1
|
de Haas FJH, Kläy L, Débarre F, Otto SP. Modelling daisy quorum drive: A short-term bridge across engineered fitness valleys. PLoS Genet 2024; 20:e1011262. [PMID: 38753875 PMCID: PMC11135765 DOI: 10.1371/journal.pgen.1011262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/29/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Engineered gene-drive techniques for population modification and/or suppression have the potential for tackling complex challenges, including reducing the spread of diseases and invasive species. Gene-drive systems with low threshold frequencies for invasion, such as homing-based gene drive, require initially few transgenic individuals to spread and are therefore easy to introduce. The self-propelled behavior of such drives presents a double-edged sword, however, as the low threshold can allow transgenic elements to expand beyond a target population. By contrast, systems where a high threshold frequency must be reached before alleles can spread-above a fitness valley-are less susceptible to spillover but require introduction at a high frequency. We model a proposed drive system, called "daisy quorum drive," that transitions over time from a low-threshold daisy-chain system (involving homing-based gene drive such as CRISPR-Cas9) to a high-threshold fitness-valley system (requiring a high frequency-a "quorum"-to spread). The daisy-chain construct temporarily lowers the high thresholds required for spread of the fitness-valley construct, facilitating use in a wide variety of species that are challenging to breed and release in large numbers. Because elements in the daisy chain only drive subsequent elements in the chain and not themselves and also carry deleterious alleles ("drive load"), the daisy chain is expected to exhaust itself, removing all CRISPR elements and leaving only the high-threshold fitness-valley construct, whose spread is more spatially restricted. Developing and analyzing both discrete patch and continuous space models, we explore how various attributes of daisy quorum drive affect the chance of modifying local population characteristics and the risk that transgenic elements expand beyond a target area. We also briefly explore daisy quorum drive when population suppression is the goal. We find that daisy quorum drive can provide a promising bridge between gene-drive and fitness-valley constructs, allowing spread from a low frequency in the short term and better containment in the long term, without requiring repeated introductions or persistence of CRISPR elements.
Collapse
Affiliation(s)
- Frederik J. H. de Haas
- Biodiversity Research Center, Department of Zoology, University of British Columbia, Vancouver BC, Canada
| | - Léna Kläy
- Institute of Ecology and Environmental Sciences Paris (IEES Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Creteil, Université de Paris, Paris Cedex 5, France
| | - Florence Débarre
- Institute of Ecology and Environmental Sciences Paris (IEES Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Creteil, Université de Paris, Paris Cedex 5, France
| | - Sarah P. Otto
- Biodiversity Research Center, Department of Zoology, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
2
|
Janzen A, Pothula R, Sychla A, Feltman NR, Smanski MJ. Predicting thresholds for population replacement gene drives. BMC Biol 2024; 22:40. [PMID: 38369493 PMCID: PMC10875781 DOI: 10.1186/s12915-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Threshold-dependent gene drives (TDGDs) could be used to spread desirable traits through a population, and are likely to be less invasive and easier to control than threshold-independent gene drives. Engineered Genetic Incompatibility (EGI) is an extreme underdominance system previously demonstrated in Drosophila melanogaster that can function as a TDGD when EGI agents of both sexes are released into a wild-type population. RESULTS Here we use a single generation fitness assay to compare the fecundity, mating preferences, and temperature-dependent relative fitness to wild-type of two distinct genotypes of EGI agents. We find significant differences in the behavior/performance of these EGI agents that would not be predicted a priori based on their genetic design. We report a surprising temperature-dependent change in the predicted threshold for population replacement in an EGI agent that drives ectopic expression of the developmental morphogen pyramus. CONCLUSIONS The single-generation fitness assay presented here could reduce the amount of time required to estimate the threshold for TDGD strategies for which hybrid genotypes are inviable. Additionally, this work underscores the importance of empirical characterization of multiple engineered lines, as behavioral differences can arise in unique genotypes for unknown reasons.
Collapse
Affiliation(s)
- Anna Janzen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Ratnasri Pothula
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Nathan R Feltman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA.
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA.
| |
Collapse
|
3
|
Pan M, Champer J. Making waves: Comparative analysis of gene drive spread characteristics in a continuous space model. Mol Ecol 2023; 32:5673-5694. [PMID: 37694511 DOI: 10.1111/mec.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
With their ability to rapidly increase in frequency, gene drives can be used to modify or suppress target populations after an initial release of drive individuals. Recent advances have revealed many possibilities for different types of drives, and several of these have been realized in experiments. These drives have advantages and disadvantages related to their ease of construction, confinement and capacity to be used for modification or suppression. Though characteristics of these drives have been explored in modelling studies, assessment in continuous space environments has been limited, often focusing on outcomes rather than fundamental properties. Here, we conduct a comparative analysis of many different gene drive types that have the capacity to form a wave of advance in continuous space using individual-based simulations in continuous space. We evaluate the drive wave speed as a function of drive performance and ecological parameters, which reveals substantial differences between drive performance in panmictic versus spatial environments. In particular, we find that suppression drive waves are uniquely vulnerable to fitness costs and undesired CRISPR cleavage activity in embryos by maternal deposition. Some drives, however, retain robust performance even with widely varying efficiency parameters. To gain a better understanding of drive waves, we compare their panmictic performance and find that the rate of wild-type allele removal is correlated with drive wave speed, though this is also affected by other factors. Overall, our results provide a useful resource for understanding the performance of drives in spatially continuous environments, which may be most representative of potential drive deployment in many relevant scenarios.
Collapse
Affiliation(s)
- Mingzuyu Pan
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Frieß JL, Lalyer CR, Giese B, Simon S, Otto M. Review of gene drive modelling and implications for risk assessment of gene drive organisms. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Garrood WT, Cuber P, Willis K, Bernardini F, Page NM, Haghighat-Khah RE. Driving down malaria transmission with engineered gene drives. Front Genet 2022; 13:891218. [PMID: 36338968 PMCID: PMC9627344 DOI: 10.3389/fgene.2022.891218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
The last century has witnessed the introduction, establishment and expansion of mosquito-borne diseases into diverse new geographic ranges. Malaria is transmitted by female Anopheles mosquitoes. Despite making great strides over the past few decades in reducing the burden of malaria, transmission is now on the rise again, in part owing to the emergence of mosquito resistance to insecticides, antimalarial drug resistance and, more recently, the challenges of the COVID-19 pandemic, which resulted in the reduced implementation efficiency of various control programs. The utility of genetically engineered gene drive mosquitoes as tools to decrease the burden of malaria by controlling the disease-transmitting mosquitoes is being evaluated. To date, there has been remarkable progress in the development of CRISPR/Cas9-based homing endonuclease designs in malaria mosquitoes due to successful proof-of-principle and multigenerational experiments. In this review, we examine the lessons learnt from the development of current CRISPR/Cas9-based homing endonuclease gene drives, providing a framework for the development of gene drive systems for the targeted control of wild malaria-transmitting mosquito populations that overcome challenges such as with evolving drive-resistance. We also discuss the additional substantial works required to progress the development of gene drive systems from scientific discovery to further study and subsequent field application in endemic settings.
Collapse
Affiliation(s)
- William T. Garrood
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Piotr Cuber
- Department of Molecular Biology, Core Research Laboratories, Natural History Museum, London, United Kingdom
| | - Katie Willis
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicole M. Page
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
6
|
Girardin L, Débarre F. Demographic feedbacks can hamper the spatial spread of a gene drive. J Math Biol 2021; 83:67. [PMID: 34862932 DOI: 10.1007/s00285-021-01702-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022]
Abstract
This paper is concerned with a reaction-diffusion system modeling the fixation and the invasion in a population of a gene drive (an allele biasing inheritance, increasing its own transmission to offspring). In our model, the gene drive has a negative effect on the fitness of individuals carrying it, and is therefore susceptible of decreasing the total carrying capacity of the population locally in space. This tends to generate an opposing demographic advection that the gene drive has to overcome in order to invade. While previous reaction-diffusion models neglected this aspect, here we focus on it and try to predict the sign of the traveling wave speed. It turns out to be an analytical challenge, only partial results being within reach, and we complete our theoretical analysis by numerical simulations. Our results indicate that taking into account the interplay between population dynamics and population genetics might actually be crucial, as it can effectively reverse the direction of the invasion and lead to failure. Our findings can be extended to other bistable systems, such as the spread of cytoplasmic incompatibilities caused by Wolbachia.
