1
|
Wang Y, Chen S, Lu Z, Liu Y, Hu J, Zhou D. Inferring Absolute Cell Numbers from Relative Proportion in Stochastic Models with Cell Plasticity. J Theor Biol 2025:112133. [PMID: 40280232 DOI: 10.1016/j.jtbi.2025.112133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Quantifying dynamic changes in cell populations is crucial for a comprehensive understanding of biological processes such as cell proliferation, injury repair, and disease progression. However, compared to directly measuring the absolute cell numbers of specific subpopulations, relative proportion data demonstrate greater reproducibility and yield more stable, reliable outcomes. Therefore, inferring absolute cell numbers from relative proportion data may present a novel approach for effectively predicting changes in cell population sizes. To address this, we establish two mathematical mappings between cell proportions and population sizes using moment equations derived from stochastic cell-plasticity models. Notably, our findings indicate that one of these mappings does not require prior knowledge of the initial population size, highlighting the value of incorporating variance information into cell proportion data. We evaluated the robustness of our methods from multiple perspectives and extended their application to various biological mechanisms within the context of cell plasticity models. These methods help mitigate the limitations associated with the direct measurement of absolute cell counts through experimental techniques. Moreover, they provide new insights into leveraging the stochastic dynamics of cell populations to quantify interactions between different biomasses within the system.
Collapse
Affiliation(s)
- Yuman Wang
- School of Mathematical Sciences, Xiamen University, Xiamen, 361005, PR China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361005, PR China
| | - Shuli Chen
- School of Mathematics, Sun Yat-sen University, Guangdong, 510275, PR China
| | - Zhaolian Lu
- Shenzhen Institute of Advanced Technology, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Yu Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, 519087, China
| | - Jie Hu
- School of Mathematical Sciences, Xiamen University, Xiamen, 361005, PR China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361005, PR China.
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, 361005, PR China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361005, PR China.
| |
Collapse
|
2
|
Adler FR. A modelling framework for cancer ecology and evolution. J R Soc Interface 2024; 21:20240099. [PMID: 39013418 PMCID: PMC11251767 DOI: 10.1098/rsif.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/10/2024] [Indexed: 07/18/2024] Open
Abstract
Cancer incidence increases rapidly with age, typically as a polynomial. The somatic mutation theory explains this increase through the waiting time for enough mutations to build up to generate cells with the full set of traits needed to grow without control. However, lines of evidence ranging from tumour reversion and dormancy to the prevalence of presumed cancer mutations in non-cancerous tissues argue that this is not the whole story, and that cancer is also an ecological process, and that mutations only lead to cancer when the systems of control within and across cells have broken down. Aging thus has two effects: the build-up of mutations and the breakdown of control. This paper presents a mathematical modelling framework to unify these theories with novel approaches to model the mutation and diversification of cell lineages and of the breakdown of the layers of control both within and between cells. These models correctly predict the polynomial increase of cancer with age, show how germline defects in control accelerate cancer initiation, and compute how the positive feedback between cell replication, ecology and layers of control leads to a doubly exponential growth of cell populations.
