1
|
Rago F, Melo EM, Miller LM, Duray AM, Batista Felix F, Vago JP, de Faria Gonçalves AP, Angelo ALPM, Cassali GD, de Gaetano M, Brennan E, Owen B, Guiry P, Godson C, Alcorn JF, Teixeira MM. Treatment with lipoxin A 4 improves influenza A infection outcome, induces macrophage reprogramming, anti-inflammatory and pro-resolutive responses. Inflamm Res 2024; 73:1903-1918. [PMID: 39214890 DOI: 10.1007/s00011-024-01939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Influenza A is a virus from the Orthomixoviridae family responsible for high lethality rates and morbidity, despite clinically proven vaccination strategies and some anti-viral therapies. The eicosanoid Lipoxin A4 (LXA4) promotes the resolution of inflammation by decreasing cell recruitment and pro-inflammatory cytokines release, but also for inducing activation of apoptosis, efferocytosis, and macrophage reprogramming. OBJECTIVE Here, we evaluated whether a synthetic lipoxin mimetic, designated AT-01-KG, would improve the course of influenza A infection in a murine model. METHOD Mice were infected with influenza A/H1N1 and treated with AT-01-KG (1.7 μg/kg/day, i.p.) at day 3 post-infection. RESULTS AT-01-KG attenuated mortality, reducing leukocyte infiltration and lung damage at day 5 and day 7 post-infection. AT-01-KG is a Formyl Peptide Receptor 2 (designated FPR2/3 in mice) agonist, and the protective responses were not observed in fpr2/3 -/- animals. In mice treated with LXA4 (50 μg/kg/day, i.p., days 3-6 post-infection), at day 7, macrophage reprogramming was observed, as seen by a decrease in classically activated macrophages and an increase in alternatively activated macrophages in the lungs. Furthermore, the number of apoptotic cells and cells undergoing efferocytosis was increased in the lavage of treated mice. Treatment also modulated the adaptive immune response, increasing the number of T helper 2 cells (Th2) and regulatory T (Tregs) cells in the lungs of the treated mice. CONCLUSION Therefore, treatment with a lipoxin A4 analog was beneficial in a model of influenza A infection in mice. The drug decreased inflammation and promoted resolution and beneficial immune responses, suggesting it may be useful in patients with severe influenza.
Collapse
Affiliation(s)
- Flavia Rago
- Department of Biochemistry and Immunology Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, CEP 31.270-901, Belo Horizonte, MG, 6627, Brazil.
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, 9127 Rangos Research Building, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
| | - Eliza Mathias Melo
- Department of Biochemistry and Immunology Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, CEP 31.270-901, Belo Horizonte, MG, 6627, Brazil
| | - Leigh M Miller
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, 9127 Rangos Research Building, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Alexis M Duray
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, 9127 Rangos Research Building, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Franciel Batista Felix
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Priscila Vago
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula de Faria Gonçalves
- Immunology of Viral Diseases, René Rachou Research Center, Oswaldo Cruz Foundation (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | | | - Geovanni D Cassali
- Comparative Pathology Laboratory, Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Monica de Gaetano
- School of Medicine/School of Biomolecular and Biomedical Science, UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- School of Medicine/School of Biomolecular and Biomedical Science, UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Benjamin Owen
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Patrick Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- School of Medicine/School of Biomolecular and Biomedical Science, UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, 9127 Rangos Research Building, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, CEP 31.270-901, Belo Horizonte, MG, 6627, Brazil.