Collapse
Affiliation(s)
- Léo Girardin
- CNRS, Institut Camille Jordan, Université Claude Bernard Lyon-1, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne Cedex, France.
| | - Florence Débarre
- CNRS, Sorbonne Université, Université Paris Est Creteil, INRAE, IRD, Institute of Ecology and Environmental Sciences, Paris, IEES-Paris, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
7
|
Verma P, Reeves RG, Gokhale CS. A common gene drive language eases regulatory process and eco-evolutionary extensions. BMC Ecol Evol 2021; 21:156. [PMID: 34372763 PMCID: PMC8351217 DOI: 10.1186/s12862-021-01881-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/12/2021] [Indexed: 02/08/2023] Open
Abstract
Background Synthetic gene drive technologies aim to spread transgenic constructs into wild populations even when they impose organismal fitness disadvantages. The extraordinary diversity of plausible drive mechanisms and the range of selective parameters they may encounter makes it very difficult to convey their relative predicted properties, particularly where multiple approaches are combined. The sheer number of published manuscripts in this field, experimental and theoretical, the numerous techniques resulting in an explosion in the gene drive vocabulary hinder the regulators’ point of view. We address this concern by defining a simplified parameter based language of synthetic drives. Results Employing the classical population dynamics approach, we show that different drive construct (replacement) mechanisms can be condensed and evaluated on an equal footing even where they incorporate multiple replacement drives approaches. Using a common language, it is then possible to compare various model properties, a task desired by regulators and policymakers. The generalization allows us to extend the study of the invasion dynamics of replacement drives analytically and, in a spatial setting, the resilience of the released drive constructs. The derived framework is available as a standalone tool. Conclusion Besides comparing available drive constructs, our tool is also useful for educational purpose. Users can also explore the evolutionary dynamics of future hypothetical combination drive scenarios. Thus, our results appraise the properties and robustness of drives and provide an intuitive and objective way for risk assessment, informing policies, and enhancing public engagement with proposed and future gene drive approaches.
Collapse
Affiliation(s)
- Prateek Verma
- Research Group for Theoretical Models of Eco-evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - R Guy Reeves
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Chaitanya S Gokhale
- Research Group for Theoretical Models of Eco-evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
8
|
Buchman A, Shriner I, Yang T, Liu J, Antoshechkin I, Marshall JM, Perry MW, Akbari OS. Engineered reproductively isolated species drive reversible population replacement. Nat Commun 2021; 12:3281. [PMID: 34078888 DOI: 10.1101/2020.08.09.242982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/23/2021] [Indexed: 05/27/2023] Open
Abstract
Engineered reproductive species barriers are useful for impeding gene flow and driving desirable genes into wild populations in a reversible threshold-dependent manner. However, methods to generate synthetic barriers are lacking in advanced eukaryotes. Here, to overcome this challenge, we engineer SPECIES (Synthetic Postzygotic barriers Exploiting CRISPR-based Incompatibilities for Engineering Species), an engineered genetic incompatibility approach, to generate postzygotic reproductive barriers. Using this approach, we create multiple reproductively isolated SPECIES and demonstrate their reproductive isolation and threshold-dependent gene drive capabilities in D. melanogaster. Given the near-universal functionality of CRISPR tools, this approach should be portable to many species, including insect disease vectors in which confinable gene drives could be of great practical utility.
Collapse
Affiliation(s)
- Anna Buchman
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Isaiah Shriner
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Ting Yang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Junru Liu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA, USA
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Michael W Perry
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
9
|
Buchman A, Shriner I, Yang T, Liu J, Antoshechkin I, Marshall JM, Perry MW, Akbari OS. Engineered reproductively isolated species drive reversible population replacement. Nat Commun 2021; 12:3281. [PMID: 34078888 PMCID: PMC8173020 DOI: 10.1038/s41467-021-23531-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/23/2021] [Indexed: 01/09/2023] Open
Abstract
Engineered reproductive species barriers are useful for impeding gene flow and driving desirable genes into wild populations in a reversible threshold-dependent manner. However, methods to generate synthetic barriers are lacking in advanced eukaryotes. Here, to overcome this challenge, we engineer SPECIES (Synthetic Postzygotic barriers Exploiting CRISPR-based Incompatibilities for Engineering Species), an engineered genetic incompatibility approach, to generate postzygotic reproductive barriers. Using this approach, we create multiple reproductively isolated SPECIES and demonstrate their reproductive isolation and threshold-dependent gene drive capabilities in D. melanogaster. Given the near-universal functionality of CRISPR tools, this approach should be portable to many species, including insect disease vectors in which confinable gene drives could be of great practical utility.
Collapse
Affiliation(s)
- Anna Buchman
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Isaiah Shriner
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Ting Yang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Junru Liu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA, USA
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Michael W Perry
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
10
|
Champer J, Champer SE, Kim IK, Clark AG, Messer PW. Design and analysis of CRISPR-based underdominance toxin-antidote gene drives. Evol Appl 2021; 14:1052-1069. [PMID: 33897820 PMCID: PMC8061266 DOI: 10.1111/eva.13180] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
CRISPR gene drive systems offer a mechanism for transmitting a desirable transgene throughout a population for purposes ranging from vector-borne disease control to invasive species suppression. In this simulation study, we assess the performance of several CRISPR-based underdominance gene drive constructs employing toxin-antidote (TA) principles. These drives disrupt the wild-type version of an essential gene using a CRISPR nuclease (the toxin) while simultaneously carrying a recoded version of the gene (the antidote). Drives of this nature allow for releases that could be potentially confined to a desired geographic location. This is because such drives have a nonzero-invasion threshold frequency required for the drive to spread through the population. We model drives which target essential genes that are either haplosufficient or haplolethal, using nuclease promoters with expression restricted to the germline, promoters that additionally result in cleavage activity in the early embryo from maternal deposition, and promoters that have ubiquitous somatic expression. We also study several possible drive architectures, considering both "same-site" and "distant-site" systems, as well as several reciprocally targeting drives. Together, these drive variants provide a wide range of invasion threshold frequencies and options for both population modification and suppression. Our results suggest that CRISPR TA underdominance drive systems could allow for the design of flexible and potentially confinable gene drive strategies.
Collapse
Affiliation(s)
- Jackson Champer
- Department of Computational BiologyCornell UniversityIthacaNew YorkUSA
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Samuel E. Champer
- Department of Computational BiologyCornell UniversityIthacaNew YorkUSA
| | - Isabel K. Kim
- Department of Computational BiologyCornell UniversityIthacaNew YorkUSA
| | - Andrew G. Clark
- Department of Computational BiologyCornell UniversityIthacaNew YorkUSA
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Philipp W. Messer
- Department of Computational BiologyCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
11
|
Greenbaum G, Feldman MW, Rosenberg NA, Kim J. Designing gene drives to limit spillover to non-target populations. PLoS Genet 2021; 17:e1009278. [PMID: 33630838 PMCID: PMC7943199 DOI: 10.1371/journal.pgen.1009278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/09/2021] [Accepted: 11/14/2020] [Indexed: 12/12/2022] Open
Abstract
The prospect of utilizing CRISPR-based gene-drive technology for controlling populations has generated much excitement. However, the potential for spillovers of gene-drive alleles from the target population to non-target populations has raised concerns. Here, using mathematical models, we investigate the possibility of limiting spillovers to non-target populations by designing differential-targeting gene drives, in which the expected equilibrium gene-drive allele frequencies are high in the target population but low in the non-target population. We find that achieving differential targeting is possible with certain configurations of gene-drive parameters, but, in most cases, only under relatively low migration rates between populations. Under high migration, differential targeting is possible only in a narrow region of the parameter space. Because fixation of the gene drive in the non-target population could severely disrupt ecosystems, we outline possible ways to avoid this outcome. We apply our model to two potential applications of gene drives—field trials for malaria-vector gene drives and control of invasive species on islands. We discuss theoretical predictions of key requirements for differential targeting and their practical implications. CRISPR-based gene drive is an emerging genetic engineering technology that enables engineered genetic variants, which are usually designed to be harmful to the organism carrying them, to be spread rapidly in populations. Although this technology is promising for controlling disease vectors and invasive species, there is a considerable risk that a gene drive could unintentionally spillover from the target population, where it was deployed, to non-target populations. We develop mathematical models of gene-drive dynamics that incorporate migration between target and non-target populations to investigate the possibility of effectively applying a gene drive in the target population while limiting its spillover to non-target populations (‘differential targeting’). We observe that the feasibility of differential targeting depends on the gene-drive design specification, as well as on the migration rates between the populations. Even when differential targeting is possible, as migration increases, the possibility for differential targeting disappears. We find that differential targeting can be effective for low migration rates, and that it is sensitive to the design of the gene drive under high migration rates. We suggest that differential targeting could be used, in combination with other mitigation measures, as an additional safeguard to limit gene drive spillovers.