Collapse
Affiliation(s)
- Frederick R. Adler
- Department of Mathematics, School of Biological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Wang Y. Algorithms for the Uniqueness of the Longest Common Subsequence. J Bioinform Comput Biol 2023; 21:2350027. [PMID: 38212873 DOI: 10.1142/s0219720023500270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Given several number sequences, determining the longest common subsequence is a classical problem in computer science. This problem has applications in bioinformatics, especially determining transposable genes. Nevertheless, related works only consider how to find one longest common subsequence. In this paper, we consider how to determine the uniqueness of the longest common subsequence. If there are multiple longest common subsequences, we also determine which number appears in all/some/none of the longest common subsequences. We focus on four scenarios: (1) linear sequences without duplicated numbers; (2) circular sequences without duplicated numbers; (3) linear sequences with duplicated numbers; (4) circular sequences with duplicated numbers. We develop corresponding algorithms and apply them to gene sequencing data.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, University of California, Los Angeles, California, USA
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Wang Y, Zhou JX, Pedrini E, Rubin I, Khalil M, Taramelli R, Qian H, Huang S. Cell population growth kinetics in the presence of stochastic heterogeneity of cell phenotype. J Theor Biol 2023; 575:111645. [PMID: 37863423 DOI: 10.1016/j.jtbi.2023.111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Recent studies at individual cell resolution have revealed phenotypic heterogeneity in nominally clonal tumor cell populations. The heterogeneity affects cell growth behaviors, which can result in departure from the idealized uniform exponential growth of the cell population. Here we measured the stochastic time courses of growth of an ensemble of populations of HL60 leukemia cells in cultures, starting with distinct initial cell numbers to capture a departure from the uniform exponential growth model for the initial growth ("take-off"). Despite being derived from the same cell clone, we observed significant variations in the early growth patterns of individual cultures with statistically significant differences in growth dynamics, which could be explained by the presence of inter-converting subpopulations with different growth rates, and which could last for many generations. Based on the hypothesis of existence of multiple subpopulations, we developed a branching process model that was consistent with the experimental observations.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, University of California, Los Angeles, CA, United States of America; Department of Applied Mathematics, University of Washington, Seattle, WA, United States of America
| | - Joseph X Zhou
- Institute for Systems Biology, Seattle, WA, United States of America
| | - Edoardo Pedrini
- Institute for Systems Biology, Seattle, WA, United States of America
| | - Irit Rubin
- Institute for Systems Biology, Seattle, WA, United States of America
| | - May Khalil
- Institute for Systems Biology, Seattle, WA, United States of America
| | - Roberto Taramelli
- Department of Theoretical and Applied Science, University of Insubria, Italy
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, WA, United States of America
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA, United States of America.
| |
Collapse
|
5
|
Wang Y, Shtylla B, Chou T. Order-of-mutation effects on cancer progression: models for myeloproliferative neoplasm. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.16.23294177. [PMID: 37662184 PMCID: PMC10473807 DOI: 10.1101/2023.08.16.23294177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found, JAK2 V617F and one in the TET2 gene. Whether or not one mutation is present will influence how the other subsequent mutation affects the regulation of gene expression. When both mutations are present, the order of their occurrence has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation (ODE), Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. These observations consistently shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.
Collapse
Affiliation(s)
- Yue Wang
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, NY 10027
| | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, 91711
- Quantitative Systems Pharmacology, Oncology, Pfizer, San Diego, CA 92121
| | - Tom Chou
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Dept. of Mathematics, UCLA, Los Angeles, CA 90095
| |
Collapse
|
6
|
Wang Y, He S. Inference on autoregulation in gene expression with variance-to-mean ratio. J Math Biol 2023; 86:87. [PMID: 37131095 PMCID: PMC10154285 DOI: 10.1007/s00285-023-01924-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
Some genes can promote or repress their own expressions, which is called autoregulation. Although gene regulation is a central topic in biology, autoregulation is much less studied. In general, it is extremely difficult to determine the existence of autoregulation with direct biochemical approaches. Nevertheless, some papers have observed that certain types of autoregulations are linked to noise levels in gene expression. We generalize these results by two propositions on discrete-state continuous-time Markov chains. These two propositions form a simple but robust method to infer the existence of autoregulation from gene expression data. This method only needs to compare the mean and variance of the gene expression level. Compared to other methods for inferring autoregulation, our method only requires non-interventional one-time data, and does not need to estimate parameters. Besides, our method has few restrictions on the model. We apply this method to four groups of experimental data and find some genes that might have autoregulation. Some inferred autoregulations have been verified by experiments or other theoretical works.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, University of California, Los Angeles, CA, 90095, USA.
