes associated with intestinal function and barrier integrity compared with those from healthy individuals. In mouse intestinal organoids, PA treatment induced cytotoxicity and significantly reduced the expression of intestinal stem cells and tight junction proteins, including zonula occludens-1 and occludin, compared with the control and HG-treated groups. Furthermore, treatment with HG and PA resulted in increased levels of inflammatory factors compared with those in the control group. Our in vitro model using 3D intestinal organoids can be used to investigate the impact of diabetic conditions and provide insights into gut barrier disruption.
Collapse
Affiliation(s)
- Soojung Hahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - In Woong Han
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Sang Hyun Shin
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
| |
Collapse
|
2
|
Ettayebi K, Kaur G, Patil K, Dave J, Ayyar BV, Tenge VR, Neill FH, Zeng XL, Speer AL, Di Rienzi SC, Britton RA, Blutt SE, Crawford SE, Ramani S, Atmar RL, Estes MK. Insights into human norovirus cultivation in human intestinal enteroids. mSphere 2024; 9:e0044824. [PMID: 39404443 PMCID: PMC11580437 DOI: 10.1128/msphere.00448-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
Human noroviruses (HuNoVs) are a significant cause of epidemic and sporadic acute gastroenteritis worldwide. The lack of a reproducible culture system hindered the study of HuNoV replication and pathogenesis for almost a half-century. This barrier was overcome with our successful cultivation of multiple HuNoV strains in human intestinal enteroids (HIEs), which has significantly advanced HuNoV research. We optimized culture media conditions and generated genetically modified HIE cultures to enhance HuNoV replication in HIEs. Building upon these achievements, we now present new insights into this culture system, which involve testing different media, unique HIE lines, and additional virus strains. HuNoV infectivity was evaluated and compared in new HIE models, including HIEs generated from different intestinal segments of individual adult organ donors, HIEs from human intestinal organoids produced from directed differentiation of human embryonic stem cells that were then transplanted and matured in mice before making enteroids (H9tHIEs), genetically engineered (J4FUT2 knock-in [KI], J2STAT1 knockout [KO]) HIEs, as well as HIEs derived from a patient with common variable immunodeficiency (CVID) and from infants. Our findings reveal that small intestinal HIEs, but not colonoids, from adults, H9tHIEs, HIEs from a CVID patient, and HIEs from infants support HuNoV replication with segment and strain-specific differences in viral infection. J4FUT2-KI HIEs exhibit the highest susceptibility to HuNoV infection, allowing the cultivation of a broader range of genogroup I and II HuNoV strains than previously reported. Overall, these results contribute to a deeper understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research.IMPORTANCEHuman noroviruses (HuNoVs) cause global diarrheal illness and chronic infections in immunocompromised patients. This paper reports approaches for cultivating HuNoVs in secretor positive human intestinal enteroids (HIEs). HuNoV infectivity was compared in new HIE models, including ones from (i) different intestinal segments of single donors, (ii) human embryonic stem cell-derived organoids transplanted into mice, (iii) genetically modified lines, and (iv) a patient with common variable immunodeficiency disease. HIEs from small intestine, but not colon, support HuNoV replication with donor, segment, and strain-specific variations. Unexpectedly, HIEs from one donor are resistant to GII.3 infection. The genetically modified J4FUT2 knock-in (KI) HIEs enable cultivation of a broad range of GI and GII genotypes. New insights into strain-specific differences in HuNoV replication in HIEs support this platform for advancing understanding of HuNoV biology and developing potential therapeutics.