Collapse
Affiliation(s)
- Gili Greenbaum
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| | - Marcus W. Feldman
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Noah A. Rosenberg
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Jaehee Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
12
|
Oberhofer G, Ivy T, Hay BA. Split versions of Cleave and Rescue selfish genetic elements for measured self limiting gene drive. PLoS Genet 2021; 17:e1009385. [PMID: 33600432 PMCID: PMC7951863 DOI: 10.1371/journal.pgen.1009385] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/11/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022] Open
Abstract
Gene drive elements promote the spread of linked traits, providing methods for changing the composition or fate of wild populations. Drive mechanisms that are self-limiting are attractive because they allow control over the duration and extent of trait spread in time and space, and are reversible through natural selection as drive wanes. Self-sustaining Cleave and Rescue (ClvR) elements include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene, a tightly linked recoded version of the essential gene resistant to cleavage (the Rescue), and a Cargo. ClvR spreads by creating loss-of-function (LOF) conditions in which those without ClvR die because they lack functional copies of the essential gene. We use modeling to show that when the Rescue-Cargo and one or both components required for LOF allele creation (Cas9 and gRNA) reside at different locations (split ClvR), drive of Rescue-Cargo is self-limiting due to a progressive decrease in Cas9 frequency, and thus opportunities for creation of LOF alleles, as spread occurs. Importantly, drive strength and duration can be extended in a measured manner-which is still self-limiting-by moving the two components close enough to each other that they experience some degree of linkage. With linkage, Cas9 transiently experiences drive by hitchhiking with Rescue-Cargo until linkage disequilibrium between the two disappears, a function of recombination frequency and number of generations, creating a novel point of control. We implement split ClvR in Drosophila, with key elements on different chromosomes. Cargo/Rescue/gRNAs spreads to high frequency in a Cas9-dependent manner, while the frequency of Cas9 decreases. These observations show that measured, transient drive, coupled with a loss of future drive potential, can be achieved using the simple toolkit that make up ClvR elements-Cas9 and gRNAs and a Rescue/Cargo.
Collapse
Affiliation(s)
- Georg Oberhofer
- California Institute of Technology, Pasadena, California, United States of America
| | - Tobin Ivy
- California Institute of Technology, Pasadena, California, United States of America
| | - Bruce A. Hay
- California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
13
|
Hay BA, Oberhofer G, Guo M. Engineering the Composition and Fate of Wild Populations with Gene Drive. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:407-434. [PMID: 33035437 DOI: 10.1146/annurev-ento-020117-043154] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects play important roles as predators, prey, pollinators, recyclers, hosts, parasitoids, and sources of economically important products. They can also destroy crops; wound animals; and serve as vectors for plant, animal, and human diseases. Gene drive-a process by which genes, gene complexes, or chromosomes encoding specific traits are made to spread through wild populations, even if these traits result in a fitness cost to carriers-provides new opportunities for altering populations to benefit humanity and the environment in ways that are species specific and sustainable. Gene drive can be used to alter the genetic composition of an existing population, referred to as population modification or replacement, or to bring about population suppression or elimination. We describe technologies under consideration, progress that has been made, and remaining technological hurdles, particularly with respect to evolutionary stability and our ability to control the spread and ultimate fate of genes introduced into populations.
Collapse
Affiliation(s)
- Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
- St. John's College, University of Cambridge, Cambridge CB2 1TP, United Kingdom
| | - Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
| | - Ming Guo
- Departments of Neurology and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
14
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Bonsall MB, Mumford J, Wimmer EA, Devos Y, Paraskevopoulos K, Firbank LG. Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA J 2020; 18:e06297. [PMID: 33209154 PMCID: PMC7658669 DOI: 10.2903/j.efsa.2020.6297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in molecular and synthetic biology are enabling the engineering of gene drives in insects for disease vector/pest control. Engineered gene drives (that bias their own inheritance) can be designed either to suppress interbreeding target populations or modify them with a new genotype. Depending on the engineered gene drive system, theoretically, a genetic modification of interest could spread through target populations and persist indefinitely, or be restricted in its spread or persistence. While research on engineered gene drives and their applications in insects is advancing at a fast pace, it will take several years for technological developments to move to practical applications for deliberate release into the environment. Some gene drive modified insects (GDMIs) have been tested experimentally in the laboratory, but none has been assessed in small-scale confined field trials or in open release trials as yet. There is concern that the deliberate release of GDMIs in the environment may have possible irreversible and unintended consequences. As a proactive measure, the European Food Safety Authority (EFSA) has been requested by the European Commission to review whether its previously published guidelines for the risk assessment of genetically modified animals (EFSA, 2012 and 2013), including insects (GMIs), are adequate and sufficient for GDMIs, primarily disease vectors, agricultural pests and invasive species, for deliberate release into the environment. Under this mandate, EFSA was not requested to develop risk assessment guidelines for GDMIs. In this Scientific Opinion, the Panel on Genetically Modified Organisms (GMO) concludes that EFSA's guidelines are adequate, but insufficient for the molecular characterisation (MC), environmental risk assessment (ERA) and post-market environmental monitoring (PMEM) of GDMIs. While the MC,ERA and PMEM of GDMIs can build on the existing risk assessment framework for GMIs that do not contain engineered gene drives, there are specific areas where further guidance is needed for GDMIs.
Collapse
|
15
|
Dhole S, Lloyd AL, Gould F. Gene Drive Dynamics in Natural Populations: The Importance of Density Dependence, Space, and Sex. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020; 51:505-531. [PMID: 34366722 PMCID: PMC8340601 DOI: 10.1146/annurev-ecolsys-031120-101013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The spread of synthetic gene drives is often discussed in the context of panmictic populations connected by gene flow and described with simple deterministic models. Under such assumptions, an entire species could be altered by releasing a single individual carrying an invasive gene drive, such as a standard homing drive. While this remains a theoretical possibility, gene drive spread in natural populations is more complex and merits a more realistic assessment. The fate of any gene drive released in a population would be inextricably linked to the population's ecology. Given the uncertainty often involved in ecological assessment of natural populations, understanding the sensitivity of gene drive spread to important ecological factors is critical. Here we review how different forms of density dependence, spatial heterogeneity, and mating behaviors can impact the spread of self-sustaining gene drives. We highlight specific aspects of gene drive dynamics and the target populations that need further research.
Collapse
Affiliation(s)
- Sumit Dhole
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Alun L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8213, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, North Carolina 27695-7565, USA
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, North Carolina 27695-7565, USA
| |
Collapse
|
16
|
Sánchez C HM, Bennett JB, Wu SL, Rašić G, Akbari OS, Marshall JM. Modeling confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations. BMC Biol 2020; 18:50. [PMID: 32398005 PMCID: PMC7218562 DOI: 10.1186/s12915-020-0759-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
Background The discovery of CRISPR-based gene editing and its application to homing-based gene drive systems has been greeted with excitement, for its potential to control mosquito-borne diseases on a wide scale, and concern, for the invasiveness and potential irreversibility of a release. Gene drive systems that display threshold-dependent behavior could potentially be used during the trial phase of this technology, or when localized control is otherwise desired, as simple models predict them to spread into partially isolated populations in a confineable manner, and to be reversible through releases of wild-type organisms. Here, we model hypothetical releases of two recently engineered threshold-dependent gene drive systems—reciprocal chromosomal translocations and a form of toxin-antidote-based underdominance known as UDMEL—to explore their ability to be confined and remediated. Results We simulate releases of Aedes aegypti, the mosquito vector of dengue, Zika, and other arboviruses, in Yorkeys Knob, a suburb of Cairns, Australia, where previous biological control interventions have been undertaken on this species. We monitor spread to the neighboring suburb of Trinity Park to assess confinement. Results suggest that translocations could be introduced on a suburban scale, and remediated through releases of non-disease-transmitting male mosquitoes with release sizes on the scale of what has been previously implemented. UDMEL requires fewer releases to introduce, but more releases to remediate, including of females capable of disease transmission. Both systems are expected to be confineable to the release site; however, spillover of translocations into neighboring populations is less likely. Conclusions Our analysis supports the use of translocations as a threshold-dependent drive system capable of spreading disease-refractory genes into Ae. aegypti populations in a confineable and reversible manner. It also highlights increased release requirements when incorporating life history and population structure into models. As the technology nears implementation, further ecological work will be essential to enhance model predictions in preparation for field trials.