- Institut des Hautes Études Scientifiques (IHÉS), Bures-sur-Yvette, 91440, Essonne, France.
| | - Siqi He
- Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
7
|
Wang Y, Zhou JX, Pedrini E, Rubin I, Khalil M, Qian H, Huang S. Cell Population Growth Kinetics in the Presence of Stochastic Heterogeneity of Cell Phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527773. [PMID: 36824755 PMCID: PMC9948979 DOI: 10.1101/2023.02.08.527773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Recent studies at individual cell resolution have revealed phenotypic heterogeneity in nominally clonal tumor cell populations. The heterogeneity affects cell growth behaviors, which can result in departure from the idealized exponential growth. Here we measured the stochastic time courses of growth of an ensemble of populations of HL60 leukemia cells in cultures, starting with distinct initial cell numbers to capture the departure from the exponential growth model in the initial growth phase. Despite being derived from the same cell clone, we observed significant variations in the early growth patterns of individual cultures with statistically significant differences in growth kinetics and the presence of subpopulations with different growth rates that endured for many generations. Based on the hypothesis of existence of multiple inter-converting subpopulations, we developed a branching process model that captures the experimental observations.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, University of California, Los Angeles, California, United States of America
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Joseph X. Zhou
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Edoardo Pedrini
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Irit Rubin
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - May Khalil
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Sui Huang
- Institute for Systems Biology, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Fischer MM, Blüthgen N. On tumoural growth and treatment under cellular dedifferentiation. J Theor Biol 2023; 557:111327. [PMID: 36341757 DOI: 10.1016/j.jtbi.2022.111327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Differentiated cancer cells may regain stem cell characteristics; however, the effects of such a cellular dedifferentiation on tumoural growth and treatment are currently understudied. Thus, we here extend a mathematical model of cancer stem cell (CSC) driven tumour growth to also include dedifferentiation. We show that dedifferentiation increases the likelihood of tumorigenesis and the speed of tumoural growth, both modulated by the proliferative potential of the non-stem cancer cells (NSCCs). We demonstrate that dedifferentiation also may lead to treatment evasion, especially when a treatment solely targets CSCs. Conversely, targeting both CSCs and NSCCs in parallel is shown to be more robust to dedifferentiation. Despite dedifferentiation, perturbing CSC-related parameters continues to exert the largest relative effect on tumoural growth; however, we show the existence of synergies between specific CSC- and NSCC-directed treatments which cause superadditive reductions of tumoural growth. Overall, our study demonstrates various effects of dedifferentiation on growth and treatment of tumoural lesions, and we anticipate our results to be helpful in guiding future molecular and clinical research on limiting tumoural growth in vivo.
Collapse
Affiliation(s)
- Matthias M Fischer
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany; Charité Universitätsmedizin Berlin, Institut für Pathologie, 10117 Berlin, Germany.
| | - Nils Blüthgen
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany; Charité Universitätsmedizin Berlin, Institut für Pathologie, 10117 Berlin, Germany.
| |
Collapse
|
9
|
Wu Z, Wang Y, Wang K, Zhou D. Stochastic stem cell models with mutation: A comparison of asymmetric and symmetric divisions. Math Biosci 2021; 332:108541. [PMID: 33453222 DOI: 10.1016/j.mbs.2021.108541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
In order to fulfill cell proliferation and differentiation through cellular hierarchy, stem cells can undergo either asymmetric or symmetric divisions. Recent studies pay special attention to the effect of different modes of stem cell division on the lifetime risk of cancer, and report that symmetric division is more beneficial to delay the onset of cancer. The fate uncertainty of symmetric division is considered to be the reason for the cancer-delaying effect. In this paper we compare asymmetric and symmetric divisions of stem cells via studying stochastic stem cell models with mutation. Specially, by using rigorous mathematical analysis we find that both the asymmetric and symmetric models show the same statistical average, but the symmetric model shows higher fluctuation than the asymmetric model. We further show that the difference between the two models would be more remarkable for lower mutation rates. Our work quantifies the uncertainty of cell division and highlights the significance of stochasticity for distinguishing between different modes of stem cell division.