| |
Collapse
|
2
|
Rago F, Melo EM, Miller LM, Duray AM, Felix FB, Vago JP, Gonçalves APF, Angelo ALPM, Cassali GD, Gaetano M, Brennan E, Owen B, Guiry P, Godson C, Alcorn JF, Teixeira MM. Treatment with lipoxin A 4 improves influenza A infection outcome through macrophage reprogramming, anti-inflammatory and pro-resolutive responses. RESEARCH SQUARE 2024:rs.3.rs-4491036. [PMID: 38947034 PMCID: PMC11213203 DOI: 10.21203/rs.3.rs-4491036/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objective and design Here, we evaluated whether a synthetic lipoxin mimetic, designated AT-01-KG, would improve the course of influenza A infection in a murine model. Treatment Mice were infected with influenza A/H1N1 and treated with AT-01-KG (1.7 mg/kg/day, i.p.) at day 3 post-infection. Methods Mortality rate was assessed up to day 21 and inflammatory parameters were assessed at days 5 and 7. Results AT-01-KG attenuated mortality, reducing leukocyte infiltration and lung damage at day 5 and day 7 post-infection. AT-01-KG is a Formyl Peptide Receptor 2 (designated FPR2/3 in mice) agonist, and the protective responses were not observed in FPR2/3 -/- animals. In mice treated with LXA4 (50mg/kg/day, i.p., days 3-6 post-infection), at day 7, macrophage reprogramming was observed, as seen by a decrease in classically activated macrophages and an increase in alternatively activated macrophages in the lungs. Furthermore, the number of apoptotic cells and cells undergoing efferocytosis was increased in the lavage of treated mice. Treatment also modulated the adaptive immune response, increasing the number of anti-inflammatory T cells (Th2) and regulatory T (Tregs) cells in the lungs of the treated mice. Conclusions Therefore, treatment with a lipoxin A4 analog was beneficial in a model of influenza A infection in mice. The drug decreased inflammation and promoted resolution and beneficial immune responses, suggesting it may be useful in patients with severe influenza.
Collapse
|
3
|
Weaver JJ, Smith AM. Quantitatively Mapping Immune Control during Influenza. CURRENT OPINION IN SYSTEMS BIOLOGY 2024; 38:100516. [PMID: 39430368 PMCID: PMC11488648 DOI: 10.1016/j.coisb.2024.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Host immune responses play a pivotal role in defending against influenza viruses. The activation of various immune components, such as interferon, macrophages, and CD8+ T cells, works to limit viral spread while maintaining lung integrity. Recent mathematical modeling studies have investigated these responses, describing their regulation, efficacy, and movement within the lung. Here, we discuss these studies and their emphasis on identifying nonlinearities and multifaceted roles of different cell phenotypes that could be responsible for spatially heterogeneous infection patterns.
Collapse
Affiliation(s)
- Jordan J.A. Weaver
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| |
Collapse
|
4
|
Yeh CL, Wu JM, Chen KY, Wu MH, Yang PJ, Lee PC, Chen PD, Kuo TC, Yeh SL, Lin MT. Calcitriol attenuates poly(I:C)-induced lung injury in obese mice via modulating toll-like receptor 3- and renin-angiotensin system-associated signal pathways. Int Immunopharmacol 2024; 128:111522. [PMID: 38246004 DOI: 10.1016/j.intimp.2024.111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
This study investigated the effects of calcitriol on polyinosinic-polycytidylic acid (poly(I:C))-induced acute lung injury (ALI) and its association with Toll-like receptor 3 (TLR3) and renin-angiotensin system (RAS) signal pathways in obese mice. Normal mice were fed a high-fat diet to induce obesity. Obese mice were divided into four groups: SS group, intratracheally instilled with saline and intravenous (IV) saline injection via tail vein; SD group, instilled with saline and IV calcitriol injection; PS group, instilled with poly(I:C) and IV saline injection; and PD group, instilled with poly(I:C) and IV calcitriol injection. All mice were sacrificed 12 or 24 h after poly(I:C) stimulation. The results showed that poly(I:C) instillation led to increased production of systemic inflammatory cytokines. In the lungs, the population of macrophages decreased, while more neutrophils were recruited. TLR3-associated genes including IRF3, nuclear factor-κB, interferon-β and phosphorylated IRF3 expression levels, were upregulated. The RAS-associated AT1R and ACE2 protein levels increased, whereas AT2R, Ang(1-7), and MasR levels decreased. Also, reduced tight junction (TJ) proteins and elevated lipid peroxide levels were observed 24 h after poly(I:C) stimulation. Compared to the PS group, the PD group exhibited reduced systemic and lung inflammatory cytokine levels, increased macrophage while decreased neutrophil percentages, downregulated TLR3-associated genes and phosphorylated IRF3, and polarized toward the RAS-AT2R/Ang(1-7)/MasR pathway in the lungs. Higher lung TJ levels and lower injury scores were also noted. These findings suggest that calcitriol treatment after poly(I:C) instillation alleviated ALI in obese mice possibly by downregulating TLR3 expression and tending toward the RAS-associated anti-inflammatory pathway.