Collapse
Affiliation(s)
- Héctor M Sánchez C
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Jared B Bennett
- Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA
| | - Sean L Wu
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Gordana Rašić
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Omar S Akbari
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, CA, 92093, USA
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA. .,Innovative Genomics Institute, Berkeley, CA, 94720, USA.
| |
Collapse
|
17
|
Oberhofer G, Ivy T, Hay BA. Gene drive and resilience through renewal with next generation Cleave and Rescue selfish genetic elements. Proc Natl Acad Sci U S A 2020; 117:9013-9021. [PMID: 32245808 PMCID: PMC7183144 DOI: 10.1073/pnas.1921698117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene drive-based strategies for modifying populations face the problem that genes encoding cargo and the drive mechanism are subject to separation, mutational inactivation, and loss of efficacy. Resilience, an ability to respond to these eventualities in ways that restore population modification with functional genes, is needed for long-term success. Here, we show that resilience can be achieved through cycles of population modification with "Cleave and Rescue" (ClvR) selfish genetic elements. ClvR comprises a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Cycles of modification can, in principle, be carried out if two ClvR elements targeting different essential genes are located at the same genomic position, and one of them, ClvRn+1, carries a Rescue transgene from an earlier element, ClvRnClvRn+1 should spread within a population of ClvRn, while also bringing about a decrease in its frequency. To test this hypothesis, we first show that multiple ClvRs, each targeting a different essential gene, function when located at a common chromosomal position in Drosophila We then show that when several of these also carry the Rescue from a different ClvR, they spread to transgene fixation in populations fixed for the latter and at its expense. Therefore, genetic modifications of populations can be overwritten with new content, providing an ongoing point of control.
Collapse
Affiliation(s)
- Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Tobin Ivy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125;
- St John's College, University of Cambridge, CB2 1TP Cambridge, United Kingdom
| |
Collapse
|
18
|
Champer J, Zhao J, Champer SE, Liu J, Messer PW. Population Dynamics of Underdominance Gene Drive Systems in Continuous Space. ACS Synth Biol 2020; 9:779-792. [PMID: 32142612 DOI: 10.1021/acssynbio.9b00452] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Underdominance systems can quickly spread through a population, but only when introduced in considerable numbers. This promises a gene drive mechanism that is less invasive than homing drives, potentially enabling new approaches in the fight against vector-borne diseases. If regional confinement can indeed be achieved, the decision-making process for a release would likely be much simpler compared to other, more invasive types of drives. The capacity of underdominance gene drive systems to spread in a target population without invading other populations is typically assessed via network models of panmictic demes linked by migration. However, it remains less clear how such systems would behave in more realistic population models where organisms move over a continuous landscape. Here, we use individual-based simulations to study the dynamics of several proposed underdominance systems in continuous-space. We find that all these systems can fail to persist in such environments, even after an initially successful establishment in the release area, confirming previous theoretical results from diffusion theory. At the same time, we find that a two-locus two-toxin-antidote system can invade connected demes through a narrow migration corridor. This suggests that the parameter space where underdominance systems can establish and persist in a release area while at the same time remaining confined to that area could be quite limited, depending on how a population is spatially structured. Overall, these results indicate that realistic spatial context must be considered when assessing strategies for the deployment of underdominance drives.
Collapse
|
19
|
Champer J, Kim IK, Champer SE, Clark AG, Messer PW. Performance analysis of novel toxin-antidote CRISPR gene drive systems. BMC Biol 2020; 18:27. [PMID: 32164660 PMCID: PMC7068947 DOI: 10.1186/s12915-020-0761-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND CRISPR gene drive systems allow the rapid spread of a genetic construct throughout a population. Such systems promise novel strategies for the management of vector-borne diseases and invasive species by suppressing a target population or modifying it with a desired trait. However, current homing-type drives have two potential shortcomings. First, they can be thwarted by the rapid evolution of resistance. Second, they lack any mechanism for confinement to a specific target population. In this study, we conduct a comprehensive performance assessment of several new types of CRISPR-based gene drive systems employing toxin-antidote (TA) principles, which should be less prone to resistance and allow for the confinement of drives to a target population due to invasion frequency thresholds. RESULTS The underlying principle of the proposed CRISPR toxin-antidote gene drives is to disrupt an essential target gene while also providing rescue by a recoded version of the target as part of the drive allele. Thus, drive alleles tend to remain viable, while wild-type targets are disrupted and often rendered nonviable, thereby increasing the relative frequency of the drive allele. Using individual-based simulations, we show that Toxin-Antidote Recessive Embryo (TARE) drives targeting an haplosufficient but essential gene (lethal when both copies are disrupted) can enable the design of robust, regionally confined population modification strategies with high flexibility in choosing promoters and targets. Toxin-Antidote Dominant Embryo (TADE) drives require a haplolethal target gene and a germline-restricted promoter, but they could permit faster regional population modification and even regionally confined population suppression. Toxin-Antidote Dominant Sperm (TADS) drives can be used for population modification or suppression. These drives are expected to spread rapidly and could employ a variety of promoters, but unlike TARE and TADE, they would not be regionally confined and also require highly specific target genes. CONCLUSIONS Overall, our results suggest that CRISPR-based TA gene drives provide promising candidates for flexible ecological engineering strategies in a variety of organisms.
Collapse
Affiliation(s)
- Jackson Champer
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| | - Isabel K Kim
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Samuel E Champer
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew G Clark
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
20
|
Champer J, Lee E, Yang E, Liu C, Clark AG, Messer PW. A toxin-antidote CRISPR gene drive system for regional population modification. Nat Commun 2020; 11:1082. [PMID: 32109227 PMCID: PMC7046741 DOI: 10.1038/s41467-020-14960-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/06/2020] [Indexed: 01/04/2023] Open
Abstract
Engineered gene drives based on a homing mechanism could rapidly spread genetic alterations through a population. However, such drives face a major obstacle in the form of resistance against the drive. In addition, they are expected to be highly invasive. Here, we introduce the Toxin-Antidote Recessive Embryo (TARE) drive. It functions by disrupting a target gene, forming recessive lethal alleles, while rescuing drive-carrying individuals with a recoded version of the target. Modeling shows that such drives will have threshold-dependent invasion dynamics, spreading only when introduced above a fitness-dependent frequency. We demonstrate a TARE drive in Drosophila with 88-95% transmission by female heterozygotes. This drive was able to spread through a large cage population in just six generations following introduction at 24% frequency without any apparent evolution of resistance. Our results suggest that TARE drives constitute promising candidates for the development of effective, flexible, and regionally confinable drives for population modification.
Collapse
Affiliation(s)
- Jackson Champer
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| | - Esther Lee
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Emily Yang
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Chen Liu
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew G Clark
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
Locally Fixed Alleles: A method to localize gene drive to island populations. Sci Rep 2019; 9:15821. [PMID: 31676762 PMCID: PMC6825234 DOI: 10.1038/s41598-019-51994-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/11/2019] [Indexed: 01/08/2023] Open
Abstract
Invasive species pose a major threat to biodiversity on islands. While successes have been achieved using traditional removal methods, such as toxicants aimed at rodents, these approaches have limitations and various off-target effects on island ecosystems. Gene drive technologies designed to eliminate a population provide an alternative approach, but the potential for drive-bearing individuals to escape from the target release area and impact populations elsewhere is a major concern. Here we propose the “Locally Fixed Alleles” approach as a novel means for localizing elimination by a drive to an island population that exhibits significant genetic isolation from neighboring populations. Our approach is based on the assumption that in small island populations of rodents, genetic drift will lead to alleles at multiple genomic loci becoming fixed. In contrast, multiple alleles are likely to be maintained in larger populations on mainlands. Utilizing the high degree of genetic specificity achievable using homing drives, for example based on the CRISPR/Cas9 system, our approach aims at employing one or more locally fixed alleles as the target for a gene drive on a particular island. Using mathematical modeling, we explore the feasibility of this approach and the degree of localization that can be achieved. We show that across a wide range of parameter values, escape of the drive to a neighboring population in which the target allele is not fixed will at most lead to modest transient suppression of the non-target population. While the main focus of this paper is on elimination of a rodent pest from an island, we also discuss the utility of the locally fixed allele approach for the goals of population suppression or population replacement. Our analysis also provides a threshold condition for the ability of a gene drive to invade a partially resistant population.