Collapse
Affiliation(s)
- Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Gurpreet Kaur
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Janam Dave
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - B. Vijayalakshmi Ayyar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Victoria R. Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Frederick H. Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Allison L. Speer
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Sara C. Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
- Department of Medicine, BCM, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
- Department of Medicine, BCM, Houston, Texas, USA
| |
Collapse
|
3
|
Ettayebi K, Kaur G, Patil K, Dave J, Ayyar BV, Tenge VR, Neill FH, Zeng XL, Speer AL, Di Rienzi SC, Britton RA, Blutt SE, Crawford SE, Ramani S, Atmar RL, Estes MK. Insights into Human Norovirus Cultivation in Human Intestinal Enteroids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595764. [PMID: 38826387 PMCID: PMC11142254 DOI: 10.1101/2024.05.24.595764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Human noroviruses (HuNoVs) are a significant cause of epidemic and sporadic acute gastroenteritis worldwide. The lack of a reproducible culture system hindered the study of HuNoV replication and pathogenesis for almost a half-century. This barrier was overcome with our successful cultivation of multiple HuNoV strains in human intestinal enteroids (HIEs), which has significantly advanced HuNoV research. We optimized culture media conditions and generated genetically-modified HIE cultures to enhance HuNoV replication in HIEs. Building upon these achievements, we now present new insights to this culture system, which involve testing different media, unique HIE lines, and additional virus strains. HuNoV infectivity was evaluated and compared in new HIE models, including HIEs generated from different intestinal segments of individual adult organ donors, HIEs from human intestinal organoids produced from directed differentiation of human embryonic stem cells into intestinal organoids that were transplanted and matured in mice before making enteroids (H9tHIEs), genetically-engineered (J4 FUT2 knock-in [ KI ], J2 STAT1 knock-out [ KO ]) HIEs, as well as HIEs derived from a patient with common variable immunodeficiency (CVID) and from infants. Our findings reveal that small intestinal HIEs, but not colonoids, from adults, H9tHIEs, HIEs from a CVID patient, and HIEs from infants support HuNoV replication with segment and strain-specific differences in viral infection. J4 FUT2-KI HIEs exhibit the highest susceptibility to HuNoV infection, allowing the cultivation of a broader range of GI and GII HuNoV strains than previously reported. Overall, these results contribute to a deeper understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research. Importance HuNoVs cause global diarrheal illness and chronic infections in immunocompromised patients. This manuscript reports approaches for cultivating HuNoVs in secretor positive human intestinal enteroids (HIEs). HuNoV infectivity was compared in new HIE models, including ones from i) different intestinal segments of single donors, ii) human embryonic stem cell-derived organoids transplanted into mice, iii) genetically-modified lines, and iv) a patient with chronic variable immunodeficiency disease. HIEs from small intestine, but not colon, support HuNoV replication with donor, segment and strain-specific variations. Unexpectedly, HIEs from one donor are resistant to GII.3 infection. The genetically-modified J4 FUT2-KI HIEs enable cultivation of a broad range of GI and GII genotypes. New insights into strain-specific differences in HuNoV replication in HIEs support this platform for advancing understanding of HuNoV biology and developing potential therapeutics.
Collapse
|
4
|
McNeill EP, Gupta VS, Sequeira DJ, Shroyer NF, Speer AL. Evaluation of Murine Host Sex as a Biological Variable in Transplanted Human Intestinal Organoid Development. Dig Dis Sci 2022; 67:5511-5521. [PMID: 35334015 PMCID: PMC10251489 DOI: 10.1007/s10620-022-07442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Human intestinal organoids (HIOs), when transplanted into immunocompromised mice (tHIOs), demonstrate significant growth and maturation. While both male and female mice are reported to be viable hosts for these experiments, a direct comparison of sex-related differences in tHIO structure and development has not been performed. AIMS We sought to identify host sex-related differences in tHIO engraftment, morphology, and epithelial and mesenchymal development. METHODS HIOs were generated in vitro and transplanted beneath the kidney capsule of NSG male and female mice. tHIOs were harvested at 8-9 weeks. Anthropometric measurements were captured. tHIOs were divided in half and histology or RT-qPCR performed. Morphology was evaluated and epithelial architecture graded on a scale of 1 (absence of crypts/villi) to 4 (elongated crypt-villus axis). RT-qPCR and immunofluorescence microscopy were performed for epithelial and mesenchymal differentiation markers. RESULTS Host survival and tHIO engraftment were equivalent in male and female hosts. tHIO weight and length were also equivalent between groups. The number of lumens per tHIOs from male and female hosts was similar, but the mean lumen circumference was larger for tHIOs from male hosts. tHIOs from male hosts were more likely to demonstrate higher grades of epithelial development. However, both groups showed similar differentiation into secretory and absorptive epithelial lineages. Markers for intestinal identity, mesenchymal development, and brush border enzymes were also expressed similarly between groups. CONCLUSIONS While male host sex was associated with larger tHIO lumen size and mucosal maturation, tHIOs from both groups had similar engraftment, growth, and epithelial and mesenchymal cytodifferentiation.