Collapse
Affiliation(s)
- Chiu-Li Yeh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsun Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Yang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Da Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Chun Kuo
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Ling Yeh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Wei L, Wang X, Zhou H. Interaction among inflammasome, PANoptosise, and innate immune cells in infection of influenza virus: Updated review. Immun Inflamm Dis 2023; 11:e997. [PMID: 37773712 PMCID: PMC10521376 DOI: 10.1002/iid3.997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Influenza virus (IV) is a leading cause of respiratory tract infections, eliciting responses from key innate immune cells such as Macrophages (MQs), Neutrophils, and Dendritic Cells (DCs). These cells employ diverse mechanisms to combat IV, with Inflammasomes playing a pivotal role in viral infection control. Cellular death mechanisms, including Pyroptosis, Apoptosis, and Necroptosis (collectively called PANoptosis), significantly contribute to the innate immune response. METHODS In this updated review, we delve into the intricate relationship between PANoptosis and Inflammasomes within innate immune cells (MQs, Neutrophils, and DCs) during IV infections. We explore the strategies employed by IV to evade these immune defenses and the consequences of unchecked PANoptosis and inflammasome activation, including the potential development of severe complications such as cytokine storms and tissue damage. RESULTS Our analysis underscores the interplay between PANoptosis and Inflammasomes as a critical aspect of the innate immune response against IV. We provide insights into IV's various mechanisms to subvert these immune pathways and highlight the importance of understanding these interactions to develop effective antiviral medications. CONCLUSION A comprehensive understanding of the dynamic interactions between PANoptosis, Inflammasomes, and IV is essential for advancing our knowledge of innate immune responses to viral infections. This knowledge will be invaluable in developing targeted antiviral therapies to combat IV and mitigate potential complications, including cytokine storms and tissue damage.
Collapse
Affiliation(s)
- Li Wei
- Intensive Care Unit, Huzhou Third Municipal hospitalThe Affiliated hospital of Huzhou UniversityHuzhouChina
| | - Xufang Wang
- Intensive Care Unit, Huzhou Third Municipal hospitalThe Affiliated hospital of Huzhou UniversityHuzhouChina
| | - Huifei Zhou
- Intensive Care Unit, Huzhou Third Municipal hospitalThe Affiliated hospital of Huzhou UniversityHuzhouChina
| |
Collapse
|
6
|
Xiao Y, Zhang J, Zhu X, Zhao W, Li Y, Jin N, Lu H, Han J. Fu-Zheng-Xuan-Fei formula promotes macrophage polarization and Th17/Treg cell homeostasis against the influenza B virus (Victoria strain) infection. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116485. [PMID: 37044232 DOI: 10.1016/j.jep.2023.116485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fu-Zheng-Xuan-Fei formula (FF) is a prescription that has been clinically used through the basic theory of traditional Chinese medicine (TCM) for treating viral pneumonia. Although FF possesses a prominent clinical therapeutic effect, seldom pharmacological studies have been reported on its anti-influenza B virus (IBV) activity. AIM OF THE STUDY Influenza is an acute infectious respiratory disease caused by the influenza virus, which has high annual morbidity and mortality worldwide. With a global decline in the COVID-19 control, the infection rate of influenza virus is gradually increasing. Therefore, it is of great importance to develop novel drugs for the effective treatment of influenza virus. Apart from conventional antiviral drugs, TCM has been widely used in the clinical treatment of influenza in China. Therefore, studying the antiviral mechanism of TCM can facilitate the scientific development of TCM. MATERIALS AND METHODS Madin-Darby canine kidney cells (MDCK) and BALB/c mice were infected with IBV, and FF was added to evaluate the anti-IBV effects of FF both in vitro and in vivo by Western blotting, immunofluorescence, flow cytometry, and pathological assessment. RESULTS It was found that FF exhibited anti-viral activity against IBV infection both in vivo and in vitro, while inducing macrophage activation and promoting M1 macrophage polarization. In addition, FF effectively regulated the signal transducer and activator of transcription (STAT) signaling pathway-mediated Th17/Treg balance to improve the lung tissue damage caused by IBV infection-induced inflammation. The findings provided the scientific basis for the antiviral mechanism of FF against IBV infection. CONCLUSIONS This study shows that FF is a potentially effective antiviral drug against IBV infection.