Collapse
|
22
|
Dhole S, Lloyd AL, Gould F. Tethered homing gene drives: A new design for spatially restricted population replacement and suppression. Evol Appl 2019; 12:1688-1702. [PMID: 31462923 PMCID: PMC6708424 DOI: 10.1111/eva.12827] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
Optimism regarding potential epidemiological and conservation applications of modern gene drives is tempered by concern about the possibility of unintended spread of engineered organisms beyond the target population. In response, several novel gene drive approaches have been proposed that can, under certain conditions, locally alter characteristics of a population. One challenge for these gene drives is the difficulty of achieving high levels of localized population suppression without very large releases in the face of gene flow. We present a new gene drive system, tethered homing (TH), with improved capacity for both localization and population suppression. The TH drive is based on driving a payload gene using a homing construct that is anchored to a spatially restricted gene drive. We use a proof-of-concept mathematical model to show the dynamics of a TH drive that uses engineered underdominance as an anchor. This system is composed of a split homing drive and a two-locus engineered underdominance drive linked to one part of the split drive (the Cas endonuclease). We use simple population genetic simulations to show that the tethered homing technique can offer improved localized spread of costly transgenic payload genes. Additionally, the TH system offers the ability to gradually adjust the genetic load in a population after the initial alteration, with minimal additional release effort. We discuss potential solutions for improving localization and the feasibility of creating TH drive systems. Further research with models that include additional biological details will be needed to better understand how TH drives would behave in natural populations, but the preliminary results shown here suggest that tethered homing drives can be a useful addition to the repertoire of localized gene drives.
Collapse
Affiliation(s)
- Sumit Dhole
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth Carolina
| | - Alun L. Lloyd
- Biomathematics Graduate Program and Department of MathematicsNorth Carolina State UniversityRaleighNorth Carolina
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth Carolina
| | - Fred Gould
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth Carolina
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth Carolina
| |
Collapse
|
23
|
Oberhofer G, Ivy T, Hay BA. Cleave and Rescue, a novel selfish genetic element and general strategy for gene drive. Proc Natl Acad Sci U S A 2019; 116:6250-6259. [PMID: 30760597 PMCID: PMC6442612 DOI: 10.1073/pnas.1816928116] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There is great interest in being able to spread beneficial traits throughout wild populations in ways that are self-sustaining. Here, we describe a chromosomal selfish genetic element, CleaveR [Cleave and Rescue (ClvR)], able to achieve this goal. ClvR comprises two linked chromosomal components. One, germline-expressed Cas9 and guide RNAs (gRNAs)-the Cleaver-cleaves and thereby disrupts endogenous copies of a gene whose product is essential. The other, a recoded version of the essential gene resistant to cleavage and gene conversion with cleaved copies-the Rescue-provides essential gene function. ClvR enhances its transmission, and that of linked genes, by creating conditions in which progeny lacking ClvR die because they have no functional copies of the essential gene. In contrast, those who inherit ClvR survive, resulting in an increase in ClvR frequency. ClvR is predicted to spread to fixation under diverse conditions. To test these predictions, we generated a ClvR element in Drosophila melanogasterClvRtko is located on chromosome 3 and uses Cas9 and four gRNAs to disrupt melanogaster technical knockout (tko), an X-linked essential gene. Rescue activity is provided by tko from Drosophila virilisClvRtko results in germline and maternal carryover-dependent inactivation of melanogaster tko (>99% per generation); lethality caused by this loss is rescued by the virilis transgene; ClvRtko activities are robust to genetic diversity in strains from five continents; and uncleavable but functional melanogaster tko alleles were not observed. Finally, ClvRtko spreads to transgene fixation. The simplicity of ClvR suggests it may be useful for altering populations in diverse species.
Collapse
Affiliation(s)
- Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Tobin Ivy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
24
|
Denton JA, Gokhale CS. Synthetic Mutualism and the Intervention Dilemma. Life (Basel) 2019; 9:E15. [PMID: 30696090 PMCID: PMC6463046 DOI: 10.3390/life9010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023] Open
Abstract
Ecosystems are complex networks of interacting individuals co-evolving with their environment. As such, changes to an interaction can influence the whole ecosystem. However, to predict the outcome of these changes, considerable understanding of processes driving the system is required. Synthetic biology provides powerful tools to aid this understanding, but these developments also allow us to change specific interactions. Of particular interest is the ecological importance of mutualism, a subset of cooperative interactions. Mutualism occurs when individuals of different species provide a reciprocal fitness benefit. We review available experimental techniques of synthetic biology focused on engineered synthetic mutualistic systems. Components of these systems have defined interactions that can be altered to model naturally occurring relationships. Integrations between experimental systems and theoretical models, each informing the use or development of the other, allow predictions to be made about the nature of complex relationships. The predictions range from stability of microbial communities in extreme environments to the collapse of ecosystems due to dangerous levels of human intervention. With such caveats, we evaluate the promise of synthetic biology from the perspective of ethics and laws regarding biological alterations, whether on Earth or beyond. Just because we are able to change something, should we?
Collapse
Affiliation(s)
- Jai A Denton
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Onna-son 904-0412, Japan.
| | - Chaitanya S Gokhale
- Research Group for Theoretical models of Eco-Evolutionary Dynamics, Max Planck Institute for Evolutionary Biology, 24304 Plön, Germany.
| |
Collapse
|
25
|
Leftwich PT, Edgington MP, Harvey-Samuel T, Carabajal Paladino LZ, Norman VC, Alphey L. Recent advances in threshold-dependent gene drives for mosquitoes. Biochem Soc Trans 2018; 46:1203-1212. [PMID: 30190331 PMCID: PMC6195636 DOI: 10.1042/bst20180076] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/09/2023]
Abstract
Mosquito-borne diseases, such as malaria, dengue and chikungunya, cause morbidity and mortality around the world. Recent advances in gene drives have produced control methods that could theoretically modify all populations of a disease vector, from a single release, making whole species less able to transmit pathogens. This ability has caused both excitement, at the prospect of global eradication of mosquito-borne diseases, and concern around safeguards. Drive mechanisms that require individuals to be released at high frequency before genes will spread can therefore be desirable as they are potentially localised and reversible. These include underdominance-based strategies and use of the reproductive parasite Wolbachia Here, we review recent advances in practical applications and mathematical analyses of these threshold-dependent gene drives with a focus on implementation in Aedes aegypti, highlighting their mechanisms and the role of fitness costs on introduction frequencies. Drawing on the parallels between these systems offers useful insights into practical, controlled application of localised drives, and allows us to assess the requirements needed for gene drive reversal.
Collapse
Affiliation(s)
| | | | | | | | | | - Luke Alphey
- The Pirbright Institute, Pirbright, Woking, Surrey, U.K.
- Department of Zoology, University of Oxford, Oxford, U.K
| |
Collapse
|
26
|
Khamis D, El Mouden C, Kura K, Bonsall MB. Ecological effects on underdominance threshold drives for vector control. J Theor Biol 2018; 456:1-15. [PMID: 30040965 DOI: 10.1016/j.jtbi.2018.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023]
Abstract
Underdominance gene drives are frequency-dependent drives that aim to spread a desired homozygote genotype within a population. When the desired homozygote is released above a threshold frequency, heterozygote fitness disadvantage acts to drive the desired trait to fixation. Underdominance drives have been proposed as a way to control vector-borne disease through population suppression and replacement in a spatially contained and reversible way-benefits that directly address potential safety concerns with gene drives. Here, ecological and epidemiological dynamics are coupled to a model of mosquito genetics to investigate theoretically the impact of different types of underdominance gene drive on disease prevalence. We model systems with two engineered alleles carried either on the same pair of chromosomes at the same locus or homozygously on different pairs at different loci, genetic lethality that affects both sexes or only females, and bi-sex or male-only releases. Further, the different genetic and ecological fitness costs that can arise from genetic modification and artificial rearing are investigated through their effect on the population threshold frequency that is required to trigger the drive mechanism. We show that male-only releases must be significantly larger than bi-sex releases to trigger the underdominance drive. In addition, we find that female-specific lethality averts a higher percentage of disease cases over a control period than does bi-sex lethality. Decreases in the genetic fitness of the engineered homozygotes can increase the underdominance threshold substantially, but we find that the mating success of transgenic mosquitoes with wild-type females (influenced by a lack of competitiveness or the evolution of behavioural resistance in the form of active female mate preference) and the longevity of artificially-reared mosquitoes are vitally important to the success chances of underdominance based gene drive control efforts.