Collapse
Affiliation(s)
- Eoin P McNeill
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin Street, Suite 5.258, Houston, TX, 77030, USA
| | - Vikas S Gupta
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin Street, Suite 5.258, Houston, TX, 77030, USA
| | - David J Sequeira
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin Street, Suite 5.258, Houston, TX, 77030, USA
| | - Noah F Shroyer
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, 6450 E Cullen St, BCMN-N1301, Houston, TX, 77030, USA
| | - Allison L Speer
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin Street, Suite 5.258, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Beanland BT, McNeill EP, Sequeira DJ, Xue H, Shroyer NF, Speer AL. Investigation of murine host sex as a biological variable in epithelial barrier function and muscle contractility in human intestinal organoids. FASEB J 2022; 36:e22613. [PMID: 36250916 PMCID: PMC9645459 DOI: 10.1096/fj.202101740rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 08/23/2022] [Accepted: 10/02/2022] [Indexed: 01/06/2023]
Abstract
Intestinal failure (IF) occurs when intestinal surface area or function is not sufficient to support digestion and nutrient absorption. Human intestinal organoid (HIO)-derived tissue-engineered intestine is a potential cure for IF. Research to date has demonstrated successful HIO transplantation (tHIO) into mice with significant in vivo maturation. An area lacking in the literature is exploration of murine host sex as a biological variable (SABV) in tHIO function. In this study, we investigate murine host SABV in tHIO epithelial barrier function and muscle contractility. HIOs were generated in vitro and transplanted into nonobese diabetic, severe combined immunodeficiency gamma chain deficient male and female mice. tHIOs were harvested after 8-12 weeks in vivo. Reverse transcriptase polymerase chain reaction and immunohistochemistry were conducted to compare tight junctions and contractility-related markers in tHIOs. An Ussing chamber and contractility apparatus were used to evaluate tHIO epithelial barrier and muscle contractile function, respectively. The expression and morphology of tight junction and contractility-related markers from tHIOs in male and female murine hosts is not significantly different. Epithelial barrier function as measured by transepithelial resistance, short circuit current, and fluorescein isothiocyanate-dextran permeability is no different in tHIOs from male and female hosts, although these results may be limited by HIO epithelial immaturity and a short flux time. Muscle contractility as measured by total contractile activity, amplitude, frequency, and tension is not significantly different in tHIOs from male and female hosts. The data suggest that murine host sex may not be a significant biological variable influencing tHIO function, specifically epithelial barrier maintenance and muscle contractility, though limitations exist in our model.
Collapse
Affiliation(s)
- Brooke T. Beanland
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, United States
| | - Eoin P. McNeill
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, United States
| | - David J. Sequeira
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, United States
| | - Hasen Xue
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, United States
| | - Noah F. Shroyer
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States
| | - Allison L. Speer
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
6
|
Bosáková V, De Zuani M, Sládková L, Garlíková Z, Jose SS, Zelante T, Hortová Kohoutková M, Frič J. Lung Organoids—The Ultimate Tool to Dissect Pulmonary Diseases? Front Cell Dev Biol 2022; 10:899368. [PMID: 35912110 PMCID: PMC9326165 DOI: 10.3389/fcell.2022.899368] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/24/2022] [Indexed: 11/15/2022] Open
Abstract
Organoids are complex multicellular three-dimensional (3D) in vitro models that are designed to allow accurate studies of the molecular processes and pathologies of human organs. Organoids can be derived from a variety of cell types, such as human primary progenitor cells, pluripotent stem cells, or tumor-derived cells and can be co-cultured with immune or microbial cells to further mimic the tissue niche. Here, we focus on the development of 3D lung organoids and their use as disease models and drug screening tools. We introduce the various experimental approaches used to model complex human diseases and analyze their advantages and disadvantages. We also discuss validation of the organoids and their physiological relevance to the study of lung diseases. Furthermore, we summarize the current use of lung organoids as models of host-pathogen interactions and human lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, or SARS-CoV-2 infection. Moreover, we discuss the use of lung organoids derived from tumor cells as lung cancer models and their application in personalized cancer medicine research. Finally, we outline the future of research in the field of human induced pluripotent stem cell-derived organoids.
Collapse
Affiliation(s)
- Veronika Bosáková
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marco De Zuani
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Lucie Sládková
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Zuzana Garlíková
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Shyam Sushama Jose
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Jan Frič
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- *Correspondence: Jan Frič,
| |
Collapse
|
7
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Crawford SE, Ramani S, Blutt SE, Estes MK. Organoids to Dissect Gastrointestinal Virus-Host Interactions: What Have We Learned? Viruses 2021; 13:999. [PMID: 34071878 PMCID: PMC8230193 DOI: 10.3390/v13060999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
Historically, knowledge of human host-enteric pathogen interactions has been elucidated from studies using cancer cells, animal models, clinical data, and occasionally, controlled human infection models. Although much has been learned from these studies, an understanding of the complex interactions between human viruses and the human intestinal epithelium was initially limited by the lack of nontransformed culture systems, which recapitulate the relevant heterogenous cell types that comprise the intestinal villus epithelium. New investigations using multicellular, physiologically active, organotypic cultures produced from intestinal stem cells isolated from biopsies or surgical specimens provide an exciting new avenue for understanding human specific pathogens and revealing previously unknown host-microbe interactions that affect replication and outcomes of human infections. Here, we summarize recent biologic discoveries using human intestinal organoids and human enteric viral pathogens.
Collapse
Affiliation(s)
- Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.C.); (S.R.); (S.E.B.)
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.C.); (S.R.); (S.E.B.)
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.C.); (S.R.); (S.E.B.)
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.C.); (S.R.); (S.E.B.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|