Collapse
Affiliation(s)
- Zhijie Wu
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Yuman Wang
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Kun Wang
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
10
|
Jolly MK, Celià-Terrassa T. Dynamics of Phenotypic Heterogeneity Associated with EMT and Stemness during Cancer Progression. J Clin Med 2019; 8:E1542. [PMID: 31557977 PMCID: PMC6832750 DOI: 10.3390/jcm8101542] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and phenotypic heterogeneity contribute to the generation of diverse tumor cell populations, thus enhancing cancer aggressiveness and therapy resistance. Compared to genetic heterogeneity, a consequence of mutational events, phenotypic heterogeneity arises from dynamic, reversible cell state transitions in response to varying intracellular/extracellular signals. Such phenotypic plasticity enables rapid adaptive responses to various stressful conditions and can have a strong impact on cancer progression. Herein, we have reviewed relevant literature on mechanisms associated with dynamic phenotypic changes and cellular plasticity, such as epithelial-mesenchymal transition (EMT) and cancer stemness, which have been reported to facilitate cancer metastasis. We also discuss how non-cell-autonomous mechanisms such as cell-cell communication can lead to an emergent population-level response in tumors. The molecular mechanisms underlying the complexity of tumor systems are crucial for comprehending cancer progression, and may provide new avenues for designing therapeutic strategies.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.
| |
Collapse
|
11
|
Zhou D, Luo Y, Dingli D, Traulsen A. The invasion of de-differentiating cancer cells into hierarchical tissues. PLoS Comput Biol 2019; 15:e1007167. [PMID: 31260442 PMCID: PMC6625723 DOI: 10.1371/journal.pcbi.1007167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/12/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022] Open
Abstract
Many fast renewing tissues are characterized by a hierarchical cellular architecture, with tissue specific stem cells at the root of the cellular hierarchy, differentiating into a whole range of specialized cells. There is increasing evidence that tumors are structured in a very similar way, mirroring the hierarchical structure of the host tissue. In some tissues, differentiated cells can also revert to the stem cell phenotype, which increases the risk that mutant cells lead to long lasting clones in the tissue. However, it is unclear under which circumstances de-differentiating cells will invade a tissue. To address this, we developed mathematical models to investigate how de-differentiation is selected as an adaptive mechanism in the context of cellular hierarchies. We derive thresholds for which de-differentiation is expected to emerge, and it is shown that the selection of de-differentiation is a result of the combination of the properties of cellular hierarchy and de-differentiation patterns. Our results suggest that de-differentiation is most likely to be favored provided stem cells having the largest effective self-renewal rate. Moreover, jumpwise de-differentiation provides a wider range of favorable conditions than stepwise de-differentiation. Finally, the effect of de-differentiation on the redistribution of self-renewal and differentiation probabilities also greatly influences the selection for de-differentiation. How can a tissue such as the blood system or the skin, which constantly produces a huge number of cells, avoids that errors accumulate in the cells over time? Such tissues are typically organized in cellular hierarchies, which induce a directional relation between different stages of cellular differentiation, minimizing the risk of retention of mutations. However, recent evidence also shows that some differentiated cells can de-differentiate into the stem cell phenotype. Why does de-differentiation arise in some tumors, but not in others? We developed a mathematical model to study the growth competition between de-differentiating mutant cell populations and non de-differentiating resident cell population. Our results suggest that the invasion of de-differentiation is jointly influenced by the cellular hierarchy (e.g. number of cell compartments, inherent cell division pattern) and the de-differentiation pattern, i.e. how exactly cells acquire their stem-cell like properties.