Collapse
Affiliation(s)
- Yan Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Jinxin Zhang
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xiangyu Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Wenxin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Yiquan Li
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Jicheng Han
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, 130117, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
7
|
Martins JSCDC, Sousa TDC, Oliveira MDLDA, Gimba ERP, Siqueira MM, Matos ADR. Total Osteopontin and Its Isoform OPN4 Are Differently Expressed in Respiratory Samples during Influenza A(H1N1)pdm09 Infection and Progression. Microorganisms 2023; 11:1349. [PMID: 37317323 DOI: 10.3390/microorganisms11051349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/16/2023] Open
Abstract
Influenza A virus (IAV) infection affects the human respiratory tract, causing an acute and highly contagious disease. Individuals with comorbidities and in the extremes of age are classified as risk groups for serious clinical outcomes. However, part of the severe infections and fatalities are observed among young healthy individuals. Noteworthy, influenza infections lack specific prognostic biomarkers that would predict the disease severity. Osteopontin (OPN) has been proposed as a biomarker in a few human malignancies and its differential modulation has been observed during viral infections. However, OPN expression levels in the primary site of IAV infection have not been previously investigated. Therefore, we evaluated the transcriptional expression patterns of total OPN (tOPN) and its splicing isoforms (OPNa, OPNb, OPNc, OPN4, and OPN5) in 176 respiratory secretion samples collected from human influenza A(H1N1)pdm09 cases and a group of 65 IAV-negative controls. IAV samples were differentially classified according to their disease severity. tOPN was more frequently detected in IAV samples (34.1%) when compared with the negative controls (18.5%) (p < 0.05), as well as in fatal (59.1%) versus non-fatal IAV samples (30.5%) (p < 0.01). OPN4 splice variant transcript was more prevalent in IAV cases (78.4%) than in the negative controls (66.1%) (p = 0.05) and in severe cases (85.7%) in relation to the non-severe ones (69.2%) (p < 0.01). OPN4 detection was also associated with severity symptoms such as dyspnea (p < 0.05), respiratory failure (p < 0.05), and oxygen saturation < 95% (p < 0.05). In addition, the OPN4 expression level was increased in the fatal cases of respiratory samples. Our data indicated that tOPN and OPN4 had a more pronounced expression pattern in IAV respiratory samples, pointing to the potential use of these molecules as biomarkers to evaluate disease outcomes.