Collapse
Affiliation(s)
- Doran Khamis
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Claire El Mouden
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Klodeta Kura
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Michael B Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| |
Collapse
|
27
|
Buchman AB, Ivy T, Marshall JM, Akbari OS, Hay BA. Engineered Reciprocal Chromosome Translocations Drive High Threshold, Reversible Population Replacement in Drosophila. ACS Synth Biol 2018. [PMID: 29608276 DOI: 10.1101/088393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Replacement of wild insect populations with transgene-bearing individuals unable to transmit disease or survive under specific environmental conditions using gene drive provides a self-perpetuating method of disease prevention. Mechanisms that require the gene drive element and linked cargo to exceed a high threshold frequency in order for spread to occur are attractive because they offer several points of control: they bring about local, but not global population replacement; and transgenes can be eliminated by reintroducing wildtypes into the population so as to drive the frequency of transgenes below the threshold frequency required for drive. Reciprocal chromosome translocations were proposed as a tool for bringing about high threshold population replacement in 1940 and 1968. However, translocations able to achieve this goal have only been reported once, in the spider mite Tetranychus urticae, a haplo-diploid species in which there is strong selection in haploid males for fit homozygotes. We report the creation of engineered translocation-bearing strains of Drosophila melanogaster, generated through targeted chromosomal breakage and homologous recombination. These strains drive high threshold population replacement in laboratory populations. While it remains to be shown that engineered translocations can bring about population replacement in wild populations, these observations suggest that further exploration of engineered translocations as a tool for controlled population replacement is warranted.
Collapse
Affiliation(s)
- Anna B Buchman
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
- Division of Biological Sciences , University of California , San Diego , California 92161 , United States
| | - Tobin Ivy
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - John M Marshall
- School of Public Health , University of California , Berkeley , California 94720 , United States
| | - Omar S Akbari
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
- Division of Biological Sciences , University of California , San Diego , California 92161 , United States
| | - Bruce A Hay
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
- Division of Biological Sciences , University of California , San Diego , California 92161 , United States
| |
Collapse
|
28
|
Buchman AB, Ivy T, Marshall JM, Akbari OS, Hay BA. Engineered Reciprocal Chromosome Translocations Drive High Threshold, Reversible Population Replacement in Drosophila. ACS Synth Biol 2018; 7:1359-1370. [PMID: 29608276 DOI: 10.1021/acssynbio.7b00451] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replacement of wild insect populations with transgene-bearing individuals unable to transmit disease or survive under specific environmental conditions using gene drive provides a self-perpetuating method of disease prevention. Mechanisms that require the gene drive element and linked cargo to exceed a high threshold frequency in order for spread to occur are attractive because they offer several points of control: they bring about local, but not global population replacement; and transgenes can be eliminated by reintroducing wildtypes into the population so as to drive the frequency of transgenes below the threshold frequency required for drive. Reciprocal chromosome translocations were proposed as a tool for bringing about high threshold population replacement in 1940 and 1968. However, translocations able to achieve this goal have only been reported once, in the spider mite Tetranychus urticae, a haplo-diploid species in which there is strong selection in haploid males for fit homozygotes. We report the creation of engineered translocation-bearing strains of Drosophila melanogaster, generated through targeted chromosomal breakage and homologous recombination. These strains drive high threshold population replacement in laboratory populations. While it remains to be shown that engineered translocations can bring about population replacement in wild populations, these observations suggest that further exploration of engineered translocations as a tool for controlled population replacement is warranted.
Collapse
Affiliation(s)
- Anna B Buchman
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
- Division of Biological Sciences , University of California , San Diego , California 92161 , United States
| | - Tobin Ivy
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - John M Marshall
- School of Public Health , University of California , Berkeley , California 94720 , United States
| | - Omar S Akbari
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
- Division of Biological Sciences , University of California , San Diego , California 92161 , United States
| | - Bruce A Hay
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
- Division of Biological Sciences , University of California , San Diego , California 92161 , United States
| |
Collapse
|
29
|
Edgington MP, Alphey LS. Population dynamics of engineered underdominance and killer-rescue gene drives in the control of disease vectors. PLoS Comput Biol 2018; 14:e1006059. [PMID: 29570717 PMCID: PMC5884568 DOI: 10.1371/journal.pcbi.1006059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 04/04/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
A number of different genetics-based vector control methods have been proposed. Two approaches currently under development in Aedes aegypti mosquitoes are the two-locus engineered underdominance and killer-rescue gene drive systems. Each of these is theoretically capable of increasing in frequency within a population, thus spreading associated desirable genetic traits. Thus they have gained attention for their potential to aid in the fight against various mosquito-vectored diseases. In the case of engineered underdominance, introduced transgenes are theoretically capable of persisting indefinitely (i.e. it is self-sustaining) whilst in the killer-rescue system the rescue component should initially increase in frequency (while the lethal component (killer) is common) before eventually declining (when the killer is rare) and being eliminated (i.e. it is temporally self-limiting). The population genetics of both systems have been explored using discrete generation mathematical models. The effects of various ecological factors on these two systems have also been considered using alternative modelling methodologies. Here we formulate and analyse new mathematical models combining the population dynamics and population genetics of these two classes of gene drive that incorporate ecological factors not previously studied and are simple enough to allow the effects of each to be disentangled. In particular, we focus on the potential effects that may be obtained as a result of differing ecological factors such as strengths of larval competition; numbers of breeding sites; and the relative fitness of transgenic mosquitoes compared with their wild-type counterparts. We also extend our models to consider population dynamics in two demes in order to explore the effects of dispersal between neighbouring populations on the outcome of UD and KR gene drive systems.
Collapse
Affiliation(s)
| | - Luke S. Alphey
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| |
Collapse
|
30
|
Edgington MP, Alphey LS. Conditions for success of engineered underdominance gene drive systems. J Theor Biol 2017; 430:128-140. [PMID: 28728996 PMCID: PMC5562440 DOI: 10.1016/j.jtbi.2017.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/20/2017] [Accepted: 07/15/2017] [Indexed: 12/02/2022]
Abstract
Engineered underdominance is one of a number of different gene drive strategies that have been proposed for the genetic control of insect vectors of disease. Here we model a two-locus engineered underdominance based gene drive system that is based on the concept of mutually suppressing lethals. In such a system two genetic constructs are introduced, each possessing a lethal element and a suppressor of the lethal at the other locus. Specifically, we formulate and analyse a population genetics model of this system to assess when different combinations of release strategies (i.e. single or multiple releases of both sexes or males only) and genetic systems (i.e. bisex lethal or female-specific lethal elements and different strengths of suppressors) will give population replacement or fail to do so. We anticipate that results presented here will inform the future design of engineered underdominance gene drive systems as well as providing a point of reference regarding release strategies for those looking to test such a system. Our discussion is framed in the context of genetic control of insect vectors of disease. One of several serious threats in this context are Aedes aegypti mosquitoes as they are the primary vectors of dengue viruses. However, results are also applicable to Ae. aegypti as vectors of Zika, yellow fever and chikungunya viruses and also to the control of a number of other insect species and thereby of insect-vectored pathogens.
Collapse
Affiliation(s)
| | - Luke S Alphey
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| |
Collapse
|
31
|
Affiliation(s)
- Floyd A Reed
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| |
Collapse
|
32
|
Unckless RL, Clark AG, Messer PW. Evolution of Resistance Against CRISPR/Cas9 Gene Drive. Genetics 2017; 205:827-841. [PMID: 27941126 PMCID: PMC5289854 DOI: 10.1534/genetics.116.197285] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/01/2016] [Indexed: 11/18/2022] Open
Abstract
CRISPR/Cas9 gene drive (CGD) promises to be a highly adaptable approach for spreading genetically engineered alleles throughout a species, even if those alleles impair reproductive success. CGD has been shown to be effective in laboratory crosses of insects, yet it remains unclear to what extent potential resistance mechanisms will affect the dynamics of this process in large natural populations. Here we develop a comprehensive population genetic framework for modeling CGD dynamics, which incorporates potential resistance mechanisms as well as random genetic drift. Using this framework, we calculate the probability that resistance against CGD evolves from standing genetic variation, de novo mutation of wild-type alleles, or cleavage repair by nonhomologous end joining (NHEJ)-a likely by-product of CGD itself. We show that resistance to standard CGD approaches should evolve almost inevitably in most natural populations, unless repair of CGD-induced cleavage via NHEJ can be effectively suppressed, or resistance costs are on par with those of the driver. The key factor determining the probability that resistance evolves is the overall rate at which resistance alleles arise at the population level by mutation or NHEJ. By contrast, the conversion efficiency of the driver, its fitness cost, and its introduction frequency have only minor impact. Our results shed light on strategies that could facilitate the engineering of drivers with lower resistance potential, and motivate the possibility to embrace resistance as a possible mechanism for controlling a CGD approach. This study highlights the need for careful modeling of the population dynamics of CGD prior to the actual release of a driver construct into the wild.