Collapse
Affiliation(s)
- Da Zhou
- School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen University, Xiamen, People’s Republic of China
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail: (DZ); (AT)
| | - Yue Luo
- School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen University, Xiamen, People’s Republic of China
| | - David Dingli
- Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail: (DZ); (AT)
| |
Collapse
|
12
|
Chapman MP, Risom T, Aswani AJ, Langer EM, Sears RC, Tomlin CJ. Modeling differentiation-state transitions linked to therapeutic escape in triple-negative breast cancer. PLoS Comput Biol 2019; 15:e1006840. [PMID: 30856168 PMCID: PMC6428348 DOI: 10.1371/journal.pcbi.1006840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/21/2019] [Accepted: 02/05/2019] [Indexed: 11/18/2022] Open
Abstract
Drug resistance in breast cancer cell populations has been shown to arise through phenotypic transition of cancer cells to a drug-tolerant state, for example through epithelial-to-mesenchymal transition or transition to a cancer stem cell state. However, many breast tumors are a heterogeneous mixture of cell types with numerous epigenetic states in addition to stem-like and mesenchymal phenotypes, and the dynamic behavior of this heterogeneous mixture in response to drug treatment is not well-understood. Recently, we showed that plasticity between differentiation states, as identified with intracellular markers such as cytokeratins, is linked to resistance to specific targeted therapeutics. Understanding the dynamics of differentiation-state transitions in this context could facilitate the development of more effective treatments for cancers that exhibit phenotypic heterogeneity and plasticity. In this work, we develop computational models of a drug-treated, phenotypically heterogeneous triple-negative breast cancer (TNBC) cell line to elucidate the feasibility of differentiation-state transition as a mechanism for therapeutic escape in this tumor subtype. Specifically, we use modeling to predict the changes in differentiation-state transitions that underlie specific therapy-induced changes in differentiation-state marker expression that we recently observed in the HCC1143 cell line. We report several statistically significant therapy-induced changes in transition rates between basal, luminal, mesenchymal, and non-basal/non-luminal/non-mesenchymal differentiation states in HCC1143 cell populations. Moreover, we validate model predictions on cell division and cell death empirically, and we test our models on an independent data set. Overall, we demonstrate that changes in differentiation-state transition rates induced by targeted therapy can provoke distinct differentiation-state aggregations of drug-resistant cells, which may be fundamental to the design of improved therapeutic regimens for cancers with phenotypic heterogeneity.
Collapse
Affiliation(s)
- Margaret P. Chapman
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Tyler Risom
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Anil J. Aswani
- Department of Industrial Engineering and Operations Research, University of California Berkeley, Berkeley, California, United States of America
| | - Ellen M. Langer
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Claire J. Tomlin
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
13
|
Zhou D, Mao S, Cheng J, Chen K, Cao X, Hu J. A Bayesian statistical analysis of stochastic phenotypic plasticity model of cancer cells. J Theor Biol 2018; 454:70-79. [DOI: 10.1016/j.jtbi.2018.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/24/2022]
|
14
|
Chen X, Wang Y, Feng T, Yi M, Zhang X, Zhou D. The overshoot and phenotypic equilibrium in characterizing cancer dynamics of reversible phenotypic plasticity. J Theor Biol 2015; 390:40-9. [PMID: 26626088 DOI: 10.1016/j.jtbi.2015.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/11/2022]
Abstract
The paradigm of phenotypic plasticity indicates reversible relations of different cancer cell phenotypes, which extends the cellular hierarchy proposed by the classical cancer stem cell (CSC) theory. Since it is still questionable if the phenotypic plasticity is a crucial improvement to the hierarchical model or just a minor extension to it, it is worthwhile to explore the dynamic behavior characterizing the reversible phenotypic plasticity. In this study we compare the hierarchical model and the reversible model in predicting the cell-state dynamics observed in biological experiments. Our results show that the hierarchical model shows significant disadvantages over the reversible model in describing both long-term stability (phenotypic equilibrium) and short-term transient dynamics (overshoot) in cancer cell populations. In a very specific case in which the total growth of population due to each cell type is identical, the hierarchical model predicts neither phenotypic equilibrium nor overshoot, whereas the reversible model succeeds in predicting both of them. Even though the performance of the hierarchical model can be improved by relaxing the specific assumption, its prediction to the phenotypic equilibrium strongly depends on a precondition that may be unrealistic in biological experiments. Moreover, it still does not show as rich dynamics as the reversible model in capturing the overshoots of both CSCs and non-CSCs. By comparison, it is more likely for the reversible model to correctly predict the stability of the phenotypic mixture and various types of overshoot behavior.
Collapse
Affiliation(s)
- Xiufang Chen
- School of Computer Science and Information Engineering, Qilu Institute of Technology, Jinan, Shandong 250000, PR China; School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China
| | - Yue Wang
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| | - Tianquan Feng
- School of Teachers׳ Education, Nanjing Normal University, Nanjing 210023, PR China
| | - Ming Yi
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Xingan Zhang
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China.
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|