Collapse
Affiliation(s)
- Jéssica Santa Cruz de Carvalho Martins
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| | - Thiago das Chagas Sousa
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| | - Maria de Lourdes de Aguiar Oliveira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| | - Etel Rodrigues Pereira Gimba
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, andar 6, Rio de Janeiro 20230-130, Brazil
- Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, andar 3, Rio de Janeiro 20231-050, Brazil
- Programa de Pós-Graduação em Ciências Biomédicas, Fisiologia e Farmacologia, Instituto Biomédico, Av. Prof. Hernani Melo, 101, Niterói 24210-130, Brazil
- Departamento de Ciências da Natureza, Universidade Federal Fluminense, Rua Recife 1-7, Bela Vista, Rio das Ostras 28880-000, Brazil
| | - Marilda Mendonça Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| | - Aline da Rocha Matos
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| |
Collapse
|
8
|
Elaiw AM, Alsulami RS, Hobiny AD. Global dynamics of IAV/SARS-CoV-2 coinfection model with eclipse phase and antibody immunity. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:3873-3917. [PMID: 36899609 DOI: 10.3934/mbe.2023182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) and influenza are two respiratory infectious diseases of high importance widely studied around the world. COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), while influenza is caused by one of the influenza viruses, A, B, C, and D. Influenza A virus (IAV) can infect a wide range of species. Studies have reported several cases of respiratory virus coinfection in hospitalized patients. IAV mimics the SARS-CoV-2 with respect to the seasonal occurrence, transmission routes, clinical manifestations and related immune responses. The present paper aimed to develop and investigate a mathematical model to study the within-host dynamics of IAV/SARS-CoV-2 coinfection with the eclipse (or latent) phase. The eclipse phase is the period of time that elapses between the viral entry into the target cell and the release of virions produced by that newly infected cell. The role of the immune system in controlling and clearing the coinfection is modeled. The model simulates the interaction between nine compartments, uninfected epithelial cells, latent/active SARS-CoV-2-infected cells, latent/active IAV-infected cells, free SARS-CoV-2 particles, free IAV particles, SARS-CoV-2-specific antibodies and IAV-specific antibodies. The regrowth and death of the uninfected epithelial cells are considered. We study the basic qualitative properties of the model, calculate all equilibria, and prove the global stability of all equilibria. The global stability of equilibria is established using the Lyapunov method. The theoretical findings are demonstrated via numerical simulations. The importance of considering the antibody immunity in the coinfection dynamics model is discussed. It is found that without modeling the antibody immunity, the case of IAV and SARS-CoV-2 coexistence will not occur. Further, we discuss the effect of IAV infection on the dynamics of SARS-CoV-2 single infection and vice versa.
Collapse
Affiliation(s)
- A M Elaiw
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Raghad S Alsulami
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - A D Hobiny
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Xu MM, Kang JY, Ji S, Wei YY, Wei SL, Ye JJ, Wang YG, Shen JL, Wu HM, Fei GH. Melatonin Suppresses Macrophage M1 Polarization and ROS-Mediated Pyroptosis via Activating ApoE/LDLR Pathway in Influenza A-Induced Acute Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2520348. [PMID: 36425057 PMCID: PMC9681554 DOI: 10.1155/2022/2520348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2023]
Abstract
Influenza virus infection is one of the strongest pathogenic factors for the development of acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS). However, the underlying cellular and molecular mechanisms have not been clarified. In this study, we aim to investigate whether melatonin modulates macrophage polarization, oxidative stress, and pyroptosis via activating Apolipoprotein E/low-density lipoprotein receptor (ApoE/LDLR) pathway in influenza A-induced ALI. Here, wild-type (WT) and ApoE-/- mice were instilled intratracheally with influenza A (H3N2) and injected intraperitoneally with melatonin for 7 consecutive days. In vitro, WT and ApoE-/- murine bone marrow-derived macrophages (BMDMs) were pretreated with melatonin before H3N2 stimulation. The results showed that melatonin administration significantly attenuated H3N2-induced pulmonary damage, leukocyte infiltration, and edema; decreased the expression of proinflammatory M1 markers; enhanced anti-inflammatory M2 markers; and switched the polarization of alveolar macrophages (AMs) from M1 to M2 phenotype. Additionally, melatonin inhibited reactive oxygen species- (ROS-) mediated pyroptosis shown by downregulation of malonaldehyde (MDA) and ROS levels as well as inhibition of the NLRP3/GSDMD pathway and lactate dehydrogenase (LDH) release. Strikingly, the ApoE/LDLR pathway was activated when melatonin was applied in H3N2-infected macrophages and mice. ApoE knockout mostly abrogated the protective impacts of melatonin on H3N2-induced ALI and its regulatory ability on macrophage polarization, oxidative stress, and pyroptosis. Furthermore, recombinant ApoE3 (re-ApoE3) inhibited H3N2-induced M1 polarization of BMDMs with upregulation of MT1 and MT2 expression, but re-ApoE2 and re-ApoE4 failed to do this. Melatonin combined with re-ApoE3 played more beneficial protective effects on modulating macrophage polarization, oxidative stress, and pyroptosis in H3N2-infected ApoE-/- BMDMs. Our study indicated that melatonin attenuated influenza A- (H3N2-) induced ALI by inhibiting the M1 polarization of pulmonary macrophages and ROS-mediated pyroptosis via activating the ApoE/LDLR pathway. This study suggested that melatonin-ApoE/LDLR axis may serve as a novel therapeutic strategy for influenza virus-induced ALI.