Collapse
Affiliation(s)
- Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853
| | - Philipp W Messer
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
33
|
Zhang L, Ying L, Zhou J, Guan S, Zou Y. Fixation probabilities of evolutionary coordination games on two coupled populations. Phys Rev E 2016; 94:032307. [PMID: 27739701 DOI: 10.1103/physreve.94.032307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/07/2022]
Abstract
Evolutionary forces resulted from competitions between different populations are common, which change the evolutionary behavior of a single population. In an isolated population of coordination games of two strategies (e.g., s_{1} and s_{2}), the previous studies focused on determining the fixation probability that the system is occupied by only one strategy (s_{1}) and their expectation times, given an initial mixture of two strategies. In this work, we propose a model of two interdependent populations, disclosing the effects of the interaction strength on fixation probabilities. In the well-mixing limit, a detailed linear stability analysis is performed, which allows us to find and to classify the different equilibria, yielding a clear picture of the bifurcation patterns in phase space. We demonstrate that the interactions between populations crucially alter the dynamic behavior. More specifically, if the coupling strength is larger than some threshold value, the critical initial density of one strategy (s_{1}) that corresponds to fixation is significantly delayed. Instead, the two populations evolve to the opposite state of all (s_{2}) strategy, which are in favor of the red queen hypothesis. We delineate the extinction time of strategy (s_{1}) explicitly, which is an exponential form. These results are validated by systematic numerical simulations.
Collapse
Affiliation(s)
- Liye Zhang
- Department of Physics, East China Normal University, Shanghai, 200062, China
| | - Limin Ying
- Department of Physics, East China Normal University, Shanghai, 200062, China
| | - Jie Zhou
- Department of Physics, East China Normal University, Shanghai, 200062, China
| | - Shuguang Guan
- Department of Physics, East China Normal University, Shanghai, 200062, China
| | - Yong Zou
- Department of Physics, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
34
|
Champer J, Buchman A, Akbari OS. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet 2016; 17:146-59. [PMID: 26875679 DOI: 10.1038/nrg.2015.34] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered gene drives - the process of stimulating the biased inheritance of specific genes - have the potential to enable the spread of desirable genes throughout wild populations or to suppress harmful species, and may be particularly useful for the control of vector-borne diseases such as malaria. Although several types of selfish genetic elements exist in nature, few have been successfully engineered in the laboratory thus far. With the discovery of RNA-guided CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated 9) nucleases, which can be utilized to create, streamline and improve synthetic gene drives, this is rapidly changing. Here, we discuss the different types of engineered gene drives and their potential applications, as well as current policies regarding the safety and regulation of gene drives for the manipulation of wild populations.
Collapse
Affiliation(s)
- Jackson Champer
- Department of Entomology, University of California, Riverside, Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Anna Buchman
- Department of Entomology, University of California, Riverside, Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Omar S Akbari
- Department of Entomology, University of California, Riverside, Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
35
|
Leftwich PT, Bolton M, Chapman T. Evolutionary biology and genetic techniques for insect control. Evol Appl 2016; 9:212-30. [PMID: 27087849 PMCID: PMC4780389 DOI: 10.1111/eva.12280] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/25/2015] [Indexed: 01/15/2023] Open
Abstract
The requirement to develop new techniques for insect control that minimize negative environmental impacts has never been more pressing. Here we discuss population suppression and population replacement technologies. These include sterile insect technique, genetic elimination methods such as the release of insects carrying a dominant lethal (RIDL), and gene driving mechanisms offered by intracellular bacteria and homing endonucleases. We also review the potential of newer or underutilized methods such as reproductive interference, CRISPR technology, RNA interference (RNAi), and genetic underdominance. We focus on understanding principles and potential effectiveness from the perspective of evolutionary biology. This offers useful insights into mechanisms through which potential problems may be minimized, in much the same way that an understanding of how resistance evolves is key to slowing the spread of antibiotic and insecticide resistance. We conclude that there is much to gain from applying principles from the study of resistance in these other scenarios - specifically, the adoption of combinatorial approaches to minimize the spread of resistance evolution. We conclude by discussing the focused use of GM for insect pest control in the context of modern conservation planning under land-sparing scenarios.
Collapse
Affiliation(s)
- Philip T. Leftwich
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichUK
| | - Michael Bolton
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichUK
| | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichUK
| |
Collapse
|
36
|
Láruson ÁJ, Reed FA. Stability of underdominant genetic polymorphisms in population networks. J Theor Biol 2015; 390:156-63. [PMID: 26656110 DOI: 10.1016/j.jtbi.2015.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 11/26/2022]
Abstract
Heterozygote disadvantage is potentially a potent driver of population genetic divergence. Also referred to as underdominance, this phenomena describes a situation where a genetic heterozygote has a lower overall fitness than either homozygote. Attention so far has mostly been given to underdominance within a single population and the maintenance of genetic differences between two populations exchanging migrants. Here we explore the dynamics of an underdominant system in a network of multiple discrete, yet interconnected, populations. Stability of genetic differences in response to increases in migration in various topological networks is assessed. The network topology can have a dominant and occasionally non-intuitive influence on the genetic stability of the system.
Collapse
Affiliation(s)
- Áki J Láruson
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822, United States
| | - Floyd A Reed
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822, United States.
| |
Collapse
|
37
|
Modeling the Manipulation of Natural Populations by the Mutagenic Chain Reaction. Genetics 2015; 201:425-31. [PMID: 26232409 DOI: 10.1534/genetics.115.177592] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
The use of recombinant genetic technologies for population manipulation has mostly remained an abstract idea due to the lack of a suitable means to drive novel gene constructs to high frequency in populations. Recently Gantz and Bier showed that the use of CRISPR/Cas9 technology could provide an artificial drive mechanism, the so-called mutagenic chain reaction (MCR), which could lead to rapid fixation of even a deleterious introduced allele. We establish the near equivalence of this system to other gene drive models and review the results of simple models showing that, when there is a fitness cost to the MCR allele, an internal equilibrium may exist that is usually unstable. In this case, introductions must be at a frequency above this critical point for the successful invasion of the MCR allele. We obtain estimates of fixation and invasion probabilities for the appropriate scenarios. Finally, we discuss how polymorphism in natural populations may introduce sources of natural resistance to MCR invasion. These modeling results have important implications for application of MCR in natural populations.
Collapse
|
38
|
Reeves RG, Bryk J, Altrock PM, Denton JA, Reed FA. First steps towards underdominant genetic transformation of insect populations. PLoS One 2014; 9:e97557. [PMID: 24844466 PMCID: PMC4028297 DOI: 10.1371/journal.pone.0097557] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/08/2014] [Indexed: 11/18/2022] Open
Abstract
The idea of introducing genetic modifications into wild populations of insects to stop them from spreading diseases is more than 40 years old. Synthetic disease refractory genes have been successfully generated for mosquito vectors of dengue fever and human malaria. Equally important is the development of population transformation systems to drive and maintain disease refractory genes at high frequency in populations. We demonstrate an underdominant population transformation system in Drosophila melanogaster that has the property of being both spatially self-limiting and reversible to the original genetic state. Both population transformation and its reversal can be largely achieved within as few as 5 generations. The described genetic construct {Ud} is composed of two genes; (1) a UAS-RpL14.dsRNA targeting RNAi to a haploinsufficient gene RpL14 and (2) an RNAi insensitive RpL14 rescue. In this proof-of-principle system the UAS-RpL14.dsRNA knock-down gene is placed under the control of an Actin5c-GAL4 driver located on a different chromosome to the {Ud} insert. This configuration would not be effective in wild populations without incorporating the Actin5c-GAL4 driver as part of the {Ud} construct (or replacing the UAS promoter with an appropriate direct promoter). It is however anticipated that the approach that underlies this underdominant system could potentially be applied to a number of species.