Collapse
Affiliation(s)
- Meng-Meng Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Jia-Ying Kang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Shuang Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Si-Liang Wei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Jing-Jing Ye
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Yue-Guo Wang
- Department of Emergency Critical Care Medicine, First Affiliated Hospital of Anhui Provincial Hospital, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
| | - Ji-Long Shen
- Provincial Laboratory of Microbiology and Parasitology of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Hui-Mei Wu
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Anhui Geriatric Institute, Department of Geriatric Respiratory Critical and Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui, China
| |
Collapse
|
10
|
Barreto-Duran E, Szczepański A, Gałuszka-Bulaga A, Surmiak M, Siedlar M, Sanak M, Rajfur Z, Milewska A, Lenart M, Pyrć K. The interplay between the airway epithelium and tissue macrophages during the SARS-CoV-2 infection. Front Immunol 2022; 13:991991. [PMID: 36275746 PMCID: PMC9582145 DOI: 10.3389/fimmu.2022.991991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The first line of antiviral immune response in the lungs is secured by the innate immunity. Several cell types take part in this process, but airway macrophages (AMs) are among the most relevant ones. The AMs can phagocyte infected cells and activate the immune response through antigen presentation and cytokine release. However, the precise role of macrophages in the course of SARS-CoV-2 infection is still largely unknown. In this study, we aimed to evaluate the role of AMs during the SARS-CoV-2 infection using a co-culture of fully differentiated primary human airway epithelium (HAE) and human monocyte-derived macrophages (hMDMs). Our results confirmed abortive SARS-CoV-2 infection in hMDMs, and their inability to transfer the virus to epithelial cells. However, we demonstrated a striking delay in viral replication in the HAEs when hMDMs were added apically after the epithelial infection, but not when added before the inoculation or on the basolateral side of the culture. Moreover, SARS-CoV-2 inhibition by hMDMs seems to be driven by cell-to-cell contact and not by cytokine production. Together, our results show, for the first time, that the recruitment of macrophages may play an important role during the SARS-CoV-2 infection, limiting the virus replication and its spread.
Collapse
Affiliation(s)
- Emilia Barreto-Duran
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur Szczepański
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Adrianna Gałuszka-Bulaga
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Zenon Rajfur
- Astronomy and Applied Computer Sciences, Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Aleksandra Milewska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marzena Lenart
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- *Correspondence: Krzysztof Pyrć, ; Marzena Lenart,
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- *Correspondence: Krzysztof Pyrć, ; Marzena Lenart,
| |
Collapse
|
11
|
Lignans from Mosla scabra Ameliorated Influenza A Virus-Induced Pneumonia via Inhibiting Macrophage Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1688826. [PMID: 35942373 PMCID: PMC9356792 DOI: 10.1155/2022/1688826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
The lower respiratory tract infection, induced by influenza virus, coronaviruses, and respiratory syncytial virus, remains a serious threat to human health that can cause a global pandemic. Thus, finding effective chemicals and therapeutic measures to advance the functional restoration of the respiratory tract after infection has been the emphasis of the studies on the subjects. Mosla scabra is a natural medicinal plant used for treating various lung and gastrointestinal diseases, including viral infection, cough, chronic obstructive pulmonary disease, acute gastroenteritis, and diarrhoea. In this study, the antiviral and anti-inflammatory effects of total lignans (MSTL) extracted from the plant were investigated in influenza A virus (IAV)-infected mice and RAW 264.7 macrophages. MSTL could not only protect the macrophages against IAV-induced pyroptosis but also could lighten the lung inflammation induced by IAV in vivo and in vitro. The network pharmacology analysis revealed that differentially expressed genes, mainly involving in EGFR tyrosine kinase inhibitor resistance, endocrine resistance, HIF-1 signaling pathway, C-type lectin receptor signaling pathway, and FOXO signaling pathway, contributed to the IAV-induced alveolar macrophage dysfunction. It indicated that MSTL enhanced the function of alveolar macrophages and improved IAV-induced lung injury in mice.