Collapse
Affiliation(s)
- R. Guy Reeves
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail:
| | - Jarosław Bryk
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Philipp M. Altrock
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jai A. Denton
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Floyd A. Reed
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
39
|
Gokhale CS, Reeves RG, Reed FA. Dynamics of a combined Medea-underdominant population transformation system. BMC Evol Biol 2014; 14:98. [PMID: 24884575 PMCID: PMC4068157 DOI: 10.1186/1471-2148-14-98] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/28/2014] [Indexed: 01/16/2023] Open
Abstract
Background Transgenic constructs intended to be stably established at high frequencies in
wild populations have been demonstrated to “drive” from low
frequencies in experimental insect populations. Linking such population
transformation constructs to genes which render them unable to transmit pathogens
could eventually be used to stop the spread of vector-borne diseases like malaria
and dengue. Results Generally, population transformation constructs with only a single transgenic
drive mechanism have been envisioned. Using a theoretical modelling approach we
describe the predicted properties of a construct combining autosomal Medea and
underdominant population transformation systems. We show that when combined they
can exhibit synergistic properties which in broad circumstances surpass those of
the single systems. Conclusion With combined systems, intentional population transformation and its reversal can
be achieved readily. Combined constructs also enhance the capacity to
geographically restrict transgenic constructs to targeted populations. It is
anticipated that these properties are likely to be of particular value in
attracting regulatory approval and public acceptance of this novel technology.
Collapse
Affiliation(s)
- Chaitanya S Gokhale
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August Thienemann Str-2, 24306 Plön, Germany.
| | | | | |
Collapse
|
40
|
Lombardo P, Gambassi A, Dall'Asta L. Nonmonotonic effects of migration in subdivided populations. PHYSICAL REVIEW LETTERS 2014; 112:148101. [PMID: 24766019 DOI: 10.1103/physrevlett.112.148101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Indexed: 06/03/2023]
Abstract
The influence of migration on the stochastic dynamics of subdivided populations is still an open issue in various evolutionary models. Here, we develop a self-consistent mean-field-like method in order to determine the effects of migration on relevant nonequilibrium properties, such as the mean fixation time. If evolution strongly favors coexistence of species (e.g., balancing selection), the mean fixation time develops an unexpected minimum as a function of the migration rate. Our analysis hinges only on the presence of a separation of time scales between local and global dynamics, and therefore, it carries over to other nonequilibrium processes in physics, biology, ecology, and social sciences.
Collapse
Affiliation(s)
- Pierangelo Lombardo
- SISSA-International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
| | - Andrea Gambassi
- SISSA-International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
| | - Luca Dall'Asta
- Department of Applied Science and Technology-DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy and Collegio Carlo Alberto, Via Real Collegio 30, 10024 Moncalieri, Italy
| |
Collapse
|
41
|
Reis-Castro L. Genetically modified insects as a public health tool: discussing the different bio-objectification within genetic strategies. Croat Med J 2013; 53:635-8. [PMID: 23275331 PMCID: PMC3541591 DOI: 10.3325/cmj.2012.53.635] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Luísa Reis-Castro
- Institute for Social and Cultural Anthropology, Martin-Luther-University of Halle-Wittenberg, Germany.
| |
Collapse
|
42
|
Akbari OS, Matzen KD, Marshall JM, Huang H, Ward CM, Hay BA. A synthetic gene drive system for local, reversible modification and suppression of insect populations. Curr Biol 2013; 23:671-7. [PMID: 23541732 DOI: 10.1016/j.cub.2013.02.059] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/18/2012] [Accepted: 02/27/2013] [Indexed: 01/12/2023]
Abstract
Replacement of wild insect populations with genetically modified individuals unable to transmit disease provides a self-perpetuating method of disease prevention but requires a gene drive mechanism to spread these traits to high frequency. Drive mechanisms requiring that transgenes exceed a threshold frequency in order to spread are attractive because they bring about local but not global replacement, and transgenes can be eliminated through dilution of the population with wild-type individuals. These features are likely to be important in many social and regulatory contexts. Here we describe the first creation of a synthetic threshold-dependent gene drive system, designated maternal-effect lethal underdominance (UD(MEL)), in which two maternally expressed toxins, located on separate chromosomes, are each linked with a zygotic antidote able to rescue maternal-effect lethality of the other toxin. We demonstrate threshold-dependent replacement in single- and two-locus configurations in Drosophila. Models suggest that transgene spread can often be limited to local environments. They also show that in a population in which single-locus UD(MEL) has been carried out, repeated release of wild-type males can result in population suppression, a novel method of genetic population manipulation.
Collapse
Affiliation(s)
- Omar S Akbari
- Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Toll-like receptors (TLRs) and defensins (DEFs) play a crucial role in the host's innate immunity and may influence HIV-1 disease progression. We investigated the impact of TLR9 +1174G > A, 1635A > G and DEFβ1 -44C > G, -52G > A single nucleotide polymorphisms on the clinical outcome of 95 HIV-1-infected children. The TLR9 1635AG genotype and TLR9 [G;G] haplotype were associated with rapid disease progression, whereas the DEFβ1 -44CG genotype and DEFβ1 [G;G] haplotype correlated with a better clinical outcome.
Collapse
|
44
|
Abstract
Gene drive systems are genetic elements capable of spreading into a population even if they confer a fitness cost to their host. We consider a class of drive systems consisting of a chromosomally located, linked cluster of genes, the presence of which renders specific classes of offspring arising from specific parental crosses unviable. Under permissive conditions, a number of these elements are capable of distorting the offspring ratio in their favor. We use a population genetic framework to derive conditions under which these elements spread to fixation in a population or induce a population crash. Many of these systems can be engineered using combinations of toxin and antidote genes, analogous to Medea, which consists of a maternal toxin and zygotic antidote. The majority of toxin–antidote drive systems require a critical frequency to be exceeded before they spread into a population. Of particular interest, a Z-linked Medea construct with a recessive antidote is expected to induce an all-male population crash for release frequencies above 50%. We suggest molecular tools that may be used to build these systems, and discuss their relevance to the control of a variety of insect pest species, including mosquito vectors of diseases such as malaria and dengue fever.
Collapse
Affiliation(s)
- John M Marshall
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
45
|
Marshall JM, Hay BA. Confinement of gene drive systems to local populations: a comparative analysis. J Theor Biol 2011; 294:153-71. [PMID: 22094363 DOI: 10.1016/j.jtbi.2011.10.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 01/01/2023]
Abstract
Mosquito-borne diseases such as malaria and dengue fever pose a major health problem through much of the world. One approach to disease prevention involves the use of selfish genetic elements to drive disease-refractory genes into wild mosquito populations. Recently engineered synthetic drive systems have provided encouragement for this strategy; but at the same time have been greeted with caution over the concern that transgenes may spread into countries and communities without their consent. Consequently, there is also interest in gene drive systems that, while strong enough to bring about local population replacement, are unable to establish themselves beyond a partially isolated release site, at least during the testing phase. Here, we develop simple deterministic and stochastic models to compare the confinement properties of a variety of gene drive systems. Our results highlight several systems with desirable features for confinement-a high migration rate required to become established in neighboring populations, and low-frequency persistence in neighboring populations for moderate migration rates. Single-allele underdominance and single-locus engineered underdominance have the strongest confinement properties, but are difficult to engineer and require a high introduction frequency, respectively. Toxin-antidote systems such as Semele, Merea and two-locus engineered underdominance show promising confinement properties and require lower introduction frequencies. Killer-rescue is self-limiting in time, but is able to disperse to significant levels in neighboring populations. We discuss the significance of these results in the context of a phased release of transgenic mosquitoes, and the need for characterization of local ecology prior to a release.
Collapse
Affiliation(s)
- John M Marshall
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
46
|
Altrock PM, Traulsen A, Reed FA. Stability properties of underdominance in finite subdivided populations. PLoS Comput Biol 2011; 7:e1002260. [PMID: 22072956 PMCID: PMC3207953 DOI: 10.1371/journal.pcbi.1002260] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/17/2011] [Indexed: 11/30/2022] Open
Abstract
IN ISOLATED populations underdominance leads to bistable evolutionary dynamics: below a certain mutant allele frequency the wildtype succeeds. Above this point, the potentially underdominant mutant allele fixes. In subdivided populations with gene flow there can be stable states with coexistence of wildtypes and mutants: polymorphism can be maintained because of a migration-selection equilibrium, i.e., selection against rare recent immigrant alleles that tend to be heterozygous. We focus on the stochastic evolutionary dynamics of systems where demographic fluctuations in the coupled populations are the main source of internal noise. We discuss the influence of fitness, migration rate, and the relative sizes of two interacting populations on the mean extinction times of a group of potentially underdominant mutant alleles. We classify realistic initial conditions according to their impact on the stochastic extinction process. Even in small populations, where demographic fluctuations are large, stability properties predicted from deterministic dynamics show remarkable robustness. Fixation of the mutant allele becomes unlikely but the time to its extinction can be long.
Collapse
Affiliation(s)
- Philipp M Altrock
- Evolutionary Theory Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany.
| | | | | |
Collapse
|