Collapse
|
12
|
Pascucci E, Pugliese A. Modelling Immune Memory Development. Bull Math Biol 2021; 83:118. [PMID: 34687362 DOI: 10.1007/s11538-021-00949-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/27/2021] [Indexed: 12/01/2022]
Abstract
The cellular adaptive immune response to influenza has been analyzed through several recent mathematical models. In particular, Zarnitsyna et al. (Front Immunol 7:1-9, 2016) show how central memory CD8+ T cells reach a plateau after repeated infections, and analyze their role in the immune response to further challenges. In this paper, we further investigate the theoretical features of that model by extracting from the infection dynamics a discrete map that describes the build-up of memory cells. Furthermore, we show how the model by Zarnitsyna et al. (Front Immunol 7:1-9, 2016) can be viewed as a fast-scale approximation of a model allowing for recruitment of target epithelial cells. Finally, we analyze which components of the model are essential to understand the progressive build-up of immune memory. This is performed through the analysis of simplified versions of the model that include some components only of immune response. The analysis performed may also provide a theoretical framework for understanding the conditions under which two-dose vaccination strategies can be helpful.
Collapse
Affiliation(s)
- Eleonora Pascucci
- Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, 38123, Povo, TN, Italy
| | - Andrea Pugliese
- Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, 38123, Povo, TN, Italy.
| |
Collapse
|
13
|
Treesatayapun C. Impulsive optimal control for drug treatment of influenza A virus in the host with impulsive-axis equivalent model. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.06.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Alamo T, G Reina D, Millán Gata P, Preciado VM, Giordano G. Data-driven methods for present and future pandemics: Monitoring, modelling and managing. ANNUAL REVIEWS IN CONTROL 2021; 52:448-464. [PMID: 34220287 PMCID: PMC8238691 DOI: 10.1016/j.arcontrol.2021.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 05/29/2023]
Abstract
This survey analyses the role of data-driven methodologies for pandemic modelling and control. We provide a roadmap from the access to epidemiological data sources to the control of epidemic phenomena. We review the available methodologies and discuss the challenges in the development of data-driven strategies to combat the spreading of infectious diseases. Our aim is to bring together several different disciplines required to provide a holistic approach to epidemic analysis, such as data science, epidemiology, and systems-and-control theory. A 3M-analysis is presented, whose three pillars are: Monitoring, Modelling and Managing. The focus is on the potential of data-driven schemes to address three different challenges raised by a pandemic: (i) monitoring the epidemic evolution and assessing the effectiveness of the adopted countermeasures; (ii) modelling and forecasting the spread of the epidemic; (iii) making timely decisions to manage, mitigate and suppress the contagion. For each step of this roadmap, we review consolidated theoretical approaches (including data-driven methodologies that have been shown to be successful in other contexts) and discuss their application to past or present epidemics, such as Covid-19, as well as their potential application to future epidemics.
Collapse
Affiliation(s)
- Teodoro Alamo
- Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Escuela Superior de Ingenieros, Sevilla, Spain
| | - Daniel G Reina
- Departamento de Ingeniería Electrónica, Universidad de Sevilla, Escuela Superior de Ingenieros, Sevilla, Spain
| | - Pablo Millán Gata
- Departamento de Ingeniería, Universidad Loyola Andalucía, Seville, Spain
| | - Victor M Preciado
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA
| | - Giulia Giordano
- Department of Industrial Engineering, University of Trento, Trento, Italy
| |
Collapse
|